qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  31
  32#define MAX_PHYS_ADDR_SPACE_BITS 62
  33#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  34
  35#define TYPE_MEMORY_REGION "qemu:memory-region"
  36#define MEMORY_REGION(obj) \
  37        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  38
  39#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  40#define IOMMU_MEMORY_REGION(obj) \
  41        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  42#define IOMMU_MEMORY_REGION_CLASS(klass) \
  43        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  44                         TYPE_IOMMU_MEMORY_REGION)
  45#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  46        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  47                         TYPE_IOMMU_MEMORY_REGION)
  48
  49typedef struct MemoryRegionOps MemoryRegionOps;
  50typedef struct MemoryRegionMmio MemoryRegionMmio;
  51
  52struct MemoryRegionMmio {
  53    CPUReadMemoryFunc *read[3];
  54    CPUWriteMemoryFunc *write[3];
  55};
  56
  57typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  58
  59/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  60typedef enum {
  61    IOMMU_NONE = 0,
  62    IOMMU_RO   = 1,
  63    IOMMU_WO   = 2,
  64    IOMMU_RW   = 3,
  65} IOMMUAccessFlags;
  66
  67#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  68
  69struct IOMMUTLBEntry {
  70    AddressSpace    *target_as;
  71    hwaddr           iova;
  72    hwaddr           translated_addr;
  73    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  74    IOMMUAccessFlags perm;
  75};
  76
  77/*
  78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  79 * register with one or multiple IOMMU Notifier capability bit(s).
  80 */
  81typedef enum {
  82    IOMMU_NOTIFIER_NONE = 0,
  83    /* Notify cache invalidations */
  84    IOMMU_NOTIFIER_UNMAP = 0x1,
  85    /* Notify entry changes (newly created entries) */
  86    IOMMU_NOTIFIER_MAP = 0x2,
  87} IOMMUNotifierFlag;
  88
  89#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  90
  91struct IOMMUNotifier;
  92typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  93                            IOMMUTLBEntry *data);
  94
  95struct IOMMUNotifier {
  96    IOMMUNotify notify;
  97    IOMMUNotifierFlag notifier_flags;
  98    /* Notify for address space range start <= addr <= end */
  99    hwaddr start;
 100    hwaddr end;
 101    QLIST_ENTRY(IOMMUNotifier) node;
 102};
 103typedef struct IOMMUNotifier IOMMUNotifier;
 104
 105static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 106                                       IOMMUNotifierFlag flags,
 107                                       hwaddr start, hwaddr end)
 108{
 109    n->notify = fn;
 110    n->notifier_flags = flags;
 111    n->start = start;
 112    n->end = end;
 113}
 114
 115/* New-style MMIO accessors can indicate that the transaction failed.
 116 * A zero (MEMTX_OK) response means success; anything else is a failure
 117 * of some kind. The memory subsystem will bitwise-OR together results
 118 * if it is synthesizing an operation from multiple smaller accesses.
 119 */
 120#define MEMTX_OK 0
 121#define MEMTX_ERROR             (1U << 0) /* device returned an error */
 122#define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
 123typedef uint32_t MemTxResult;
 124
 125/*
 126 * Memory region callbacks
 127 */
 128struct MemoryRegionOps {
 129    /* Read from the memory region. @addr is relative to @mr; @size is
 130     * in bytes. */
 131    uint64_t (*read)(void *opaque,
 132                     hwaddr addr,
 133                     unsigned size);
 134    /* Write to the memory region. @addr is relative to @mr; @size is
 135     * in bytes. */
 136    void (*write)(void *opaque,
 137                  hwaddr addr,
 138                  uint64_t data,
 139                  unsigned size);
 140
 141    MemTxResult (*read_with_attrs)(void *opaque,
 142                                   hwaddr addr,
 143                                   uint64_t *data,
 144                                   unsigned size,
 145                                   MemTxAttrs attrs);
 146    MemTxResult (*write_with_attrs)(void *opaque,
 147                                    hwaddr addr,
 148                                    uint64_t data,
 149                                    unsigned size,
 150                                    MemTxAttrs attrs);
 151    /* Instruction execution pre-callback:
 152     * @addr is the address of the access relative to the @mr.
 153     * @size is the size of the area returned by the callback.
 154     * @offset is the location of the pointer inside @mr.
 155     *
 156     * Returns a pointer to a location which contains guest code.
 157     */
 158    void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
 159                         unsigned *offset);
 160
 161    enum device_endian endianness;
 162    /* Guest-visible constraints: */
 163    struct {
 164        /* If nonzero, specify bounds on access sizes beyond which a machine
 165         * check is thrown.
 166         */
 167        unsigned min_access_size;
 168        unsigned max_access_size;
 169        /* If true, unaligned accesses are supported.  Otherwise unaligned
 170         * accesses throw machine checks.
 171         */
 172         bool unaligned;
 173        /*
 174         * If present, and returns #false, the transaction is not accepted
 175         * by the device (and results in machine dependent behaviour such
 176         * as a machine check exception).
 177         */
 178        bool (*accepts)(void *opaque, hwaddr addr,
 179                        unsigned size, bool is_write);
 180    } valid;
 181    /* Internal implementation constraints: */
 182    struct {
 183        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 184         * will be rounded upwards and a partial result will be returned.
 185         */
 186        unsigned min_access_size;
 187        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 188         * will be done as a series of accesses with smaller sizes.
 189         */
 190        unsigned max_access_size;
 191        /* If true, unaligned accesses are supported.  Otherwise all accesses
 192         * are converted to (possibly multiple) naturally aligned accesses.
 193         */
 194        bool unaligned;
 195    } impl;
 196
 197    /* If .read and .write are not present, old_mmio may be used for
 198     * backwards compatibility with old mmio registration
 199     */
 200    const MemoryRegionMmio old_mmio;
 201};
 202
 203typedef struct IOMMUMemoryRegionClass {
 204    /* private */
 205    struct DeviceClass parent_class;
 206
 207    /*
 208     * Return a TLB entry that contains a given address. Flag should
 209     * be the access permission of this translation operation. We can
 210     * set flag to IOMMU_NONE to mean that we don't need any
 211     * read/write permission checks, like, when for region replay.
 212     */
 213    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 214                               IOMMUAccessFlags flag);
 215    /* Returns minimum supported page size */
 216    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 217    /* Called when IOMMU Notifier flag changed */
 218    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 219                                IOMMUNotifierFlag old_flags,
 220                                IOMMUNotifierFlag new_flags);
 221    /* Set this up to provide customized IOMMU replay function */
 222    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 223} IOMMUMemoryRegionClass;
 224
 225typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 226typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 227
 228struct MemoryRegion {
 229    Object parent_obj;
 230
 231    /* All fields are private - violators will be prosecuted */
 232
 233    /* The following fields should fit in a cache line */
 234    bool romd_mode;
 235    bool ram;
 236    bool subpage;
 237    bool readonly; /* For RAM regions */
 238    bool rom_device;
 239    bool flush_coalesced_mmio;
 240    bool global_locking;
 241    uint8_t dirty_log_mask;
 242    bool is_iommu;
 243    RAMBlock *ram_block;
 244    Object *owner;
 245
 246    const MemoryRegionOps *ops;
 247    void *opaque;
 248    MemoryRegion *container;
 249    Int128 size;
 250    hwaddr addr;
 251    void (*destructor)(MemoryRegion *mr);
 252    uint64_t align;
 253    bool terminates;
 254    bool ram_device;
 255    bool enabled;
 256    bool warning_printed; /* For reservations */
 257    uint8_t vga_logging_count;
 258    MemoryRegion *alias;
 259    hwaddr alias_offset;
 260    int32_t priority;
 261    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 262    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 263    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 264    const char *name;
 265    unsigned ioeventfd_nb;
 266    MemoryRegionIoeventfd *ioeventfds;
 267};
 268
 269struct IOMMUMemoryRegion {
 270    MemoryRegion parent_obj;
 271
 272    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 273    IOMMUNotifierFlag iommu_notify_flags;
 274};
 275
 276#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 277    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 278
 279/**
 280 * MemoryListener: callbacks structure for updates to the physical memory map
 281 *
 282 * Allows a component to adjust to changes in the guest-visible memory map.
 283 * Use with memory_listener_register() and memory_listener_unregister().
