qemu/hw/ppc/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "hw/hw.h"
  30#include "hw/sysbus.h"
  31#include "hw/pci/pci.h"
  32#include "hw/pci/msi.h"
  33#include "hw/pci/msix.h"
  34#include "hw/pci/pci_host.h"
  35#include "hw/ppc/spapr.h"
  36#include "hw/pci-host/spapr.h"
  37#include "exec/address-spaces.h"
  38#include "exec/ram_addr.h"
  39#include <libfdt.h>
  40#include "trace.h"
  41#include "qemu/error-report.h"
  42#include "qapi/qmp/qerror.h"
  43
  44#include "hw/pci/pci_bridge.h"
  45#include "hw/pci/pci_bus.h"
  46#include "hw/pci/pci_ids.h"
  47#include "hw/ppc/spapr_drc.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/kvm.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/numa.h"
  52
  53/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  54#define RTAS_QUERY_FN           0
  55#define RTAS_CHANGE_FN          1
  56#define RTAS_RESET_FN           2
  57#define RTAS_CHANGE_MSI_FN      3
  58#define RTAS_CHANGE_MSIX_FN     4
  59
  60/* Interrupt types to return on RTAS_CHANGE_* */
  61#define RTAS_TYPE_MSI           1
  62#define RTAS_TYPE_MSIX          2
  63
  64#define FDT_NAME_MAX          128
  65
  66#define _FDT(exp) \
  67    do { \
  68        int ret = (exp);                                           \
  69        if (ret < 0) {                                             \
  70            return ret;                                            \
  71        }                                                          \
  72    } while (0)
  73
  74sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
  75{
  76    sPAPRPHBState *sphb;
  77
  78    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  79        if (sphb->buid != buid) {
  80            continue;
  81        }
  82        return sphb;
  83    }
  84
  85    return NULL;
  86}
  87
  88PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
  89                              uint32_t config_addr)
  90{
  91    sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
  92    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  93    int bus_num = (config_addr >> 16) & 0xFF;
  94    int devfn = (config_addr >> 8) & 0xFF;
  95
  96    if (!phb) {
  97        return NULL;
  98    }
  99
 100    return pci_find_device(phb->bus, bus_num, devfn);
 101}
 102
 103static uint32_t rtas_pci_cfgaddr(uint32_t arg)
 104{
 105    /* This handles the encoding of extended config space addresses */
 106    return ((arg >> 20) & 0xf00) | (arg & 0xff);
 107}
 108
 109static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 110                                   uint32_t addr, uint32_t size,
 111                                   target_ulong rets)
 112{
 113    PCIDevice *pci_dev;
 114    uint32_t val;
 115
 116    if ((size != 1) && (size != 2) && (size != 4)) {
 117        /* access must be 1, 2 or 4 bytes */
 118        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 119        return;
 120    }
 121
 122    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 123    addr = rtas_pci_cfgaddr(addr);
 124
 125    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 126        /* Access must be to a valid device, within bounds and
 127         * naturally aligned */
 128        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 129        return;
 130    }
 131
 132    val = pci_host_config_read_common(pci_dev, addr,
 133                                      pci_config_size(pci_dev), size);
 134
 135    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 136    rtas_st(rets, 1, val);
 137}
 138
 139static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 140                                     uint32_t token, uint32_t nargs,
 141                                     target_ulong args,
 142                                     uint32_t nret, target_ulong rets)
 143{
 144    uint64_t buid;
 145    uint32_t size, addr;
 146
 147    if ((nargs != 4) || (nret != 2)) {
 148        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 149        return;
 150    }
 151
 152    buid = rtas_ldq(args, 1);
 153    size = rtas_ld(args, 3);
 154    addr = rtas_ld(args, 0);
 155
 156    finish_read_pci_config(spapr, buid, addr, size, rets);
 157}
 158
 159static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 160                                 uint32_t token, uint32_t nargs,
 161                                 target_ulong args,
 162                                 uint32_t nret, target_ulong rets)
 163{
 164    uint32_t size, addr;
 165
 166    if ((nargs != 2) || (nret != 2)) {
 167        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 168        return;
 169    }
 170
 171    size = rtas_ld(args, 1);
 172    addr = rtas_ld(args, 0);
 173
 174    finish_read_pci_config(spapr, 0, addr, size, rets);
 175}
 176
 177static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 178                                    uint32_t addr, uint32_t size,
 179                                    uint32_t val, target_ulong rets)
 180{
 181    PCIDevice *pci_dev;
 182
 183    if ((size != 1) && (size != 2) && (size != 4)) {
 184        /* access must be 1, 2 or 4 bytes */
 185        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 186        return;
 187    }
 188
 189    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 190    addr = rtas_pci_cfgaddr(addr);
 191
 192    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 193        /* Access must be to a valid device, within bounds and
 194         * naturally aligned */
 195        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 196        return;
 197    }
 198
 199    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 200                                 val, size);
 201
 202    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 203}
 204
 205static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 206                                      uint32_t token, uint32_t nargs,
 207                                      target_ulong args,
 208                                      uint32_t nret, target_ulong rets)
 209{
 210    uint64_t buid;
 211    uint32_t val, size, addr;
 212
 213    if ((nargs != 5) || (nret != 1)) {
 214        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 215        return;
 216    }
 217
 218    buid = rtas_ldq(args, 1);
 219    val = rtas_ld(args, 4);
 220    size = rtas_ld(args, 3);
 221    addr = rtas_ld(args, 0);
 222
 223    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 224}
 225
 226static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 227                                  uint32_t token, uint32_t nargs,
 228                                  target_ulong args,
 229                                  uint32_t nret, target_ulong rets)
 230{
 231    uint32_t val, size, addr;
 232
 233    if ((nargs != 3) || (nret != 1)) {
 234        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 235        return;
 236    }
 237
 238
 239    val = rtas_ld(args, 2);
 240    size = rtas_ld(args, 1);
 241    addr = rtas_ld(args, 0);
 242
 243    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 244}
 245
 246/*
 247 * Set MSI/MSIX message data.
 248 * This is required for msi_notify()/msix_notify() which
 249 * will write at the addresses via spapr_msi_write().
 250 *
 251 * If hwaddr == 0, all entries will have .data == first_irq i.e.
 252 * table will be reset.
