qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25
  26#if defined(TARGET_AARCH64)
  27  /* AArch64 definitions */
  28#  define TARGET_LONG_BITS 64
  29#else
  30#  define TARGET_LONG_BITS 32
  31#endif
  32
  33/* ARM processors have a weak memory model */
  34#define TCG_GUEST_DEFAULT_MO      (0)
  35
  36#define CPUArchState struct CPUARMState
  37
  38#include "qemu-common.h"
  39#include "cpu-qom.h"
  40#include "exec/cpu-defs.h"
  41
  42#include "fpu/softfloat.h"
  43
  44#define EXCP_UDEF            1   /* undefined instruction */
  45#define EXCP_SWI             2   /* software interrupt */
  46#define EXCP_PREFETCH_ABORT  3
  47#define EXCP_DATA_ABORT      4
  48#define EXCP_IRQ             5
  49#define EXCP_FIQ             6
  50#define EXCP_BKPT            7
  51#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  52#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  53#define EXCP_HVC            11   /* HyperVisor Call */
  54#define EXCP_HYP_TRAP       12
  55#define EXCP_SMC            13   /* Secure Monitor Call */
  56#define EXCP_VIRQ           14
  57#define EXCP_VFIQ           15
  58#define EXCP_SEMIHOST       16   /* semihosting call */
  59#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  60#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  62
  63#define ARMV7M_EXCP_RESET   1
  64#define ARMV7M_EXCP_NMI     2
  65#define ARMV7M_EXCP_HARD    3
  66#define ARMV7M_EXCP_MEM     4
  67#define ARMV7M_EXCP_BUS     5
  68#define ARMV7M_EXCP_USAGE   6
  69#define ARMV7M_EXCP_SVC     11
  70#define ARMV7M_EXCP_DEBUG   12
  71#define ARMV7M_EXCP_PENDSV  14
  72#define ARMV7M_EXCP_SYSTICK 15
  73
  74/* ARM-specific interrupt pending bits.  */
  75#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  76#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  77#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  78
  79/* The usual mapping for an AArch64 system register to its AArch32
  80 * counterpart is for the 32 bit world to have access to the lower
  81 * half only (with writes leaving the upper half untouched). It's
  82 * therefore useful to be able to pass TCG the offset of the least
  83 * significant half of a uint64_t struct member.
  84 */
  85#ifdef HOST_WORDS_BIGENDIAN
  86#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  87#define offsetofhigh32(S, M) offsetof(S, M)
  88#else
  89#define offsetoflow32(S, M) offsetof(S, M)
  90#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  91#endif
  92
  93/* Meanings of the ARMCPU object's four inbound GPIO lines */
  94#define ARM_CPU_IRQ 0
  95#define ARM_CPU_FIQ 1
  96#define ARM_CPU_VIRQ 2
  97#define ARM_CPU_VFIQ 3
  98
  99#define NB_MMU_MODES 7
 100/* ARM-specific extra insn start words:
 101 * 1: Conditional execution bits
 102 * 2: Partial exception syndrome for data aborts
 103 */
 104#define TARGET_INSN_START_EXTRA_WORDS 2
 105
 106/* The 2nd extra word holding syndrome info for data aborts does not use
 107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 108 * help the sleb128 encoder do a better job.
 109 * When restoring the CPU state, we shift it back up.
 110 */
 111#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 112#define ARM_INSN_START_WORD2_SHIFT 14
 113
 114/* We currently assume float and double are IEEE single and double
 115   precision respectively.
 116   Doing runtime conversions is tricky because VFP registers may contain
 117   integer values (eg. as the result of a FTOSI instruction).
 118   s<2n> maps to the least significant half of d<n>
 119   s<2n+1> maps to the most significant half of d<n>
 120 */
 121
 122/* CPU state for each instance of a generic timer (in cp15 c14) */
 123typedef struct ARMGenericTimer {
 124    uint64_t cval; /* Timer CompareValue register */
 125    uint64_t ctl; /* Timer Control register */
 126} ARMGenericTimer;
 127
 128#define GTIMER_PHYS 0
 129#define GTIMER_VIRT 1
 130#define GTIMER_HYP  2
 131#define GTIMER_SEC  3
 132#define NUM_GTIMERS 4
 133
 134typedef struct {
 135    uint64_t raw_tcr;
 136    uint32_t mask;
 137    uint32_t base_mask;
 138} TCR;
 139
 140typedef struct CPUARMState {
 141    /* Regs for current mode.  */
 142    uint32_t regs[16];
 143
 144    /* 32/64 switch only happens when taking and returning from
 145     * exceptions so the overlap semantics are taken care of then
 146     * instead of having a complicated union.
 147     */
 148    /* Regs for A64 mode.  */
 149    uint64_t xregs[32];
 150    uint64_t pc;
 151    /* PSTATE isn't an architectural register for ARMv8. However, it is
 152     * convenient for us to assemble the underlying state into a 32 bit format
 153     * identical to the architectural format used for the SPSR. (This is also
 154     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 155     * 'pstate' register are.) Of the PSTATE bits:
 156     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 157     *    semantics as for AArch32, as described in the comments on each field)
 158     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 159     *  DAIF (exception masks) are kept in env->daif
 160     *  all other bits are stored in their correct places in env->pstate
 161     */
 162    uint32_t pstate;
 163    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 164
 165    /* Frequently accessed CPSR bits are stored separately for efficiency.
 166       This contains all the other bits.  Use cpsr_{read,write} to access
 167       the whole CPSR.  */
 168    uint32_t uncached_cpsr;
 169    uint32_t spsr;
 170
 171    /* Banked registers.  */
 172    uint64_t banked_spsr[8];
 173    uint32_t banked_r13[8];
 174    uint32_t banked_r14[8];
 175
 176    /* These hold r8-r12.  */
 177    uint32_t usr_regs[5];
 178    uint32_t fiq_regs[5];
 179
 180    /* cpsr flag cache for faster execution */
 181    uint32_t CF; /* 0 or 1 */
 182    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 183    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 184    uint32_t ZF; /* Z set if zero.  */
 185    uint32_t QF; /* 0 or 1 */
 186    uint32_t GE; /* cpsr[19:16] */
 187    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 188    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 189    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 190
 191    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 192    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 193
 194    /* System control coprocessor (cp15) */
 195    struct {
 196        uint32_t c0_cpuid;
 197        union { /* Cache size selection */
 198            struct {
 199                uint64_t _unused_csselr0;
 200                uint64_t csselr_ns;
 201                uint64_t _unused_csselr1;
 202                uint64_t csselr_s;
 203            };
 204            uint64_t csselr_el[4];
 205        };
 206        union { /* System control register. */
 207            struct {
 208                uint64_t _unused_sctlr;
 209                uint64_t sctlr_ns;
 210                uint64_t hsctlr;
 211                uint64_t sctlr_s;
 212            };
 213            uint64_t sctlr_el[4];
 214        };
 215        uint64_t cpacr_el1; /* Architectural feature access control register */
 216        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 217        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 218        uint64_t sder; /* Secure debug enable register. */
 219        uint32_t nsacr; /* Non-secure access control register. */
 220        union { /* MMU translation table base 0. */
 221            struct {
 222                uint64_t _unused_ttbr0_0;
 223                uint64_t ttbr0_ns;
 224                uint64_t _unused_ttbr0_1;
 225                uint64_t ttbr0_s;
 226            };
 227            uint64_t ttbr0_el[4];
 228        };
 229        union { /* MMU translation table base 1. */
 230            struct {
 231                uint64_t _unused_ttbr1_0;
 232                uint64_t ttbr1_ns;
 233                uint64_t _unused_ttbr1_1;
 234                uint64_t ttbr1_s;
 235            };
 236            uint64_t ttbr1_el[4];
 237        };
 238        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 239        /* MMU translation table base control. */
 240        TCR tcr_el[4];
 241        TCR vtcr_el2; /* Virtualization Translation Control.  */
 242        uint32_t c2_data; /* MPU data cacheable bits.  */
 243        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 244        union { /* MMU domain access control register
 245                 * MPU write buffer control.