 284 */
 285struct MemoryListener {
 286    void (*begin)(MemoryListener *listener);
 287    void (*commit)(MemoryListener *listener);
 288    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 289    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 290    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 291    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 292                      int old, int new);
 293    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 294                     int old, int new);
 295    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 296    void (*log_global_start)(MemoryListener *listener);
 297    void (*log_global_stop)(MemoryListener *listener);
 298    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 299                        bool match_data, uint64_t data, EventNotifier *e);
 300    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 301                        bool match_data, uint64_t data, EventNotifier *e);
 302    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 303                               hwaddr addr, hwaddr len);
 304    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 305                               hwaddr addr, hwaddr len);
 306    /* Lower = earlier (during add), later (during del) */
 307    unsigned priority;
 308    AddressSpace *address_space;
 309    QTAILQ_ENTRY(MemoryListener) link;
 310    QTAILQ_ENTRY(MemoryListener) link_as;
 311};
 312
 313/**
 314 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 315 */
 316struct AddressSpace {
 317    /* All fields are private. */
 318    struct rcu_head rcu;
 319    char *name;
 320    MemoryRegion *root;
 321    int ref_count;
 322    bool malloced;
 323
 324    /* Accessed via RCU.  */
 325    struct FlatView *current_map;
 326
 327    int ioeventfd_nb;
 328    struct MemoryRegionIoeventfd *ioeventfds;
 329    struct AddressSpaceDispatch *dispatch;
 330    struct AddressSpaceDispatch *next_dispatch;
 331    MemoryListener dispatch_listener;
 332    QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
 333    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 334};
 335
 336/**
 337 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 338 *
 339 * @mr: the region, or %NULL if empty
 340 * @address_space: the address space the region is mapped in
 341 * @offset_within_region: the beginning of the section, relative to @mr's start
 342 * @size: the size of the section; will not exceed @mr's boundaries
 343 * @offset_within_address_space: the address of the first byte of the section
 344 *     relative to the region's address space
 345 * @readonly: writes to this section are ignored
 346 */
 347struct MemoryRegionSection {
 348    MemoryRegion *mr;
 349    AddressSpace *address_space;
 350    hwaddr offset_within_region;
 351    Int128 size;
 352    hwaddr offset_within_address_space;
 353    bool readonly;
 354};
 355
 356/**
 357 * memory_region_init: Initialize a memory region
 358 *
 359 * The region typically acts as a container for other memory regions.  Use
 360 * memory_region_add_subregion() to add subregions.
 361 *
 362 * @mr: the #MemoryRegion to be initialized
 363 * @owner: the object that tracks the region's reference count
 364 * @name: used for debugging; not visible to the user or ABI
 365 * @size: size of the region; any subregions beyond this size will be clipped
 366 */
 367void memory_region_init(MemoryRegion *mr,
 368                        struct Object *owner,
 369                        const char *name,
 370                        uint64_t size);
 371
 372/**
 373 * memory_region_ref: Add 1 to a memory region's reference count
 374 *
 375 * Whenever memory regions are accessed outside the BQL, they need to be
 376 * preserved against hot-unplug.  MemoryRegions actually do not have their
 377 * own reference count; they piggyback on a QOM object, their "owner".
 378 * This function adds a reference to the owner.
 379 *
 380 * All MemoryRegions must have an owner if they can disappear, even if the
 381 * device they belong to operates exclusively under the BQL.  This is because
 382 * the region could be returned at any time by memory_region_find, and this
 383 * is usually under guest control.
 384 *
 385 * @mr: the #MemoryRegion
 386 */
 387void memory_region_ref(MemoryRegion *mr);
 388
 389/**
 390 * memory_region_unref: Remove 1 to a memory region's reference count
 391 *
 392 * Whenever memory regions are accessed outside the BQL, they need to be
 393 * preserved against hot-unplug.  MemoryRegions actually do not have their
 394 * own reference count; they piggyback on a QOM object, their "owner".
 395 * This function removes a reference to the owner and possibly destroys it.
 396 *
 397 * @mr: the #MemoryRegion
 398 */
 399void memory_region_unref(MemoryRegion *mr);
 400
 401/**
 402 * memory_region_init_io: Initialize an I/O memory region.
 403 *
 404 * Accesses into the region will cause the callbacks in @ops to be called.
 405 * if @size is nonzero, subregions will be clipped to @size.
 406 *
 407 * @mr: the #MemoryRegion to be initialized.
 408 * @owner: the object that tracks the region's reference count
 409 * @ops: a structure containing read and write callbacks to be used when
 410 *       I/O is performed on the region.
 411 * @opaque: passed to the read and write callbacks of the @ops structure.
 412 * @name: used for debugging; not visible to the user or ABI
 413 * @size: size of the region.
 414 */
 415void memory_region_init_io(MemoryRegion *mr,
 416                           struct Object *owner,
 417                           const MemoryRegionOps *ops,
 418                           void *opaque,
 419                           const char *name,
 420                           uint64_t size);
 421
 422/**
 423 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 424 *                                    into the region will modify memory
 425 *                                    directly.
 426 *
 427 * @mr: the #MemoryRegion to be initialized.
 428 * @owner: the object that tracks the region's reference count
 429 * @name: Region name, becomes part of RAMBlock name used in migration stream
 430 *        must be unique within any device
 431 * @size: size of the region.
 432 * @errp: pointer to Error*, to store an error if it happens.
 433 *
 434 * Note that this function does not do anything to cause the data in the
 435 * RAM memory region to be migrated; that is the responsibility of the caller.
 436 */
 437void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 438                                      struct Object *owner,
 439                                      const char *name,
 440                                      uint64_t size,
 441                                      Error **errp);
 442
 443/**
 444 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 445 *                                     RAM.  Accesses into the region will
 446 *                                     modify memory directly.  Only an initial
 447 *                                     portion of this RAM is actually used.
 448 *                                     The used size can change across reboots.
 449 *
 450 * @mr: the #MemoryRegion to be initialized.
 451 * @owner: the object that tracks the region's reference count
 452 * @name: Region name, becomes part of RAMBlock name used in migration stream
 453 *        must be unique within any device
 454 * @size: used size of the region.
 455 * @max_size: max size of the region.
 456 * @resized: callback to notify owner about used size change.
 457 * @errp: pointer to Error*, to store an error if it happens.
 458 *
 459 * Note that this function does not do anything to cause the data in the
 460 * RAM memory region to be migrated; that is the responsibility of the caller.
 461 */
 462void memory_region_init_resizeable_ram(MemoryRegion *mr,
 463                                       struct Object *owner,
 464                                       const char *name,
 465                                       uint64_t size,
 466                                       uint64_t max_size,
 467                                       void (*resized)(const char*,
 468                                                       uint64_t length,
 469                                                       void *host),
 470                                       Error **errp);
 471#ifdef __linux__
 472/**
 473 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 474 *                                    mmap-ed backend.
 475 *
 476 * @mr: the #MemoryRegion to be initialized.
 477 * @owner: the object that tracks the region's reference count
 478 * @name: Region name, becomes part of RAMBlock name used in migration stream
 479 *        must be unique within any device
 480 * @size: size of the region.
 481 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 482 * @path: the path in which to allocate the RAM.
 483 * @errp: pointer to Error*, to store an error if it happens.
 484 *
 485 * Note that this function does not do anything to cause the data in the
 486 * RAM memory region to be migrated; that is the responsibility of the caller.
 487 */
 488void memory_region_init_ram_from_file(MemoryRegion *mr,
 489                                      struct Object *owner,
 490                                      const char *name,
 491                                      uint64_t size,
 492                                      bool share,
 493                                      const char *path,
 494                                      Error **errp);
 495
 496/**
 497 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 498 *                                  mmap-ed backend.
 499 *
 500 * @mr: the #MemoryRegion to be initialized.
 501 * @owner: the object that tracks the region's reference count
 502 * @name: the name of the region.
 503 * @size: size of the region.
 504 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 505 * @fd: the fd to mmap.
 506 * @errp: pointer to Error*, to store an error if it happens.
 507 *
 508 * Note that this function does not do anything to cause the data in the
 509 * RAM memory region to be migrated; that is the responsibility of the caller.