 253 */
 254static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
 255                             unsigned first_irq, unsigned req_num)
 256{
 257    unsigned i;
 258    MSIMessage msg = { .address = addr, .data = first_irq };
 259
 260    if (!msix) {
 261        msi_set_message(pdev, msg);
 262        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 263        return;
 264    }
 265
 266    for (i = 0; i < req_num; ++i) {
 267        msix_set_message(pdev, i, msg);
 268        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 269        if (addr) {
 270            ++msg.data;
 271        }
 272    }
 273}
 274
 275static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 276                                uint32_t token, uint32_t nargs,
 277                                target_ulong args, uint32_t nret,
 278                                target_ulong rets)
 279{
 280    uint32_t config_addr = rtas_ld(args, 0);
 281    uint64_t buid = rtas_ldq(args, 1);
 282    unsigned int func = rtas_ld(args, 3);
 283    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 284    unsigned int seq_num = rtas_ld(args, 5);
 285    unsigned int ret_intr_type;
 286    unsigned int irq, max_irqs = 0;
 287    sPAPRPHBState *phb = NULL;
 288    PCIDevice *pdev = NULL;
 289    spapr_pci_msi *msi;
 290    int *config_addr_key;
 291    Error *err = NULL;
 292
 293    switch (func) {
 294    case RTAS_CHANGE_MSI_FN:
 295    case RTAS_CHANGE_FN:
 296        ret_intr_type = RTAS_TYPE_MSI;
 297        break;
 298    case RTAS_CHANGE_MSIX_FN:
 299        ret_intr_type = RTAS_TYPE_MSIX;
 300        break;
 301    default:
 302        error_report("rtas_ibm_change_msi(%u) is not implemented", func);
 303        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 304        return;
 305    }
 306
 307    /* Fins sPAPRPHBState */
 308    phb = spapr_pci_find_phb(spapr, buid);
 309    if (phb) {
 310        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 311    }
 312    if (!phb || !pdev) {
 313        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 314        return;
 315    }
 316
 317    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 318
 319    /* Releasing MSIs */
 320    if (!req_num) {
 321        if (!msi) {
 322            trace_spapr_pci_msi("Releasing wrong config", config_addr);
 323            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 324            return;
 325        }
 326
 327        spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
 328        if (msi_present(pdev)) {
 329            spapr_msi_setmsg(pdev, 0, false, 0, 0);
 330        }
 331        if (msix_present(pdev)) {
 332            spapr_msi_setmsg(pdev, 0, true, 0, 0);
 333        }
 334        g_hash_table_remove(phb->msi, &config_addr);
 335
 336        trace_spapr_pci_msi("Released MSIs", config_addr);
 337        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 338        rtas_st(rets, 1, 0);
 339        return;
 340    }
 341
 342    /* Enabling MSI */
 343
 344    /* Check if the device supports as many IRQs as requested */
 345    if (ret_intr_type == RTAS_TYPE_MSI) {
 346        max_irqs = msi_nr_vectors_allocated(pdev);
 347    } else if (ret_intr_type == RTAS_TYPE_MSIX) {
 348        max_irqs = pdev->msix_entries_nr;
 349    }
 350    if (!max_irqs) {
 351        error_report("Requested interrupt type %d is not enabled for device %x",
 352                     ret_intr_type, config_addr);
 353        rtas_st(rets, 0, -1); /* Hardware error */
 354        return;
 355    }
 356    /* Correct the number if the guest asked for too many */
 357    if (req_num > max_irqs) {
 358        trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
 359        req_num = max_irqs;
 360        irq = 0; /* to avoid misleading trace */
 361        goto out;
 362    }
 363
 364    /* Allocate MSIs */
 365    irq = spapr_ics_alloc_block(spapr->ics, req_num, false,
 366                           ret_intr_type == RTAS_TYPE_MSI, &err);
 367    if (err) {
 368        error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 369                          config_addr);
 370        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 371        return;
 372    }
 373
 374    /* Release previous MSIs */
 375    if (msi) {
 376        spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
 377        g_hash_table_remove(phb->msi, &config_addr);
 378    }
 379
 380    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 381    spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
 382                     irq, req_num);
 383
 384    /* Add MSI device to cache */
 385    msi = g_new(spapr_pci_msi, 1);
 386    msi->first_irq = irq;
 387    msi->num = req_num;
 388    config_addr_key = g_new(int, 1);
 389    *config_addr_key = config_addr;
 390    g_hash_table_insert(phb->msi, config_addr_key, msi);
 391
 392out:
 393    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 394    rtas_st(rets, 1, req_num);
 395    rtas_st(rets, 2, ++seq_num);
 396    if (nret > 3) {
 397        rtas_st(rets, 3, ret_intr_type);
 398    }
 399
 400    trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
 401}
 402
 403static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
 404                                                   sPAPRMachineState *spapr,
 405                                                   uint32_t token,
 406                                                   uint32_t nargs,
 407                                                   target_ulong args,
 408                                                   uint32_t nret,
 409                                                   target_ulong rets)
 410{
 411    uint32_t config_addr = rtas_ld(args, 0);
 412    uint64_t buid = rtas_ldq(args, 1);
 413    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 414    sPAPRPHBState *phb = NULL;
 415    PCIDevice *pdev = NULL;
 416    spapr_pci_msi *msi;
 417
 418    /* Find sPAPRPHBState */
 419    phb = spapr_pci_find_phb(spapr, buid);
 420    if (phb) {
 421        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 422    }
 423    if (!phb || !pdev) {
 424        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 425        return;
 426    }
 427
 428    /* Find device descriptor and start IRQ */
 429    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 430    if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
 431        trace_spapr_pci_msi("Failed to return vector", config_addr);
 432        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 433        return;
 434    }
 435    intr_src_num = msi->first_irq + ioa_intr_num;
 436    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 437                                                           intr_src_num);
 438
 439    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 440    rtas_st(rets, 1, intr_src_num);
 441    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 442}
 443
 444static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
 445                                    sPAPRMachineState *spapr,
 446                                    uint32_t token, uint32_t nargs,
 447                                    target_ulong args, uint32_t nret,
 448                                    target_ulong rets)
 449{
 450    sPAPRPHBState *sphb;
 451    uint32_t addr, option;
 452    uint64_t buid;
 453    int ret;
 454
 455    if ((nargs != 4) || (nret != 1)) {
 456        goto param_error_exit;
 457    }
 458
 459    buid = rtas_ldq(args, 1);
 460    addr = rtas_ld(args, 0);
 461    option = rtas_ld(args, 3);
 462
 463    sphb = spapr_pci_find_phb(spapr, buid);
 464    if (!sphb) {
 465        goto param_error_exit;
 466    }
 467
 468    if (!spapr_phb_eeh_available(sphb)) {
 469        goto param_error_exit;
 470    }
 471
 472    ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
 473    rtas_st(rets, 0, ret);
 474    return;
 475
 476param_error_exit:
 477    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 478}
 479
 480static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
 481                                           sPAPRMachineState *spapr,
 482                                           uint32_t token, uint32_t nargs,
 483                                           target_ulong args, uint32_t nret,
 484                                           target_ulong rets)
 485{
 486    sPAPRPHBState *sphb;
 487    PCIDevice *pdev;
 488    uint32_t addr, option;
 489    uint64_t buid;
 490
 491    if ((nargs != 4) || (nret != 2)) {
 492        goto param_error_exit;
 493    }
 494
 495    buid = rtas_ldq(args, 1);
 496    sphb = spapr_pci_find_phb(spapr, buid);
 497    if (!sphb) {
 498        goto param_error_exit;
 499    }
 500
 501    if (!spapr_phb_eeh_available(sphb)) {
 502        goto param_error_exit;
 503    }
 504
 505    /*
 506     * We always have PE address of form "00BB0001". "BB"
 507     * represents the bus number of PE's primary bus.
