qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6
   7#include "qemu.h"
   8#include "disas/disas.h"
   9#include "qemu/path.h"
  10
  11#ifdef _ARCH_PPC64
  12#undef ARCH_DLINFO
  13#undef ELF_PLATFORM
  14#undef ELF_HWCAP
  15#undef ELF_HWCAP2
  16#undef ELF_CLASS
  17#undef ELF_DATA
  18#undef ELF_ARCH
  19#endif
  20
  21#define ELF_OSABI   ELFOSABI_SYSV
  22
  23/* from personality.h */
  24
  25/*
  26 * Flags for bug emulation.
  27 *
  28 * These occupy the top three bytes.
  29 */
  30enum {
  31    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  32    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  33                                           descriptors (signal handling) */
  34    MMAP_PAGE_ZERO =    0x0100000,
  35    ADDR_COMPAT_LAYOUT = 0x0200000,
  36    READ_IMPLIES_EXEC = 0x0400000,
  37    ADDR_LIMIT_32BIT =  0x0800000,
  38    SHORT_INODE =       0x1000000,
  39    WHOLE_SECONDS =     0x2000000,
  40    STICKY_TIMEOUTS =   0x4000000,
  41    ADDR_LIMIT_3GB =    0x8000000,
  42};
  43
  44/*
  45 * Personality types.
  46 *
  47 * These go in the low byte.  Avoid using the top bit, it will
  48 * conflict with error returns.
  49 */
  50enum {
  51    PER_LINUX =         0x0000,
  52    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  53    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  54    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  55    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  56    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  57    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  58    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  59    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  60    PER_BSD =           0x0006,
  61    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  62    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  63    PER_LINUX32 =       0x0008,
  64    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  65    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  66    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  67    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  68    PER_RISCOS =        0x000c,
  69    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  70    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  71    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  72    PER_HPUX =          0x0010,
  73    PER_MASK =          0x00ff,
  74};
  75
  76/*
  77 * Return the base personality without flags.
  78 */
  79#define personality(pers)       (pers & PER_MASK)
  80
  81/* this flag is uneffective under linux too, should be deleted */
  82#ifndef MAP_DENYWRITE
  83#define MAP_DENYWRITE 0
  84#endif
  85
  86/* should probably go in elf.h */
  87#ifndef ELIBBAD
  88#define ELIBBAD 80
  89#endif
  90
  91#ifdef TARGET_WORDS_BIGENDIAN
  92#define ELF_DATA        ELFDATA2MSB
  93#else
  94#define ELF_DATA        ELFDATA2LSB
  95#endif
  96
  97#ifdef TARGET_ABI_MIPSN32
  98typedef abi_ullong      target_elf_greg_t;
  99#define tswapreg(ptr)   tswap64(ptr)
 100#else
 101typedef abi_ulong       target_elf_greg_t;
 102#define tswapreg(ptr)   tswapal(ptr)
 103#endif
 104
 105#ifdef USE_UID16
 106typedef abi_ushort      target_uid_t;
 107typedef abi_ushort      target_gid_t;
 108#else
 109typedef abi_uint        target_uid_t;
 110typedef abi_uint        target_gid_t;
 111#endif
 112typedef abi_int         target_pid_t;
 113
 114#ifdef TARGET_I386
 115
 116#define ELF_PLATFORM get_elf_platform()
 117
 118static const char *get_elf_platform(void)
 119{
 120    static char elf_platform[] = "i386";
 121    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 122    if (family > 6)
 123        family = 6;
 124    if (family >= 3)
 125        elf_platform[1] = '0' + family;
 126    return elf_platform;
 127}
 128
 129#define ELF_HWCAP get_elf_hwcap()
 130
 131static uint32_t get_elf_hwcap(void)
 132{
 133    X86CPU *cpu = X86_CPU(thread_cpu);
 134
 135    return cpu->env.features[FEAT_1_EDX];
 136}
 137
 138#ifdef TARGET_X86_64
 139#define ELF_START_MMAP 0x2aaaaab000ULL
 140
 141#define ELF_CLASS      ELFCLASS64
 142#define ELF_ARCH       EM_X86_64
 143
 144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 145{
 146    regs->rax = 0;
 147    regs->rsp = infop->start_stack;
 148    regs->rip = infop->entry;
 149}
 150
 151#define ELF_NREG    27
 152typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 153
 154/*
 155 * Note that ELF_NREG should be 29 as there should be place for
 156 * TRAPNO and ERR "registers" as well but linux doesn't dump
 157 * those.
 158 *
 159 * See linux kernel: arch/x86/include/asm/elf.h
 160 */
 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 162{
 163    (*regs)[0] = env->regs[15];
 164    (*regs)[1] = env->regs[14];
 165    (*regs)[2] = env->regs[13];
 166    (*regs)[3] = env->regs[12];
 167    (*regs)[4] = env->regs[R_EBP];
 168    (*regs)[5] = env->regs[R_EBX];
 169    (*regs)[6] = env->regs[11];
 170    (*regs)[7] = env->regs[10];
 171    (*regs)[8] = env->regs[9];
 172    (*regs)[9] = env->regs[8];
 173    (*regs)[10] = env->regs[R_EAX];
 174    (*regs)[11] = env->regs[R_ECX];
 175    (*regs)[12] = env->regs[R_EDX];
 176    (*regs)[13] = env->regs[R_ESI];
 177    (*regs)[14] = env->regs[R_EDI];
 178    (*regs)[15] = env->regs[R_EAX]; /* XXX */
 179    (*regs)[16] = env->eip;
 180    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 181    (*regs)[18] = env->eflags;
 182    (*regs)[19] = env->regs[R_ESP];
 183    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 184    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 185    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 186    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 187    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 188    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 189    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 190}
 191
 192#else
 193
 194#define ELF_START_MMAP 0x80000000
 195
 196/*
 197 * This is used to ensure we don't load something for the wrong architecture.
 198 */
 199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 200
 201/*
 202 * These are used to set parameters in the core dumps.
 203 */
 204#define ELF_CLASS       ELFCLASS32
 205#define ELF_ARCH        EM_386
 206
 207static inline void init_thread(struct target_pt_regs *regs,
 208                               struct image_info *infop)
 209{
 210    regs->esp = infop->start_stack;
 211    regs->eip = infop->entry;
 212
 213    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 214       starts %edx contains a pointer to a function which might be
 215       registered using `atexit'.  This provides a mean for the
 216       dynamic linker to call DT_FINI functions for shared libraries
 217       that have been loaded before the code runs.
 218
 219       A value of 0 tells we have no such handler.  */
 220    regs->edx = 0;
 221}
 222
 223#define ELF_NREG    17
 224typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 225
 226/*
 227 * Note that ELF_NREG should be 19 as there should be place for
 228 * TRAPNO and ERR "registers" as well but linux doesn't dump
 229 * those.
 230 *
 231 * See linux kernel: arch/x86/include/asm/elf.h
 232 */
 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 234{
 235    (*regs)[0] = env->regs[R_EBX];
 236    (*regs)[1] = env->regs[R_ECX];
 237    (*regs)[2] = env->regs[R_EDX];
 238    (*regs)[3] = env->regs[R_ESI];
 239    (*regs)[4] = env->regs[R_EDI];
 240    (*regs)[5] = env->regs[R_EBP];
 241    (*regs)[6] = env->regs[R_EAX];
 242    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 243    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 244    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 245    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 246    (*regs)[11] = env->regs[R_EAX]; /* XXX */
 247    (*regs)[12] = env->eip;
 248    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 249    (*regs)[14] = env->eflags;
 250    (*regs)[15] = env->regs[R_ESP];
 251    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 252}
 253#endif
 254
 255#define USE_ELF_CORE_DUMP
 256#define ELF_EXEC_PAGESIZE       4096
 257
 258#endif
 259
 260#ifdef TARGET_ARM
 261
 262#ifndef TARGET_AARCH64
 263/* 32 bit ARM definitions */
 264
 265#define ELF_START_MMAP 0x80000000
 266
 267#define ELF_ARCH        EM_ARM
 268#define ELF_CLASS       ELFCLASS32
 269
 270static inline void init_thread(struct target_pt_regs *regs,
 271                               struct image_info *infop)
 272{
 273    abi_long stack = infop->start_stack;
 274    memset(regs, 0, sizeof(*regs));
 275
 276    regs->uregs[16] = ARM_CPU_MODE_USR;
 277    if (infop->entry & 1) {
 278        regs->uregs[16] |= CPSR_T;
 279    }
 280    regs->uregs[15] = infop->entry & 0xfffffffe;
 281    regs->uregs[13] = infop->start_stack;
 282    /* FIXME - what to for failure of get_user()? */
 283    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 284    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 285    /* XXX: it seems that r0 is zeroed after ! */
 286    regs->uregs[0] = 0;
 287    /* For uClinux PIC binaries.  */
 288    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 289    regs->uregs[10] = infop->start_data;
 290}
 291
 292#define ELF_NREG    18
 293typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 294
 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 296{
 297    (*regs)[0] = tswapreg(env->regs[0]);
 298    (*regs)[1] = tswapreg(env->regs[1]);
 299    (*regs)[2] = tswapreg(env->regs[2]);
 300    (*regs)[3] = tswapreg(env->regs[3]);
 301    (*regs)[4] = tswapreg(env->regs[4]);
 302    (*regs)[5] = tswapreg(env->regs[5]);
 303    (*regs)[6] = tswapreg(env->regs[6]);
 304    (*regs)[7] = tswapreg(env->regs[7]);
 305    (*regs)[8] = tswapreg(env->regs[8]);
 306    (*regs)[9] = tswapreg(env->regs[9]);
 307    (*regs)[10] = tswapreg(env->regs[10]);
 308    (*regs)[11] = tswapreg(env->regs[11]);
 309    (*regs)[12] = tswapreg(env->regs[12]);
 310    (*regs)[13] = tswapreg(env->regs[13]);
 311    (*regs)[14] = tswapreg(env->regs[14]);
 312    (*regs)[15] = tswapreg(env->regs[15]);
 313
 314    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 315    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 316}
 317
 318#define USE_ELF_CORE_DUMP
 319#define ELF_EXEC_PAGESIZE       4096
 320
 321enum
 322{
 323    ARM_HWCAP_ARM_SWP       = 1 << 0,
 324    ARM_HWCAP_ARM_HALF      = 1 << 1,
 325    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 326    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 327    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 328    ARM_HWCAP_ARM_FPA       = 1 << 5,
 329    ARM_HWCAP_ARM_VFP       = 1 << 6,
 330    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 331    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 332    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 333    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 334    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 335    ARM_HWCAP_ARM_NEON      = 1 << 12,
 336    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 337    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 338    ARM_HWCAP_ARM_TLS       = 1 << 15,
 339    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 340    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 341    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 342    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 343    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 344    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 345};
 346
 347enum {
 348    ARM_HWCAP2_ARM_AES      = 1 << 0,
 349    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 350    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 351    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 352    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 353};
 354
 355/* The commpage only exists for 32 bit kernels */
 356
 357#define TARGET_HAS_VALIDATE_GUEST_SPACE
 358/* Return 1 if the proposed guest space is suitable for the guest.
 359 * Return 0 if the proposed guest space isn't suitable, but another
 360 * address space should be tried.
 361 * Return -1 if there is no way the proposed guest space can be
 362 * valid regardless of the base.
 363 * The guest code may leave a page mapped and populate it if the
 364 * address is suitable.
 365 */
 366static int validate_guest_space(unsigned long guest_base,
 367                                unsigned long guest_size)
 368{
 369    unsigned long real_start, test_page_addr;
 370
 371    /* We need to check that we can force a fault on access to the
 372     * commpage at 0xffff0fxx
 373     */
 374    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 375
 376    /* If the commpage lies within the already allocated guest space,
 377     * then there is no way we can allocate it.