 510 */
 511void memory_region_init_ram_from_fd(MemoryRegion *mr,
 512                                    struct Object *owner,
 513                                    const char *name,
 514                                    uint64_t size,
 515                                    bool share,
 516                                    int fd,
 517                                    Error **errp);
 518#endif
 519
 520/**
 521 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 522 *                              user-provided pointer.  Accesses into the
 523 *                              region will modify memory directly.
 524 *
 525 * @mr: the #MemoryRegion to be initialized.
 526 * @owner: the object that tracks the region's reference count
 527 * @name: Region name, becomes part of RAMBlock name used in migration stream
 528 *        must be unique within any device
 529 * @size: size of the region.
 530 * @ptr: memory to be mapped; must contain at least @size bytes.
 531 *
 532 * Note that this function does not do anything to cause the data in the
 533 * RAM memory region to be migrated; that is the responsibility of the caller.
 534 */
 535void memory_region_init_ram_ptr(MemoryRegion *mr,
 536                                struct Object *owner,
 537                                const char *name,
 538                                uint64_t size,
 539                                void *ptr);
 540
 541/**
 542 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 543 *                                     a user-provided pointer.
 544 *
 545 * A RAM device represents a mapping to a physical device, such as to a PCI
 546 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 547 * into the VM address space and access to the region will modify memory
 548 * directly.  However, the memory region should not be included in a memory
 549 * dump (device may not be enabled/mapped at the time of the dump), and
 550 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 551 * skip_dump flag.
 552 *
 553 * @mr: the #MemoryRegion to be initialized.
 554 * @owner: the object that tracks the region's reference count
 555 * @name: the name of the region.
 556 * @size: size of the region.
 557 * @ptr: memory to be mapped; must contain at least @size bytes.
 558 *
 559 * Note that this function does not do anything to cause the data in the
 560 * RAM memory region to be migrated; that is the responsibility of the caller.
 561 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 562 */
 563void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 564                                       struct Object *owner,
 565                                       const char *name,
 566                                       uint64_t size,
 567                                       void *ptr);
 568
 569/**
 570 * memory_region_init_alias: Initialize a memory region that aliases all or a
 571 *                           part of another memory region.
 572 *
 573 * @mr: the #MemoryRegion to be initialized.
 574 * @owner: the object that tracks the region's reference count
 575 * @name: used for debugging; not visible to the user or ABI
 576 * @orig: the region to be referenced; @mr will be equivalent to
 577 *        @orig between @offset and @offset + @size - 1.
 578 * @offset: start of the section in @orig to be referenced.
 579 * @size: size of the region.
 580 */
 581void memory_region_init_alias(MemoryRegion *mr,
 582                              struct Object *owner,
 583                              const char *name,
 584                              MemoryRegion *orig,
 585                              hwaddr offset,
 586                              uint64_t size);
 587
 588/**
 589 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 590 *
 591 * This has the same effect as calling memory_region_init_ram_nomigrate()
 592 * and then marking the resulting region read-only with
 593 * memory_region_set_readonly().
 594 *
 595 * Note that this function does not do anything to cause the data in the
 596 * RAM side of the memory region to be migrated; that is the responsibility
 597 * of the caller.
 598 *
 599 * @mr: the #MemoryRegion to be initialized.
 600 * @owner: the object that tracks the region's reference count
 601 * @name: Region name, becomes part of RAMBlock name used in migration stream
 602 *        must be unique within any device
 603 * @size: size of the region.
 604 * @errp: pointer to Error*, to store an error if it happens.
 605 */
 606void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 607                                      struct Object *owner,
 608                                      const char *name,
 609                                      uint64_t size,
 610                                      Error **errp);
 611
 612/**
 613 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 614 *                                 Writes are handled via callbacks.
 615 *
 616 * Note that this function does not do anything to cause the data in the
 617 * RAM side of the memory region to be migrated; that is the responsibility
 618 * of the caller.
 619 *
 620 * @mr: the #MemoryRegion to be initialized.
 621 * @owner: the object that tracks the region's reference count
 622 * @ops: callbacks for write access handling (must not be NULL).
 623 * @name: Region name, becomes part of RAMBlock name used in migration stream
 624 *        must be unique within any device
 625 * @size: size of the region.
 626 * @errp: pointer to Error*, to store an error if it happens.
 627 */
 628void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 629                                             struct Object *owner,
 630                                             const MemoryRegionOps *ops,
 631                                             void *opaque,
 632                                             const char *name,
 633                                             uint64_t size,
 634                                             Error **errp);
 635
 636/**
 637 * memory_region_init_reservation: Initialize a memory region that reserves
 638 *                                 I/O space.
 639 *
 640 * A reservation region primariy serves debugging purposes.  It claims I/O
 641 * space that is not supposed to be handled by QEMU itself.  Any access via
 642 * the memory API will cause an abort().
 643 * This function is deprecated. Use memory_region_init_io() with NULL
 644 * callbacks instead.
 645 *
 646 * @mr: the #MemoryRegion to be initialized
 647 * @owner: the object that tracks the region's reference count
 648 * @name: used for debugging; not visible to the user or ABI
 649 * @size: size of the region.
 650 */
 651static inline void memory_region_init_reservation(MemoryRegion *mr,
 652                                    Object *owner,
 653                                    const char *name,
 654                                    uint64_t size)
 655{
 656    memory_region_init_io(mr, owner, NULL, mr, name, size);
 657}
 658
 659/**
 660 * memory_region_init_iommu: Initialize a memory region of a custom type
 661 * that translates addresses
 662 *
 663 * An IOMMU region translates addresses and forwards accesses to a target
 664 * memory region.
 665 *
 666 * @typename: QOM class name
 667 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 668 * @instance_size: the IOMMUMemoryRegion subclass instance size
 669 * @owner: the object that tracks the region's reference count
 670 * @ops: a function that translates addresses into the @target region
 671 * @name: used for debugging; not visible to the user or ABI
 672 * @size: size of the region.
 673 */
 674void memory_region_init_iommu(void *_iommu_mr,
 675                              size_t instance_size,
 676                              const char *mrtypename,
 677                              Object *owner,
 678                              const char *name,
 679                              uint64_t size);
 680
 681/**
 682 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 683 *                          region will modify memory directly.
 684 *
 685 * @mr: the #MemoryRegion to be initialized
 686 * @owner: the object that tracks the region's reference count (must be
 687 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 688 * @name: name of the memory region
 689 * @size: size of the region in bytes
 690 * @errp: pointer to Error*, to store an error if it happens.
 691 *
 692 * This function allocates RAM for a board model or device, and
 693 * arranges for it to be migrated (by calling vmstate_register_ram()
 694 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 695 * @owner is NULL).
 696 *
 697 * TODO: Currently we restrict @owner to being either NULL (for
 698 * global RAM regions with no owner) or devices, so that we can
 699 * give the RAM block a unique name for migration purposes.
 700 * We should lift this restriction and allow arbitrary Objects.
 701 * If you pass a non-NULL non-device @owner then we will assert.
 702 */
 703void memory_region_init_ram(MemoryRegion *mr,
 704                            struct Object *owner,
 705                            const char *name,
 706                            uint64_t size,
 707                            Error **errp);
 708
 709/**
 710 * memory_region_init_rom: Initialize a ROM memory region.
 711 *
 712 * This has the same effect as calling memory_region_init_ram()
 713 * and then marking the resulting region read-only with
 714 * memory_region_set_readonly(). This includes arranging for the
 715 * contents to be migrated.
 716 *
 717 * TODO: Currently we restrict @owner to being either NULL (for
 718 * global RAM regions with no owner) or devices, so that we can
 719 * give the RAM block a unique name for migration purposes.
 720 * We should lift this restriction and allow arbitrary Objects.
 721 * If you pass a non-NULL non-device @owner then we will assert.
 722 *
 723 * @mr: the #MemoryRegion to be initialized.
 724 * @owner: the object that tracks the region's reference count
 725 * @name: Region name, becomes part of RAMBlock name used in migration stream
 726 *        must be unique within any device
 727 * @size: size of the region.
 728 * @errp: pointer to Error*, to store an error if it happens.
 729 */
 730void memory_region_init_rom(MemoryRegion *mr,
 731                            struct Object *owner,
 732                            const char *name,
 733                            uint64_t size,
 734                            Error **errp);
 735
 736/**
 737 * memory_region_init_rom_device:  Initialize a ROM memory region.