 508     */
 509    option = rtas_ld(args, 3);
 510    switch (option) {
 511    case RTAS_GET_PE_ADDR:
 512        addr = rtas_ld(args, 0);
 513        pdev = spapr_pci_find_dev(spapr, buid, addr);
 514        if (!pdev) {
 515            goto param_error_exit;
 516        }
 517
 518        rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
 519        break;
 520    case RTAS_GET_PE_MODE:
 521        rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
 522        break;
 523    default:
 524        goto param_error_exit;
 525    }
 526
 527    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 528    return;
 529
 530param_error_exit:
 531    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 532}
 533
 534static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
 535                                            sPAPRMachineState *spapr,
 536                                            uint32_t token, uint32_t nargs,
 537                                            target_ulong args, uint32_t nret,
 538                                            target_ulong rets)
 539{
 540    sPAPRPHBState *sphb;
 541    uint64_t buid;
 542    int state, ret;
 543
 544    if ((nargs != 3) || (nret != 4 && nret != 5)) {
 545        goto param_error_exit;
 546    }
 547
 548    buid = rtas_ldq(args, 1);
 549    sphb = spapr_pci_find_phb(spapr, buid);
 550    if (!sphb) {
 551        goto param_error_exit;
 552    }
 553
 554    if (!spapr_phb_eeh_available(sphb)) {
 555        goto param_error_exit;
 556    }
 557
 558    ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
 559    rtas_st(rets, 0, ret);
 560    if (ret != RTAS_OUT_SUCCESS) {
 561        return;
 562    }
 563
 564    rtas_st(rets, 1, state);
 565    rtas_st(rets, 2, RTAS_EEH_SUPPORT);
 566    rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
 567    if (nret >= 5) {
 568        rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
 569    }
 570    return;
 571
 572param_error_exit:
 573    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 574}
 575
 576static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
 577                                    sPAPRMachineState *spapr,
 578                                    uint32_t token, uint32_t nargs,
 579                                    target_ulong args, uint32_t nret,
 580                                    target_ulong rets)
 581{
 582    sPAPRPHBState *sphb;
 583    uint32_t option;
 584    uint64_t buid;
 585    int ret;
 586
 587    if ((nargs != 4) || (nret != 1)) {
 588        goto param_error_exit;
 589    }
 590
 591    buid = rtas_ldq(args, 1);
 592    option = rtas_ld(args, 3);
 593    sphb = spapr_pci_find_phb(spapr, buid);
 594    if (!sphb) {
 595        goto param_error_exit;
 596    }
 597
 598    if (!spapr_phb_eeh_available(sphb)) {
 599        goto param_error_exit;
 600    }
 601
 602    ret = spapr_phb_vfio_eeh_reset(sphb, option);
 603    rtas_st(rets, 0, ret);
 604    return;
 605
 606param_error_exit:
 607    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 608}
 609
 610static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
 611                                  sPAPRMachineState *spapr,
 612                                  uint32_t token, uint32_t nargs,
 613                                  target_ulong args, uint32_t nret,
 614                                  target_ulong rets)
 615{
 616    sPAPRPHBState *sphb;
 617    uint64_t buid;
 618    int ret;
 619
 620    if ((nargs != 3) || (nret != 1)) {
 621        goto param_error_exit;
 622    }
 623
 624    buid = rtas_ldq(args, 1);
 625    sphb = spapr_pci_find_phb(spapr, buid);
 626    if (!sphb) {
 627        goto param_error_exit;
 628    }
 629
 630    if (!spapr_phb_eeh_available(sphb)) {
 631        goto param_error_exit;
 632    }
 633
 634    ret = spapr_phb_vfio_eeh_configure(sphb);
 635    rtas_st(rets, 0, ret);
 636    return;
 637
 638param_error_exit:
 639    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 640}
 641
 642/* To support it later */
 643static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
 644                                       sPAPRMachineState *spapr,
 645                                       uint32_t token, uint32_t nargs,
 646                                       target_ulong args, uint32_t nret,
 647                                       target_ulong rets)
 648{
 649    sPAPRPHBState *sphb;
 650    int option;
 651    uint64_t buid;
 652
 653    if ((nargs != 8) || (nret != 1)) {
 654        goto param_error_exit;
 655    }
 656
 657    buid = rtas_ldq(args, 1);
 658    sphb = spapr_pci_find_phb(spapr, buid);
 659    if (!sphb) {
 660        goto param_error_exit;
 661    }
 662
 663    if (!spapr_phb_eeh_available(sphb)) {
 664        goto param_error_exit;
 665    }
 666
 667    option = rtas_ld(args, 7);
 668    switch (option) {
 669    case RTAS_SLOT_TEMP_ERR_LOG:
 670    case RTAS_SLOT_PERM_ERR_LOG:
 671        break;
 672    default:
 673        goto param_error_exit;
 674    }
 675
 676    /* We don't have error log yet */
 677    rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
 678    return;
 679
 680param_error_exit:
 681    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 682}
 683
 684static int pci_spapr_swizzle(int slot, int pin)
 685{
 686    return (slot + pin) % PCI_NUM_PINS;
 687}
 688
 689static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 690{
 691    /*
 692     * Here we need to convert pci_dev + irq_num to some unique value
 693     * which is less than number of IRQs on the specific bus (4).  We
 694     * use standard PCI swizzling, that is (slot number + pin number)
 695     * % 4.
 696     */
 697    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 698}
 699
 700static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 701{
 702    /*
 703     * Here we use the number returned by pci_spapr_map_irq to find a
 704     * corresponding qemu_irq.
 705     */
 706    sPAPRPHBState *phb = opaque;
 707
 708    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 709    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 710}
 711
 712static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
 713{
 714    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
 715    PCIINTxRoute route;
 716
 717    route.mode = PCI_INTX_ENABLED;
 718    route.irq = sphb->lsi_table[pin].irq;
 719
 720    return route;
 721}
 722
 723/*
 724 * MSI/MSIX memory region implementation.
 725 * The handler handles both MSI and MSIX.
 726 * The vector number is encoded in least bits in data.
 727 */
 728static void spapr_msi_write(void *opaque, hwaddr addr,
 729                            uint64_t data, unsigned size)
 730{
 731    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 732    uint32_t irq = data;
 733
 734    trace_spapr_pci_msi_write(addr, data, irq);
 735
 736    qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq));
 737}
 738
 739static const MemoryRegionOps spapr_msi_ops = {
 740    /* There is no .read as the read result is undefined by PCI spec */
 741    .read = NULL,
 742    .write = spapr_msi_write,
 743    .endianness = DEVICE_LITTLE_ENDIAN
 744};
 745
 746/*
 747 * PHB PCI device
 748 */
 749static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
 750{
 751    sPAPRPHBState *phb = opaque;
 752
 753    return &phb->iommu_as;
 754}
 755
 756static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
 757{
 758    char *path = NULL, *buf = NULL, *host = NULL;
 759
 760    /* Get the PCI VFIO host id */
 761    host = object_property_get_str(OBJECT(pdev), "host", NULL);
 762    if (!host) {
 763        goto err_out;
 764    }
 765
 766    /* Construct the path of the file that will give us the DT location */
 767    path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
 768    g_free(host);
 769    if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
 770        goto err_out;
 771    }
 772    g_free(path);
 773
 774    /* Construct and read from host device tree the loc-code */
 775    path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
 776    g_free(buf);
 777    if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
 778        goto err_out;
 779    }
 780    return buf;
 781
 782err_out:
 783    g_free(path);
 784    return NULL;
 785}
 786
 787static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
 788{
 789    char *buf;
 790    const char *devtype = "qemu";
 791    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
 792
 793    if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
 794        buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
 795        if (buf) {
 796            return buf;
 797        }
 798        devtype = "vfio";
 799    }
 800    /*
 801     * For emulated devices and VFIO-failure case, make up
 802     * the loc-code.
 803     */
 804    buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
 805                          devtype, pdev->name, sphb->index, busnr,
 806                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 807    return buf;
 808}
 809
 810/* Macros to operate with address in OF binding to PCI */
 811#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 812#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 813#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 814#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 815#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 816#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 817#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 818#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 819#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 820
 821/* for 'reg'/'assigned-addresses' OF properties */
 822#define RESOURCE_CELLS_SIZE 2
 823#define RESOURCE_CELLS_ADDRESS 3
 824
 825typedef struct ResourceFields {
 826    uint32_t phys_hi;
 827    uint32_t phys_mid;
 828    uint32_t phys_lo;
 829    uint32_t size_hi;
 830    uint32_t size_lo;
 831} QEMU_PACKED ResourceFields;
 832
 833typedef struct ResourceProps {
 834    ResourceFields reg[8];
 835    ResourceFields assigned[7];
 836    uint32_t reg_len;
 837    uint32_t assigned_len;
 838} ResourceProps;
 839
 840/* fill in the 'reg'/'assigned-resources' OF properties for
 841 * a PCI device. 'reg' describes resource requirements for a
 842 * device's IO/MEM regions, 'assigned-addresses' describes the
 843 * actual resource assignments.
 844 *
 845 * the properties are arrays of ('phys-addr', 'size') pairs describing
 846 * the addressable regions of the PCI device, where 'phys-addr' is a
 847 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
 848 * (phys.hi, phys.mid, phys.lo), and 'size' is a
 849 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
 850 *
 851 * phys.hi = 0xYYXXXXZZ, where:
 852 *   0xYY = npt000ss
 853 *          |||   |
 854 *          |||   +-- space code
 855 *          |||               |
 856 *          |||               +  00 if configuration space
 857 *          |||               +  01 if IO region,
 858 *          |||               +  10 if 32-bit MEM region
 859 *          |||               +  11 if 64-bit MEM region
 860 *          |||
 861 *          ||+------ for non-relocatable IO: 1 if aliased
 862 *          ||        for relocatable IO: 1 if below 64KB
 863 *          ||        for MEM: 1 if below 1MB
 864 *          |+------- 1 if region is prefetchable
 865 *          +-------- 1 if region is non-relocatable
 866 *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
 867 *            bits respectively
 868 *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
 869 *          to the region
 870 *
 871 * phys.mid and phys.lo correspond respectively to the hi/lo portions
 872 * of the actual address of the region.