 246                 */
 247            struct {
 248                uint64_t dacr_ns;
 249                uint64_t dacr_s;
 250            };
 251            struct {
 252                uint64_t dacr32_el2;
 253            };
 254        };
 255        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 256        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 257        uint64_t hcr_el2; /* Hypervisor configuration register */
 258        uint64_t scr_el3; /* Secure configuration register.  */
 259        union { /* Fault status registers.  */
 260            struct {
 261                uint64_t ifsr_ns;
 262                uint64_t ifsr_s;
 263            };
 264            struct {
 265                uint64_t ifsr32_el2;
 266            };
 267        };
 268        union {
 269            struct {
 270                uint64_t _unused_dfsr;
 271                uint64_t dfsr_ns;
 272                uint64_t hsr;
 273                uint64_t dfsr_s;
 274            };
 275            uint64_t esr_el[4];
 276        };
 277        uint32_t c6_region[8]; /* MPU base/size registers.  */
 278        union { /* Fault address registers. */
 279            struct {
 280                uint64_t _unused_far0;
 281#ifdef HOST_WORDS_BIGENDIAN
 282                uint32_t ifar_ns;
 283                uint32_t dfar_ns;
 284                uint32_t ifar_s;
 285                uint32_t dfar_s;
 286#else
 287                uint32_t dfar_ns;
 288                uint32_t ifar_ns;
 289                uint32_t dfar_s;
 290                uint32_t ifar_s;
 291#endif
 292                uint64_t _unused_far3;
 293            };
 294            uint64_t far_el[4];
 295        };
 296        uint64_t hpfar_el2;
 297        uint64_t hstr_el2;
 298        union { /* Translation result. */
 299            struct {
 300                uint64_t _unused_par_0;
 301                uint64_t par_ns;
 302                uint64_t _unused_par_1;
 303                uint64_t par_s;
 304            };
 305            uint64_t par_el[4];
 306        };
 307
 308        uint32_t c9_insn; /* Cache lockdown registers.  */
 309        uint32_t c9_data;
 310        uint64_t c9_pmcr; /* performance monitor control register */
 311        uint64_t c9_pmcnten; /* perf monitor counter enables */
 312        uint32_t c9_pmovsr; /* perf monitor overflow status */
 313        uint32_t c9_pmuserenr; /* perf monitor user enable */
 314        uint64_t c9_pmselr; /* perf monitor counter selection register */
 315        uint64_t c9_pminten; /* perf monitor interrupt enables */
 316        union { /* Memory attribute redirection */
 317            struct {
 318#ifdef HOST_WORDS_BIGENDIAN
 319                uint64_t _unused_mair_0;
 320                uint32_t mair1_ns;
 321                uint32_t mair0_ns;
 322                uint64_t _unused_mair_1;
 323                uint32_t mair1_s;
 324                uint32_t mair0_s;
 325#else
 326                uint64_t _unused_mair_0;
 327                uint32_t mair0_ns;
 328                uint32_t mair1_ns;
 329                uint64_t _unused_mair_1;
 330                uint32_t mair0_s;
 331                uint32_t mair1_s;
 332#endif
 333            };
 334            uint64_t mair_el[4];
 335        };
 336        union { /* vector base address register */
 337            struct {
 338                uint64_t _unused_vbar;
 339                uint64_t vbar_ns;
 340                uint64_t hvbar;
 341                uint64_t vbar_s;
 342            };
 343            uint64_t vbar_el[4];
 344        };
 345        uint32_t mvbar; /* (monitor) vector base address register */
 346        struct { /* FCSE PID. */
 347            uint32_t fcseidr_ns;
 348            uint32_t fcseidr_s;
 349        };
 350        union { /* Context ID. */
 351            struct {
 352                uint64_t _unused_contextidr_0;
 353                uint64_t contextidr_ns;
 354                uint64_t _unused_contextidr_1;
 355                uint64_t contextidr_s;
 356            };
 357            uint64_t contextidr_el[4];
 358        };
 359        union { /* User RW Thread register. */
 360            struct {
 361                uint64_t tpidrurw_ns;
 362                uint64_t tpidrprw_ns;
 363                uint64_t htpidr;
 364                uint64_t _tpidr_el3;
 365            };
 366            uint64_t tpidr_el[4];
 367        };
 368        /* The secure banks of these registers don't map anywhere */
 369        uint64_t tpidrurw_s;
 370        uint64_t tpidrprw_s;
 371        uint64_t tpidruro_s;
 372
 373        union { /* User RO Thread register. */
 374            uint64_t tpidruro_ns;
 375            uint64_t tpidrro_el[1];
 376        };
 377        uint64_t c14_cntfrq; /* Counter Frequency register */
 378        uint64_t c14_cntkctl; /* Timer Control register */
 379        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 380        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 381        ARMGenericTimer c14_timer[NUM_GTIMERS];
 382        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 383        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 384        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 385        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 386        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 387        uint32_t c15_config_base_address; /* SCU base address.  */
 388        uint32_t c15_diagnostic; /* diagnostic register */
 389        uint32_t c15_power_diagnostic;
 390        uint32_t c15_power_control; /* power control */
 391        uint64_t dbgbvr[16]; /* breakpoint value registers */
 392        uint64_t dbgbcr[16]; /* breakpoint control registers */
 393        uint64_t dbgwvr[16]; /* watchpoint value registers */
 394        uint64_t dbgwcr[16]; /* watchpoint control registers */
 395        uint64_t mdscr_el1;
 396        uint64_t oslsr_el1; /* OS Lock Status */
 397        uint64_t mdcr_el2;
 398        uint64_t mdcr_el3;
 399        /* If the counter is enabled, this stores the last time the counter
 400         * was reset. Otherwise it stores the counter value
 401         */
 402        uint64_t c15_ccnt;
 403        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 404        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 405        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 406    } cp15;
 407
 408    struct {
 409        uint32_t other_sp;
 410        uint32_t vecbase;
 411        uint32_t basepri;
 412        uint32_t control;
 413        uint32_t ccr; /* Configuration and Control */
 414        uint32_t cfsr; /* Configurable Fault Status */
 415        uint32_t hfsr; /* HardFault Status */
 416        uint32_t dfsr; /* Debug Fault Status Register */
 417        uint32_t mmfar; /* MemManage Fault Address */
 418        uint32_t bfar; /* BusFault Address */
 419        unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */
 420        int exception;
 421    } v7m;
 422
 423    /* Information associated with an exception about to be taken:
 424     * code which raises an exception must set cs->exception_index and
 425     * the relevant parts of this structure; the cpu_do_interrupt function
 426     * will then set the guest-visible registers as part of the exception
 427     * entry process.
 428     */
 429    struct {
 430        uint32_t syndrome; /* AArch64 format syndrome register */
 431        uint32_t fsr; /* AArch32 format fault status register info */
 432        uint64_t vaddress; /* virtual addr associated with exception, if any */
 433        uint32_t target_el; /* EL the exception should be targeted for */
 434        /* If we implement EL2 we will also need to store information
 435         * about the intermediate physical address for stage 2 faults.