 738 *                                 Writes are handled via callbacks.
 739 *
 740 * This function initializes a memory region backed by RAM for reads
 741 * and callbacks for writes, and arranges for the RAM backing to
 742 * be migrated (by calling vmstate_register_ram()
 743 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 744 * @owner is NULL).
 745 *
 746 * TODO: Currently we restrict @owner to being either NULL (for
 747 * global RAM regions with no owner) or devices, so that we can
 748 * give the RAM block a unique name for migration purposes.
 749 * We should lift this restriction and allow arbitrary Objects.
 750 * If you pass a non-NULL non-device @owner then we will assert.
 751 *
 752 * @mr: the #MemoryRegion to be initialized.
 753 * @owner: the object that tracks the region's reference count
 754 * @ops: callbacks for write access handling (must not be NULL).
 755 * @name: Region name, becomes part of RAMBlock name used in migration stream
 756 *        must be unique within any device
 757 * @size: size of the region.
 758 * @errp: pointer to Error*, to store an error if it happens.
 759 */
 760void memory_region_init_rom_device(MemoryRegion *mr,
 761                                   struct Object *owner,
 762                                   const MemoryRegionOps *ops,
 763                                   void *opaque,
 764                                   const char *name,
 765                                   uint64_t size,
 766                                   Error **errp);
 767
 768
 769/**
 770 * memory_region_owner: get a memory region's owner.
 771 *
 772 * @mr: the memory region being queried.
 773 */
 774struct Object *memory_region_owner(MemoryRegion *mr);
 775
 776/**
 777 * memory_region_size: get a memory region's size.
 778 *
 779 * @mr: the memory region being queried.
 780 */
 781uint64_t memory_region_size(MemoryRegion *mr);
 782
 783/**
 784 * memory_region_is_ram: check whether a memory region is random access
 785 *
 786 * Returns %true is a memory region is random access.
 787 *
 788 * @mr: the memory region being queried
 789 */
 790static inline bool memory_region_is_ram(MemoryRegion *mr)
 791{
 792    return mr->ram;
 793}
 794
 795/**
 796 * memory_region_is_ram_device: check whether a memory region is a ram device
 797 *
 798 * Returns %true is a memory region is a device backed ram region
 799 *
 800 * @mr: the memory region being queried
 801 */
 802bool memory_region_is_ram_device(MemoryRegion *mr);
 803
 804/**
 805 * memory_region_is_romd: check whether a memory region is in ROMD mode
 806 *
 807 * Returns %true if a memory region is a ROM device and currently set to allow
 808 * direct reads.
 809 *
 810 * @mr: the memory region being queried
 811 */
 812static inline bool memory_region_is_romd(MemoryRegion *mr)
 813{
 814    return mr->rom_device && mr->romd_mode;
 815}
 816
 817/**
 818 * memory_region_get_iommu: check whether a memory region is an iommu
 819 *
 820 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 821 * otherwise NULL.
 822 *
 823 * @mr: the memory region being queried
 824 */
 825static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 826{
 827    if (mr->alias) {
 828        return memory_region_get_iommu(mr->alias);
 829    }
 830    if (mr->is_iommu) {
 831        return (IOMMUMemoryRegion *) mr;
 832    }
 833    return NULL;
 834}
 835
 836/**
 837 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
 838 *   if an iommu or NULL if not
 839 *
 840 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
 841 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
 842 *
 843 * @mr: the memory region being queried
 844 */
 845static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
 846        IOMMUMemoryRegion *iommu_mr)
 847{
 848    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
 849}
 850
 851#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
 852
 853/**
 854 * memory_region_iommu_get_min_page_size: get minimum supported page size
 855 * for an iommu
 856 *
 857 * Returns minimum supported page size for an iommu.
 858 *
 859 * @iommu_mr: the memory region being queried
 860 */
 861uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
 862
 863/**
 864 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 865 *
 866 * The notification type will be decided by entry.perm bits:
 867 *
 868 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
 869 * - For MAP (newly added entry) notifies: set entry.perm to the
 870 *   permission of the page (which is definitely !IOMMU_NONE).
 871 *
 872 * Note: for any IOMMU implementation, an in-place mapping change
 873 * should be notified with an UNMAP followed by a MAP.
 874 *
 875 * @iommu_mr: the memory region that was changed
 876 * @entry: the new entry in the IOMMU translation table.  The entry
 877 *         replaces all old entries for the same virtual I/O address range.
 878 *         Deleted entries have .@perm == 0.
 879 */
 880void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
 881                                IOMMUTLBEntry entry);
 882
 883/**
 884 * memory_region_notify_one: notify a change in an IOMMU translation
 885 *                           entry to a single notifier
 886 *
 887 * This works just like memory_region_notify_iommu(), but it only
 888 * notifies a specific notifier, not all of them.
 889 *
 890 * @notifier: the notifier to be notified
 891 * @entry: the new entry in the IOMMU translation table.  The entry
 892 *         replaces all old entries for the same virtual I/O address range.
 893 *         Deleted entries have .@perm == 0.
 894 */
 895void memory_region_notify_one(IOMMUNotifier *notifier,
 896                              IOMMUTLBEntry *entry);
 897
 898/**
 899 * memory_region_register_iommu_notifier: register a notifier for changes to
 900 * IOMMU translation entries.
 901 *
 902 * @mr: the memory region to observe
 903 * @n: the IOMMUNotifier to be added; the notify callback receives a
 904 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
 905 *     ceases to be valid on exit from the notifier.
 906 */
 907void memory_region_register_iommu_notifier(MemoryRegion *mr,
 908                                           IOMMUNotifier *n);
 909
 910/**
 911 * memory_region_iommu_replay: replay existing IOMMU translations to
 912 * a notifier with the minimum page granularity returned by
 913 * mr->iommu_ops->get_page_size().
 914 *
 915 * @iommu_mr: the memory region to observe
 916 * @n: the notifier to which to replay iommu mappings
 917 */
 918void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
 919
 920/**
 921 * memory_region_iommu_replay_all: replay existing IOMMU translations
 922 * to all the notifiers registered.
 923 *
 924 * @iommu_mr: the memory region to observe
 925 */
 926void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
 927
 928/**
 929 * memory_region_unregister_iommu_notifier: unregister a notifier for
 930 * changes to IOMMU translation entries.
 931 *
 932 * @mr: the memory region which was observed and for which notity_stopped()
 933 *      needs to be called
 934 * @n: the notifier to be removed.
 935 */
 936void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
 937                                             IOMMUNotifier *n);
 938
 939/**
 940 * memory_region_name: get a memory region's name
 941 *
 942 * Returns the string that was used to initialize the memory region.
 943 *
 944 * @mr: the memory region being queried
 945 */
 946const char *memory_region_name(const MemoryRegion *mr);
 947
 948/**
 949 * memory_region_is_logging: return whether a memory region is logging writes
 950 *
 951 * Returns %true if the memory region is logging writes for the given client
 952 *
 953 * @mr: the memory region being queried
 954 * @client: the client being queried
 955 */
 956bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
 957
 958/**
 959 * memory_region_get_dirty_log_mask: return the clients for which a
 960 * memory region is logging writes.
 961 *
 962 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
 963 * are the bit indices.
 964 *
 965 * @mr: the memory region being queried
 966 */
 967uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
 968
 969/**
 970 * memory_region_is_rom: check whether a memory region is ROM
 971 *
 972 * Returns %true is a memory region is read-only memory.
 973 *
 974 * @mr: the memory region being queried
 975 */
 976static inline bool memory_region_is_rom(MemoryRegion *mr)
 977{
 978    return mr->ram && mr->readonly;
 979}
 980
 981
 982/**
 983 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
 984 *
 985 * Returns a file descriptor backing a file-based RAM memory region,
 986 * or -1 if the region is not a file-based RAM memory region.
 987 *
 988 * @mr: the RAM or alias memory region being queried.
 989 */
 990int memory_region_get_fd(MemoryRegion *mr);
 991
 992/**
 993 * memory_region_from_host: Convert a pointer into a RAM memory region
 994 * and an offset within it.
 995 *
 996 * Given a host pointer inside a RAM memory region (created with
 997 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
 998 * the MemoryRegion and the offset within it.