 873 *
 874 * how the phys-addr/size values are used differ slightly between
 875 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
 876 * an additional description for the config space region of the
 877 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
 878 * to describe the region as relocatable, with an address-mapping
 879 * that corresponds directly to the PHB's address space for the
 880 * resource. 'assigned-addresses' always has n=1 set with an absolute
 881 * address assigned for the resource. in general, 'assigned-addresses'
 882 * won't be populated, since addresses for PCI devices are generally
 883 * unmapped initially and left to the guest to assign.
 884 *
 885 * note also that addresses defined in these properties are, at least
 886 * for PAPR guests, relative to the PHBs IO/MEM windows, and
 887 * correspond directly to the addresses in the BARs.
 888 *
 889 * in accordance with PCI Bus Binding to Open Firmware,
 890 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
 891 * Appendix C.
 892 */
 893static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
 894{
 895    int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
 896    uint32_t dev_id = (b_bbbbbbbb(bus_num) |
 897                       b_ddddd(PCI_SLOT(d->devfn)) |
 898                       b_fff(PCI_FUNC(d->devfn)));
 899    ResourceFields *reg, *assigned;
 900    int i, reg_idx = 0, assigned_idx = 0;
 901
 902    /* config space region */
 903    reg = &rp->reg[reg_idx++];
 904    reg->phys_hi = cpu_to_be32(dev_id);
 905    reg->phys_mid = 0;
 906    reg->phys_lo = 0;
 907    reg->size_hi = 0;
 908    reg->size_lo = 0;
 909
 910    for (i = 0; i < PCI_NUM_REGIONS; i++) {
 911        if (!d->io_regions[i].size) {
 912            continue;
 913        }
 914
 915        reg = &rp->reg[reg_idx++];
 916
 917        reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
 918        if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
 919            reg->phys_hi |= cpu_to_be32(b_ss(1));
 920        } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
 921            reg->phys_hi |= cpu_to_be32(b_ss(3));
 922        } else {
 923            reg->phys_hi |= cpu_to_be32(b_ss(2));
 924        }
 925        reg->phys_mid = 0;
 926        reg->phys_lo = 0;
 927        reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
 928        reg->size_lo = cpu_to_be32(d->io_regions[i].size);
 929
 930        if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
 931            continue;
 932        }
 933
 934        assigned = &rp->assigned[assigned_idx++];
 935        assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
 936        assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
 937        assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
 938        assigned->size_hi = reg->size_hi;
 939        assigned->size_lo = reg->size_lo;
 940    }
 941
 942    rp->reg_len = reg_idx * sizeof(ResourceFields);
 943    rp->assigned_len = assigned_idx * sizeof(ResourceFields);
 944}
 945
 946typedef struct PCIClass PCIClass;
 947typedef struct PCISubClass PCISubClass;
 948typedef struct PCIIFace PCIIFace;
 949
 950struct PCIIFace {
 951    int iface;
 952    const char *name;
 953};
 954
 955struct PCISubClass {
 956    int subclass;
 957    const char *name;
 958    const PCIIFace *iface;
 959};
 960
 961struct PCIClass {
 962    const char *name;
 963    const PCISubClass *subc;
 964};
 965
 966static const PCISubClass undef_subclass[] = {
 967    { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
 968    { 0xFF, NULL, NULL },
 969};
 970
 971static const PCISubClass mass_subclass[] = {
 972    { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
 973    { PCI_CLASS_STORAGE_IDE, "ide", NULL },
 974    { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
 975    { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
 976    { PCI_CLASS_STORAGE_RAID, "raid", NULL },
 977    { PCI_CLASS_STORAGE_ATA, "ata", NULL },
 978    { PCI_CLASS_STORAGE_SATA, "sata", NULL },
 979    { PCI_CLASS_STORAGE_SAS, "sas", NULL },
 980    { 0xFF, NULL, NULL },
 981};
 982
 983static const PCISubClass net_subclass[] = {
 984    { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
 985    { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
 986    { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
 987    { PCI_CLASS_NETWORK_ATM, "atm", NULL },
 988    { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
 989    { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
 990    { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
 991    { 0xFF, NULL, NULL },
 992};
 993
 994static const PCISubClass displ_subclass[] = {
 995    { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
 996    { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
 997    { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
 998    { 0xFF, NULL, NULL },
 999};
1000
1001static const PCISubClass media_subclass[] = {
1002    { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1003    { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1004    { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1005    { 0xFF, NULL, NULL },
1006};
1007
1008static const PCISubClass mem_subclass[] = {
1009    { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1010    { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1011    { 0xFF, NULL, NULL },
1012};
1013
1014static const PCISubClass bridg_subclass[] = {
1015    { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1016    { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1017    { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1018    { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1019    { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1020    { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1021    { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1022    { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1023    { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1024    { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1025    { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1026    { 0xFF, NULL, NULL },
1027};
1028
1029static const PCISubClass comm_subclass[] = {
1030    { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1031    { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1032    { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1033    { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1034    { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1035    { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1036    { 0xFF, NULL, NULL, },
1037};
1038
1039static const PCIIFace pic_iface[] = {
1040    { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1041    { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1042    { 0xFF, NULL },
1043};
1044
1045static const PCISubClass sys_subclass[] = {
1046    { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1047    { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1048    { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1049    { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1050    { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1051    { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1052    { 0xFF, NULL, NULL },
1053};
1054
1055static const PCISubClass inp_subclass[] = {
1056    { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1057    { PCI_CLASS_INPUT_PEN, "pen", NULL },
1058    { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1059    { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1060    { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1061    { 0xFF, NULL, NULL },
1062};
1063
1064static const PCISubClass dock_subclass[] = {
1065    { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1066    { 0xFF, NULL, NULL },
1067};
1068
1069static const PCISubClass cpu_subclass[] = {
1070    { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1071    { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1072    { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1073    { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1074    { 0xFF, NULL, NULL },
1075};
1076
1077static const PCIIFace usb_iface[] = {
1078    { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1079    { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1080    { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1081    { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1082    { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1083    { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1084    { 0xFF, NULL },
1085};
1086
1087static const PCISubClass ser_subclass[] = {
1088    { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1089    { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1090    { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1091    { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1092    { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1093    { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1094    { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1095    { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1096    { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1097    { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1098    { 0xFF, NULL, NULL },
1099};
1100
1101static const PCISubClass wrl_subclass[] = {
1102    { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1103    { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1104    { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1105    { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1106    { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1107    { 0xFF, NULL, NULL },
1108};
1109
1110static const PCISubClass sat_subclass[] = {
1111    { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1112    { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1113    { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1114    { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1115    { 0xFF, NULL, NULL },
1116};
1117
1118static const PCISubClass crypt_subclass[] = {
1119    { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1120    { PCI_CLASS_CRYPT_ENTERTAINMENT,
1121      "entertainment-encryption", NULL },
1122    { 0xFF, NULL, NULL },
1123};
1124
1125static const PCISubClass spc_subclass[] = {
1126    { PCI_CLASS_SP_DPIO, "dpio", NULL },
1127    { PCI_CLASS_SP_PERF, "counter", NULL },
1128    { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1129    { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1130    { 0xFF, NULL, NULL },
1131};
1132
1133static const PCIClass pci_classes[] = {
1134    { "legacy-device", undef_subclass },
1135    { "mass-storage",  mass_subclass },
1136    { "network", net_subclass },
1137    { "display", displ_subclass, },
1138    { "multimedia-device", media_subclass },
1139    { "memory-controller", mem_subclass },
1140    { "unknown-bridge", bridg_subclass },
1141    { "communication-controller", comm_subclass},
1142    { "system-peripheral", sys_subclass },
1143    { "input-controller", inp_subclass },
1144    { "docking-station", dock_subclass },