 436         */
 437    } exception;
 438
 439    /* Thumb-2 EE state.  */
 440    uint32_t teecr;
 441    uint32_t teehbr;
 442
 443    /* VFP coprocessor state.  */
 444    struct {
 445        /* VFP/Neon register state. Note that the mapping between S, D and Q
 446         * views of the register bank differs between AArch64 and AArch32:
 447         * In AArch32:
 448         *  Qn = regs[2n+1]:regs[2n]
 449         *  Dn = regs[n]
 450         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
 451         * (and regs[32] to regs[63] are inaccessible)
 452         * In AArch64:
 453         *  Qn = regs[2n+1]:regs[2n]
 454         *  Dn = regs[2n]
 455         *  Sn = regs[2n] bits 31..0
 456         * This corresponds to the architecturally defined mapping between
 457         * the two execution states, and means we do not need to explicitly
 458         * map these registers when changing states.
 459         */
 460        float64 regs[64];
 461
 462        uint32_t xregs[16];
 463        /* We store these fpcsr fields separately for convenience.  */
 464        int vec_len;
 465        int vec_stride;
 466
 467        /* scratch space when Tn are not sufficient.  */
 468        uint32_t scratch[8];
 469
 470        /* fp_status is the "normal" fp status. standard_fp_status retains
 471         * values corresponding to the ARM "Standard FPSCR Value", ie
 472         * default-NaN, flush-to-zero, round-to-nearest and is used by
 473         * any operations (generally Neon) which the architecture defines
 474         * as controlled by the standard FPSCR value rather than the FPSCR.
 475         *
 476         * To avoid having to transfer exception bits around, we simply
 477         * say that the FPSCR cumulative exception flags are the logical
 478         * OR of the flags in the two fp statuses. This relies on the
 479         * only thing which needs to read the exception flags being
 480         * an explicit FPSCR read.
 481         */
 482        float_status fp_status;
 483        float_status standard_fp_status;
 484    } vfp;
 485    uint64_t exclusive_addr;
 486    uint64_t exclusive_val;
 487    uint64_t exclusive_high;
 488
 489    /* iwMMXt coprocessor state.  */
 490    struct {
 491        uint64_t regs[16];
 492        uint64_t val;
 493
 494        uint32_t cregs[16];
 495    } iwmmxt;
 496
 497#if defined(CONFIG_USER_ONLY)
 498    /* For usermode syscall translation.  */
 499    int eabi;
 500#endif
 501
 502    struct CPUBreakpoint *cpu_breakpoint[16];
 503    struct CPUWatchpoint *cpu_watchpoint[16];
 504
 505    /* Fields up to this point are cleared by a CPU reset */
 506    struct {} end_reset_fields;
 507
 508    CPU_COMMON
 509
 510    /* Fields after CPU_COMMON are preserved across CPU reset. */
 511
 512    /* Internal CPU feature flags.  */
 513    uint64_t features;
 514
 515    /* PMSAv7 MPU */
 516    struct {
 517        uint32_t *drbar;
 518        uint32_t *drsr;
 519        uint32_t *dracr;
 520        uint32_t rnr;
 521    } pmsav7;
 522
 523    void *nvic;
 524    const struct arm_boot_info *boot_info;
 525    /* Store GICv3CPUState to access from this struct */
 526    void *gicv3state;
 527} CPUARMState;
 528
 529/**
 530 * ARMELChangeHook:
 531 * type of a function which can be registered via arm_register_el_change_hook()
 532 * to get callbacks when the CPU changes its exception level or mode.
 533 */
 534typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
 535
 536
 537/* These values map onto the return values for
 538 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 539typedef enum ARMPSCIState {
 540    PSCI_ON = 0,
 541    PSCI_OFF = 1,
 542    PSCI_ON_PENDING = 2
 543} ARMPSCIState;
 544
 545/**
 546 * ARMCPU:
 547 * @env: #CPUARMState
 548 *
 549 * An ARM CPU core.
 550 */
 551struct ARMCPU {
 552    /*< private >*/
 553    CPUState parent_obj;
 554    /*< public >*/
 555
 556    CPUARMState env;
 557
 558    /* Coprocessor information */
 559    GHashTable *cp_regs;
 560    /* For marshalling (mostly coprocessor) register state between the
 561     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 562     * we use these arrays.
 563     */
 564    /* List of register indexes managed via these arrays; (full KVM style
 565     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 566     */
 567    uint64_t *cpreg_indexes;
 568    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 569    uint64_t *cpreg_values;
 570    /* Length of the indexes, values, reset_values arrays */
 571    int32_t cpreg_array_len;
 572    /* These are used only for migration: incoming data arrives in
 573     * these fields and is sanity checked in post_load before copying
 574     * to the working data structures above.
 575     */
 576    uint64_t *cpreg_vmstate_indexes;
 577    uint64_t *cpreg_vmstate_values;
 578    int32_t cpreg_vmstate_array_len;
 579
 580    /* Timers used by the generic (architected) timer */
 581    QEMUTimer *gt_timer[NUM_GTIMERS];
 582    /* GPIO outputs for generic timer */
 583    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 584    /* GPIO output for GICv3 maintenance interrupt signal */
 585    qemu_irq gicv3_maintenance_interrupt;
 586
 587    /* MemoryRegion to use for secure physical accesses */
 588    MemoryRegion *secure_memory;
 589
 590    /* 'compatible' string for this CPU for Linux device trees */
 591    const char *dtb_compatible;
 592
 593    /* PSCI version for this CPU
 594     * Bits[31:16] = Major Version
 595     * Bits[15:0] = Minor Version
 596     */
 597    uint32_t psci_version;
 598
 599    /* Should CPU start in PSCI powered-off state? */
 600    bool start_powered_off;
 601
 602    /* Current power state, access guarded by BQL */
 603    ARMPSCIState power_state;
 604
 605    /* CPU has virtualization extension */
 606    bool has_el2;
 607    /* CPU has security extension */
 608    bool has_el3;
 609    /* CPU has PMU (Performance Monitor Unit) */
 610    bool has_pmu;
 611
 612    /* CPU has memory protection unit */
 613    bool has_mpu;
 614    /* PMSAv7 MPU number of supported regions */
 615    uint32_t pmsav7_dregion;
 616
 617    /* PSCI conduit used to invoke PSCI methods
 618     * 0 - disabled, 1 - smc, 2 - hvc
 619     */
 620    uint32_t psci_conduit;
 621
 622    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 623     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 624     */
 625    uint32_t kvm_target;
 626
 627    /* KVM init features for this CPU */
 628    uint32_t kvm_init_features[7];
 629
 630    /* Uniprocessor system with MP extensions */
 631    bool mp_is_up;
 632
 633    /* The instance init functions for implementation-specific subclasses
 634     * set these fields to specify the implementation-dependent values of
 635     * various constant registers and reset values of non-constant
 636     * registers.
 637     * Some of these might become QOM properties eventually.
 638     * Field names match the official register names as defined in the
 639     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 640     * is used for reset values of non-constant registers; no reset_
 641     * prefix means a constant register.