 378     */
 379    if (test_page_addr >= guest_base
 380        && test_page_addr <= (guest_base + guest_size)) {
 381        return -1;
 382    }
 383
 384    /* Note it needs to be writeable to let us initialise it */
 385    real_start = (unsigned long)
 386                 mmap((void *)test_page_addr, qemu_host_page_size,
 387                     PROT_READ | PROT_WRITE,
 388                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 389
 390    /* If we can't map it then try another address */
 391    if (real_start == -1ul) {
 392        return 0;
 393    }
 394
 395    if (real_start != test_page_addr) {
 396        /* OS didn't put the page where we asked - unmap and reject */
 397        munmap((void *)real_start, qemu_host_page_size);
 398        return 0;
 399    }
 400
 401    /* Leave the page mapped
 402     * Populate it (mmap should have left it all 0'd)
 403     */
 404
 405    /* Kernel helper versions */
 406    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 407
 408    /* Now it's populated make it RO */
 409    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 410        perror("Protecting guest commpage");
 411        exit(-1);
 412    }
 413
 414    return 1; /* All good */
 415}
 416
 417#define ELF_HWCAP get_elf_hwcap()
 418#define ELF_HWCAP2 get_elf_hwcap2()
 419
 420static uint32_t get_elf_hwcap(void)
 421{
 422    ARMCPU *cpu = ARM_CPU(thread_cpu);
 423    uint32_t hwcaps = 0;
 424
 425    hwcaps |= ARM_HWCAP_ARM_SWP;
 426    hwcaps |= ARM_HWCAP_ARM_HALF;
 427    hwcaps |= ARM_HWCAP_ARM_THUMB;
 428    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 429
 430    /* probe for the extra features */
 431#define GET_FEATURE(feat, hwcap) \
 432    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 433    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 434    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 435    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 436    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 437    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 438    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 439    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 440    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 441    GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
 442    GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
 443    GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
 444    /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
 445     * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
 446     * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
 447     * to our VFP_FP16 feature bit.
 448     */
 449    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
 450    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 451
 452    return hwcaps;
 453}
 454
 455static uint32_t get_elf_hwcap2(void)
 456{
 457    ARMCPU *cpu = ARM_CPU(thread_cpu);
 458    uint32_t hwcaps = 0;
 459
 460    GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
 461    GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
 462    GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
 463    GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
 464    GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
 465    return hwcaps;
 466}
 467
 468#undef GET_FEATURE
 469
 470#else
 471/* 64 bit ARM definitions */
 472#define ELF_START_MMAP 0x80000000
 473
 474#define ELF_ARCH        EM_AARCH64
 475#define ELF_CLASS       ELFCLASS64
 476#define ELF_PLATFORM    "aarch64"
 477
 478static inline void init_thread(struct target_pt_regs *regs,
 479                               struct image_info *infop)
 480{
 481    abi_long stack = infop->start_stack;
 482    memset(regs, 0, sizeof(*regs));
 483
 484    regs->pc = infop->entry & ~0x3ULL;
 485    regs->sp = stack;
 486}
 487
 488#define ELF_NREG    34
 489typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 490
 491static void elf_core_copy_regs(target_elf_gregset_t *regs,
 492                               const CPUARMState *env)
 493{
 494    int i;
 495
 496    for (i = 0; i < 32; i++) {
 497        (*regs)[i] = tswapreg(env->xregs[i]);
 498    }
 499    (*regs)[32] = tswapreg(env->pc);
 500    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 501}
 502
 503#define USE_ELF_CORE_DUMP
 504#define ELF_EXEC_PAGESIZE       4096
 505
 506enum {
 507    ARM_HWCAP_A64_FP            = 1 << 0,
 508    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 509    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 510    ARM_HWCAP_A64_AES           = 1 << 3,
 511    ARM_HWCAP_A64_PMULL         = 1 << 4,
 512    ARM_HWCAP_A64_SHA1          = 1 << 5,
 513    ARM_HWCAP_A64_SHA2          = 1 << 6,
 514    ARM_HWCAP_A64_CRC32         = 1 << 7,
 515};
 516
 517#define ELF_HWCAP get_elf_hwcap()
 518
 519static uint32_t get_elf_hwcap(void)
 520{
 521    ARMCPU *cpu = ARM_CPU(thread_cpu);
 522    uint32_t hwcaps = 0;
 523
 524    hwcaps |= ARM_HWCAP_A64_FP;
 525    hwcaps |= ARM_HWCAP_A64_ASIMD;
 526
 527    /* probe for the extra features */
 528#define GET_FEATURE(feat, hwcap) \
 529    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 530    GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
 531    GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
 532    GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
 533    GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
 534    GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
 535#undef GET_FEATURE
 536
 537    return hwcaps;
 538}
 539
 540#endif /* not TARGET_AARCH64 */
 541#endif /* TARGET_ARM */
 542
 543#ifdef TARGET_UNICORE32
 544
 545#define ELF_START_MMAP          0x80000000
 546
 547#define ELF_CLASS               ELFCLASS32
 548#define ELF_DATA                ELFDATA2LSB
 549#define ELF_ARCH                EM_UNICORE32
 550
 551static inline void init_thread(struct target_pt_regs *regs,
 552        struct image_info *infop)
 553{
 554    abi_long stack = infop->start_stack;
 555    memset(regs, 0, sizeof(*regs));
 556    regs->UC32_REG_asr = 0x10;
 557    regs->UC32_REG_pc = infop->entry & 0xfffffffe;
 558    regs->UC32_REG_sp = infop->start_stack;
 559    /* FIXME - what to for failure of get_user()? */
 560    get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
 561    get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
 562    /* XXX: it seems that r0 is zeroed after ! */
 563    regs->UC32_REG_00 = 0;
 564}
 565
 566#define ELF_NREG    34
 567typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 568
 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
 570{
 571    (*regs)[0] = env->regs[0];
 572    (*regs)[1] = env->regs[1];
 573    (*regs)[2] = env->regs[2];
 574    (*regs)[3] = env->regs[3];
 575    (*regs)[4] = env->regs[4];
 576    (*regs)[5] = env->regs[5];
 577    (*regs)[6] = env->regs[6];
 578    (*regs)[7] = env->regs[7];
 579    (*regs)[8] = env->regs[8];
 580    (*regs)[9] = env->regs[9];
 581    (*regs)[10] = env->regs[10];
 582    (*regs)[11] = env->regs[11];
 583    (*regs)[12] = env->regs[12];
 584    (*regs)[13] = env->regs[13];
 585    (*regs)[14] = env->regs[14];
 586    (*regs)[15] = env->regs[15];
 587    (*regs)[16] = env->regs[16];
 588    (*regs)[17] = env->regs[17];
 589    (*regs)[18] = env->regs[18];
 590    (*regs)[19] = env->regs[19];
 591    (*regs)[20] = env->regs[20];
 592    (*regs)[21] = env->regs[21];
 593    (*regs)[22] = env->regs[22];
 594    (*regs)[23] = env->regs[23];
 595    (*regs)[24] = env->regs[24];
 596    (*regs)[25] = env->regs[25];
 597    (*regs)[26] = env->regs[26];
 598    (*regs)[27] = env->regs[27];
 599    (*regs)[28] = env->regs[28];
 600    (*regs)[29] = env->regs[29];
 601    (*regs)[30] = env->regs[30];
 602    (*regs)[31] = env->regs[31];
 603
 604    (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
 605    (*regs)[33] = env->regs[0]; /* XXX */
 606}
 607
 608#define USE_ELF_CORE_DUMP
 609#define ELF_EXEC_PAGESIZE               4096
 610
 611#define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
 612
 613#endif
 614
 615#ifdef TARGET_SPARC
 616#ifdef TARGET_SPARC64
 617
 618#define ELF_START_MMAP 0x80000000
 619#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 620                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 621#ifndef TARGET_ABI32
 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 623#else
 624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 625#endif
 626
 627#define ELF_CLASS   ELFCLASS64
 628#define ELF_ARCH    EM_SPARCV9
 629
 630#define STACK_BIAS              2047
 631
 632static inline void init_thread(struct target_pt_regs *regs,
 633                               struct image_info *infop)
 634{
 635#ifndef TARGET_ABI32
 636    regs->tstate = 0;
 637#endif
 638    regs->pc = infop->entry;
 639    regs->npc = regs->pc + 4;
 640    regs->y = 0;
 641#ifdef TARGET_ABI32
 642    regs->u_regs[14] = infop->start_stack - 16 * 4;
 643#else
 644    if (personality(infop->personality) == PER_LINUX32)
 645        regs->u_regs[14] = infop->start_stack - 16 * 4;
 646    else
 647        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 648#endif
 649}
 650
 651#else
 652#define ELF_START_MMAP 0x80000000
 653#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 654                    | HWCAP_SPARC_MULDIV)
 655
 656#define ELF_CLASS   ELFCLASS32
 657#define ELF_ARCH    EM_SPARC
 658
 659static inline void init_thread(struct target_pt_regs *regs,
 660                               struct image_info *infop)
 661{
 662    regs->psr = 0;
 663    regs->pc = infop->entry;
 664    regs->npc = regs->pc + 4;
 665    regs->y = 0;
 666    regs->u_regs[14] = infop->start_stack - 16 * 4;
 667}
 668
 669#endif
 670#endif
 671
 672#ifdef TARGET_PPC
 673
 674#define ELF_MACHINE    PPC_ELF_MACHINE
 675#define ELF_START_MMAP 0x80000000
 676
 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 678
 679#define elf_check_arch(x) ( (x) == EM_PPC64 )
 680
 681#define ELF_CLASS       ELFCLASS64
 682
 683#else
 684
 685#define ELF_CLASS       ELFCLASS32
 686
 687#endif
 688
 689#define ELF_ARCH        EM_PPC
 690
 691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 692   See arch/powerpc/include/asm/cputable.h.  */
 693enum {
 694    QEMU_PPC_FEATURE_32 = 0x80000000,
 695    QEMU_PPC_FEATURE_64 = 0x40000000,
 696    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 697    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 698    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 699    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 700    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 701    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 702    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 703    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 704    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 705    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 706    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 707    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 708    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 709    QEMU_PPC_FEATURE_CELL = 0x00010000,
 710    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 711    QEMU_PPC_FEATURE_SMT = 0x00004000,
 712    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 713    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 714    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 715    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 716    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 717    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 718    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 719    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 720
 721    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 722    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 723
 724    /* Feature definitions in AT_HWCAP2.  */
 725    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 726    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 727    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 728    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 729    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 730    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 731};
 732
 733#define ELF_HWCAP get_elf_hwcap()
 734
 735static uint32_t get_elf_hwcap(void)
 736{
 737    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 738    uint32_t features = 0;
 739
 740    /* We don't have to be terribly complete here; the high points are
 741       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 742#define GET_FEATURE(flag, feature)                                      \
 743    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 744#define GET_FEATURE2(flags, feature) \
 745    do { \
 746        if ((cpu->env.insns_flags2 & flags) == flags) { \
 747            features |= feature; \
 748        } \
 749    } while (0)
 750    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 751    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 752    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 753    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 754    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 755    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 756    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 757    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 758    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 759    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 760    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 761                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 762                  QEMU_PPC_FEATURE_ARCH_2_06);
 763#undef GET_FEATURE
 764#undef GET_FEATURE2
 765
 766    return features;
 767}
 768
 769#define ELF_HWCAP2 get_elf_hwcap2()
 770
 771static uint32_t get_elf_hwcap2(void)
 772{
 773    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 774    uint32_t features = 0;
 775
 776#define GET_FEATURE(flag, feature)                                      \
 777    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 778#define GET_FEATURE2(flag, feature)                                      \
 779    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 780
 781    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 782    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 783    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 784                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
 785
 786#undef GET_FEATURE
 787#undef GET_FEATURE2
 788
 789    return features;
 790}
 791
 792/*
 793 * The requirements here are:
 794 * - keep the final alignment of sp (sp & 0xf)
 795 * - make sure the 32-bit value at the first 16 byte aligned position of
 796 *   AUXV is greater than 16 for glibc compatibility.
 797 *   AT_IGNOREPPC is used for that.