1145    { "cpu", cpu_subclass },
1146    { "serial-bus", ser_subclass },
1147    { "wireless-controller", wrl_subclass },
1148    { "intelligent-io", NULL },
1149    { "satellite-device", sat_subclass },
1150    { "encryption", crypt_subclass },
1151    { "data-processing-controller", spc_subclass },
1152};
1153
1154static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1155                                        uint8_t iface)
1156{
1157    const PCIClass *pclass;
1158    const PCISubClass *psubclass;
1159    const PCIIFace *piface;
1160    const char *name;
1161
1162    if (class >= ARRAY_SIZE(pci_classes)) {
1163        return "pci";
1164    }
1165
1166    pclass = pci_classes + class;
1167    name = pclass->name;
1168
1169    if (pclass->subc == NULL) {
1170        return name;
1171    }
1172
1173    psubclass = pclass->subc;
1174    while ((psubclass->subclass & 0xff) != 0xff) {
1175        if ((psubclass->subclass & 0xff) == subclass) {
1176            name = psubclass->name;
1177            break;
1178        }
1179        psubclass++;
1180    }
1181
1182    piface = psubclass->iface;
1183    if (piface == NULL) {
1184        return name;
1185    }
1186    while ((piface->iface & 0xff) != 0xff) {
1187        if ((piface->iface & 0xff) == iface) {
1188            name = piface->name;
1189            break;
1190        }
1191        piface++;
1192    }
1193
1194    return name;
1195}
1196
1197static void pci_get_node_name(char *nodename, int len, PCIDevice *dev)
1198{
1199    int slot = PCI_SLOT(dev->devfn);
1200    int func = PCI_FUNC(dev->devfn);
1201    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1202    const char *name;
1203
1204    name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1205                                ccode & 0xff);
1206
1207    if (func != 0) {
1208        snprintf(nodename, len, "%s@%x,%x", name, slot, func);
1209    } else {
1210        snprintf(nodename, len, "%s@%x", name, slot);
1211    }
1212}
1213
1214static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1215                                            PCIDevice *pdev);
1216
1217static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1218                                       sPAPRPHBState *sphb)
1219{
1220    ResourceProps rp;
1221    bool is_bridge = false;
1222    int pci_status, err;
1223    char *buf = NULL;
1224    uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1225    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1226    uint32_t max_msi, max_msix;
1227
1228    if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1229        PCI_HEADER_TYPE_BRIDGE) {
1230        is_bridge = true;
1231    }
1232
1233    /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1234    _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1235                          pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1236    _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1237                          pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1238    _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1239                          pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1240    _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1241    if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1242        _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1243                 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1244    }
1245
1246    if (!is_bridge) {
1247        _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1248            pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1249        _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1250            pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1251    }
1252
1253    if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1254        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1255                 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1256    }
1257
1258    if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1259        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1260                 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1261    }
1262
1263    _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1264        pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1265
1266    /* the following fdt cells are masked off the pci status register */
1267    pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1268    _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1269                          PCI_STATUS_DEVSEL_MASK & pci_status));
1270
1271    if (pci_status & PCI_STATUS_FAST_BACK) {
1272        _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1273    }
1274    if (pci_status & PCI_STATUS_66MHZ) {
1275        _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1276    }
1277    if (pci_status & PCI_STATUS_UDF) {
1278        _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1279    }
1280
1281    _FDT(fdt_setprop_string(fdt, offset, "name",
1282                            pci_find_device_name((ccode >> 16) & 0xff,
1283                                                 (ccode >> 8) & 0xff,
1284                                                 ccode & 0xff)));
1285    buf = spapr_phb_get_loc_code(sphb, dev);
1286    if (!buf) {
1287        error_report("Failed setting the ibm,loc-code");
1288        return -1;
1289    }
1290
1291    err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1292    g_free(buf);
1293    if (err < 0) {
1294        return err;
1295    }
1296
1297    if (drc_index) {
1298        _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1299    }
1300
1301    _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1302                          RESOURCE_CELLS_ADDRESS));
1303    _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1304                          RESOURCE_CELLS_SIZE));
1305
1306    max_msi = msi_nr_vectors_allocated(dev);
1307    if (max_msi) {
1308        _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1309    }
1310    max_msix = dev->msix_entries_nr;
1311    if (max_msix) {
1312        _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1313    }
1314
1315    populate_resource_props(dev, &rp);
1316    _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1317    _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1318                     (uint8_t *)rp.assigned, rp.assigned_len));
1319
1320    if (sphb->pcie_ecs && pci_is_express(dev)) {
1321        _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1322    }
1323
1324    return 0;
1325}
1326
1327/* create OF node for pci device and required OF DT properties */
1328static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1329                                     void *fdt, int node_offset)
1330{
1331    int offset, ret;
1332    char nodename[FDT_NAME_MAX];
1333
1334    pci_get_node_name(nodename, FDT_NAME_MAX, dev);
1335    offset = fdt_add_subnode(fdt, node_offset, nodename);
1336    ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1337
1338    g_assert(!ret);
1339    if (ret) {
1340        return 0;
1341    }
1342    return offset;
1343}
1344
1345/* Callback to be called during DRC release. */
1346void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1347{
1348    /* some version guests do not wait for completion of a device
1349     * cleanup (generally done asynchronously by the kernel) before
1350     * signaling to QEMU that the device is safe, but instead sleep
1351     * for some 'safe' period of time. unfortunately on a busy host
1352     * this sleep isn't guaranteed to be long enough, resulting in
1353     * bad things like IRQ lines being left asserted during final
1354     * device removal. to deal with this we call reset just prior
1355     * to finalizing the device, which will put the device back into
1356     * an 'idle' state, as the device cleanup code expects.
1357     */
1358    pci_device_reset(PCI_DEVICE(dev));
1359    object_unparent(OBJECT(dev));
1360}
1361
1362static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1363                                                    uint32_t busnr,
1364                                                    int32_t devfn)
1365{
1366    return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1367                           (phb->index << 16) | (busnr << 8) | devfn);
1368}
1369
1370static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1371                                               PCIDevice *pdev)
1372{
1373    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1374    return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1375}
1376
1377static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1378                                            PCIDevice *pdev)
1379{
1380    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1381
1382    if (!drc) {
1383        return 0;
1384    }
1385
1386    return spapr_drc_index(drc);
1387}
1388
1389static void spapr_pci_plug(HotplugHandler *plug_handler,
1390                           DeviceState *plugged_dev, Error **errp)
1391{
1392    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1393    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1394    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1395    Error *local_err = NULL;
1396    PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1397    uint32_t slotnr = PCI_SLOT(pdev->devfn);
1398    void *fdt = NULL;
1399    int fdt_start_offset, fdt_size;
1400
1401    /* if DR is disabled we don't need to do anything in the case of
1402     * hotplug or coldplug callbacks
1403     */
1404    if (!phb->dr_enabled) {
1405        /* if this is a hotplug operation initiated by the user
1406         * we need to let them know it's not enabled
1407         */
1408        if (plugged_dev->hotplugged) {
1409            error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1410                       object_get_typename(OBJECT(phb)));
1411        }
1412        goto out;
1413    }
1414
1415    g_assert(drc);
1416
1417    /* Following the QEMU convention used for PCIe multifunction
1418     * hotplug, we do not allow functions to be hotplugged to a
1419     * slot that already has function 0 present
1420     */
1421    if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1422        PCI_FUNC(pdev->devfn) != 0) {
1423        error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1424                   " additional functions can no longer be exposed to guest.",
1425                   slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1426        goto out;
1427    }
1428
1429    fdt = create_device_tree(&fdt_size);
1430    fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1431    if (!fdt_start_offset) {
1432        error_setg(&local_err, "Failed to create pci child device tree node");
1433        goto out;
1434    }
1435
1436    spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1437    if (local_err) {
1438        goto out;
1439    }
1440
1441    /* If this is function 0, signal hotplug for all the device functions.
1442     * Otherwise defer sending the hotplug event.