 642     */
 643    uint32_t midr;
 644    uint32_t revidr;
 645    uint32_t reset_fpsid;
 646    uint32_t mvfr0;
 647    uint32_t mvfr1;
 648    uint32_t mvfr2;
 649    uint32_t ctr;
 650    uint32_t reset_sctlr;
 651    uint32_t id_pfr0;
 652    uint32_t id_pfr1;
 653    uint32_t id_dfr0;
 654    uint32_t pmceid0;
 655    uint32_t pmceid1;
 656    uint32_t id_afr0;
 657    uint32_t id_mmfr0;
 658    uint32_t id_mmfr1;
 659    uint32_t id_mmfr2;
 660    uint32_t id_mmfr3;
 661    uint32_t id_mmfr4;
 662    uint32_t id_isar0;
 663    uint32_t id_isar1;
 664    uint32_t id_isar2;
 665    uint32_t id_isar3;
 666    uint32_t id_isar4;
 667    uint32_t id_isar5;
 668    uint64_t id_aa64pfr0;
 669    uint64_t id_aa64pfr1;
 670    uint64_t id_aa64dfr0;
 671    uint64_t id_aa64dfr1;
 672    uint64_t id_aa64afr0;
 673    uint64_t id_aa64afr1;
 674    uint64_t id_aa64isar0;
 675    uint64_t id_aa64isar1;
 676    uint64_t id_aa64mmfr0;
 677    uint64_t id_aa64mmfr1;
 678    uint32_t dbgdidr;
 679    uint32_t clidr;
 680    uint64_t mp_affinity; /* MP ID without feature bits */
 681    /* The elements of this array are the CCSIDR values for each cache,
 682     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 683     */
 684    uint32_t ccsidr[16];
 685    uint64_t reset_cbar;
 686    uint32_t reset_auxcr;
 687    bool reset_hivecs;
 688    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 689    uint32_t dcz_blocksize;
 690    uint64_t rvbar;
 691
 692    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 693    int gic_num_lrs; /* number of list registers */
 694    int gic_vpribits; /* number of virtual priority bits */
 695    int gic_vprebits; /* number of virtual preemption bits */
 696
 697    /* Whether the cfgend input is high (i.e. this CPU should reset into
 698     * big-endian mode).  This setting isn't used directly: instead it modifies
 699     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 700     * architecture version.
 701     */
 702    bool cfgend;
 703
 704    ARMELChangeHook *el_change_hook;
 705    void *el_change_hook_opaque;
 706
 707    int32_t node_id; /* NUMA node this CPU belongs to */
 708
 709    /* Used to synchronize KVM and QEMU in-kernel device levels */
 710    uint8_t device_irq_level;
 711};
 712
 713static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 714{
 715    return container_of(env, ARMCPU, env);
 716}
 717
 718uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 719
 720#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 721
 722#define ENV_OFFSET offsetof(ARMCPU, env)
 723
 724#ifndef CONFIG_USER_ONLY
 725extern const struct VMStateDescription vmstate_arm_cpu;
 726#endif
 727
 728void arm_cpu_do_interrupt(CPUState *cpu);
 729void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 730bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 731
 732void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 733                        int flags);
 734
 735hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 736                                         MemTxAttrs *attrs);
 737
 738int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 739int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 740
 741int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 742                             int cpuid, void *opaque);
 743int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 744                             int cpuid, void *opaque);
 745
 746#ifdef TARGET_AARCH64
 747int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 748int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 749#endif
 750
 751ARMCPU *cpu_arm_init(const char *cpu_model);
 752target_ulong do_arm_semihosting(CPUARMState *env);
 753void aarch64_sync_32_to_64(CPUARMState *env);
 754void aarch64_sync_64_to_32(CPUARMState *env);
 755
 756static inline bool is_a64(CPUARMState *env)
 757{
 758    return env->aarch64;
 759}
 760
 761/* you can call this signal handler from your SIGBUS and SIGSEGV
 762   signal handlers to inform the virtual CPU of exceptions. non zero
 763   is returned if the signal was handled by the virtual CPU.  */
 764int cpu_arm_signal_handler(int host_signum, void *pinfo,
 765                           void *puc);
 766
 767/**
 768 * pmccntr_sync
 769 * @env: CPUARMState
 770 *
 771 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 772 * once before any action that might affect the timer and again afterwards.
 773 * The function is used to swap the state of the register if required.
 774 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 775 */
 776void pmccntr_sync(CPUARMState *env);
 777
 778/* SCTLR bit meanings. Several bits have been reused in newer
 779 * versions of the architecture; in that case we define constants
 780 * for both old and new bit meanings. Code which tests against those
 781 * bits should probably check or otherwise arrange that the CPU
 782 * is the architectural version it expects.
 783 */
 784#define SCTLR_M       (1U << 0)
 785#define SCTLR_A       (1U << 1)
 786#define SCTLR_C       (1U << 2)
 787#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 788#define SCTLR_SA      (1U << 3)
 789#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 790#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 791#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 792#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 793#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 794#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 795#define SCTLR_ITD     (1U << 7) /* v8 onward */
 796#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 797#define SCTLR_SED     (1U << 8) /* v8 onward */
 798#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 799#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 800#define SCTLR_F       (1U << 10) /* up to v6 */
 801#define SCTLR_SW      (1U << 10) /* v7 onward */
 802#define SCTLR_Z       (1U << 11)
 803#define SCTLR_I       (1U << 12)
 804#define SCTLR_V       (1U << 13)
 805#define SCTLR_RR      (1U << 14) /* up to v7 */
 806#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 807#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 808#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 809#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 810#define SCTLR_nTWI    (1U << 16) /* v8 onward */
 811#define SCTLR_HA      (1U << 17)
 812#define SCTLR_BR      (1U << 17) /* PMSA only */
 813#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 814#define SCTLR_nTWE    (1U << 18) /* v8 onward */
 815#define SCTLR_WXN     (1U << 19)
 816#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 817#define SCTLR_UWXN    (1U << 20) /* v7 onward */
 818#define SCTLR_FI      (1U << 21)
 819#define SCTLR_U       (1U << 22)
 820#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 821#define SCTLR_VE      (1U << 24) /* up to v7 */
 822#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 823#define SCTLR_EE      (1U << 25)
 824#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 825#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 826#define SCTLR_NMFI    (1U << 27)
 827#define SCTLR_TRE     (1U << 28)
 828#define SCTLR_AFE     (1U << 29)
 829#define SCTLR_TE      (1U << 30)
 830
 831#define CPTR_TCPAC    (1U << 31)
 832#define CPTR_TTA      (1U << 20)
 833#define CPTR_TFP      (1U << 10)
 834
 835#define MDCR_EPMAD    (1U << 21)
 836#define MDCR_EDAD     (1U << 20)
 837#define MDCR_SPME     (1U << 17)
 838#define MDCR_SDD      (1U << 16)
 839#define MDCR_SPD      (3U << 14)
 840#define MDCR_TDRA     (1U << 11)
 841#define MDCR_TDOSA    (1U << 10)
 842#define MDCR_TDA      (1U << 9)
 843#define MDCR_TDE      (1U << 8)
 844#define MDCR_HPME     (1U << 7)
 845#define MDCR_TPM      (1U << 6)
 846#define MDCR_TPMCR    (1U << 5)
 847
 848/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
 849#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
 850
 851#define CPSR_M (0x1fU)
 852#define CPSR_T (1U << 5)
 853#define CPSR_F (1U << 6)
 854#define CPSR_I (1U << 7)
 855#define CPSR_A (1U << 8)
 856#define CPSR_E (1U << 9)
 857#define CPSR_IT_2_7 (0xfc00U)
 858#define CPSR_GE (0xfU << 16)
 859#define CPSR_IL (1U << 20)
 860/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 861 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 862 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 863 * where it is live state but not accessible to the AArch32 code.
 864 */
 865#define CPSR_RESERVED (0x7U << 21)
 866#define CPSR_J (1U << 24)
 867#define CPSR_IT_0_1 (3U << 25)
 868#define CPSR_Q (1U << 27)
 869#define CPSR_V (1U << 28)
 870#define CPSR_C (1U << 29)
 871#define CPSR_Z (1U << 30)
 872#define CPSR_N (1U << 31)
 873#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 874#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
 875
 876#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 877#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
 878    | CPSR_NZCV)
 879/* Bits writable in user mode.  */
 880#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 881/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 882#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
 883/* Mask of bits which may be set by exception return copying them from SPSR */
 884#define CPSR_ERET_MASK (~CPSR_RESERVED)
 885
 886#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
 887#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
 888#define TTBCR_PD0    (1U << 4)
 889#define TTBCR_PD1    (1U << 5)
 890#define TTBCR_EPD0   (1U << 7)
 891#define TTBCR_IRGN0  (3U << 8)
 892#define TTBCR_ORGN0  (3U << 10)
 893#define TTBCR_SH0    (3U << 12)
 894#define TTBCR_T1SZ   (3U << 16)
 895#define TTBCR_A1     (1U << 22)
 896#define TTBCR_EPD1   (1U << 23)
 897#define TTBCR_IRGN1  (3U << 24)
 898#define TTBCR_ORGN1  (3U << 26)
 899#define TTBCR_SH1    (1U << 28)
 900#define TTBCR_EAE    (1U << 31)
 901
 902/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 903 * Only these are valid when in AArch64 mode; in
 904 * AArch32 mode SPSRs are basically CPSR-format.