 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 799 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 800 */
 801#define DLINFO_ARCH_ITEMS       5
 802#define ARCH_DLINFO                                     \
 803    do {                                                \
 804        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 805        /*                                              \
 806         * Handle glibc compatibility: these magic entries must \
 807         * be at the lowest addresses in the final auxv.        \
 808         */                                             \
 809        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 810        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 811        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 812        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 813        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 814    } while (0)
 815
 816static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 817{
 818    _regs->gpr[1] = infop->start_stack;
 819#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 820    if (get_ppc64_abi(infop) < 2) {
 821        uint64_t val;
 822        get_user_u64(val, infop->entry + 8);
 823        _regs->gpr[2] = val + infop->load_bias;
 824        get_user_u64(val, infop->entry);
 825        infop->entry = val + infop->load_bias;
 826    } else {
 827        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 828    }
 829#endif
 830    _regs->nip = infop->entry;
 831}
 832
 833/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 834#define ELF_NREG 48
 835typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 836
 837static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 838{
 839    int i;
 840    target_ulong ccr = 0;
 841
 842    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 843        (*regs)[i] = tswapreg(env->gpr[i]);
 844    }
 845
 846    (*regs)[32] = tswapreg(env->nip);
 847    (*regs)[33] = tswapreg(env->msr);
 848    (*regs)[35] = tswapreg(env->ctr);
 849    (*regs)[36] = tswapreg(env->lr);
 850    (*regs)[37] = tswapreg(env->xer);
 851
 852    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 853        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 854    }
 855    (*regs)[38] = tswapreg(ccr);
 856}
 857
 858#define USE_ELF_CORE_DUMP
 859#define ELF_EXEC_PAGESIZE       4096
 860
 861#endif
 862
 863#ifdef TARGET_MIPS
 864
 865#define ELF_START_MMAP 0x80000000
 866
 867#ifdef TARGET_MIPS64
 868#define ELF_CLASS   ELFCLASS64
 869#else
 870#define ELF_CLASS   ELFCLASS32
 871#endif
 872#define ELF_ARCH    EM_MIPS
 873
 874static inline void init_thread(struct target_pt_regs *regs,
 875                               struct image_info *infop)
 876{
 877    regs->cp0_status = 2 << CP0St_KSU;
 878    regs->cp0_epc = infop->entry;
 879    regs->regs[29] = infop->start_stack;
 880}
 881
 882/* See linux kernel: arch/mips/include/asm/elf.h.  */
 883#define ELF_NREG 45
 884typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 885
 886/* See linux kernel: arch/mips/include/asm/reg.h.  */
 887enum {
 888#ifdef TARGET_MIPS64
 889    TARGET_EF_R0 = 0,
 890#else
 891    TARGET_EF_R0 = 6,
 892#endif
 893    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 894    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 895    TARGET_EF_LO = TARGET_EF_R0 + 32,
 896    TARGET_EF_HI = TARGET_EF_R0 + 33,
 897    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 898    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 899    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 900    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 901};
 902
 903/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 904static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 905{
 906    int i;
 907
 908    for (i = 0; i < TARGET_EF_R0; i++) {
 909        (*regs)[i] = 0;
 910    }
 911    (*regs)[TARGET_EF_R0] = 0;
 912
 913    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 914        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 915    }
 916
 917    (*regs)[TARGET_EF_R26] = 0;
 918    (*regs)[TARGET_EF_R27] = 0;
 919    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 920    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 921    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 922    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 923    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 924    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 925}
 926
 927#define USE_ELF_CORE_DUMP
 928#define ELF_EXEC_PAGESIZE        4096
 929
 930#endif /* TARGET_MIPS */
 931
 932#ifdef TARGET_MICROBLAZE
 933
 934#define ELF_START_MMAP 0x80000000
 935
 936#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 937
 938#define ELF_CLASS   ELFCLASS32
 939#define ELF_ARCH    EM_MICROBLAZE
 940
 941static inline void init_thread(struct target_pt_regs *regs,
 942                               struct image_info *infop)
 943{
 944    regs->pc = infop->entry;
 945    regs->r1 = infop->start_stack;
 946
 947}
 948
 949#define ELF_EXEC_PAGESIZE        4096
 950
 951#define USE_ELF_CORE_DUMP
 952#define ELF_NREG 38
 953typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 954
 955/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 956static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 957{
 958    int i, pos = 0;
 959
 960    for (i = 0; i < 32; i++) {
 961        (*regs)[pos++] = tswapreg(env->regs[i]);
 962    }
 963
 964    for (i = 0; i < 6; i++) {
 965        (*regs)[pos++] = tswapreg(env->sregs[i]);
 966    }
 967}
 968
 969#endif /* TARGET_MICROBLAZE */
 970
 971#ifdef TARGET_NIOS2
 972
 973#define ELF_START_MMAP 0x80000000
 974
 975#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
 976
 977#define ELF_CLASS   ELFCLASS32
 978#define ELF_ARCH    EM_ALTERA_NIOS2
 979
 980static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 981{
 982    regs->ea = infop->entry;
 983    regs->sp = infop->start_stack;
 984    regs->estatus = 0x3;
 985}
 986
 987#define ELF_EXEC_PAGESIZE        4096
 988
 989#define USE_ELF_CORE_DUMP
 990#define ELF_NREG 49
 991typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 992
 993/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 994static void elf_core_copy_regs(target_elf_gregset_t *regs,
 995                               const CPUNios2State *env)
 996{
 997    int i;
 998
 999    (*regs)[0] = -1;
1000    for (i = 1; i < 8; i++)    /* r0-r7 */
1001        (*regs)[i] = tswapreg(env->regs[i + 7]);
1002
1003    for (i = 8; i < 16; i++)   /* r8-r15 */
1004        (*regs)[i] = tswapreg(env->regs[i - 8]);
1005
1006    for (i = 16; i < 24; i++)  /* r16-r23 */
1007        (*regs)[i] = tswapreg(env->regs[i + 7]);
1008    (*regs)[24] = -1;    /* R_ET */
1009    (*regs)[25] = -1;    /* R_BT */
1010    (*regs)[26] = tswapreg(env->regs[R_GP]);
1011    (*regs)[27] = tswapreg(env->regs[R_SP]);
1012    (*regs)[28] = tswapreg(env->regs[R_FP]);
1013    (*regs)[29] = tswapreg(env->regs[R_EA]);
1014    (*regs)[30] = -1;    /* R_SSTATUS */
1015    (*regs)[31] = tswapreg(env->regs[R_RA]);
1016
1017    (*regs)[32] = tswapreg(env->regs[R_PC]);
1018
1019    (*regs)[33] = -1; /* R_STATUS */
1020    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1021
1022    for (i = 35; i < 49; i++)    /* ... */
1023        (*regs)[i] = -1;
1024}
1025
1026#endif /* TARGET_NIOS2 */
1027
1028#ifdef TARGET_OPENRISC
1029
1030#define ELF_START_MMAP 0x08000000
1031
1032#define ELF_ARCH EM_OPENRISC
1033#define ELF_CLASS ELFCLASS32
1034#define ELF_DATA  ELFDATA2MSB
1035
1036static inline void init_thread(struct target_pt_regs *regs,
1037                               struct image_info *infop)
1038{
1039    regs->pc = infop->entry;
1040    regs->gpr[1] = infop->start_stack;
1041}
1042
1043#define USE_ELF_CORE_DUMP
1044#define ELF_EXEC_PAGESIZE 8192
1045
1046/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1047#define ELF_NREG 34 /* gprs and pc, sr */
1048typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1049
1050static void elf_core_copy_regs(target_elf_gregset_t *regs,
1051                               const CPUOpenRISCState *env)
1052{
1053    int i;
1054
1055    for (i = 0; i < 32; i++) {
1056        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1057    }
1058    (*regs)[32] = tswapreg(env->pc);
1059    (*regs)[33] = tswapreg(cpu_get_sr(env));
1060}
1061#define ELF_HWCAP 0
1062#define ELF_PLATFORM NULL
1063
1064#endif /* TARGET_OPENRISC */
1065
1066#ifdef TARGET_SH4
1067
1068#define ELF_START_MMAP 0x80000000
1069
1070#define ELF_CLASS ELFCLASS32
1071#define ELF_ARCH  EM_SH
1072
1073static inline void init_thread(struct target_pt_regs *regs,
1074                               struct image_info *infop)
1075{
1076    /* Check other registers XXXXX */
1077    regs->pc = infop->entry;
1078    regs->regs[15] = infop->start_stack;
1079}
1080
1081/* See linux kernel: arch/sh/include/asm/elf.h.  */
1082#define ELF_NREG 23
1083typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1084
1085/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1086enum {
1087    TARGET_REG_PC = 16,
1088    TARGET_REG_PR = 17,
1089    TARGET_REG_SR = 18,
1090    TARGET_REG_GBR = 19,
1091    TARGET_REG_MACH = 20,
1092    TARGET_REG_MACL = 21,
1093    TARGET_REG_SYSCALL = 22
1094};
1095
1096static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1097                                      const CPUSH4State *env)
1098{
1099    int i;
1100
1101    for (i = 0; i < 16; i++) {
1102        (*regs)[i] = tswapreg(env->gregs[i]);
1103    }
1104
1105    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1106    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1107    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1108    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1109    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1110    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1111    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1112}
1113
1114#define USE_ELF_CORE_DUMP
1115#define ELF_EXEC_PAGESIZE        4096
1116
1117enum {
1118    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1119    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1120    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1121    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1122    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1123    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1124    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1125    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1126    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1127    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1128};
1129
1130#define ELF_HWCAP get_elf_hwcap()
1131
1132static uint32_t get_elf_hwcap(void)
1133{
1134    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1135    uint32_t hwcap = 0;
1136
1137    hwcap |= SH_CPU_HAS_FPU;
1138
1139    if (cpu->env.features & SH_FEATURE_SH4A) {
1140        hwcap |= SH_CPU_HAS_LLSC;
1141    }
1142
1143    return hwcap;
1144}
1145
1146#endif
1147
1148#ifdef TARGET_CRIS
1149
1150#define ELF_START_MMAP 0x80000000
1151
1152#define ELF_CLASS ELFCLASS32
1153#define ELF_ARCH  EM_CRIS
1154
1155static inline void init_thread(struct target_pt_regs *regs,
1156                               struct image_info *infop)
1157{
1158    regs->erp = infop->entry;
1159}
1160
1161#define ELF_EXEC_PAGESIZE        8192
1162
1163#endif
1164
1165#ifdef TARGET_M68K
1166
1167#define ELF_START_MMAP 0x80000000
1168
1169#define ELF_CLASS       ELFCLASS32
1170#define ELF_ARCH        EM_68K
1171
1172/* ??? Does this need to do anything?