 999 *
1000 * Use with care; by the time this function returns, the returned pointer is
1001 * not protected by RCU anymore.  If the caller is not within an RCU critical
1002 * section and does not hold the iothread lock, it must have other means of
1003 * protecting the pointer, such as a reference to the region that includes
1004 * the incoming ram_addr_t.
1005 *
1006 * @mr: the memory region being queried.
1007 */
1008MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1009
1010/**
1011 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1012 *
1013 * Returns a host pointer to a RAM memory region (created with
1014 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1015 *
1016 * Use with care; by the time this function returns, the returned pointer is
1017 * not protected by RCU anymore.  If the caller is not within an RCU critical
1018 * section and does not hold the iothread lock, it must have other means of
1019 * protecting the pointer, such as a reference to the region that includes
1020 * the incoming ram_addr_t.
1021 *
1022 * @mr: the memory region being queried.
1023 */
1024void *memory_region_get_ram_ptr(MemoryRegion *mr);
1025
1026/* memory_region_ram_resize: Resize a RAM region.
1027 *
1028 * Only legal before guest might have detected the memory size: e.g. on
1029 * incoming migration, or right after reset.
1030 *
1031 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1032 * @newsize: the new size the region
1033 * @errp: pointer to Error*, to store an error if it happens.
1034 */
1035void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1036                              Error **errp);
1037
1038/**
1039 * memory_region_set_log: Turn dirty logging on or off for a region.
1040 *
1041 * Turns dirty logging on or off for a specified client (display, migration).
1042 * Only meaningful for RAM regions.
1043 *
1044 * @mr: the memory region being updated.
1045 * @log: whether dirty logging is to be enabled or disabled.
1046 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1047 */
1048void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1049
1050/**
1051 * memory_region_get_dirty: Check whether a range of bytes is dirty
1052 *                          for a specified client.
1053 *
1054 * Checks whether a range of bytes has been written to since the last
1055 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1056 * must be enabled.
1057 *
1058 * @mr: the memory region being queried.
1059 * @addr: the address (relative to the start of the region) being queried.
1060 * @size: the size of the range being queried.
1061 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1062 *          %DIRTY_MEMORY_VGA.
1063 */
1064bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1065                             hwaddr size, unsigned client);
1066
1067/**
1068 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1069 *
1070 * Marks a range of bytes as dirty, after it has been dirtied outside
1071 * guest code.
1072 *
1073 * @mr: the memory region being dirtied.
1074 * @addr: the address (relative to the start of the region) being dirtied.
1075 * @size: size of the range being dirtied.
1076 */
1077void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1078                             hwaddr size);
1079
1080/**
1081 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1082 *                                     for a specified client. It clears them.
1083 *
1084 * Checks whether a range of bytes has been written to since the last
1085 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1086 * must be enabled.
1087 *
1088 * @mr: the memory region being queried.
1089 * @addr: the address (relative to the start of the region) being queried.
1090 * @size: the size of the range being queried.
1091 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1092 *          %DIRTY_MEMORY_VGA.
1093 */
1094bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1095                                        hwaddr size, unsigned client);
1096
1097/**
1098 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1099 *                                         bitmap and clear it.
1100 *
1101 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1102 * returns the snapshot.  The snapshot can then be used to query dirty
1103 * status, using memory_region_snapshot_get_dirty.  Unlike
1104 * memory_region_test_and_clear_dirty this allows to query the same
1105 * page multiple times, which is especially useful for display updates
1106 * where the scanlines often are not page aligned.
1107 *
1108 * The dirty bitmap region which gets copyed into the snapshot (and
1109 * cleared afterwards) can be larger than requested.  The boundaries
1110 * are rounded up/down so complete bitmap longs (covering 64 pages on
1111 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1112 * isn't a problem for display updates as the extra pages are outside
1113 * the visible area, and in case the visible area changes a full
1114 * display redraw is due anyway.  Should other use cases for this
1115 * function emerge we might have to revisit this implementation
1116 * detail.
1117 *
1118 * Use g_free to release DirtyBitmapSnapshot.
1119 *
1120 * @mr: the memory region being queried.
1121 * @addr: the address (relative to the start of the region) being queried.
1122 * @size: the size of the range being queried.
1123 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1124 */
1125DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1126                                                            hwaddr addr,
1127                                                            hwaddr size,
1128                                                            unsigned client);
1129
1130/**
1131 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1132 *                                   in the specified dirty bitmap snapshot.
1133 *
1134 * @mr: the memory region being queried.
1135 * @snap: the dirty bitmap snapshot
1136 * @addr: the address (relative to the start of the region) being queried.
1137 * @size: the size of the range being queried.
1138 */
1139bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1140                                      DirtyBitmapSnapshot *snap,
1141                                      hwaddr addr, hwaddr size);
1142
1143/**
1144 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1145 *                                  any external TLBs (e.g. kvm)
1146 *
1147 * Flushes dirty information from accelerators such as kvm and vhost-net
1148 * and makes it available to users of the memory API.
1149 *
1150 * @mr: the region being flushed.
1151 */
1152void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1153
1154/**
1155 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1156 *                            client.
1157 *
1158 * Marks a range of pages as no longer dirty.
1159 *
1160 * @mr: the region being updated.
1161 * @addr: the start of the subrange being cleaned.
1162 * @size: the size of the subrange being cleaned.
1163 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1164 *          %DIRTY_MEMORY_VGA.
1165 */
1166void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1167                               hwaddr size, unsigned client);
1168
1169/**
1170 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1171 *
1172 * Allows a memory region to be marked as read-only (turning it into a ROM).
1173 * only useful on RAM regions.
1174 *
1175 * @mr: the region being updated.
1176 * @readonly: whether rhe region is to be ROM or RAM.
1177 */
1178void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1179
1180/**
1181 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1182 *
1183 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1184 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1185 * device is mapped to guest memory and satisfies read access directly.
1186 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1187 * Writes are always handled by the #MemoryRegion.write function.
1188 *
1189 * @mr: the memory region to be updated
1190 * @romd_mode: %true to put the region into ROMD mode
1191 */
1192void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1193
1194/**
1195 * memory_region_set_coalescing: Enable memory coalescing for the region.
1196 *
1197 * Enabled writes to a region to be queued for later processing. MMIO ->write
1198 * callbacks may be delayed until a non-coalesced MMIO is issued.
1199 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1200 *
1201 * @mr: the memory region to be write coalesced
1202 */
1203void memory_region_set_coalescing(MemoryRegion *mr);
1204
1205/**
1206 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1207 *                               a region.
1208 *
1209 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1210 * Multiple calls can be issued coalesced disjoint ranges.
1211 *
1212 * @mr: the memory region to be updated.
1213 * @offset: the start of the range within the region to be coalesced.
1214 * @size: the size of the subrange to be coalesced.
1215 */
1216void memory_region_add_coalescing(MemoryRegion *mr,
1217                                  hwaddr offset,
1218                                  uint64_t size);
1219
1220/**
1221 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1222 *
1223 * Disables any coalescing caused by memory_region_set_coalescing() or
1224 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1225 * hardware.
1226 *
1227 * @mr: the memory region to be updated.
1228 */
1229void memory_region_clear_coalescing(MemoryRegion *mr);
1230
1231/**
1232 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1233 *                                    accesses.
1234 *
1235 * Ensure that pending coalesced MMIO request are flushed before the memory
1236 * region is accessed. This property is automatically enabled for all regions
1237 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1238 *
1239 * @mr: the memory region to be updated.
1240 */
1241void memory_region_set_flush_coalesced(MemoryRegion *mr);
1242
1243/**
1244 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1245 *                                      accesses.
1246 *
1247 * Clear the automatic coalesced MMIO flushing enabled via
1248 * memory_region_set_flush_coalesced. Note that this service has no effect on
1249 * memory regions that have MMIO coalescing enabled for themselves. For them,
1250 * automatic flushing will stop once coalescing is disabled.
1251 *
1252 * @mr: the memory region to be updated.
1253 */
1254void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1255
1256/**
1257 * memory_region_set_global_locking: Declares the access processing requires
1258 *                                   QEMU's global lock.
1259 *
1260 * When this is invoked, accesses to the memory region will be processed while
1261 * holding the global lock of QEMU. This is the default behavior of memory
1262 * regions.
1263 *
1264 * @mr: the memory region to be updated.