 905 */
 906#define PSTATE_SP (1U)
 907#define PSTATE_M (0xFU)
 908#define PSTATE_nRW (1U << 4)
 909#define PSTATE_F (1U << 6)
 910#define PSTATE_I (1U << 7)
 911#define PSTATE_A (1U << 8)
 912#define PSTATE_D (1U << 9)
 913#define PSTATE_IL (1U << 20)
 914#define PSTATE_SS (1U << 21)
 915#define PSTATE_V (1U << 28)
 916#define PSTATE_C (1U << 29)
 917#define PSTATE_Z (1U << 30)
 918#define PSTATE_N (1U << 31)
 919#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
 920#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
 921#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
 922/* Mode values for AArch64 */
 923#define PSTATE_MODE_EL3h 13
 924#define PSTATE_MODE_EL3t 12
 925#define PSTATE_MODE_EL2h 9
 926#define PSTATE_MODE_EL2t 8
 927#define PSTATE_MODE_EL1h 5
 928#define PSTATE_MODE_EL1t 4
 929#define PSTATE_MODE_EL0t 0
 930
 931/* Map EL and handler into a PSTATE_MODE.  */
 932static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
 933{
 934    return (el << 2) | handler;
 935}
 936
 937/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 938 * interprocessing, so we don't attempt to sync with the cpsr state used by
 939 * the 32 bit decoder.
 940 */
 941static inline uint32_t pstate_read(CPUARMState *env)
 942{
 943    int ZF;
 944
 945    ZF = (env->ZF == 0);
 946    return (env->NF & 0x80000000) | (ZF << 30)
 947        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
 948        | env->pstate | env->daif;
 949}
 950
 951static inline void pstate_write(CPUARMState *env, uint32_t val)
 952{
 953    env->ZF = (~val) & PSTATE_Z;
 954    env->NF = val;
 955    env->CF = (val >> 29) & 1;
 956    env->VF = (val << 3) & 0x80000000;
 957    env->daif = val & PSTATE_DAIF;
 958    env->pstate = val & ~CACHED_PSTATE_BITS;
 959}
 960
 961/* Return the current CPSR value.  */
 962uint32_t cpsr_read(CPUARMState *env);
 963
 964typedef enum CPSRWriteType {
 965    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
 966    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
 967    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
 968    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
 969} CPSRWriteType;
 970
 971/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
 972void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
 973                CPSRWriteType write_type);
 974
 975/* Return the current xPSR value.  */
 976static inline uint32_t xpsr_read(CPUARMState *env)
 977{
 978    int ZF;
 979    ZF = (env->ZF == 0);
 980    return (env->NF & 0x80000000) | (ZF << 30)
 981        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 982        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 983        | ((env->condexec_bits & 0xfc) << 8)
 984        | env->v7m.exception;
 985}
 986
 987/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 988static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 989{
 990    if (mask & CPSR_NZCV) {
 991        env->ZF = (~val) & CPSR_Z;
 992        env->NF = val;
 993        env->CF = (val >> 29) & 1;
 994        env->VF = (val << 3) & 0x80000000;
 995    }
 996    if (mask & CPSR_Q)
 997        env->QF = ((val & CPSR_Q) != 0);
 998    if (mask & (1 << 24))
 999        env->thumb = ((val & (1 << 24)) != 0);
1000    if (mask & CPSR_IT_0_1) {
1001        env->condexec_bits &= ~3;
1002        env->condexec_bits |= (val >> 25) & 3;
1003    }
1004    if (mask & CPSR_IT_2_7) {
1005        env->condexec_bits &= 3;
1006        env->condexec_bits |= (val >> 8) & 0xfc;
1007    }
1008    if (mask & 0x1ff) {
1009        env->v7m.exception = val & 0x1ff;
1010    }
1011}
1012
1013#define HCR_VM        (1ULL << 0)
1014#define HCR_SWIO      (1ULL << 1)
1015#define HCR_PTW       (1ULL << 2)
1016#define HCR_FMO       (1ULL << 3)
1017#define HCR_IMO       (1ULL << 4)
1018#define HCR_AMO       (1ULL << 5)
1019#define HCR_VF        (1ULL << 6)
1020#define HCR_VI        (1ULL << 7)
1021#define HCR_VSE       (1ULL << 8)
1022#define HCR_FB        (1ULL << 9)
1023#define HCR_BSU_MASK  (3ULL << 10)
1024#define HCR_DC        (1ULL << 12)
1025#define HCR_TWI       (1ULL << 13)
1026#define HCR_TWE       (1ULL << 14)
1027#define HCR_TID0      (1ULL << 15)
1028#define HCR_TID1      (1ULL << 16)
1029#define HCR_TID2      (1ULL << 17)
1030#define HCR_TID3      (1ULL << 18)
1031#define HCR_TSC       (1ULL << 19)
1032#define HCR_TIDCP     (1ULL << 20)
1033#define HCR_TACR      (1ULL << 21)
1034#define HCR_TSW       (1ULL << 22)
1035#define HCR_TPC       (1ULL << 23)
1036#define HCR_TPU       (1ULL << 24)
1037#define HCR_TTLB      (1ULL << 25)
1038#define HCR_TVM       (1ULL << 26)
1039#define HCR_TGE       (1ULL << 27)
1040#define HCR_TDZ       (1ULL << 28)
1041#define HCR_HCD       (1ULL << 29)
1042#define HCR_TRVM      (1ULL << 30)
1043#define HCR_RW        (1ULL << 31)
1044#define HCR_CD        (1ULL << 32)
1045#define HCR_ID        (1ULL << 33)
1046#define HCR_MASK      ((1ULL << 34) - 1)
1047
1048#define SCR_NS                (1U << 0)
1049#define SCR_IRQ               (1U << 1)
1050#define SCR_FIQ               (1U << 2)
1051#define SCR_EA                (1U << 3)
1052#define SCR_FW                (1U << 4)
1053#define SCR_AW                (1U << 5)
1054#define SCR_NET               (1U << 6)
1055#define SCR_SMD               (1U << 7)
1056#define SCR_HCE               (1U << 8)
1057#define SCR_SIF               (1U << 9)
1058#define SCR_RW                (1U << 10)
1059#define SCR_ST                (1U << 11)
1060#define SCR_TWI               (1U << 12)
1061#define SCR_TWE               (1U << 13)
1062#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1063#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1064
1065/* Return the current FPSCR value.  */
1066uint32_t vfp_get_fpscr(CPUARMState *env);
1067void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1068
1069/* For A64 the FPSCR is split into two logically distinct registers,
1070 * FPCR and FPSR. However since they still use non-overlapping bits
1071 * we store the underlying state in fpscr and just mask on read/write.