1173   #define ELF_PLAT_INIT(_r) */
1174
1175static inline void init_thread(struct target_pt_regs *regs,
1176                               struct image_info *infop)
1177{
1178    regs->usp = infop->start_stack;
1179    regs->sr = 0;
1180    regs->pc = infop->entry;
1181}
1182
1183/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1184#define ELF_NREG 20
1185typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186
1187static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1188{
1189    (*regs)[0] = tswapreg(env->dregs[1]);
1190    (*regs)[1] = tswapreg(env->dregs[2]);
1191    (*regs)[2] = tswapreg(env->dregs[3]);
1192    (*regs)[3] = tswapreg(env->dregs[4]);
1193    (*regs)[4] = tswapreg(env->dregs[5]);
1194    (*regs)[5] = tswapreg(env->dregs[6]);
1195    (*regs)[6] = tswapreg(env->dregs[7]);
1196    (*regs)[7] = tswapreg(env->aregs[0]);
1197    (*regs)[8] = tswapreg(env->aregs[1]);
1198    (*regs)[9] = tswapreg(env->aregs[2]);
1199    (*regs)[10] = tswapreg(env->aregs[3]);
1200    (*regs)[11] = tswapreg(env->aregs[4]);
1201    (*regs)[12] = tswapreg(env->aregs[5]);
1202    (*regs)[13] = tswapreg(env->aregs[6]);
1203    (*regs)[14] = tswapreg(env->dregs[0]);
1204    (*regs)[15] = tswapreg(env->aregs[7]);
1205    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1206    (*regs)[17] = tswapreg(env->sr);
1207    (*regs)[18] = tswapreg(env->pc);
1208    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1209}
1210
1211#define USE_ELF_CORE_DUMP
1212#define ELF_EXEC_PAGESIZE       8192
1213
1214#endif
1215
1216#ifdef TARGET_ALPHA
1217
1218#define ELF_START_MMAP (0x30000000000ULL)
1219
1220#define ELF_CLASS      ELFCLASS64
1221#define ELF_ARCH       EM_ALPHA
1222
1223static inline void init_thread(struct target_pt_regs *regs,
1224                               struct image_info *infop)
1225{
1226    regs->pc = infop->entry;
1227    regs->ps = 8;
1228    regs->usp = infop->start_stack;
1229}
1230
1231#define ELF_EXEC_PAGESIZE        8192
1232
1233#endif /* TARGET_ALPHA */
1234
1235#ifdef TARGET_S390X
1236
1237#define ELF_START_MMAP (0x20000000000ULL)
1238
1239#define ELF_CLASS       ELFCLASS64
1240#define ELF_DATA        ELFDATA2MSB
1241#define ELF_ARCH        EM_S390
1242
1243static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1244{
1245    regs->psw.addr = infop->entry;
1246    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1247    regs->gprs[15] = infop->start_stack;
1248}
1249
1250#endif /* TARGET_S390X */
1251
1252#ifdef TARGET_TILEGX
1253
1254/* 42 bits real used address, a half for user mode */
1255#define ELF_START_MMAP (0x00000020000000000ULL)
1256
1257#define elf_check_arch(x) ((x) == EM_TILEGX)
1258
1259#define ELF_CLASS   ELFCLASS64
1260#define ELF_DATA    ELFDATA2LSB
1261#define ELF_ARCH    EM_TILEGX
1262
1263static inline void init_thread(struct target_pt_regs *regs,
1264                               struct image_info *infop)
1265{
1266    regs->pc = infop->entry;
1267    regs->sp = infop->start_stack;
1268
1269}
1270
1271#define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1272
1273#endif /* TARGET_TILEGX */
1274
1275#ifdef TARGET_HPPA
1276
1277#define ELF_START_MMAP  0x80000000
1278#define ELF_CLASS       ELFCLASS32
1279#define ELF_ARCH        EM_PARISC
1280#define ELF_PLATFORM    "PARISC"
1281#define STACK_GROWS_DOWN 0
1282#define STACK_ALIGNMENT  64
1283
1284static inline void init_thread(struct target_pt_regs *regs,
1285                               struct image_info *infop)
1286{
1287    regs->iaoq[0] = infop->entry;
1288    regs->iaoq[1] = infop->entry + 4;
1289    regs->gr[23] = 0;
1290    regs->gr[24] = infop->arg_start;
1291    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1292    /* The top-of-stack contains a linkage buffer.  */
1293    regs->gr[30] = infop->start_stack + 64;
1294    regs->gr[31] = infop->entry;
1295}
1296
1297#endif /* TARGET_HPPA */
1298
1299#ifndef ELF_PLATFORM
1300#define ELF_PLATFORM (NULL)
1301#endif
1302
1303#ifndef ELF_MACHINE
1304#define ELF_MACHINE ELF_ARCH
1305#endif
1306
1307#ifndef elf_check_arch
1308#define elf_check_arch(x) ((x) == ELF_ARCH)
1309#endif
1310
1311#ifndef ELF_HWCAP
1312#define ELF_HWCAP 0
1313#endif
1314
1315#ifndef STACK_GROWS_DOWN
1316#define STACK_GROWS_DOWN 1
1317#endif
1318
1319#ifndef STACK_ALIGNMENT
1320#define STACK_ALIGNMENT 16
1321#endif
1322
1323#ifdef TARGET_ABI32
1324#undef ELF_CLASS
1325#define ELF_CLASS ELFCLASS32
1326#undef bswaptls
1327#define bswaptls(ptr) bswap32s(ptr)
1328#endif
1329
1330#include "elf.h"
1331
1332struct exec
1333{
1334    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1335    unsigned int a_text;   /* length of text, in bytes */
1336    unsigned int a_data;   /* length of data, in bytes */
1337    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1338    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1339    unsigned int a_entry;  /* start address */
1340    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1341    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1342};
1343
1344
1345#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1346#define OMAGIC 0407
1347#define NMAGIC 0410
1348#define ZMAGIC 0413
1349#define QMAGIC 0314
1350
1351/* Necessary parameters */
1352#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1353#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1355#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1356
1357#define DLINFO_ITEMS 14
1358
1359static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1360{
1361    memcpy(to, from, n);
1362}
1363
1364#ifdef BSWAP_NEEDED
1365static void bswap_ehdr(struct elfhdr *ehdr)
1366{
1367    bswap16s(&ehdr->e_type);            /* Object file type */
1368    bswap16s(&ehdr->e_machine);         /* Architecture */
1369    bswap32s(&ehdr->e_version);         /* Object file version */
1370    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1371    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1372    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1373    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1374    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1375    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1376    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1377    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1378    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1379    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1380}
1381
1382static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1383{
1384    int i;
1385    for (i = 0; i < phnum; ++i, ++phdr) {
1386        bswap32s(&phdr->p_type);        /* Segment type */
1387        bswap32s(&phdr->p_flags);       /* Segment flags */
1388        bswaptls(&phdr->p_offset);      /* Segment file offset */
1389        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1390        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1391        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1392        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1393        bswaptls(&phdr->p_align);       /* Segment alignment */
1394    }
1395}
1396
1397static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1398{
1399    int i;
1400    for (i = 0; i < shnum; ++i, ++shdr) {
1401        bswap32s(&shdr->sh_name);
1402        bswap32s(&shdr->sh_type);
1403        bswaptls(&shdr->sh_flags);
1404        bswaptls(&shdr->sh_addr);
1405        bswaptls(&shdr->sh_offset);
1406        bswaptls(&shdr->sh_size);
1407        bswap32s(&shdr->sh_link);
1408        bswap32s(&shdr->sh_info);
1409        bswaptls(&shdr->sh_addralign);
1410        bswaptls(&shdr->sh_entsize);
1411    }
1412}
1413
1414static void bswap_sym(struct elf_sym *sym)
1415{
1416    bswap32s(&sym->st_name);
1417    bswaptls(&sym->st_value);
1418    bswaptls(&sym->st_size);
1419    bswap16s(&sym->st_shndx);
1420}
1421#else
1422static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1423static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1424static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1425static inline void bswap_sym(struct elf_sym *sym) { }
1426#endif
1427
1428#ifdef USE_ELF_CORE_DUMP
1429static int elf_core_dump(int, const CPUArchState *);
1430#endif /* USE_ELF_CORE_DUMP */
1431static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1432
1433/* Verify the portions of EHDR within E_IDENT for the target.
1434   This can be performed before bswapping the entire header.  */
1435static bool elf_check_ident(struct elfhdr *ehdr)
1436{
1437    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1438            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1439            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1440            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1441            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1442            && ehdr->e_ident[EI_DATA] == ELF_DATA
1443            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1444}
1445
1446/* Verify the portions of EHDR outside of E_IDENT for the target.
1447   This has to wait until after bswapping the header.  */
1448static bool elf_check_ehdr(struct elfhdr *ehdr)
1449{
1450    return (elf_check_arch(ehdr->e_machine)
1451            && ehdr->e_ehsize == sizeof(struct elfhdr)
1452            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1453            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1454}
1455
1456/*
1457 * 'copy_elf_strings()' copies argument/envelope strings from user
1458 * memory to free pages in kernel mem. These are in a format ready
1459 * to be put directly into the top of new user memory.
1460 *
1461 */
1462static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1463                                  abi_ulong p, abi_ulong stack_limit)
1464{
1465    char *tmp;
1466    int len, i;
1467    abi_ulong top = p;
1468
1469    if (!p) {
1470        return 0;       /* bullet-proofing */
1471    }
1472
1473    if (STACK_GROWS_DOWN) {
1474        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1475        for (i = argc - 1; i >= 0; --i) {
1476            tmp = argv[i];
1477            if (!tmp) {
1478                fprintf(stderr, "VFS: argc is wrong");
1479                exit(-1);
1480            }
1481            len = strlen(tmp) + 1;
1482            tmp += len;
1483
1484            if (len > (p - stack_limit)) {
1485                return 0;
1486            }
1487            while (len) {
1488                int bytes_to_copy = (len > offset) ? offset : len;
1489                tmp -= bytes_to_copy;
1490                p -= bytes_to_copy;
1491                offset -= bytes_to_copy;
1492                len -= bytes_to_copy;
1493
1494                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1495
1496                if (offset == 0) {
1497                    memcpy_to_target(p, scratch, top - p);
1498                    top = p;
1499                    offset = TARGET_PAGE_SIZE;
1500                }
1501            }
1502        }
1503        if (p != top) {
1504            memcpy_to_target(p, scratch + offset, top - p);
1505        }
1506    } else {
1507        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1508        for (i = 0; i < argc; ++i) {
1509            tmp = argv[i];
1510            if (!tmp) {
1511                fprintf(stderr, "VFS: argc is wrong");
1512                exit(-1);
1513            }
1514            len = strlen(tmp) + 1;
1515            if (len > (stack_limit - p)) {
1516                return 0;
1517            }
1518            while (len) {
1519                int bytes_to_copy = (len > remaining) ? remaining : len;
1520
1521                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1522
1523                tmp += bytes_to_copy;
1524                remaining -= bytes_to_copy;
1525                p += bytes_to_copy;
1526                len -= bytes_to_copy;
1527
1528                if (remaining == 0) {
1529                    memcpy_to_target(top, scratch, p - top);
1530                    top = p;
1531                    remaining = TARGET_PAGE_SIZE;
1532                }
1533            }
1534        }
1535        if (p != top) {
1536            memcpy_to_target(top, scratch, p - top);
1537        }
1538    }
1539
1540    return p;
1541}
1542
1543/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544 * argument/environment space. Newer kernels (>2.6.33) allow more,
1545 * dependent on stack size, but guarantee at least 32 pages for
1546 * backwards compatibility.
1547 */
1548#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1549
1550static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1551                                 struct image_info *info)
1552{
1553    abi_ulong size, error, guard;
1554
1555    size = guest_stack_size;
1556    if (size < STACK_LOWER_LIMIT) {
1557        size = STACK_LOWER_LIMIT;
1558    }
1559    guard = TARGET_PAGE_SIZE;
1560    if (guard < qemu_real_host_page_size) {
1561        guard = qemu_real_host_page_size;
1562    }
1563
1564    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1565                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1566    if (error == -1) {
1567        perror("mmap stack");
1568        exit(-1);
1569    }
1570
1571    /* We reserve one extra page at the top of the stack as guard.  */
1572    if (STACK_GROWS_DOWN) {
1573        target_mprotect(error, guard, PROT_NONE);
1574        info->stack_limit = error + guard;
1575        return info->stack_limit + size - sizeof(void *);
1576    } else {
1577        target_mprotect(error + size, guard, PROT_NONE);
1578        info->stack_limit = error + size;
1579        return error;
1580    }
1581}
1582
1583/* Map and zero the bss.  We need to explicitly zero any fractional pages
1584   after the data section (i.e. bss).  */
1585static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1586{
1587    uintptr_t host_start, host_map_start, host_end;
1588
1589    last_bss = TARGET_PAGE_ALIGN(last_bss);
1590
1591    /* ??? There is confusion between qemu_real_host_page_size and
1592       qemu_host_page_size here and elsewhere in target_mmap, which
1593       may lead to the end of the data section mapping from the file
1594       not being mapped.  At least there was an explicit test and
1595       comment for that here, suggesting that "the file size must
1596       be known".  The comment probably pre-dates the introduction
1597       of the fstat system call in target_mmap which does in fact
1598       find out the size.  What isn't clear is if the workaround
1599       here is still actually needed.  For now, continue with it,
1600       but merge it with the "normal" mmap that would allocate the bss.  */
1601
1602    host_start = (uintptr_t) g2h(elf_bss);
1603    host_end = (uintptr_t) g2h(last_bss);
1604    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1605
1606    if (host_map_start < host_end) {
1607        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1608                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1609        if (p == MAP_FAILED) {
1610            perror("cannot mmap brk");
1611            exit(-1);
1612        }
1613    }
1614
1615    /* Ensure that the bss page(s) are valid */
1616    if ((page_get_flags(last_bss-1) & prot) != prot) {
1617        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1618    }
1619
1620    if (host_start < host_map_start) {
1621        memset((void *)host_start, 0, host_map_start - host_start);
1622    }
1623}
1624
1625#ifdef CONFIG_USE_FDPIC
1626static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1627{
1628    uint16_t n;
1629    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1630
1631    /* elf32_fdpic_loadseg */
1632    n = info->nsegs;
1633    while (n--) {
1634        sp -= 12;
1635        put_user_u32(loadsegs[n].addr, sp+0);
1636        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1637        put_user_u32(loadsegs[n].p_memsz, sp+8);
1638    }
1639
1640    /* elf32_fdpic_loadmap */
1641    sp -= 4;
1642    put_user_u16(0, sp+0); /* version */
1643    put_user_u16(info->nsegs, sp+2); /* nsegs */
1644
1645    info->personality = PER_LINUX_FDPIC;
1646    info->loadmap_addr = sp;
1647
1648    return sp;
1649}
1650#endif
1651
1652static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1653                                   struct elfhdr *exec,
1654                                   struct image_info *info,
1655                                   struct image_info *interp_info)
1656{
1657    abi_ulong sp;
1658    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1659    int size;
1660    int i;
1661    abi_ulong u_rand_bytes;
1662    uint8_t k_rand_bytes[16];
1663    abi_ulong u_platform;
1664    const char *k_platform;
1665    const int n = sizeof(elf_addr_t);
1666
1667    sp = p;
1668
1669#ifdef CONFIG_USE_FDPIC
1670    /* Needs to be before we load the env/argc/... */
1671    if (elf_is_fdpic(exec)) {
1672        /* Need 4 byte alignment for these structs */
1673        sp &= ~3;
1674        sp = loader_build_fdpic_loadmap(info, sp);
1675        info->other_info = interp_info;
1676        if (interp_info) {
1677            interp_info->other_info = info;
1678            sp = loader_build_fdpic_loadmap(interp_info, sp);
1679        }
1680    }
1681#endif
1682
1683    u_platform = 0;
1684    k_platform = ELF_PLATFORM;
1685    if (k_platform) {
1686        size_t len = strlen(k_platform) + 1;
1687        if (STACK_GROWS_DOWN) {
1688            sp -= (len + n - 1) & ~(n - 1);
1689            u_platform = sp;
1690            /* FIXME - check return value of memcpy_to_target() for failure */
1691            memcpy_to_target(sp, k_platform, len);
1692        } else {
1693            memcpy_to_target(sp, k_platform, len);
1694            u_platform = sp;
1695            sp += len + 1;
1696        }
1697    }
1698
1699    /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700     * the argv and envp pointers.