1443     */
1444    if (!spapr_drc_hotplugged(plugged_dev)) {
1445        spapr_drc_reset(drc);
1446    } else if (PCI_FUNC(pdev->devfn) == 0) {
1447        int i;
1448
1449        for (i = 0; i < 8; i++) {
1450            sPAPRDRConnector *func_drc;
1451            sPAPRDRConnectorClass *func_drck;
1452            sPAPRDREntitySense state;
1453
1454            func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1455                                                  PCI_DEVFN(slotnr, i));
1456            func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1457            state = func_drck->dr_entity_sense(func_drc);
1458
1459            if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1460                spapr_hotplug_req_add_by_index(func_drc);
1461            }
1462        }
1463    }
1464
1465out:
1466    if (local_err) {
1467        error_propagate(errp, local_err);
1468        g_free(fdt);
1469    }
1470}
1471
1472static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1473                                     DeviceState *plugged_dev, Error **errp)
1474{
1475    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1476    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1477    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1478
1479    if (!phb->dr_enabled) {
1480        error_setg(errp, QERR_BUS_NO_HOTPLUG,
1481                   object_get_typename(OBJECT(phb)));
1482        return;
1483    }
1484
1485    g_assert(drc);
1486    g_assert(drc->dev == plugged_dev);
1487
1488    if (!spapr_drc_unplug_requested(drc)) {
1489        PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1490        uint32_t slotnr = PCI_SLOT(pdev->devfn);
1491        sPAPRDRConnector *func_drc;
1492        sPAPRDRConnectorClass *func_drck;
1493        sPAPRDREntitySense state;
1494        int i;
1495
1496        /* ensure any other present functions are pending unplug */
1497        if (PCI_FUNC(pdev->devfn) == 0) {
1498            for (i = 1; i < 8; i++) {
1499                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1500                                                      PCI_DEVFN(slotnr, i));
1501                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1502                state = func_drck->dr_entity_sense(func_drc);
1503                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1504                    && !spapr_drc_unplug_requested(func_drc)) {
1505                    error_setg(errp,
1506                               "PCI: slot %d, function %d still present. "
1507                               "Must unplug all non-0 functions first.",
1508                               slotnr, i);
1509                    return;
1510                }
1511            }
1512        }
1513
1514        spapr_drc_detach(drc);
1515
1516        /* if this isn't func 0, defer unplug event. otherwise signal removal
1517         * for all present functions
1518         */
1519        if (PCI_FUNC(pdev->devfn) == 0) {
1520            for (i = 7; i >= 0; i--) {
1521                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1522                                                      PCI_DEVFN(slotnr, i));
1523                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1524                state = func_drck->dr_entity_sense(func_drc);
1525                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1526                    spapr_hotplug_req_remove_by_index(func_drc);
1527                }
1528            }
1529        }
1530    }
1531}
1532
1533static void spapr_phb_realize(DeviceState *dev, Error **errp)
1534{
1535    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1536    SysBusDevice *s = SYS_BUS_DEVICE(dev);
1537    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1538    PCIHostState *phb = PCI_HOST_BRIDGE(s);
1539    char *namebuf;
1540    int i;
1541    PCIBus *bus;
1542    uint64_t msi_window_size = 4096;
1543    sPAPRTCETable *tcet;
1544    const unsigned windows_supported =
1545        sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1546
1547    if (sphb->index != (uint32_t)-1) {
1548        sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1549        Error *local_err = NULL;
1550
1551        if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1)
1552            || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2)
1553            || (sphb->mem_win_addr != (hwaddr)-1)
1554            || (sphb->mem64_win_addr != (hwaddr)-1)
1555            || (sphb->io_win_addr != (hwaddr)-1)) {
1556            error_setg(errp, "Either \"index\" or other parameters must"
1557                       " be specified for PAPR PHB, not both");
1558            return;
1559        }
1560
1561        smc->phb_placement(spapr, sphb->index,
1562                           &sphb->buid, &sphb->io_win_addr,
1563                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
1564                           windows_supported, sphb->dma_liobn, &local_err);
1565        if (local_err) {
1566            error_propagate(errp, local_err);
1567            return;
1568        }
1569    }
1570
1571    if (sphb->buid == (uint64_t)-1) {
1572        error_setg(errp, "BUID not specified for PHB");
1573        return;
1574    }
1575
1576    if ((sphb->dma_liobn[0] == (uint32_t)-1) ||
1577        ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) {
1578        error_setg(errp, "LIOBN(s) not specified for PHB");
1579        return;
1580    }
1581
1582    if (sphb->mem_win_addr == (hwaddr)-1) {
1583        error_setg(errp, "Memory window address not specified for PHB");
1584        return;
1585    }
1586
1587    if (sphb->io_win_addr == (hwaddr)-1) {
1588        error_setg(errp, "IO window address not specified for PHB");
1589        return;
1590    }
1591
1592    if (sphb->mem64_win_size != 0) {
1593        if (sphb->mem64_win_addr == (hwaddr)-1) {
1594            error_setg(errp,
1595                       "64-bit memory window address not specified for PHB");
1596            return;
1597        }
1598
1599        if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1600            error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1601                       " (max 2 GiB)", sphb->mem_win_size);
1602            return;
1603        }
1604
1605        if (sphb->mem64_win_pciaddr == (hwaddr)-1) {
1606            /* 64-bit window defaults to identity mapping */
1607            sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1608        }
1609    } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1610        /*
1611         * For compatibility with old configuration, if no 64-bit MMIO
1612         * window is specified, but the ordinary (32-bit) memory
1613         * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1614         * window, with a 64-bit MMIO window following on immediately
1615         * afterwards
1616         */
1617        sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1618        sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1619        sphb->mem64_win_pciaddr =
1620            SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1621        sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1622    }
1623
1624    if (spapr_pci_find_phb(spapr, sphb->buid)) {
1625        error_setg(errp, "PCI host bridges must have unique BUIDs");
1626        return;
1627    }
1628
1629    if (sphb->numa_node != -1 &&
1630        (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1631        error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1632        return;
1633    }
1634
1635    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1636
1637    namebuf = alloca(strlen(sphb->dtbusname) + 32);
1638
1639    /* Initialize memory regions */
1640    sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1641    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1642
1643    sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname);
1644    memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1645                             namebuf, &sphb->memspace,
1646                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1647    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1648                                &sphb->mem32window);
1649
1650    sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname);
1651    memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1652                             namebuf, &sphb->memspace,
1653                             sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1654    memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr,
1655                                &sphb->mem64window);
1656
1657    /* Initialize IO regions */
1658    sprintf(namebuf, "%s.io", sphb->dtbusname);
1659    memory_region_init(&sphb->iospace, OBJECT(sphb),
1660                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
1661
1662    sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1663    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1664                             &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1665    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1666                                &sphb->iowindow);
1667
1668    bus = pci_register_bus(dev, NULL,
1669                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1670                           &sphb->memspace, &sphb->iospace,
1671                           PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1672    phb->bus = bus;
1673    qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1674
1675    /*
1676     * Initialize PHB address space.
1677     * By default there will be at least one subregion for default
1678     * 32bit DMA window.
1679     * Later the guest might want to create another DMA window
1680     * which will become another memory subregion.
1681     */
1682    sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1683
1684    memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1685                       namebuf, UINT64_MAX);
1686    address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1687                       sphb->dtbusname);
1688
1689    /*
1690     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1691     * we need to allocate some memory to catch those writes coming
1692     * from msi_notify()/msix_notify().
1693     * As MSIMessage:addr is going to be the same and MSIMessage:data
1694     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1695     * be used.
1696     *
1697     * For KVM we want to ensure that this memory is a full page so that
1698     * our memory slot is of page size granularity.