1072 */
1073#define FPSR_MASK 0xf800009f
1074#define FPCR_MASK 0x07f79f00
1075static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1076{
1077    return vfp_get_fpscr(env) & FPSR_MASK;
1078}
1079
1080static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1081{
1082    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1083    vfp_set_fpscr(env, new_fpscr);
1084}
1085
1086static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1087{
1088    return vfp_get_fpscr(env) & FPCR_MASK;
1089}
1090
1091static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1092{
1093    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1094    vfp_set_fpscr(env, new_fpscr);
1095}
1096
1097enum arm_cpu_mode {
1098  ARM_CPU_MODE_USR = 0x10,
1099  ARM_CPU_MODE_FIQ = 0x11,
1100  ARM_CPU_MODE_IRQ = 0x12,
1101  ARM_CPU_MODE_SVC = 0x13,
1102  ARM_CPU_MODE_MON = 0x16,
1103  ARM_CPU_MODE_ABT = 0x17,
1104  ARM_CPU_MODE_HYP = 0x1a,
1105  ARM_CPU_MODE_UND = 0x1b,
1106  ARM_CPU_MODE_SYS = 0x1f
1107};
1108
1109/* VFP system registers.  */
1110#define ARM_VFP_FPSID   0
1111#define ARM_VFP_FPSCR   1
1112#define ARM_VFP_MVFR2   5
1113#define ARM_VFP_MVFR1   6
1114#define ARM_VFP_MVFR0   7
1115#define ARM_VFP_FPEXC   8
1116#define ARM_VFP_FPINST  9
1117#define ARM_VFP_FPINST2 10
1118
1119/* iwMMXt coprocessor control registers.  */
1120#define ARM_IWMMXT_wCID         0
1121#define ARM_IWMMXT_wCon         1
1122#define ARM_IWMMXT_wCSSF        2
1123#define ARM_IWMMXT_wCASF        3
1124#define ARM_IWMMXT_wCGR0        8
1125#define ARM_IWMMXT_wCGR1        9
1126#define ARM_IWMMXT_wCGR2        10
1127#define ARM_IWMMXT_wCGR3        11
1128
1129/* V7M CCR bits */
1130FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1131FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1132FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1133FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1134FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1135FIELD(V7M_CCR, STKALIGN, 9, 1)
1136FIELD(V7M_CCR, DC, 16, 1)
1137FIELD(V7M_CCR, IC, 17, 1)
1138
1139/* V7M CFSR bits for MMFSR */
1140FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1141FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1142FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1143FIELD(V7M_CFSR, MSTKERR, 4, 1)
1144FIELD(V7M_CFSR, MLSPERR, 5, 1)
1145FIELD(V7M_CFSR, MMARVALID, 7, 1)
1146
1147/* V7M CFSR bits for BFSR */
1148FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1149FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1150FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1151FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1152FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1153FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1154FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1155
1156/* V7M CFSR bits for UFSR */
1157FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1158FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1159FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1160FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1161FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1162FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1163
1164/* V7M HFSR bits */
1165FIELD(V7M_HFSR, VECTTBL, 1, 1)
1166FIELD(V7M_HFSR, FORCED, 30, 1)
1167FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1168
1169/* V7M DFSR bits */
1170FIELD(V7M_DFSR, HALTED, 0, 1)
1171FIELD(V7M_DFSR, BKPT, 1, 1)
1172FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1173FIELD(V7M_DFSR, VCATCH, 3, 1)
1174FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1175
1176/* v7M MPU_CTRL bits */
1177FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1178FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1179FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1180
1181/* If adding a feature bit which corresponds to a Linux ELF
1182 * HWCAP bit, remember to update the feature-bit-to-hwcap
1183 * mapping in linux-user/elfload.c:get_elf_hwcap().
1184 */
1185enum arm_features {
1186    ARM_FEATURE_VFP,
1187    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1188    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1189    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1190    ARM_FEATURE_V6,
1191    ARM_FEATURE_V6K,
1192    ARM_FEATURE_V7,
1193    ARM_FEATURE_THUMB2,
1194    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1195    ARM_FEATURE_VFP3,
1196    ARM_FEATURE_VFP_FP16,
1197    ARM_FEATURE_NEON,
1198    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1199    ARM_FEATURE_M, /* Microcontroller profile.  */
1200    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1201    ARM_FEATURE_THUMB2EE,
1202    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1203    ARM_FEATURE_V4T,
1204    ARM_FEATURE_V5,
1205    ARM_FEATURE_STRONGARM,
1206    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1207    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1208    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1209    ARM_FEATURE_GENERIC_TIMER,
1210    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1211    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1212    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1213    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1214    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1215    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1216    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1217    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1218    ARM_FEATURE_V8,
1219    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1220    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1221    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1222    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1223    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1224    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1225    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1226    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1227    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1228    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1229    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1230    ARM_FEATURE_PMU, /* has PMU support */
1231    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1232};
1233
1234static inline int arm_feature(CPUARMState *env, int feature)
1235{
1236    return (env->features & (1ULL << feature)) != 0;
1237}
1238
1239#if !defined(CONFIG_USER_ONLY)
1240/* Return true if exception levels below EL3 are in secure state,
1241 * or would be following an exception return to that level.
1242 * Unlike arm_is_secure() (which is always a question about the
1243 * _current_ state of the CPU) this doesn't care about the current
1244 * EL or mode.
1245 */
1246static inline bool arm_is_secure_below_el3(CPUARMState *env)
1247{
1248    if (arm_feature(env, ARM_FEATURE_EL3)) {
1249        return !(env->cp15.scr_el3 & SCR_NS);
1250    } else {
1251        /* If EL3 is not supported then the secure state is implementation
1252         * defined, in which case QEMU defaults to non-secure.
1253         */
1254        return false;
1255    }
1256}
1257
1258/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1259static inline bool arm_is_el3_or_mon(CPUARMState *env)
1260{
1261    if (arm_feature(env, ARM_FEATURE_EL3)) {
1262        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1263            /* CPU currently in AArch64 state and EL3 */
1264            return true;
1265        } else if (!is_a64(env) &&
1266                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1267            /* CPU currently in AArch32 state and monitor mode */
1268            return true;
1269        }
1270    }
1271    return false;
1272}
1273
1274/* Return true if the processor is in secure state */
1275static inline bool arm_is_secure(CPUARMState *env)
1276{
1277    if (arm_is_el3_or_mon(env)) {
1278        return true;
1279    }
1280    return arm_is_secure_below_el3(env);
1281}
1282
1283#else
1284static inline bool arm_is_secure_below_el3(CPUARMState *env)
1285{
1286    return false;
1287}
1288
1289static inline bool arm_is_secure(CPUARMState *env)
1290{
1291    return false;
1292}
1293#endif
1294
1295/* Return true if the specified exception level is running in AArch64 state. */
1296static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1297{
1298    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1299     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1300     */
1301    assert(el >= 1 && el <= 3);
1302    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1303
1304    /* The highest exception level is always at the maximum supported
1305     * register width, and then lower levels have a register width controlled
1306     * by bits in the SCR or HCR registers.
1307     */
1308    if (el == 3) {
1309        return aa64;
1310    }
1311
1312    if (arm_feature(env, ARM_FEATURE_EL3)) {
1313        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1314    }
1315
1316    if (el == 2) {
1317        return aa64;
1318    }
1319
1320    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1321        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1322    }
1323
1324    return aa64;
1325}
1326
1327/* Function for determing whether guest cp register reads and writes should
1328 * access the secure or non-secure bank of a cp register.  When EL3 is
1329 * operating in AArch32 state, the NS-bit determines whether the secure
1330 * instance of a cp register should be used. When EL3 is AArch64 (or if
1331 * it doesn't exist at all) then there is no register banking, and all
1332 * accesses are to the non-secure version.
1333 */
1334static inline bool access_secure_reg(CPUARMState *env)
1335{
1336    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1337                !arm_el_is_aa64(env, 3) &&
1338                !(env->cp15.scr_el3 & SCR_NS));
1339
1340    return ret;
1341}
1342
1343/* Macros for accessing a specified CP register bank */
1344#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1345    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1346
1347#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1348    do {                                                \
1349        if (_secure) {                                   \
1350            (_env)->cp15._regname##_s = (_val);            \
1351        } else {                                        \
1352            (_env)->cp15._regname##_ns = (_val);           \
1353        }                                               \
1354    } while (0)
1355
1356/* Macros for automatically accessing a specific CP register bank depending on
1357 * the current secure state of the system.  These macros are not intended for
1358 * supporting instruction translation reads/writes as these are dependent
1359 * solely on the SCR.NS bit and not the mode.