1265 */
1266void memory_region_set_global_locking(MemoryRegion *mr);
1267
1268/**
1269 * memory_region_clear_global_locking: Declares that access processing does
1270 *                                     not depend on the QEMU global lock.
1271 *
1272 * By clearing this property, accesses to the memory region will be processed
1273 * outside of QEMU's global lock (unless the lock is held on when issuing the
1274 * access request). In this case, the device model implementing the access
1275 * handlers is responsible for synchronization of concurrency.
1276 *
1277 * @mr: the memory region to be updated.
1278 */
1279void memory_region_clear_global_locking(MemoryRegion *mr);
1280
1281/**
1282 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1283 *                            is written to a location.
1284 *
1285 * Marks a word in an IO region (initialized with memory_region_init_io())
1286 * as a trigger for an eventfd event.  The I/O callback will not be called.
1287 * The caller must be prepared to handle failure (that is, take the required
1288 * action if the callback _is_ called).
1289 *
1290 * @mr: the memory region being updated.
1291 * @addr: the address within @mr that is to be monitored
1292 * @size: the size of the access to trigger the eventfd
1293 * @match_data: whether to match against @data, instead of just @addr
1294 * @data: the data to match against the guest write
1295 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1296 **/
1297void memory_region_add_eventfd(MemoryRegion *mr,
1298                               hwaddr addr,
1299                               unsigned size,
1300                               bool match_data,
1301                               uint64_t data,
1302                               EventNotifier *e);
1303
1304/**
1305 * memory_region_del_eventfd: Cancel an eventfd.
1306 *
1307 * Cancels an eventfd trigger requested by a previous
1308 * memory_region_add_eventfd() call.
1309 *
1310 * @mr: the memory region being updated.
1311 * @addr: the address within @mr that is to be monitored
1312 * @size: the size of the access to trigger the eventfd
1313 * @match_data: whether to match against @data, instead of just @addr
1314 * @data: the data to match against the guest write
1315 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1316 */
1317void memory_region_del_eventfd(MemoryRegion *mr,
1318                               hwaddr addr,
1319                               unsigned size,
1320                               bool match_data,
1321                               uint64_t data,
1322                               EventNotifier *e);
1323
1324/**
1325 * memory_region_add_subregion: Add a subregion to a container.
1326 *
1327 * Adds a subregion at @offset.  The subregion may not overlap with other
1328 * subregions (except for those explicitly marked as overlapping).  A region
1329 * may only be added once as a subregion (unless removed with
1330 * memory_region_del_subregion()); use memory_region_init_alias() if you
1331 * want a region to be a subregion in multiple locations.
1332 *
1333 * @mr: the region to contain the new subregion; must be a container
1334 *      initialized with memory_region_init().
1335 * @offset: the offset relative to @mr where @subregion is added.
1336 * @subregion: the subregion to be added.
1337 */
1338void memory_region_add_subregion(MemoryRegion *mr,
1339                                 hwaddr offset,
1340                                 MemoryRegion *subregion);
1341/**
1342 * memory_region_add_subregion_overlap: Add a subregion to a container
1343 *                                      with overlap.
1344 *
1345 * Adds a subregion at @offset.  The subregion may overlap with other
1346 * subregions.  Conflicts are resolved by having a higher @priority hide a
1347 * lower @priority. Subregions without priority are taken as @priority 0.
1348 * A region may only be added once as a subregion (unless removed with
1349 * memory_region_del_subregion()); use memory_region_init_alias() if you
1350 * want a region to be a subregion in multiple locations.
1351 *
1352 * @mr: the region to contain the new subregion; must be a container
1353 *      initialized with memory_region_init().
1354 * @offset: the offset relative to @mr where @subregion is added.
1355 * @subregion: the subregion to be added.
1356 * @priority: used for resolving overlaps; highest priority wins.
1357 */
1358void memory_region_add_subregion_overlap(MemoryRegion *mr,
1359                                         hwaddr offset,
1360                                         MemoryRegion *subregion,
1361                                         int priority);
1362
1363/**
1364 * memory_region_get_ram_addr: Get the ram address associated with a memory
1365 *                             region
1366 */
1367ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1368
1369uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1370/**
1371 * memory_region_del_subregion: Remove a subregion.
1372 *
1373 * Removes a subregion from its container.
1374 *
1375 * @mr: the container to be updated.
1376 * @subregion: the region being removed; must be a current subregion of @mr.
1377 */
1378void memory_region_del_subregion(MemoryRegion *mr,
1379                                 MemoryRegion *subregion);
1380
1381/*
1382 * memory_region_set_enabled: dynamically enable or disable a region
1383 *
1384 * Enables or disables a memory region.  A disabled memory region
1385 * ignores all accesses to itself and its subregions.  It does not
1386 * obscure sibling subregions with lower priority - it simply behaves as
1387 * if it was removed from the hierarchy.
1388 *
1389 * Regions default to being enabled.
1390 *
1391 * @mr: the region to be updated
1392 * @enabled: whether to enable or disable the region
1393 */
1394void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1395
1396/*
1397 * memory_region_set_address: dynamically update the address of a region
1398 *
1399 * Dynamically updates the address of a region, relative to its container.
1400 * May be used on regions are currently part of a memory hierarchy.
1401 *
1402 * @mr: the region to be updated
1403 * @addr: new address, relative to container region
1404 */
1405void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1406
1407/*
1408 * memory_region_set_size: dynamically update the size of a region.
1409 *
1410 * Dynamically updates the size of a region.
1411 *
1412 * @mr: the region to be updated
1413 * @size: used size of the region.
1414 */
1415void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1416
1417/*
1418 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1419 *
1420 * Dynamically updates the offset into the target region that an alias points
1421 * to, as if the fourth argument to memory_region_init_alias() has changed.
1422 *
1423 * @mr: the #MemoryRegion to be updated; should be an alias.
1424 * @offset: the new offset into the target memory region
1425 */
1426void memory_region_set_alias_offset(MemoryRegion *mr,
1427                                    hwaddr offset);
1428
1429/**
1430 * memory_region_present: checks if an address relative to a @container
1431 * translates into #MemoryRegion within @container
1432 *
1433 * Answer whether a #MemoryRegion within @container covers the address
1434 * @addr.
1435 *
1436 * @container: a #MemoryRegion within which @addr is a relative address
1437 * @addr: the area within @container to be searched
1438 */
1439bool memory_region_present(MemoryRegion *container, hwaddr addr);
1440
1441/**
1442 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1443 * into any address space.
1444 *
1445 * @mr: a #MemoryRegion which should be checked if it's mapped
1446 */
1447bool memory_region_is_mapped(MemoryRegion *mr);
1448
1449/**
1450 * memory_region_find: translate an address/size relative to a
1451 * MemoryRegion into a #MemoryRegionSection.
1452 *
1453 * Locates the first #MemoryRegion within @mr that overlaps the range
1454 * given by @addr and @size.
1455 *
1456 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1457 * It will have the following characteristics:
1458 *    .@size = 0 iff no overlap was found
1459 *    .@mr is non-%NULL iff an overlap was found
1460 *
1461 * Remember that in the return value the @offset_within_region is
1462 * relative to the returned region (in the .@mr field), not to the
1463 * @mr argument.
1464 *
1465 * Similarly, the .@offset_within_address_space is relative to the
1466 * address space that contains both regions, the passed and the
1467 * returned one.  However, in the special case where the @mr argument
1468 * has no container (and thus is the root of the address space), the
1469 * following will hold:
1470 *    .@offset_within_address_space >= @addr
1471 *    .@offset_within_address_space + .@size <= @addr + @size
1472 *
1473 * @mr: a MemoryRegion within which @addr is a relative address
1474 * @addr: start of the area within @as to be searched
1475 * @size: size of the area to be searched
1476 */
1477MemoryRegionSection memory_region_find(MemoryRegion *mr,
1478                                       hwaddr addr, uint64_t size);
1479
1480/**
1481 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1482 *
1483 * Synchronizes the dirty page log for all address spaces.
1484 */
1485void memory_global_dirty_log_sync(void);
1486
1487/**
1488 * memory_region_transaction_begin: Start a transaction.
1489 *
1490 * During a transaction, changes will be accumulated and made visible
1491 * only when the transaction ends (is committed).