1699     */
1700#ifdef CONFIG_KVM
1701    if (kvm_enabled()) {
1702        msi_window_size = getpagesize();
1703    }
1704#endif
1705
1706    memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1707                          "msi", msi_window_size);
1708    memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1709                                &sphb->msiwindow);
1710
1711    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1712
1713    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1714
1715    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1716
1717    /* Initialize the LSI table */
1718    for (i = 0; i < PCI_NUM_PINS; i++) {
1719        uint32_t irq;
1720        Error *local_err = NULL;
1721
1722        irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err);
1723        if (local_err) {
1724            error_propagate(errp, local_err);
1725            error_prepend(errp, "can't allocate LSIs: ");
1726            return;
1727        }
1728
1729        sphb->lsi_table[i].irq = irq;
1730    }
1731
1732    /* allocate connectors for child PCI devices */
1733    if (sphb->dr_enabled) {
1734        for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1735            spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1736                                   (sphb->index << 16) | i);
1737        }
1738    }
1739
1740    /* DMA setup */
1741    if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
1742        && kvm_enabled()) {
1743        error_report("System page size 0x%lx is not enabled in page_size_mask "
1744                     "(0x%"PRIx64"). Performance may be slow",
1745                     qemu_getrampagesize(), sphb->page_size_mask);
1746    }
1747
1748    for (i = 0; i < windows_supported; ++i) {
1749        tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1750        if (!tcet) {
1751            error_setg(errp, "Creating window#%d failed for %s",
1752                       i, sphb->dtbusname);
1753            return;
1754        }
1755        memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1756                                            spapr_tce_get_iommu(tcet), 0);
1757    }
1758
1759    sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1760}
1761
1762static int spapr_phb_children_reset(Object *child, void *opaque)
1763{
1764    DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1765
1766    if (dev) {
1767        device_reset(dev);
1768    }
1769
1770    return 0;
1771}
1772
1773void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1774{
1775    int i;
1776    sPAPRTCETable *tcet;
1777
1778    for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1779        tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1780
1781        if (tcet && tcet->nb_table) {
1782            spapr_tce_table_disable(tcet);
1783        }
1784    }
1785
1786    /* Register default 32bit DMA window */
1787    tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1788    spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1789                           sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1790}
1791
1792static void spapr_phb_reset(DeviceState *qdev)
1793{
1794    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1795
1796    spapr_phb_dma_reset(sphb);
1797
1798    /* Reset the IOMMU state */
1799    object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1800
1801    if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1802        spapr_phb_vfio_reset(qdev);
1803    }
1804}
1805
1806static Property spapr_phb_properties[] = {
1807    DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1808    DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1809    DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1),
1810    DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1),
1811    DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1812    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1813                       SPAPR_PCI_MEM32_WIN_SIZE),
1814    DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1),
1815    DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1816                       SPAPR_PCI_MEM64_WIN_SIZE),
1817    DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr,
1818                       -1),
1819    DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1820    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1821                       SPAPR_PCI_IO_WIN_SIZE),
1822    DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1823                     true),
1824    /* Default DMA window is 0..1GB */
1825    DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1826    DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1827    DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1828                       0x800000000000000ULL),
1829    DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1830    DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1831                       (1ULL << 12) | (1ULL << 16)),
1832    DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1833    DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1834                     pre_2_8_migration, false),
1835    DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1836                     pcie_ecs, true),
1837    DEFINE_PROP_END_OF_LIST(),
1838};
1839
1840static const VMStateDescription vmstate_spapr_pci_lsi = {
1841    .name = "spapr_pci/lsi",
1842    .version_id = 1,
1843    .minimum_version_id = 1,
1844    .fields = (VMStateField[]) {
1845        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1846
1847        VMSTATE_END_OF_LIST()
1848    },
1849};
1850
1851static const VMStateDescription vmstate_spapr_pci_msi = {
1852    .name = "spapr_pci/msi",
1853    .version_id = 1,
1854    .minimum_version_id = 1,
1855    .fields = (VMStateField []) {
1856        VMSTATE_UINT32(key, spapr_pci_msi_mig),
1857        VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1858        VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1859        VMSTATE_END_OF_LIST()
1860    },
1861};
1862
1863static void spapr_pci_pre_save(void *opaque)
1864{
1865    sPAPRPHBState *sphb = opaque;
1866    GHashTableIter iter;
1867    gpointer key, value;
1868    int i;
1869
1870    if (sphb->pre_2_8_migration) {
1871        sphb->mig_liobn = sphb->dma_liobn[0];
1872        sphb->mig_mem_win_addr = sphb->mem_win_addr;
1873        sphb->mig_mem_win_size = sphb->mem_win_size;
1874        sphb->mig_io_win_addr = sphb->io_win_addr;
1875        sphb->mig_io_win_size = sphb->io_win_size;
1876
1877        if ((sphb->mem64_win_size != 0)
1878            && (sphb->mem64_win_addr
1879                == (sphb->mem_win_addr + sphb->mem_win_size))) {
1880            sphb->mig_mem_win_size += sphb->mem64_win_size;
1881        }
1882    }
1883
1884    g_free(sphb->msi_devs);
1885    sphb->msi_devs = NULL;
1886    sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1887    if (!sphb->msi_devs_num) {
1888        return;
1889    }
1890    sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1891
1892    g_hash_table_iter_init(&iter, sphb->msi);
1893    for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1894        sphb->msi_devs[i].key = *(uint32_t *) key;
1895        sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1896    }
1897}
1898
1899static int spapr_pci_post_load(void *opaque, int version_id)
1900{
1901    sPAPRPHBState *sphb = opaque;
1902    gpointer key, value;
1903    int i;
1904
1905    for (i = 0; i < sphb->msi_devs_num; ++i) {
1906        key = g_memdup(&sphb->msi_devs[i].key,
1907                       sizeof(sphb->msi_devs[i].key));
1908        value = g_memdup(&sphb->msi_devs[i].value,
1909                         sizeof(sphb->msi_devs[i].value));
1910        g_hash_table_insert(sphb->msi, key, value);
1911    }
1912    g_free(sphb->msi_devs);
1913    sphb->msi_devs = NULL;
1914    sphb->msi_devs_num = 0;
1915
1916    return 0;
1917}
1918
1919static bool pre_2_8_migration(void *opaque, int version_id)
1920{
1921    sPAPRPHBState *sphb = opaque;
1922
1923    return sphb->pre_2_8_migration;
1924}
1925
1926static const VMStateDescription vmstate_spapr_pci = {
1927    .name = "spapr_pci",
1928    .version_id = 2,
1929    .minimum_version_id = 2,
1930    .pre_save = spapr_pci_pre_save,
1931    .post_load = spapr_pci_post_load,
1932    .fields = (VMStateField[]) {
1933        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1934        VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1935        VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1936        VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1937        VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1938        VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1939        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1940                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1941        VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1942        VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1943                                    vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1944        VMSTATE_END_OF_LIST()
1945    },
1946};
1947
1948static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1949                                           PCIBus *rootbus)
1950{
1951    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1952
1953    return sphb->dtbusname;
1954}
1955
1956static void spapr_phb_class_init(ObjectClass *klass, void *data)
1957{
1958    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1959    DeviceClass *dc = DEVICE_CLASS(klass);
1960    HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1961
1962    hc->root_bus_path = spapr_phb_root_bus_path;
1963    dc->realize = spapr_phb_realize;
1964    dc->props = spapr_phb_properties;
1965    dc->reset = spapr_phb_reset;
1966    dc->vmsd = &vmstate_spapr_pci;
1967    /* Supported by TYPE_SPAPR_MACHINE */
1968    dc->user_creatable = true;
1969    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1970    hp->plug = spapr_pci_plug;
1971    hp->unplug_request = spapr_pci_unplug_request;
1972}
1973
1974static const TypeInfo spapr_phb_info = {
1975    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1976    .parent        = TYPE_PCI_HOST_BRIDGE,
1977    .instance_size = sizeof(sPAPRPHBState),
1978    .class_init    = spapr_phb_class_init,
1979    .interfaces    = (InterfaceInfo[]) {
1980        { TYPE_HOTPLUG_HANDLER },
1981        { }
1982    }
1983};
1984
1985PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1986{
1987    DeviceState *dev;
1988
1989    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1990    qdev_prop_set_uint32(dev, "index", index);
1991    qdev_init_nofail(dev);
1992
1993    return PCI_HOST_BRIDGE(dev);
1994}
1995
1996typedef struct sPAPRFDT {
1997    void *fdt;
1998    int node_off;
1999    sPAPRPHBState *sphb;
2000} sPAPRFDT;
2001
2002static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