1701     */
1702    if (STACK_GROWS_DOWN) {
1703        sp = QEMU_ALIGN_DOWN(sp, 16);
1704    } else {
1705        sp = QEMU_ALIGN_UP(sp, 16);
1706    }
1707
1708    /*
1709     * Generate 16 random bytes for userspace PRNG seeding (not
1710     * cryptically secure but it's not the aim of QEMU).
1711     */
1712    for (i = 0; i < 16; i++) {
1713        k_rand_bytes[i] = rand();
1714    }
1715    if (STACK_GROWS_DOWN) {
1716        sp -= 16;
1717        u_rand_bytes = sp;
1718        /* FIXME - check return value of memcpy_to_target() for failure */
1719        memcpy_to_target(sp, k_rand_bytes, 16);
1720    } else {
1721        memcpy_to_target(sp, k_rand_bytes, 16);
1722        u_rand_bytes = sp;
1723        sp += 16;
1724    }
1725
1726    size = (DLINFO_ITEMS + 1) * 2;
1727    if (k_platform)
1728        size += 2;
1729#ifdef DLINFO_ARCH_ITEMS
1730    size += DLINFO_ARCH_ITEMS * 2;
1731#endif
1732#ifdef ELF_HWCAP2
1733    size += 2;
1734#endif
1735    size += envc + argc + 2;
1736    size += 1;  /* argc itself */
1737    size *= n;
1738
1739    /* Allocate space and finalize stack alignment for entry now.  */
1740    if (STACK_GROWS_DOWN) {
1741        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1742        sp = u_argc;
1743    } else {
1744        u_argc = sp;
1745        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1746    }
1747
1748    u_argv = u_argc + n;
1749    u_envp = u_argv + (argc + 1) * n;
1750    u_auxv = u_envp + (envc + 1) * n;
1751    info->saved_auxv = u_auxv;
1752    info->arg_start = u_argv;
1753    info->arg_end = u_argv + argc * n;
1754
1755    /* This is correct because Linux defines
1756     * elf_addr_t as Elf32_Off / Elf64_Off
1757     */
1758#define NEW_AUX_ENT(id, val) do {               \
1759        put_user_ual(id, u_auxv);  u_auxv += n; \
1760        put_user_ual(val, u_auxv); u_auxv += n; \
1761    } while(0)
1762
1763    /* There must be exactly DLINFO_ITEMS entries here.  */
1764#ifdef ARCH_DLINFO
1765    /*
1766     * ARCH_DLINFO must come first so platform specific code can enforce
1767     * special alignment requirements on the AUXV if necessary (eg. PPC).
1768     */
1769    ARCH_DLINFO;
1770#endif
1771    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1772    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1773    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1774    NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1775    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1776    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1777    NEW_AUX_ENT(AT_ENTRY, info->entry);
1778    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1779    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1780    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1781    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1782    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1783    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1784    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1785
1786#ifdef ELF_HWCAP2
1787    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1788#endif
1789
1790    if (u_platform) {
1791        NEW_AUX_ENT(AT_PLATFORM, u_platform);
1792    }
1793    NEW_AUX_ENT (AT_NULL, 0);
1794#undef NEW_AUX_ENT
1795
1796    info->auxv_len = u_argv - info->saved_auxv;
1797
1798    put_user_ual(argc, u_argc);
1799
1800    p = info->arg_strings;
1801    for (i = 0; i < argc; ++i) {
1802        put_user_ual(p, u_argv);
1803        u_argv += n;
1804        p += target_strlen(p) + 1;
1805    }
1806    put_user_ual(0, u_argv);
1807
1808    p = info->env_strings;
1809    for (i = 0; i < envc; ++i) {
1810        put_user_ual(p, u_envp);
1811        u_envp += n;
1812        p += target_strlen(p) + 1;
1813    }
1814    put_user_ual(0, u_envp);
1815
1816    return sp;
1817}
1818
1819#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1820/* If the guest doesn't have a validation function just agree */
1821static int validate_guest_space(unsigned long guest_base,
1822                                unsigned long guest_size)
1823{
1824    return 1;
1825}
1826#endif
1827
1828unsigned long init_guest_space(unsigned long host_start,
1829                               unsigned long host_size,
1830                               unsigned long guest_start,
1831                               bool fixed)
1832{
1833    unsigned long current_start, real_start;
1834    int flags;
1835
1836    assert(host_start || host_size);
1837
1838    /* If just a starting address is given, then just verify that
1839     * address.  */
1840    if (host_start && !host_size) {
1841        if (validate_guest_space(host_start, host_size) == 1) {
1842            return host_start;
1843        } else {
1844            return (unsigned long)-1;
1845        }
1846    }
1847
1848    /* Setup the initial flags and start address.  */
1849    current_start = host_start & qemu_host_page_mask;
1850    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1851    if (fixed) {
1852        flags |= MAP_FIXED;
1853    }
1854
1855    /* Otherwise, a non-zero size region of memory needs to be mapped
1856     * and validated.  */
1857    while (1) {
1858        unsigned long real_size = host_size;
1859
1860        /* Do not use mmap_find_vma here because that is limited to the
1861         * guest address space.  We are going to make the
1862         * guest address space fit whatever we're given.
1863         */
1864        real_start = (unsigned long)
1865            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1866        if (real_start == (unsigned long)-1) {
1867            return (unsigned long)-1;
1868        }
1869
1870        /* Ensure the address is properly aligned.  */
1871        if (real_start & ~qemu_host_page_mask) {
1872            munmap((void *)real_start, host_size);
1873            real_size = host_size + qemu_host_page_size;
1874            real_start = (unsigned long)
1875                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1876            if (real_start == (unsigned long)-1) {
1877                return (unsigned long)-1;
1878            }
1879            real_start = HOST_PAGE_ALIGN(real_start);
1880        }
1881
1882        /* Check to see if the address is valid.  */
1883        if (!host_start || real_start == current_start) {
1884            int valid = validate_guest_space(real_start - guest_start,
1885                                             real_size);
1886            if (valid == 1) {
1887                break;
1888            } else if (valid == -1) {
1889                return (unsigned long)-1;
1890            }
1891            /* valid == 0, so try again. */
1892        }
1893
1894        /* That address didn't work.  Unmap and try a different one.
1895         * The address the host picked because is typically right at
1896         * the top of the host address space and leaves the guest with
1897         * no usable address space.  Resort to a linear search.  We
1898         * already compensated for mmap_min_addr, so this should not
1899         * happen often.  Probably means we got unlucky and host
1900         * address space randomization put a shared library somewhere
1901         * inconvenient.
1902         */
1903        munmap((void *)real_start, host_size);
1904        current_start += qemu_host_page_size;
1905        if (host_start == current_start) {
1906            /* Theoretically possible if host doesn't have any suitably
1907             * aligned areas.  Normally the first mmap will fail.
1908             */
1909            return (unsigned long)-1;
1910        }
1911    }
1912
1913    qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1914
1915    return real_start;
1916}
1917
1918static void probe_guest_base(const char *image_name,
1919                             abi_ulong loaddr, abi_ulong hiaddr)
1920{
1921    /* Probe for a suitable guest base address, if the user has not set
1922     * it explicitly, and set guest_base appropriately.
1923     * In case of error we will print a suitable message and exit.
1924     */
1925    const char *errmsg;
1926    if (!have_guest_base && !reserved_va) {
1927        unsigned long host_start, real_start, host_size;
1928
1929        /* Round addresses to page boundaries.  */
1930        loaddr &= qemu_host_page_mask;
1931        hiaddr = HOST_PAGE_ALIGN(hiaddr);
1932
1933        if (loaddr < mmap_min_addr) {
1934            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1935        } else {
1936            host_start = loaddr;
1937            if (host_start != loaddr) {
1938                errmsg = "Address overflow loading ELF binary";
1939                goto exit_errmsg;
1940            }
1941        }
1942        host_size = hiaddr - loaddr;
1943
1944        /* Setup the initial guest memory space with ranges gleaned from
1945         * the ELF image that is being loaded.
1946         */
1947        real_start = init_guest_space(host_start, host_size, loaddr, false);
1948        if (real_start == (unsigned long)-1) {
1949            errmsg = "Unable to find space for application";
1950            goto exit_errmsg;
1951        }
1952        guest_base = real_start - loaddr;
1953
1954        qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1955                      TARGET_ABI_FMT_lx " to 0x%lx\n",
1956                      loaddr, real_start);
1957    }
1958    return;
1959
1960exit_errmsg:
1961    fprintf(stderr, "%s: %s\n", image_name, errmsg);
1962    exit(-1);
1963}
1964
1965
1966/* Load an ELF image into the address space.
1967
1968   IMAGE_NAME is the filename of the image, to use in error messages.
1969   IMAGE_FD is the open file descriptor for the image.
1970
1971   BPRM_BUF is a copy of the beginning of the file; this of course
1972   contains the elf file header at offset 0.  It is assumed that this
1973   buffer is sufficiently aligned to present no problems to the host
1974   in accessing data at aligned offsets within the buffer.