1492 */
1493void memory_region_transaction_begin(void);
1494
1495/**
1496 * memory_region_transaction_commit: Commit a transaction and make changes
1497 *                                   visible to the guest.
1498 */
1499void memory_region_transaction_commit(void);
1500
1501/**
1502 * memory_listener_register: register callbacks to be called when memory
1503 *                           sections are mapped or unmapped into an address
1504 *                           space
1505 *
1506 * @listener: an object containing the callbacks to be called
1507 * @filter: if non-%NULL, only regions in this address space will be observed
1508 */
1509void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1510
1511/**
1512 * memory_listener_unregister: undo the effect of memory_listener_register()
1513 *
1514 * @listener: an object containing the callbacks to be removed
1515 */
1516void memory_listener_unregister(MemoryListener *listener);
1517
1518/**
1519 * memory_global_dirty_log_start: begin dirty logging for all regions
1520 */
1521void memory_global_dirty_log_start(void);
1522
1523/**
1524 * memory_global_dirty_log_stop: end dirty logging for all regions
1525 */
1526void memory_global_dirty_log_stop(void);
1527
1528void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1529
1530/**
1531 * memory_region_request_mmio_ptr: request a pointer to an mmio
1532 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1533 * When the device wants to invalidate the pointer it will call
1534 * memory_region_invalidate_mmio_ptr.
1535 *
1536 * @mr: #MemoryRegion to check
1537 * @addr: address within that region
1538 *
1539 * Returns true on success, false otherwise.
1540 */
1541bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1542
1543/**
1544 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1545 * previously requested.
1546 * In the end that means that if something wants to execute from this area it
1547 * will need to request the pointer again.
1548 *
1549 * @mr: #MemoryRegion associated to the pointer.
1550 * @addr: address within that region
1551 * @size: size of that area.
1552 */
1553void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1554                                       unsigned size);
1555
1556/**
1557 * memory_region_dispatch_read: perform a read directly to the specified
1558 * MemoryRegion.
1559 *
1560 * @mr: #MemoryRegion to access
1561 * @addr: address within that region
1562 * @pval: pointer to uint64_t which the data is written to
1563 * @size: size of the access in bytes
1564 * @attrs: memory transaction attributes to use for the access
1565 */
1566MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1567                                        hwaddr addr,
1568                                        uint64_t *pval,
1569                                        unsigned size,
1570                                        MemTxAttrs attrs);
1571/**
1572 * memory_region_dispatch_write: perform a write directly to the specified
1573 * MemoryRegion.
1574 *
1575 * @mr: #MemoryRegion to access
1576 * @addr: address within that region
1577 * @data: data to write
1578 * @size: size of the access in bytes
1579 * @attrs: memory transaction attributes to use for the access
1580 */
1581MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1582                                         hwaddr addr,
1583                                         uint64_t data,
1584                                         unsigned size,
1585                                         MemTxAttrs attrs);
1586
1587/**
1588 * address_space_init: initializes an address space
1589 *
1590 * @as: an uninitialized #AddressSpace
1591 * @root: a #MemoryRegion that routes addresses for the address space
1592 * @name: an address space name.  The name is only used for debugging
1593 *        output.
1594 */
1595void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1596
1597/**
1598 * address_space_init_shareable: return an address space for a memory region,
1599 *                               creating it if it does not already exist
1600 *
1601 * @root: a #MemoryRegion that routes addresses for the address space
1602 * @name: an address space name.  The name is only used for debugging
1603 *        output.
1604 *
1605 * This function will return a pointer to an existing AddressSpace
1606 * which was initialized with the specified MemoryRegion, or it will
1607 * create and initialize one if it does not already exist. The ASes
1608 * are reference-counted, so the memory will be freed automatically
1609 * when the AddressSpace is destroyed via address_space_destroy.
1610 */
1611AddressSpace *address_space_init_shareable(MemoryRegion *root,
1612                                           const char *name);
1613
1614/**
1615 * address_space_destroy: destroy an address space
1616 *
1617 * Releases all resources associated with an address space.  After an address space
1618 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1619 * as well.
1620 *
1621 * @as: address space to be destroyed
1622 */
1623void address_space_destroy(AddressSpace *as);
1624
1625/**
1626 * address_space_rw: read from or write to an address space.
1627 *
1628 * Return a MemTxResult indicating whether the operation succeeded
1629 * or failed (eg unassigned memory, device rejected the transaction,
1630 * IOMMU fault).
1631 *
1632 * @as: #AddressSpace to be accessed
1633 * @addr: address within that address space
1634 * @attrs: memory transaction attributes
1635 * @buf: buffer with the data transferred
1636 * @is_write: indicates the transfer direction
1637 */
1638MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639                             MemTxAttrs attrs, uint8_t *buf,
1640                             int len, bool is_write);
1641
1642/**
1643 * address_space_write: write to address space.
1644 *
1645 * Return a MemTxResult indicating whether the operation succeeded
1646 * or failed (eg unassigned memory, device rejected the transaction,
1647 * IOMMU fault).
1648 *
1649 * @as: #AddressSpace to be accessed
1650 * @addr: address within that address space
1651 * @attrs: memory transaction attributes
1652 * @buf: buffer with the data transferred
1653 */
1654MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1655                                MemTxAttrs attrs,
1656                                const uint8_t *buf, int len);
1657
1658/* address_space_ld*: load from an address space
1659 * address_space_st*: store to an address space
1660 *
1661 * These functions perform a load or store of the byte, word,
1662 * longword or quad to the specified address within the AddressSpace.
1663 * The _le suffixed functions treat the data as little endian;
1664 * _be indicates big endian; no suffix indicates "same endianness
1665 * as guest CPU".
1666 *
1667 * The "guest CPU endianness" accessors are deprecated for use outside
1668 * target-* code; devices should be CPU-agnostic and use either the LE
1669 * or the BE accessors.
1670 *
1671 * @as #AddressSpace to be accessed
1672 * @addr: address within that address space
1673 * @val: data value, for stores
1674 * @attrs: memory transaction attributes
1675 * @result: location to write the success/failure of the transaction;
1676 *   if NULL, this information is discarded
1677 */
1678uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1679                            MemTxAttrs attrs, MemTxResult *result);
1680uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1681                            MemTxAttrs attrs, MemTxResult *result);
1682uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1683                            MemTxAttrs attrs, MemTxResult *result);
1684uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1685                            MemTxAttrs attrs, MemTxResult *result);
1686uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1687                            MemTxAttrs attrs, MemTxResult *result);
1688uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1689                            MemTxAttrs attrs, MemTxResult *result);
1690uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1691                            MemTxAttrs attrs, MemTxResult *result);
1692void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1693                            MemTxAttrs attrs, MemTxResult *result);
1694void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1695                            MemTxAttrs attrs, MemTxResult *result);
1696void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1697                            MemTxAttrs attrs, MemTxResult *result);
1698void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1699                            MemTxAttrs attrs, MemTxResult *result);
1700void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1701                            MemTxAttrs attrs, MemTxResult *result);
1702void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1703                            MemTxAttrs attrs, MemTxResult *result);
1704void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1705                            MemTxAttrs attrs, MemTxResult *result);
1706
1707uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1708uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1709uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1710uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1711uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1712uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1713uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1714void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1715void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1716void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1717void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1718void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1719void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1720void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1721
1722struct MemoryRegionCache {
1723    hwaddr xlat;
1724    hwaddr len;
1725    AddressSpace *as;
1726};
1727
1728#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1729
1730/* address_space_cache_init: prepare for repeated access to a physical
1731 * memory region
1732 *
1733 * @cache: #MemoryRegionCache to be filled
1734 * @as: #AddressSpace to be accessed
1735 * @addr: address within that address space
1736 * @len: length of buffer
1737 * @is_write: indicates the transfer direction
1738 *
1739 * Will only work with RAM, and may map a subset of the requested range by
1740 * returning a value that is less than @len.  On failure, return a negative
1741 * errno value.
1742 *
1743 * Because it only works with RAM, this function can be used for
1744 * read-modify-write operations.  In this case, is_write should be %true.
1745 *
1746 * Note that addresses passed to the address_space_*_cached functions
1747 * are relative to @addr.
1748 */
1749int64_t address_space_cache_init(MemoryRegionCache *cache,
1750                                 AddressSpace *as,
1751                                 hwaddr addr,
1752                                 hwaddr len,
1753                                 bool is_write);
1754
1755/**
1756 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1757 *
1758 * @cache: The #MemoryRegionCache to operate on.