1360 */
1361#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1362    A32_BANKED_REG_GET((_env), _regname,                \
1363                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1364
1365#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1366    A32_BANKED_REG_SET((_env), _regname,                                    \
1367                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1368                       (_val))
1369
1370void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1371uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1372                                 uint32_t cur_el, bool secure);
1373
1374/* Interface between CPU and Interrupt controller.  */
1375#ifndef CONFIG_USER_ONLY
1376bool armv7m_nvic_can_take_pending_exception(void *opaque);
1377#else
1378static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1379{
1380    return true;
1381}
1382#endif
1383void armv7m_nvic_set_pending(void *opaque, int irq);
1384void armv7m_nvic_acknowledge_irq(void *opaque);
1385/**
1386 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1387 * @opaque: the NVIC
1388 * @irq: the exception number to complete
1389 *
1390 * Returns: -1 if the irq was not active
1391 *           1 if completing this irq brought us back to base (no active irqs)
1392 *           0 if there is still an irq active after this one was completed
1393 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1394 */
1395int armv7m_nvic_complete_irq(void *opaque, int irq);
1396
1397/* Interface for defining coprocessor registers.
1398 * Registers are defined in tables of arm_cp_reginfo structs
1399 * which are passed to define_arm_cp_regs().
1400 */
1401
1402/* When looking up a coprocessor register we look for it
1403 * via an integer which encodes all of:
1404 *  coprocessor number
1405 *  Crn, Crm, opc1, opc2 fields
1406 *  32 or 64 bit register (ie is it accessed via MRC/MCR
1407 *    or via MRRC/MCRR?)
1408 *  non-secure/secure bank (AArch32 only)
1409 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1410 * (In this case crn and opc2 should be zero.)
1411 * For AArch64, there is no 32/64 bit size distinction;
1412 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1413 * and 4 bit CRn and CRm. The encoding patterns are chosen
1414 * to be easy to convert to and from the KVM encodings, and also
1415 * so that the hashtable can contain both AArch32 and AArch64
1416 * registers (to allow for interprocessing where we might run
1417 * 32 bit code on a 64 bit core).
1418 */
1419/* This bit is private to our hashtable cpreg; in KVM register
1420 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1421 * in the upper bits of the 64 bit ID.
1422 */
1423#define CP_REG_AA64_SHIFT 28
1424#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1425
1426/* To enable banking of coprocessor registers depending on ns-bit we
1427 * add a bit to distinguish between secure and non-secure cpregs in the
1428 * hashtable.
1429 */
1430#define CP_REG_NS_SHIFT 29
1431#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1432
1433#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1434    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1435     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1436
1437#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1438    (CP_REG_AA64_MASK |                                 \
1439     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1440     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1441     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1442     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1443     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1444     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1445
1446/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1447 * version used as a key for the coprocessor register hashtable
1448 */
1449static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1450{
1451    uint32_t cpregid = kvmid;
1452    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1453        cpregid |= CP_REG_AA64_MASK;
1454    } else {
1455        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1456            cpregid |= (1 << 15);
1457        }
1458
1459        /* KVM is always non-secure so add the NS flag on AArch32 register
1460         * entries.
1461         */
1462         cpregid |= 1 << CP_REG_NS_SHIFT;
1463    }
1464    return cpregid;
1465}
1466
1467/* Convert a truncated 32 bit hashtable key into the full
1468 * 64 bit KVM register ID.
1469 */
1470static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1471{
1472    uint64_t kvmid;
1473
1474    if (cpregid & CP_REG_AA64_MASK) {
1475        kvmid = cpregid & ~CP_REG_AA64_MASK;
1476        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1477    } else {
1478        kvmid = cpregid & ~(1 << 15);
1479        if (cpregid & (1 << 15)) {
1480            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1481        } else {
1482            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1483        }
1484    }
1485    return kvmid;
1486}
1487
1488/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1489 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1490 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1491 * TCG can assume the value to be constant (ie load at translate time)
1492 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1493 * indicates that the TB should not be ended after a write to this register
1494 * (the default is that the TB ends after cp writes). OVERRIDE permits
1495 * a register definition to override a previous definition for the
1496 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1497 * old must have the OVERRIDE bit set.
1498 * ALIAS indicates that this register is an alias view of some underlying
1499 * state which is also visible via another register, and that the other
1500 * register is handling migration and reset; registers marked ALIAS will not be
1501 * migrated but may have their state set by syncing of register state from KVM.
1502 * NO_RAW indicates that this register has no underlying state and does not
1503 * support raw access for state saving/loading; it will not be used for either
1504 * migration or KVM state synchronization. (Typically this is for "registers"
1505 * which are actually used as instructions for cache maintenance and so on.)
1506 * IO indicates that this register does I/O and therefore its accesses
1507 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1508 * registers which implement clocks or timers require this.
1509 */
1510#define ARM_CP_SPECIAL 1
1511#define ARM_CP_CONST 2
1512#define ARM_CP_64BIT 4
1513#define ARM_CP_SUPPRESS_TB_END 8
1514#define ARM_CP_OVERRIDE 16
1515#define ARM_CP_ALIAS 32
1516#define ARM_CP_IO 64
1517#define ARM_CP_NO_RAW 128
1518#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1519#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1520#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1521#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1522#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1523#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1524/* Used only as a terminator for ARMCPRegInfo lists */
1525#define ARM_CP_SENTINEL 0xffff
1526/* Mask of only the flag bits in a type field */
1527#define ARM_CP_FLAG_MASK 0xff
1528
1529/* Valid values for ARMCPRegInfo state field, indicating which of
1530 * the AArch32 and AArch64 execution states this register is visible in.
1531 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1532 * If the reginfo is declared to be visible in both states then a second
1533 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1534 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1535 * Note that we rely on the values of these enums as we iterate through
1536 * the various states in some places.
1537 */
1538enum {
1539    ARM_CP_STATE_AA32 = 0,
1540    ARM_CP_STATE_AA64 = 1,
1541    ARM_CP_STATE_BOTH = 2,
1542};
1543
1544/* ARM CP register secure state flags.  These flags identify security state
1545 * attributes for a given CP register entry.
1546 * The existence of both or neither secure and non-secure flags indicates that
1547 * the register has both a secure and non-secure hash entry.  A single one of
1548 * these flags causes the register to only be hashed for the specified
1549 * security state.
1550 * Although definitions may have any combination of the S/NS bits, each
1551 * registered entry will only have one to identify whether the entry is secure
1552 * or non-secure.
1553 */
1554enum {
1555    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1556    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1557};
1558
1559/* Return true if cptype is a valid type field. This is used to try to
1560 * catch errors where the sentinel has been accidentally left off the end
1561 * of a list of registers.
1562 */
1563static inline bool cptype_valid(int cptype)
1564{
1565    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1566        || ((cptype & ARM_CP_SPECIAL) &&
1567            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1568}
1569
1570/* Access rights:
1571 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1572 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1573 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1574 * (ie any of the privileged modes in Secure state, or Monitor mode).
1575 * If a register is accessible in one privilege level it's always accessible
1576 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1577 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1578 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1579 * terminology a little and call this PL3.
1580 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1581 * with the ELx exception levels.
1582 *
1583 * If access permissions for a register are more complex than can be
1584 * described with these bits, then use a laxer set of restrictions, and
1585 * do the more restrictive/complex check inside a helper function.