1975
1976   On return: INFO values will be filled in, as necessary or available.  */
1977
1978static void load_elf_image(const char *image_name, int image_fd,
1979                           struct image_info *info, char **pinterp_name,
1980                           char bprm_buf[BPRM_BUF_SIZE])
1981{
1982    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1983    struct elf_phdr *phdr;
1984    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1985    int i, retval;
1986    const char *errmsg;
1987
1988    /* First of all, some simple consistency checks */
1989    errmsg = "Invalid ELF image for this architecture";
1990    if (!elf_check_ident(ehdr)) {
1991        goto exit_errmsg;
1992    }
1993    bswap_ehdr(ehdr);
1994    if (!elf_check_ehdr(ehdr)) {
1995        goto exit_errmsg;
1996    }
1997
1998    i = ehdr->e_phnum * sizeof(struct elf_phdr);
1999    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2000        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2001    } else {
2002        phdr = (struct elf_phdr *) alloca(i);
2003        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2004        if (retval != i) {
2005            goto exit_read;
2006        }
2007    }
2008    bswap_phdr(phdr, ehdr->e_phnum);
2009
2010#ifdef CONFIG_USE_FDPIC
2011    info->nsegs = 0;
2012    info->pt_dynamic_addr = 0;
2013#endif
2014
2015    mmap_lock();
2016
2017    /* Find the maximum size of the image and allocate an appropriate
2018       amount of memory to handle that.  */
2019    loaddr = -1, hiaddr = 0;
2020    for (i = 0; i < ehdr->e_phnum; ++i) {
2021        if (phdr[i].p_type == PT_LOAD) {
2022            abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2023            if (a < loaddr) {
2024                loaddr = a;
2025            }
2026            a = phdr[i].p_vaddr + phdr[i].p_memsz;
2027            if (a > hiaddr) {
2028                hiaddr = a;
2029            }
2030#ifdef CONFIG_USE_FDPIC
2031            ++info->nsegs;
2032#endif
2033        }
2034    }
2035
2036    load_addr = loaddr;
2037    if (ehdr->e_type == ET_DYN) {
2038        /* The image indicates that it can be loaded anywhere.  Find a
2039           location that can hold the memory space required.  If the
2040           image is pre-linked, LOADDR will be non-zero.  Since we do
2041           not supply MAP_FIXED here we'll use that address if and
2042           only if it remains available.  */
2043        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2044                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2045                                -1, 0);
2046        if (load_addr == -1) {
2047            goto exit_perror;
2048        }
2049    } else if (pinterp_name != NULL) {
2050        /* This is the main executable.  Make sure that the low
2051           address does not conflict with MMAP_MIN_ADDR or the
2052           QEMU application itself.  */
2053        probe_guest_base(image_name, loaddr, hiaddr);
2054    }
2055    load_bias = load_addr - loaddr;
2056
2057#ifdef CONFIG_USE_FDPIC
2058    {
2059        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2060            g_malloc(sizeof(*loadsegs) * info->nsegs);
2061
2062        for (i = 0; i < ehdr->e_phnum; ++i) {
2063            switch (phdr[i].p_type) {
2064            case PT_DYNAMIC:
2065                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2066                break;
2067            case PT_LOAD:
2068                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2069                loadsegs->p_vaddr = phdr[i].p_vaddr;
2070                loadsegs->p_memsz = phdr[i].p_memsz;
2071                ++loadsegs;
2072                break;
2073            }
2074        }
2075    }
2076#endif
2077
2078    info->load_bias = load_bias;
2079    info->load_addr = load_addr;
2080    info->entry = ehdr->e_entry + load_bias;
2081    info->start_code = -1;
2082    info->end_code = 0;
2083    info->start_data = -1;
2084    info->end_data = 0;
2085    info->brk = 0;
2086    info->elf_flags = ehdr->e_flags;
2087
2088    for (i = 0; i < ehdr->e_phnum; i++) {
2089        struct elf_phdr *eppnt = phdr + i;
2090        if (eppnt->p_type == PT_LOAD) {
2091            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2092            int elf_prot = 0;
2093
2094            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2095            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2096            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2097
2098            vaddr = load_bias + eppnt->p_vaddr;
2099            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2100            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2101
2102            error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2103                                elf_prot, MAP_PRIVATE | MAP_FIXED,
2104                                image_fd, eppnt->p_offset - vaddr_po);
2105            if (error == -1) {
2106                goto exit_perror;
2107            }
2108
2109            vaddr_ef = vaddr + eppnt->p_filesz;
2110            vaddr_em = vaddr + eppnt->p_memsz;
2111
2112            /* If the load segment requests extra zeros (e.g. bss), map it.  */
2113            if (vaddr_ef < vaddr_em) {
2114                zero_bss(vaddr_ef, vaddr_em, elf_prot);
2115            }
2116
2117            /* Find the full program boundaries.  */
2118            if (elf_prot & PROT_EXEC) {
2119                if (vaddr < info->start_code) {
2120                    info->start_code = vaddr;
2121                }
2122                if (vaddr_ef > info->end_code) {
2123                    info->end_code = vaddr_ef;
2124                }
2125            }
2126            if (elf_prot & PROT_WRITE) {
2127                if (vaddr < info->start_data) {
2128                    info->start_data = vaddr;
2129                }
2130                if (vaddr_ef > info->end_data) {
2131                    info->end_data = vaddr_ef;
2132                }
2133                if (vaddr_em > info->brk) {
2134                    info->brk = vaddr_em;
2135                }
2136            }
2137        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2138            char *interp_name;
2139
2140            if (*pinterp_name) {
2141                errmsg = "Multiple PT_INTERP entries";
2142                goto exit_errmsg;
2143            }
2144            interp_name = malloc(eppnt->p_filesz);
2145            if (!interp_name) {
2146                goto exit_perror;
2147            }
2148
2149            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2150                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2151                       eppnt->p_filesz);
2152            } else {
2153                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2154                               eppnt->p_offset);
2155                if (retval != eppnt->p_filesz) {
2156                    goto exit_perror;
2157                }
2158            }
2159            if (interp_name[eppnt->p_filesz - 1] != 0) {
2160                errmsg = "Invalid PT_INTERP entry";
2161                goto exit_errmsg;
2162            }
2163            *pinterp_name = interp_name;
2164        }
2165    }
2166
2167    if (info->end_data == 0) {
2168        info->start_data = info->end_code;
2169        info->end_data = info->end_code;
2170        info->brk = info->end_code;
2171    }
2172
2173    if (qemu_log_enabled()) {
2174        load_symbols(ehdr, image_fd, load_bias);
2175    }
2176
2177    mmap_unlock();
2178
2179    close(image_fd);
2180    return;
2181
2182 exit_read:
2183    if (retval >= 0) {
2184        errmsg = "Incomplete read of file header";
2185        goto exit_errmsg;
2186    }
2187 exit_perror:
2188    errmsg = strerror(errno);
2189 exit_errmsg:
2190    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2191    exit(-1);
2192}
2193
2194static void load_elf_interp(const char *filename, struct image_info *info,
2195                            char bprm_buf[BPRM_BUF_SIZE])
2196{
2197    int fd, retval;
2198
2199    fd = open(path(filename), O_RDONLY);
2200    if (fd < 0) {
2201        goto exit_perror;
2202    }
2203
2204    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2205    if (retval < 0) {
2206        goto exit_perror;
2207    }
2208    if (retval < BPRM_BUF_SIZE) {
2209        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2210    }
2211
2212    load_elf_image(filename, fd, info, NULL, bprm_buf);
2213    return;
2214
2215 exit_perror:
2216    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2217    exit(-1);
2218}
2219
2220static int symfind(const void *s0, const void *s1)
2221{
2222    target_ulong addr = *(target_ulong *)s0;
2223    struct elf_sym *sym = (struct elf_sym *)s1;
2224    int result = 0;
2225    if (addr < sym->st_value) {
2226        result = -1;
2227    } else if (addr >= sym->st_value + sym->st_size) {
2228        result = 1;
2229    }
2230    return result;
2231}
2232
2233static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2234{
2235#if ELF_CLASS == ELFCLASS32
2236    struct elf_sym *syms = s->disas_symtab.elf32;
2237#else
2238    struct elf_sym *syms = s->disas_symtab.elf64;
2239#endif
2240
2241    // binary search
2242    struct elf_sym *sym;
2243
2244    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2245    if (sym != NULL) {
2246        return s->disas_strtab + sym->st_name;
2247    }
2248
2249    return "";
2250}
2251
2252/* FIXME: This should use elf_ops.h  */
2253static int symcmp(const void *s0, const void *s1)
2254{
2255    struct elf_sym *sym0 = (struct elf_sym *)s0;
2256    struct elf_sym *sym1 = (struct elf_sym *)s1;
2257    return (sym0->st_value < sym1->st_value)
2258        ? -1
2259        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2260}
2261
2262/* Best attempt to load symbols from this ELF object. */
2263static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2264{
2265    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2266    uint64_t segsz;
2267    struct elf_shdr *shdr;
2268    char *strings = NULL;
2269    struct syminfo *s = NULL;
2270    struct elf_sym *new_syms, *syms = NULL;
2271
2272    shnum = hdr->e_shnum;
2273    i = shnum * sizeof(struct elf_shdr);
2274    shdr = (struct elf_shdr *)alloca(i);
2275    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2276        return;
2277    }
2278
2279    bswap_shdr(shdr, shnum);
2280    for (i = 0; i < shnum; ++i) {
2281        if (shdr[i].sh_type == SHT_SYMTAB) {
2282            sym_idx = i;
2283            str_idx = shdr[i].sh_link;
2284            goto found;
2285        }
2286    }
2287
2288    /* There will be no symbol table if the file was stripped.  */
2289    return;
2290
2291 found:
2292    /* Now know where the strtab and symtab are.  Snarf them.  */
2293    s = g_try_new(struct syminfo, 1);
2294    if (!s) {
2295        goto give_up;
2296    }
2297
2298    segsz = shdr[str_idx].sh_size;
2299    s->disas_strtab = strings = g_try_malloc(segsz);
2300    if (!strings ||
2301        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2302        goto give_up;
2303    }
2304
2305    segsz = shdr[sym_idx].sh_size;
2306    syms = g_try_malloc(segsz);
2307    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2308        goto give_up;
2309    }
2310
2311    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2312        /* Implausibly large symbol table: give up rather than ploughing
2313         * on with the number of symbols calculation overflowing
2314         */
2315        goto give_up;
2316    }
2317    nsyms = segsz / sizeof(struct elf_sym);
2318    for (i = 0; i < nsyms; ) {
2319        bswap_sym(syms + i);
2320        /* Throw away entries which we do not need.  */
2321        if (syms[i].st_shndx == SHN_UNDEF
2322            || syms[i].st_shndx >= SHN_LORESERVE
2323            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2324            if (i < --nsyms) {
2325                syms[i] = syms[nsyms];
2326            }
2327        } else {
2328#if defined(TARGET_ARM) || defined (TARGET_MIPS)
2329            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2330            syms[i].st_value &= ~(target_ulong)1;
2331#endif
2332            syms[i].st_value += load_bias;
2333            i++;
2334        }
2335    }
2336
2337    /* No "useful" symbol.  */
2338    if (nsyms == 0) {
2339        goto give_up;
2340    }
2341
2342    /* Attempt to free the storage associated with the local symbols
2343       that we threw away.  Whether or not this has any effect on the
2344       memory allocation depends on the malloc implementation and how
2345       many symbols we managed to discard.  */
2346    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2347    if (new_syms == NULL) {
2348        goto give_up;
2349    }
2350    syms = new_syms;
2351
2352    qsort(syms, nsyms, sizeof(*syms), symcmp);
2353
2354    s->disas_num_syms = nsyms;
2355#if ELF_CLASS == ELFCLASS32
2356    s->disas_symtab.elf32 = syms;
2357#else
2358    s->disas_symtab.elf64 = syms;
2359#endif
2360    s->lookup_symbol = lookup_symbolxx;
2361    s->next = syminfos;
2362    syminfos = s;
2363
2364    return;
2365
2366give_up:
2367    g_free(s);
2368    g_free(strings);
2369    g_free(syms);
2370}
2371
2372int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2373{
2374    struct image_info interp_info;
2375    struct elfhdr elf_ex;
2376    char *elf_interpreter = NULL;
2377    char *scratch;
2378
2379    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2380
2381    load_elf_image(bprm->filename, bprm->fd, info,
2382                   &elf_interpreter, bprm->buf);
2383
2384    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2385       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2386       when we load the interpreter.  */
2387    elf_ex = *(struct elfhdr *)bprm->buf;
2388
2389    /* Do this so that we can load the interpreter, if need be.  We will
2390       change some of these later */
2391    bprm->p = setup_arg_pages(bprm, info);
2392
2393    scratch = g_new0(char, TARGET_PAGE_SIZE);
2394    if (STACK_GROWS_DOWN) {
2395        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2396                                   bprm->p, info->stack_limit);
2397        info->file_string = bprm->p;
2398        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2399                                   bprm->p, info->stack_limit);
2400        info->env_strings = bprm->p;
2401        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2402                                   bprm->p, info->stack_limit);
2403        info->arg_strings = bprm->p;
2404    } else {
2405        info->arg_strings = bprm->p;
2406        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2407                                   bprm->p, info->stack_limit);
2408        info->env_strings = bprm->p;
2409        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2410                                   bprm->p, info->stack_limit);
2411        info->file_string = bprm->p;
2412        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2413                                   bprm->p, info->stack_limit);
2414    }
2415
2416    g_free(scratch);
2417
2418    if (!bprm->p) {
2419        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2420        exit(-1);
2421    }
2422
2423    if (elf_interpreter) {
2424        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2425
2426        /* If the program interpreter is one of these two, then assume
2427           an iBCS2 image.  Otherwise assume a native linux image.  */
2428
2429        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2430            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2431            info->personality = PER_SVR4;
2432
2433            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2434               and some applications "depend" upon this behavior.  Since
2435               we do not have the power to recompile these, we emulate
2436               the SVr4 behavior.  Sigh.  */
2437            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2438                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2439        }
2440    }
2441
2442    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2443                                info, (elf_interpreter ? &interp_info : NULL));
2444    info->start_stack = bprm->p;
2445
2446    /* If we have an interpreter, set that as the program's entry point.
2447       Copy the load_bias as well, to help PPC64 interpret the entry
2448       point as a function descriptor.  Do this after creating elf tables
2449       so that we copy the original program entry point into the AUXV.  */
2450    if (elf_interpreter) {
2451        info->load_bias = interp_info.load_bias;
2452        info->entry = interp_info.entry;
2453        free(elf_interpreter);
2454    }
2455
2456#ifdef USE_ELF_CORE_DUMP
2457    bprm->core_dump = &elf_core_dump;
2458#endif
2459
2460    return 0;
2461}
2462
2463#ifdef USE_ELF_CORE_DUMP
2464/*
2465 * Definitions to generate Intel SVR4-like core files.
2466 * These mostly have the same names as the SVR4 types with "target_elf_"
2467 * tacked on the front to prevent clashes with linux definitions,
2468 * and the typedef forms have been avoided.  This is mostly like
2469 * the SVR4 structure, but more Linuxy, with things that Linux does
2470 * not support and which gdb doesn't really use excluded.
2471 *
2472 * Fields we don't dump (their contents is zero) in linux-user qemu
2473 * are marked with XXX.