1759 * @addr: The first physical address that was written, relative to the
1760 * address that was passed to @address_space_cache_init.
1761 * @access_len: The number of bytes that were written starting at @addr.
1762 */
1763void address_space_cache_invalidate(MemoryRegionCache *cache,
1764                                    hwaddr addr,
1765                                    hwaddr access_len);
1766
1767/**
1768 * address_space_cache_destroy: free a #MemoryRegionCache
1769 *
1770 * @cache: The #MemoryRegionCache whose memory should be released.
1771 */
1772void address_space_cache_destroy(MemoryRegionCache *cache);
1773
1774/* address_space_ld*_cached: load from a cached #MemoryRegion
1775 * address_space_st*_cached: store into a cached #MemoryRegion
1776 *
1777 * These functions perform a load or store of the byte, word,
1778 * longword or quad to the specified address.  The address is
1779 * a physical address in the AddressSpace, but it must lie within
1780 * a #MemoryRegion that was mapped with address_space_cache_init.
1781 *
1782 * The _le suffixed functions treat the data as little endian;
1783 * _be indicates big endian; no suffix indicates "same endianness
1784 * as guest CPU".
1785 *
1786 * The "guest CPU endianness" accessors are deprecated for use outside
1787 * target-* code; devices should be CPU-agnostic and use either the LE
1788 * or the BE accessors.
1789 *
1790 * @cache: previously initialized #MemoryRegionCache to be accessed
1791 * @addr: address within the address space
1792 * @val: data value, for stores
1793 * @attrs: memory transaction attributes
1794 * @result: location to write the success/failure of the transaction;
1795 *   if NULL, this information is discarded
1796 */
1797uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1798                            MemTxAttrs attrs, MemTxResult *result);
1799uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1800                            MemTxAttrs attrs, MemTxResult *result);
1801uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1802                            MemTxAttrs attrs, MemTxResult *result);
1803uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1804                            MemTxAttrs attrs, MemTxResult *result);
1805uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1806                            MemTxAttrs attrs, MemTxResult *result);
1807uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1808                            MemTxAttrs attrs, MemTxResult *result);
1809uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1810                            MemTxAttrs attrs, MemTxResult *result);
1811void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1812                            MemTxAttrs attrs, MemTxResult *result);
1813void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1814                            MemTxAttrs attrs, MemTxResult *result);
1815void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1816                            MemTxAttrs attrs, MemTxResult *result);
1817void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1818                            MemTxAttrs attrs, MemTxResult *result);
1819void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1820                            MemTxAttrs attrs, MemTxResult *result);
1821void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1822                            MemTxAttrs attrs, MemTxResult *result);
1823void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1824                            MemTxAttrs attrs, MemTxResult *result);
1825
1826uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1827uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1828uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1829uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1830uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1831uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1832uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1833void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1834void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1835void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1836void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1837void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1838void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1839void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1840/* address_space_get_iotlb_entry: translate an address into an IOTLB
1841 * entry. Should be called from an RCU critical section.
1842 */
1843IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1844                                            bool is_write);
1845
1846/* address_space_translate: translate an address range into an address space
1847 * into a MemoryRegion and an address range into that section.  Should be
1848 * called from an RCU critical section, to avoid that the last reference
1849 * to the returned region disappears after address_space_translate returns.
1850 *
1851 * @as: #AddressSpace to be accessed
1852 * @addr: address within that address space
1853 * @xlat: pointer to address within the returned memory region section's
1854 * #MemoryRegion.
1855 * @len: pointer to length
1856 * @is_write: indicates the transfer direction
1857 */
1858MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1859                                      hwaddr *xlat, hwaddr *len,
1860                                      bool is_write);
1861
1862/* address_space_access_valid: check for validity of accessing an address
1863 * space range
1864 *
1865 * Check whether memory is assigned to the given address space range, and
1866 * access is permitted by any IOMMU regions that are active for the address
1867 * space.
1868 *
1869 * For now, addr and len should be aligned to a page size.  This limitation
1870 * will be lifted in the future.
1871 *
1872 * @as: #AddressSpace to be accessed
1873 * @addr: address within that address space
1874 * @len: length of the area to be checked
1875 * @is_write: indicates the transfer direction
1876 */
1877bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1878
1879/* address_space_map: map a physical memory region into a host virtual address
1880 *
1881 * May map a subset of the requested range, given by and returned in @plen.
1882 * May return %NULL if resources needed to perform the mapping are exhausted.
1883 * Use only for reads OR writes - not for read-modify-write operations.
1884 * Use cpu_register_map_client() to know when retrying the map operation is
1885 * likely to succeed.
1886 *
1887 * @as: #AddressSpace to be accessed
1888 * @addr: address within that address space
1889 * @plen: pointer to length of buffer; updated on return
1890 * @is_write: indicates the transfer direction
1891 */
1892void *address_space_map(AddressSpace *as, hwaddr addr,
1893                        hwaddr *plen, bool is_write);
1894
1895/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1896 *
1897 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1898 * the amount of memory that was actually read or written by the caller.
1899 *
1900 * @as: #AddressSpace used
1901 * @addr: address within that address space
1902 * @len: buffer length as returned by address_space_map()
1903 * @access_len: amount of data actually transferred
1904 * @is_write: indicates the transfer direction
1905 */
1906void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1907                         int is_write, hwaddr access_len);
1908
1909
1910/* Internal functions, part of the implementation of address_space_read.  */
1911MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1912                                        MemTxAttrs attrs, uint8_t *buf,
1913                                        int len, hwaddr addr1, hwaddr l,
1914                                        MemoryRegion *mr);
1915MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1916                                    MemTxAttrs attrs, uint8_t *buf, int len);
1917void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1918
1919static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1920{
1921    if (is_write) {
1922        return memory_region_is_ram(mr) &&
1923               !mr->readonly && !memory_region_is_ram_device(mr);
1924    } else {
1925        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1926               memory_region_is_romd(mr);
1927    }
1928}
1929
1930/**
1931 * address_space_read: read from an address space.
1932 *
1933 * Return a MemTxResult indicating whether the operation succeeded
1934 * or failed (eg unassigned memory, device rejected the transaction,
1935 * IOMMU fault).
1936 *
1937 * @as: #AddressSpace to be accessed
1938 * @addr: address within that address space
1939 * @attrs: memory transaction attributes
1940 * @buf: buffer with the data transferred
1941 */
1942static inline __attribute__((__always_inline__))
1943MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1944                               uint8_t *buf, int len)
1945{
1946    MemTxResult result = MEMTX_OK;
1947    hwaddr l, addr1;
1948    void *ptr;
1949    MemoryRegion *mr;
1950
1951    if (__builtin_constant_p(len)) {
1952        if (len) {
1953            rcu_read_lock();
1954            l = len;
1955            mr = address_space_translate(as, addr, &addr1, &l, false);
1956            if (len == l && memory_access_is_direct(mr, false)) {
1957                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1958                memcpy(buf, ptr, len);
1959            } else {
1960                result = address_space_read_continue(as, addr, attrs, buf, len,
1961                                                     addr1, l, mr);
1962            }
1963            rcu_read_unlock();
1964        }
1965    } else {
1966        result = address_space_read_full(as, addr, attrs, buf, len);
1967    }
1968    return result;
1969}
1970
1971/**
1972 * address_space_read_cached: read from a cached RAM region
1973 *
1974 * @cache: Cached region to be addressed
1975 * @addr: address relative to the base of the RAM region
1976 * @buf: buffer with the data transferred
1977 * @len: length of the data transferred
1978 */
1979static inline void
1980address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1981                          void *buf, int len)
1982{
1983    assert(addr < cache->len && len <= cache->len - addr);
1984    address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1985}
1986
1987/**
1988 * address_space_write_cached: write to a cached RAM region
1989 *
1990 * @cache: Cached region to be addressed
1991 * @addr: address relative to the base of the RAM region
1992 * @buf: buffer with the data transferred
1993 * @len: length of the data transferred
1994 */
1995static inline void
1996address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1997                           void *buf, int len)
1998{
1999    assert(addr < cache->len && len <= cache->len - addr);
2000    address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2001}
2002
2003#endif
2004
2005#endif
2006