2003                                          void *opaque)
2004{
2005    PCIBus *sec_bus;
2006    sPAPRFDT *p = opaque;
2007    int offset;
2008    sPAPRFDT s_fdt;
2009
2010    offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
2011    if (!offset) {
2012        error_report("Failed to create pci child device tree node");
2013        return;
2014    }
2015
2016    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2017         PCI_HEADER_TYPE_BRIDGE)) {
2018        return;
2019    }
2020
2021    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2022    if (!sec_bus) {
2023        return;
2024    }
2025
2026    s_fdt.fdt = p->fdt;
2027    s_fdt.node_off = offset;
2028    s_fdt.sphb = p->sphb;
2029    pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2030                                spapr_populate_pci_devices_dt,
2031                                &s_fdt);
2032}
2033
2034static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2035                                           void *opaque)
2036{
2037    unsigned int *bus_no = opaque;
2038    unsigned int primary = *bus_no;
2039    unsigned int subordinate = 0xff;
2040    PCIBus *sec_bus = NULL;
2041
2042    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2043         PCI_HEADER_TYPE_BRIDGE)) {
2044        return;
2045    }
2046
2047    (*bus_no)++;
2048    pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2049    pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2050    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2051
2052    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2053    if (!sec_bus) {
2054        return;
2055    }
2056
2057    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2058    pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2059                        spapr_phb_pci_enumerate_bridge, bus_no);
2060    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2061}
2062
2063static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2064{
2065    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2066    unsigned int bus_no = 0;
2067
2068    pci_for_each_device(bus, pci_bus_num(bus),
2069                        spapr_phb_pci_enumerate_bridge,
2070                        &bus_no);
2071
2072}
2073
2074int spapr_populate_pci_dt(sPAPRPHBState *phb,
2075                          uint32_t xics_phandle,
2076                          void *fdt)
2077{
2078    int bus_off, i, j, ret;
2079    char nodename[FDT_NAME_MAX];
2080    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2081    struct {
2082        uint32_t hi;
2083        uint64_t child;
2084        uint64_t parent;
2085        uint64_t size;
2086    } QEMU_PACKED ranges[] = {
2087        {
2088            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2089            cpu_to_be64(phb->io_win_addr),
2090            cpu_to_be64(memory_region_size(&phb->iospace)),
2091        },
2092        {
2093            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2094            cpu_to_be64(phb->mem_win_addr),
2095            cpu_to_be64(phb->mem_win_size),
2096        },
2097        {
2098            cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2099            cpu_to_be64(phb->mem64_win_addr),
2100            cpu_to_be64(phb->mem64_win_size),
2101        },
2102    };
2103    const unsigned sizeof_ranges =
2104        (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2105    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2106    uint32_t interrupt_map_mask[] = {
2107        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2108    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2109    uint32_t ddw_applicable[] = {
2110        cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2111        cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2112        cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2113    };
2114    uint32_t ddw_extensions[] = {
2115        cpu_to_be32(1),
2116        cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2117    };
2118    uint32_t associativity[] = {cpu_to_be32(0x4),
2119                                cpu_to_be32(0x0),
2120                                cpu_to_be32(0x0),
2121                                cpu_to_be32(0x0),
2122                                cpu_to_be32(phb->numa_node)};
2123    sPAPRTCETable *tcet;
2124    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2125    sPAPRFDT s_fdt;
2126
2127    /* Start populating the FDT */
2128    snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
2129    bus_off = fdt_add_subnode(fdt, 0, nodename);
2130    if (bus_off < 0) {
2131        return bus_off;
2132    }
2133
2134    /* Write PHB properties */
2135    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2136    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2137    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2138    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2139    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2140    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2141    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2142    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2143    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2144    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2145    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2146
2147    /* Dynamic DMA window */
2148    if (phb->ddw_enabled) {
2149        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2150                         sizeof(ddw_applicable)));
2151        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2152                         &ddw_extensions, sizeof(ddw_extensions)));
2153    }
2154
2155    /* Advertise NUMA via ibm,associativity */
2156    if (phb->numa_node != -1) {
2157        _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2158                         sizeof(associativity)));
2159    }
2160
2161    /* Build the interrupt-map, this must matches what is done
2162     * in pci_spapr_map_irq
2163     */
2164    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2165                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
2166    for (i = 0; i < PCI_SLOT_MAX; i++) {
2167        for (j = 0; j < PCI_NUM_PINS; j++) {
2168            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2169            int lsi_num = pci_spapr_swizzle(i, j);
2170
2171            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2172            irqmap[1] = 0;
2173            irqmap[2] = 0;
2174            irqmap[3] = cpu_to_be32(j+1);
2175            irqmap[4] = cpu_to_be32(xics_phandle);
2176            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
2177            irqmap[6] = cpu_to_be32(0x8);
2178        }
2179    }
2180    /* Write interrupt map */
2181    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2182                     sizeof(interrupt_map)));
2183
2184    tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2185    if (!tcet) {
2186        return -1;
2187    }
2188    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2189                 tcet->liobn, tcet->bus_offset,
2190                 tcet->nb_table << tcet->page_shift);
2191
2192    /* Walk the bridges and program the bus numbers*/
2193    spapr_phb_pci_enumerate(phb);
2194    _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2195
2196    /* Populate tree nodes with PCI devices attached */
2197    s_fdt.fdt = fdt;
2198    s_fdt.node_off = bus_off;
2199    s_fdt.sphb = phb;
2200    pci_for_each_device_reverse(bus, pci_bus_num(bus),
2201                                spapr_populate_pci_devices_dt,
2202                                &s_fdt);
2203
2204    ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2205                                SPAPR_DR_CONNECTOR_TYPE_PCI);
2206    if (ret) {
2207        return ret;
2208    }
2209
2210    return 0;
2211}
2212
2213void spapr_pci_rtas_init(void)
2214{
2215    spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2216                        rtas_read_pci_config);
2217    spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2218                        rtas_write_pci_config);
2219    spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2220                        rtas_ibm_read_pci_config);
2221    spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2222                        rtas_ibm_write_pci_config);
2223    if (msi_nonbroken) {
2224        spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2225                            "ibm,query-interrupt-source-number",
2226                            rtas_ibm_query_interrupt_source_number);
2227        spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2228                            rtas_ibm_change_msi);
2229    }
2230
2231    spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2232                        "ibm,set-eeh-option",
2233                        rtas_ibm_set_eeh_option);
2234    spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2235                        "ibm,get-config-addr-info2",
2236                        rtas_ibm_get_config_addr_info2);
2237    spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2238                        "ibm,read-slot-reset-state2",
2239                        rtas_ibm_read_slot_reset_state2);
2240    spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2241                        "ibm,set-slot-reset",
2242                        rtas_ibm_set_slot_reset);
2243    spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2244                        "ibm,configure-pe",
2245                        rtas_ibm_configure_pe);
2246    spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2247                        "ibm,slot-error-detail",
2248                        rtas_ibm_slot_error_detail);
2249}
2250
2251static void spapr_pci_register_types(void)
2252{
2253    type_register_static(&spapr_phb_info);
2254}
2255
2256type_init(spapr_pci_register_types)
2257
2258static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2259{
2260    bool be = *(bool *)opaque;
2261
2262    if (object_dynamic_cast(OBJECT(dev), "VGA")
2263        || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2264        object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2265                                 &error_abort);
2266    }
2267    return 0;
2268}
2269
2270void spapr_pci_switch_vga(bool big_endian)
2271{
2272    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2273    sPAPRPHBState *sphb;
2274
2275    /*
2276     * For backward compatibility with existing guests, we switch
2277     * the endianness of the VGA controller when changing the guest
2278     * interrupt mode
2279     */
2280    QLIST_FOREACH(sphb, &spapr->phbs, list) {
2281        BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2282        qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2283                           &big_endian);
2284    }
2285}
2286