2474 *
2475 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2476 *
2477 * Porting ELF coredump for target is (quite) simple process.  First you
2478 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2479 * the target resides):
2480 *
2481 * #define USE_ELF_CORE_DUMP
2482 *
2483 * Next you define type of register set used for dumping.  ELF specification
2484 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2485 *
2486 * typedef <target_regtype> target_elf_greg_t;
2487 * #define ELF_NREG <number of registers>
2488 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2489 *
2490 * Last step is to implement target specific function that copies registers
2491 * from given cpu into just specified register set.  Prototype is:
2492 *
2493 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2494 *                                const CPUArchState *env);
2495 *
2496 * Parameters:
2497 *     regs - copy register values into here (allocated and zeroed by caller)
2498 *     env - copy registers from here
2499 *
2500 * Example for ARM target is provided in this file.
2501 */
2502
2503/* An ELF note in memory */
2504struct memelfnote {
2505    const char *name;
2506    size_t     namesz;
2507    size_t     namesz_rounded;
2508    int        type;
2509    size_t     datasz;
2510    size_t     datasz_rounded;
2511    void       *data;
2512    size_t     notesz;
2513};
2514
2515struct target_elf_siginfo {
2516    abi_int    si_signo; /* signal number */
2517    abi_int    si_code;  /* extra code */
2518    abi_int    si_errno; /* errno */
2519};
2520
2521struct target_elf_prstatus {
2522    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2523    abi_short          pr_cursig;    /* Current signal */
2524    abi_ulong          pr_sigpend;   /* XXX */
2525    abi_ulong          pr_sighold;   /* XXX */
2526    target_pid_t       pr_pid;
2527    target_pid_t       pr_ppid;
2528    target_pid_t       pr_pgrp;
2529    target_pid_t       pr_sid;
2530    struct target_timeval pr_utime;  /* XXX User time */
2531    struct target_timeval pr_stime;  /* XXX System time */
2532    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2533    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2534    target_elf_gregset_t      pr_reg;       /* GP registers */
2535    abi_int            pr_fpvalid;   /* XXX */
2536};
2537
2538#define ELF_PRARGSZ     (80) /* Number of chars for args */
2539
2540struct target_elf_prpsinfo {
2541    char         pr_state;       /* numeric process state */
2542    char         pr_sname;       /* char for pr_state */
2543    char         pr_zomb;        /* zombie */
2544    char         pr_nice;        /* nice val */
2545    abi_ulong    pr_flag;        /* flags */
2546    target_uid_t pr_uid;
2547    target_gid_t pr_gid;
2548    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2549    /* Lots missing */
2550    char    pr_fname[16];           /* filename of executable */
2551    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2552};
2553
2554/* Here is the structure in which status of each thread is captured. */
2555struct elf_thread_status {
2556    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2557    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2558#if 0
2559    elf_fpregset_t fpu;             /* NT_PRFPREG */
2560    struct task_struct *thread;
2561    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2562#endif
2563    struct memelfnote notes[1];
2564    int num_notes;
2565};
2566
2567struct elf_note_info {
2568    struct memelfnote   *notes;
2569    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2570    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2571
2572    QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2573#if 0
2574    /*
2575     * Current version of ELF coredump doesn't support
2576     * dumping fp regs etc.
2577     */
2578    elf_fpregset_t *fpu;
2579    elf_fpxregset_t *xfpu;
2580    int thread_status_size;
2581#endif
2582    int notes_size;
2583    int numnote;
2584};
2585
2586struct vm_area_struct {
2587    target_ulong   vma_start;  /* start vaddr of memory region */
2588    target_ulong   vma_end;    /* end vaddr of memory region */
2589    abi_ulong      vma_flags;  /* protection etc. flags for the region */
2590    QTAILQ_ENTRY(vm_area_struct) vma_link;
2591};
2592
2593struct mm_struct {
2594    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2595    int mm_count;           /* number of mappings */
2596};
2597
2598static struct mm_struct *vma_init(void);
2599static void vma_delete(struct mm_struct *);
2600static int vma_add_mapping(struct mm_struct *, target_ulong,
2601                           target_ulong, abi_ulong);
2602static int vma_get_mapping_count(const struct mm_struct *);
2603static struct vm_area_struct *vma_first(const struct mm_struct *);
2604static struct vm_area_struct *vma_next(struct vm_area_struct *);
2605static abi_ulong vma_dump_size(const struct vm_area_struct *);
2606static int vma_walker(void *priv, target_ulong start, target_ulong end,
2607                      unsigned long flags);
2608
2609static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2610static void fill_note(struct memelfnote *, const char *, int,
2611                      unsigned int, void *);
2612static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2613static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2614static void fill_auxv_note(struct memelfnote *, const TaskState *);
2615static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2616static size_t note_size(const struct memelfnote *);
2617static void free_note_info(struct elf_note_info *);
2618static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2619static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2620static int core_dump_filename(const TaskState *, char *, size_t);
2621
2622static int dump_write(int, const void *, size_t);
2623static int write_note(struct memelfnote *, int);
2624static int write_note_info(struct elf_note_info *, int);
2625
2626#ifdef BSWAP_NEEDED
2627static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2628{
2629    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2630    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2631    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2632    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2633    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2634    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2635    prstatus->pr_pid = tswap32(prstatus->pr_pid);
2636    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2637    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2638    prstatus->pr_sid = tswap32(prstatus->pr_sid);
2639    /* cpu times are not filled, so we skip them */
2640    /* regs should be in correct format already */
2641    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2642}
2643
2644static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2645{
2646    psinfo->pr_flag = tswapal(psinfo->pr_flag);
2647    psinfo->pr_uid = tswap16(psinfo->pr_uid);
2648    psinfo->pr_gid = tswap16(psinfo->pr_gid);
2649    psinfo->pr_pid = tswap32(psinfo->pr_pid);
2650    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2651    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2652    psinfo->pr_sid = tswap32(psinfo->pr_sid);
2653}
2654
2655static void bswap_note(struct elf_note *en)
2656{
2657    bswap32s(&en->n_namesz);
2658    bswap32s(&en->n_descsz);
2659    bswap32s(&en->n_type);
2660}
2661#else
2662static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2663static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2664static inline void bswap_note(struct elf_note *en) { }
2665#endif /* BSWAP_NEEDED */
2666
2667/*
2668 * Minimal support for linux memory regions.  These are needed
2669 * when we are finding out what memory exactly belongs to
2670 * emulated process.  No locks needed here, as long as
2671 * thread that received the signal is stopped.
2672 */
2673
2674static struct mm_struct *vma_init(void)
2675{
2676    struct mm_struct *mm;
2677
2678    if ((mm = g_malloc(sizeof (*mm))) == NULL)
2679        return (NULL);
2680
2681    mm->mm_count = 0;
2682    QTAILQ_INIT(&mm->mm_mmap);
2683
2684    return (mm);
2685}
2686
2687static void vma_delete(struct mm_struct *mm)
2688{
2689    struct vm_area_struct *vma;
2690
2691    while ((vma = vma_first(mm)) != NULL) {
2692        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2693        g_free(vma);
2694    }
2695    g_free(mm);
2696}
2697
2698static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2699                           target_ulong end, abi_ulong flags)
2700{
2701    struct vm_area_struct *vma;
2702
2703    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2704        return (-1);
2705
2706    vma->vma_start = start;
2707    vma->vma_end = end;
2708    vma->vma_flags = flags;
2709
2710    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2711    mm->mm_count++;
2712
2713    return (0);
2714}
2715
2716static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2717{
2718    return (QTAILQ_FIRST(&mm->mm_mmap));
2719}
2720
2721static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2722{
2723    return (QTAILQ_NEXT(vma, vma_link));
2724}
2725
2726static int vma_get_mapping_count(const struct mm_struct *mm)
2727{
2728    return (mm->mm_count);
2729}
2730
2731/*
2732 * Calculate file (dump) size of given memory region.
2733 */
2734static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2735{
2736    /* if we cannot even read the first page, skip it */
2737    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2738        return (0);
2739
2740    /*
2741     * Usually we don't dump executable pages as they contain
2742     * non-writable code that debugger can read directly from
2743     * target library etc.  However, thread stacks are marked
2744     * also executable so we read in first page of given region
2745     * and check whether it contains elf header.  If there is
2746     * no elf header, we dump it.
2747     */
2748    if (vma->vma_flags & PROT_EXEC) {
2749        char page[TARGET_PAGE_SIZE];
2750
2751        copy_from_user(page, vma->vma_start, sizeof (page));
2752        if ((page[EI_MAG0] == ELFMAG0) &&
2753            (page[EI_MAG1] == ELFMAG1) &&
2754            (page[EI_MAG2] == ELFMAG2) &&
2755            (page[EI_MAG3] == ELFMAG3)) {
2756            /*
2757             * Mappings are possibly from ELF binary.  Don't dump
2758             * them.
2759             */
2760            return (0);
2761        }
2762    }
2763
2764    return (vma->vma_end - vma->vma_start);
2765}
2766
2767static int vma_walker(void *priv, target_ulong start, target_ulong end,
2768                      unsigned long flags)
2769{
2770    struct mm_struct *mm = (struct mm_struct *)priv;
2771
2772    vma_add_mapping(mm, start, end, flags);
2773    return (0);
2774}
2775
2776static void fill_note(struct memelfnote *note, const char *name, int type,
2777                      unsigned int sz, void *data)
2778{
2779    unsigned int namesz;
2780
2781    namesz = strlen(name) + 1;
2782    note->name = name;
2783    note->namesz = namesz;
2784    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2785    note->type = type;
2786    note->datasz = sz;
2787    note->datasz_rounded = roundup(sz, sizeof (int32_t));
2788
2789    note->data = data;
2790
2791    /*
2792     * We calculate rounded up note size here as specified by
2793     * ELF document.
2794     */
2795    note->notesz = sizeof (struct elf_note) +
2796        note->namesz_rounded + note->datasz_rounded;
2797}
2798
2799static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2800                            uint32_t flags)
2801{
2802    (void) memset(elf, 0, sizeof(*elf));
2803
2804    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2805    elf->e_ident[EI_CLASS] = ELF_CLASS;
2806    elf->e_ident[EI_DATA] = ELF_DATA;
2807    elf->e_ident[EI_VERSION] = EV_CURRENT;
2808    elf->e_ident[EI_OSABI] = ELF_OSABI;
2809
2810    elf->e_type = ET_CORE;
2811    elf->e_machine = machine;
2812    elf->e_version = EV_CURRENT;
2813    elf->e_phoff = sizeof(struct elfhdr);
2814    elf->e_flags = flags;
2815    elf->e_ehsize = sizeof(struct elfhdr);
2816    elf->e_phentsize = sizeof(struct elf_phdr);
2817    elf->e_phnum = segs;
2818
2819    bswap_ehdr(elf);
2820}
2821
2822static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2823{
2824    phdr->p_type = PT_NOTE;
2825    phdr->p_offset = offset;
2826    phdr->p_vaddr = 0;
2827    phdr->p_paddr = 0;
2828    phdr->p_filesz = sz;
2829    phdr->p_memsz = 0;
2830    phdr->p_flags = 0;
2831    phdr->p_align = 0;
2832
2833    bswap_phdr(phdr, 1);
2834}
2835
2836static size_t note_size(const struct memelfnote *note)
2837{
2838    return (note->notesz);
2839}
2840
2841static void fill_prstatus(struct target_elf_prstatus *prstatus,
2842                          const TaskState *ts, int signr)
2843{
2844    (void) memset(prstatus, 0, sizeof (*prstatus));
2845    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2846    prstatus->pr_pid = ts->ts_tid;
2847    prstatus->pr_ppid = getppid();
2848    prstatus->pr_pgrp = getpgrp();
2849    prstatus->pr_sid = getsid(0);
2850
2851    bswap_prstatus(prstatus);
2852}
2853
2854static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2855{
2856    char *base_filename;
2857    unsigned int i, len;
2858
2859    (void) memset(psinfo, 0, sizeof (*psinfo));
2860
2861    len = ts->info->arg_end - ts->info->arg_start;
2862    if (len >= ELF_PRARGSZ)
2863        len = ELF_PRARGSZ - 1;
2864    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2865        return -EFAULT;
2866    for (i = 0; i < len; i++)
2867        if (psinfo->pr_psargs[i] == 0)
2868            psinfo->pr_psargs[i] = ' ';
2869    psinfo->pr_psargs[len] = 0;
2870
2871    psinfo->pr_pid = getpid();
2872    psinfo->pr_ppid = getppid();
2873    psinfo->pr_pgrp = getpgrp();
2874    psinfo->pr_sid = getsid(0);
2875    psinfo->pr_uid = getuid();
2876    psinfo->pr_gid = getgid();
2877
2878    base_filename = g_path_get_basename(ts->bprm->filename);
2879    /*
2880     * Using strncpy here is fine: at max-length,
2881     * this field is not NUL-terminated.
2882     */
2883    (void) strncpy(psinfo->pr_fname, base_filename,
2884                   sizeof(psinfo->pr_fname));
2885
2886    g_free(base_filename);
2887    bswap_psinfo(psinfo);
2888    return (0);
2889}
2890
2891static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2892{
2893    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2894    elf_addr_t orig_auxv = auxv;
2895    void *ptr;
2896    int len = ts->info->auxv_len;
2897
2898    /*
2899     * Auxiliary vector is stored in target process stack.  It contains
2900     * {type, value} pairs that we need to dump into note.  This is not
2901     * strictly necessary but we do it here for sake of completeness.
2902     */
2903
2904    /* read in whole auxv vector and copy it to memelfnote */
2905    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2906    if (ptr != NULL) {
2907        fill_note(note, "CORE", NT_AUXV, len, ptr);
2908        unlock_user(ptr, auxv, len);
2909    }
2910}
2911
2912/*
2913 * Constructs name of coredump file.  We have following convention
2914 * for the name:
2915 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2916 *
2917 * Returns 0 in case of success, -1 otherwise (errno is set).
2918 */
2919static int core_dump_filename(const TaskState *ts, char *buf,
2920                              size_t bufsize)
2921{
2922    char timestamp[64];
2923    char *base_filename = NULL;
2924    struct timeval tv;
2925    struct tm tm;
2926
2927    assert(bufsize >= PATH_MAX);
2928
2929    if (gettimeofday(&tv, NULL) < 0) {
2930        (void) fprintf(stderr, "unable to get current timestamp: %s",
2931                       strerror(errno));
2932        return (-1);
2933    }
2934
2935    base_filename = g_path_get_basename(ts->bprm->filename);
2936    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2937                    localtime_r(&tv.tv_sec, &tm));
2938    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2939                    base_filename, timestamp, (int)getpid());
2940    g_free(base_filename);
2941
2942    return (0);
2943}
2944
2945static int dump_write(int fd, const void *ptr, size_t size)
2946{
2947    const char *bufp = (const char *)ptr;
2948    ssize_t bytes_written, bytes_left;
2949    struct rlimit dumpsize;
2950    off_t pos;
2951
2952    bytes_written = 0;
2953    getrlimit(RLIMIT_CORE, &dumpsize);
2954    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2955        if (errno == ESPIPE) { /* not a seekable stream */
2956            bytes_left = size;
2957        } else {
2958            return pos;
2959        }
2960    } else {
2961        if (dumpsize.rlim_cur <= pos) {
2962            return -1;
2963        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2964            bytes_left = size;
2965        } else {
2966            size_t limit_left=dumpsize.rlim_cur - pos;
2967            bytes_left = limit_left >= size ? size : limit_left ;
2968        }
2969    }
2970
2971    /*
2972     * In normal conditions, single write(2) should do but
2973     * in case of socket etc. this mechanism is more portable.
2974     */
2975    do {
2976        bytes_written = write(fd, bufp, bytes_left);
2977        if (bytes_written < 0) {
2978            if (errno == EINTR)
2979                continue;
2980            return (-1);
2981        } else if (bytes_written == 0) { /* eof */
2982            return (-1);
2983        }
2984        bufp += bytes_written;
2985        bytes_left -= bytes_written;
2986    } while (bytes_left > 0);
2987
2988    return (0);
2989}
2990
2991static int write_note(struct memelfnote *men, int fd)
2992{
2993    struct elf_note en;
2994
2995    en.n_namesz = men->namesz;
2996    en.n_type = men->type;
2997    en.n_descsz = men->datasz;
2998
2999    bswap_note(&en);
3000
3001    if (dump_write(fd, &en, sizeof(en)) != 0)
3002        return (-1);
3003    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3004        return (-1);
3005    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3006        return (-1);
3007
3008    return (0);
3009}
3010
3011static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3012{
3013    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3014    TaskState *ts = (TaskState *)cpu->opaque;
3015    struct elf_thread_status *ets;
3016
3017    ets = g_malloc0(sizeof (*ets));
3018    ets->num_notes = 1; /* only prstatus is dumped */
3019    fill_prstatus(&ets->prstatus, ts, 0);
3020    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3021    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3022              &ets->prstatus);
3023
3024    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3025
3026    info->notes_size += note_size(&ets->notes[0]);
3027}
3028
3029static void init_note_info(struct elf_note_info *info)
3030{
3031    /* Initialize the elf_note_info structure so that it is at
3032     * least safe to call free_note_info() on it. Must be
3033     * called before calling fill_note_info().
3034     */
3035    memset(info, 0, sizeof (*info));
3036    QTAILQ_INIT(&info->thread_list);
3037}
3038
3039static int fill_note_info(struct elf_note_info *info,
3040                          long signr, const CPUArchState *env)
3041{
3042#define NUMNOTES 3
3043    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3044    TaskState *ts = (TaskState *)cpu->opaque;
3045    int i;
3046
3047    info->notes = g_new0(struct memelfnote, NUMNOTES);
3048    if (info->notes == NULL)
3049        return (-ENOMEM);
3050    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3051    if (info->prstatus == NULL)
3052        return (-ENOMEM);
3053    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3054    if (info->prstatus == NULL)
3055        return (-ENOMEM);
3056
3057    /*
3058     * First fill in status (and registers) of current thread
3059     * including process info & aux vector.
3060     */
3061    fill_prstatus(info->prstatus, ts, signr);
3062    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3063    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3064              sizeof (*info->prstatus), info->prstatus);
3065    fill_psinfo(info->psinfo, ts);
3066    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3067              sizeof (*info->psinfo), info->psinfo);
3068    fill_auxv_note(&info->notes[2], ts);
3069    info->numnote = 3;
3070
3071    info->notes_size = 0;
3072    for (i = 0; i < info->numnote; i++)
3073        info->notes_size += note_size(&info->notes[i]);
3074
3075    /* read and fill status of all threads */
3076    cpu_list_lock();
3077    CPU_FOREACH(cpu) {
3078        if (cpu == thread_cpu) {
3079            continue;
3080        }
3081        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3082    }
3083    cpu_list_unlock();
3084
3085    return (0);
3086}
3087
3088static void free_note_info(struct elf_note_info *info)
3089{
3090    struct elf_thread_status *ets;
3091
3092    while (!QTAILQ_EMPTY(&info->thread_list)) {
3093        ets = QTAILQ_FIRST(&info->thread_list);
3094        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3095        g_free(ets);
3096    }
3097
3098    g_free(info->prstatus);
3099    g_free(info->psinfo);
3100    g_free(info->notes);
3101}
3102
3103static int write_note_info(struct elf_note_info *info, int fd)
3104{
3105    struct elf_thread_status *ets;
3106    int i, error = 0;
3107
3108    /* write prstatus, psinfo and auxv for current thread */
3109    for (i = 0; i < info->numnote; i++)
3110        if ((error = write_note(&info->notes[i], fd)) != 0)
3111            return (error);
3112
3113    /* write prstatus for each thread */
3114    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3115        if ((error = write_note(&ets->notes[0], fd)) != 0)
3116            return (error);
3117    }
3118
3119    return (0);
3120}
3121
3122/*
3123 * Write out ELF coredump.
3124 *
3125 * See documentation of ELF object file format in:
3126 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3127 *
3128 * Coredump format in linux is following:
3129 *
3130 * 0   +----------------------+         \
3131 *     | ELF header           | ET_CORE  |
3132 *     +----------------------+          |
3133 *     | ELF program headers  |          |--- headers
3134 *     | - NOTE section       |          |
3135 *     | - PT_LOAD sections   |          |
3136 *     +----------------------+         /
3137 *     | NOTEs:               |
3138 *     | - NT_PRSTATUS        |
3139 *     | - NT_PRSINFO         |
3140 *     | - NT_AUXV            |
3141 *     +----------------------+ <-- aligned to target page
3142 *     | Process memory dump  |
3143 *     :                      :
3144 *     .                      .
3145 *     :                      :
3146 *     |                      |
3147 *     +----------------------+
3148 *
3149 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3150 * NT_PRSINFO  -> struct elf_prpsinfo
3151 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3152 *
3153 * Format follows System V format as close as possible.  Current
3154 * version limitations are as follows:
3155 *     - no floating point registers are dumped
3156 *
3157 * Function returns 0 in case of success, negative errno otherwise.
3158 *
3159 * TODO: make this work also during runtime: it should be
3160 * possible to force coredump from running process and then
3161 * continue processing.  For example qemu could set up SIGUSR2
3162 * handler (provided that target process haven't registered
3163 * handler for that) that does the dump when signal is received.
3164 */
3165static int elf_core_dump(int signr, const CPUArchState *env)
3166{
3167    const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3168    const TaskState *ts = (const TaskState *)cpu->opaque;
3169    struct vm_area_struct *vma = NULL;
3170    char corefile[PATH_MAX];
3171    struct elf_note_info info;
3172    struct elfhdr elf;
3173    struct elf_phdr phdr;
3174    struct rlimit dumpsize;
3175    struct mm_struct *mm = NULL;
3176    off_t offset = 0, data_offset = 0;
3177    int segs = 0;
3178    int fd = -1;
3179
3180    init_note_info(&info);
3181
3182    errno = 0;
3183    getrlimit(RLIMIT_CORE, &dumpsize);
3184    if (dumpsize.rlim_cur == 0)
3185        return 0;
3186
3187    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3188        return (-errno);
3189
3190    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3191                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3192        return (-errno);
3193
3194    /*
3195     * Walk through target process memory mappings and
3196     * set up structure containing this information.  After
3197     * this point vma_xxx functions can be used.
3198     */
3199    if ((mm = vma_init()) == NULL)
3200        goto out;
3201
3202    walk_memory_regions(mm, vma_walker);
3203    segs = vma_get_mapping_count(mm);
3204
3205    /*
3206     * Construct valid coredump ELF header.  We also
3207     * add one more segment for notes.
3208     */
3209    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3210    if (dump_write(fd, &elf, sizeof (elf)) != 0)
3211        goto out;
3212
3213    /* fill in the in-memory version of notes */
3214    if (fill_note_info(&info, signr, env) < 0)
3215        goto out;
3216
3217    offset += sizeof (elf);                             /* elf header */
3218    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3219
3220    /* write out notes program header */
3221    fill_elf_note_phdr(&phdr, info.notes_size, offset);
3222
3223    offset += info.notes_size;
3224    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3225        goto out;
3226
3227    /*
3228     * ELF specification wants data to start at page boundary so
3229     * we align it here.
3230     */
3231    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3232
3233    /*
3234     * Write program headers for memory regions mapped in
3235     * the target process.
3236     */
3237    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3238        (void) memset(&phdr, 0, sizeof (phdr));
3239
3240        phdr.p_type = PT_LOAD;
3241        phdr.p_offset = offset;
3242        phdr.p_vaddr = vma->vma_start;
3243        phdr.p_paddr = 0;
3244        phdr.p_filesz = vma_dump_size(vma);
3245        offset += phdr.p_filesz;
3246        phdr.p_memsz = vma->vma_end - vma->vma_start;
3247        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3248        if (vma->vma_flags & PROT_WRITE)
3249            phdr.p_flags |= PF_W;
3250        if (vma->vma_flags & PROT_EXEC)
3251            phdr.p_flags |= PF_X;
3252        phdr.p_align = ELF_EXEC_PAGESIZE;
3253
3254        bswap_phdr(&phdr, 1);
3255        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3256            goto out;
3257        }
3258    }
3259
3260    /*
3261     * Next we write notes just after program headers.  No
3262     * alignment needed here.
3263     */
3264    if (write_note_info(&info, fd) < 0)
3265        goto out;
3266
3267    /* align data to page boundary */
3268    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3269        goto out;
3270
3271    /*
3272     * Finally we can dump process memory into corefile as well.
3273     */
3274    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3275        abi_ulong addr;
3276        abi_ulong end;
3277
3278        end = vma->vma_start + vma_dump_size(vma);
3279
3280        for (addr = vma->vma_start; addr < end;
3281             addr += TARGET_PAGE_SIZE) {
3282            char page[TARGET_PAGE_SIZE];
3283            int error;
3284
3285            /*
3286             *  Read in page from target process memory and
3287             *  write it to coredump file.
3288             */
3289            error = copy_from_user(page, addr, sizeof (page));
3290            if (error != 0) {
3291                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3292                               addr);
3293                errno = -error;
3294                goto out;
3295            }
3296            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3297                goto out;
3298        }
3299    }
3300
3301 out:
3302    free_note_info(&info);
3303    if (mm != NULL)
3304        vma_delete(mm);
3305    (void) close(fd);
3306
3307    if (errno != 0)
3308        return (-errno);
3309    return (0);
3310}
3311#endif /* USE_ELF_CORE_DUMP */
3312
3313void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3314{
3315    init_thread(regs, infop);
3316}
3317