1586 */
1587#define PL3_R 0x80
1588#define PL3_W 0x40
1589#define PL2_R (0x20 | PL3_R)
1590#define PL2_W (0x10 | PL3_W)
1591#define PL1_R (0x08 | PL2_R)
1592#define PL1_W (0x04 | PL2_W)
1593#define PL0_R (0x02 | PL1_R)
1594#define PL0_W (0x01 | PL1_W)
1595
1596#define PL3_RW (PL3_R | PL3_W)
1597#define PL2_RW (PL2_R | PL2_W)
1598#define PL1_RW (PL1_R | PL1_W)
1599#define PL0_RW (PL0_R | PL0_W)
1600
1601/* Return the highest implemented Exception Level */
1602static inline int arm_highest_el(CPUARMState *env)
1603{
1604    if (arm_feature(env, ARM_FEATURE_EL3)) {
1605        return 3;
1606    }
1607    if (arm_feature(env, ARM_FEATURE_EL2)) {
1608        return 2;
1609    }
1610    return 1;
1611}
1612
1613/* Return the current Exception Level (as per ARMv8; note that this differs
1614 * from the ARMv7 Privilege Level).
1615 */
1616static inline int arm_current_el(CPUARMState *env)
1617{
1618    if (arm_feature(env, ARM_FEATURE_M)) {
1619        return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1620    }
1621
1622    if (is_a64(env)) {
1623        return extract32(env->pstate, 2, 2);
1624    }
1625
1626    switch (env->uncached_cpsr & 0x1f) {
1627    case ARM_CPU_MODE_USR:
1628        return 0;
1629    case ARM_CPU_MODE_HYP:
1630        return 2;
1631    case ARM_CPU_MODE_MON:
1632        return 3;
1633    default:
1634        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1635            /* If EL3 is 32-bit then all secure privileged modes run in
1636             * EL3
1637             */
1638            return 3;
1639        }
1640
1641        return 1;
1642    }
1643}
1644
1645typedef struct ARMCPRegInfo ARMCPRegInfo;
1646
1647typedef enum CPAccessResult {
1648    /* Access is permitted */
1649    CP_ACCESS_OK = 0,
1650    /* Access fails due to a configurable trap or enable which would
1651     * result in a categorized exception syndrome giving information about
1652     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1653     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1654     * PL1 if in EL0, otherwise to the current EL).
1655     */
1656    CP_ACCESS_TRAP = 1,
1657    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1658     * Note that this is not a catch-all case -- the set of cases which may
1659     * result in this failure is specifically defined by the architecture.
1660     */
1661    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1662    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1663    CP_ACCESS_TRAP_EL2 = 3,
1664    CP_ACCESS_TRAP_EL3 = 4,
1665    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1666    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1667    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1668    /* Access fails and results in an exception syndrome for an FP access,
1669     * trapped directly to EL2 or EL3
1670     */
1671    CP_ACCESS_TRAP_FP_EL2 = 7,
1672    CP_ACCESS_TRAP_FP_EL3 = 8,
1673} CPAccessResult;
1674
1675/* Access functions for coprocessor registers. These cannot fail and
1676 * may not raise exceptions.
1677 */
1678typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1679typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1680                       uint64_t value);
1681/* Access permission check functions for coprocessor registers. */
1682typedef CPAccessResult CPAccessFn(CPUARMState *env,
1683                                  const ARMCPRegInfo *opaque,
1684                                  bool isread);
1685/* Hook function for register reset */
1686typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1687
1688#define CP_ANY 0xff
1689
1690/* Definition of an ARM coprocessor register */
1691struct ARMCPRegInfo {
1692    /* Name of register (useful mainly for debugging, need not be unique) */
1693    const char *name;
1694    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1695     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1696     * 'wildcard' field -- any value of that field in the MRC/MCR insn
1697     * will be decoded to this register. The register read and write
1698     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1699     * used by the program, so it is possible to register a wildcard and
1700     * then behave differently on read/write if necessary.
1701     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1702     * must both be zero.
1703     * For AArch64-visible registers, opc0 is also used.
1704     * Since there are no "coprocessors" in AArch64, cp is purely used as a
1705     * way to distinguish (for KVM's benefit) guest-visible system registers
1706     * from demuxed ones provided to preserve the "no side effects on
1707     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1708     * visible (to match KVM's encoding); cp==0 will be converted to
1709     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1710     */
1711    uint8_t cp;
1712    uint8_t crn;
1713    uint8_t crm;
1714    uint8_t opc0;
1715    uint8_t opc1;
1716    uint8_t opc2;
1717    /* Execution state in which this register is visible: ARM_CP_STATE_* */
1718    int state;
1719    /* Register type: ARM_CP_* bits/values */
1720    int type;
1721    /* Access rights: PL*_[RW] */
1722    int access;
1723    /* Security state: ARM_CP_SECSTATE_* bits/values */
1724    int secure;
1725    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1726     * this register was defined: can be used to hand data through to the
1727     * register read/write functions, since they are passed the ARMCPRegInfo*.
1728     */
1729    void *opaque;
1730    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1731     * fieldoffset is non-zero, the reset value of the register.
1732     */
1733    uint64_t resetvalue;
1734    /* Offset of the field in CPUARMState for this register.
1735     *
1736     * This is not needed if either:
1737     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1738     *  2. both readfn and writefn are specified
1739     */
1740    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1741
1742    /* Offsets of the secure and non-secure fields in CPUARMState for the
1743     * register if it is banked.  These fields are only used during the static
1744     * registration of a register.  During hashing the bank associated
1745     * with a given security state is copied to fieldoffset which is used from
1746     * there on out.
1747     *
1748     * It is expected that register definitions use either fieldoffset or
1749     * bank_fieldoffsets in the definition but not both.  It is also expected
1750     * that both bank offsets are set when defining a banked register.  This
1751     * use indicates that a register is banked.
1752     */
1753    ptrdiff_t bank_fieldoffsets[2];
1754
1755    /* Function for making any access checks for this register in addition to
1756     * those specified by the 'access' permissions bits. If NULL, no extra
1757     * checks required. The access check is performed at runtime, not at
1758     * translate time.
1759     */
1760    CPAccessFn *accessfn;
1761    /* Function for handling reads of this register. If NULL, then reads
1762     * will be done by loading from the offset into CPUARMState specified
1763     * by fieldoffset.
1764     */
1765    CPReadFn *readfn;
1766    /* Function for handling writes of this register. If NULL, then writes
1767     * will be done by writing to the offset into CPUARMState specified
1768     * by fieldoffset.
1769     */
1770    CPWriteFn *writefn;
1771    /* Function for doing a "raw" read; used when we need to copy
1772     * coprocessor state to the kernel for KVM or out for
1773     * migration. This only needs to be provided if there is also a
1774     * readfn and it has side effects (for instance clear-on-read bits).
1775     */
1776    CPReadFn *raw_readfn;
1777    /* Function for doing a "raw" write; used when we need to copy KVM
1778     * kernel coprocessor state into userspace, or for inbound
1779     * migration. This only needs to be provided if there is also a
1780     * writefn and it masks out "unwritable" bits or has write-one-to-clear
1781     * or similar behaviour.
1782     */
1783    CPWriteFn *raw_writefn;
1784    /* Function for resetting the register. If NULL, then reset will be done
1785     * by writing resetvalue to the field specified in fieldoffset. If
1786     * fieldoffset is 0 then no reset will be done.
1787     */
1788    CPResetFn *resetfn;
1789};
1790
1791/* Macros which are lvalues for the field in CPUARMState for the
1792 * ARMCPRegInfo *ri.
1793 */
1794#define CPREG_FIELD32(env, ri) \
1795    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1796#define CPREG_FIELD64(env, ri) \
1797    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1798
1799#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1800
1801void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1802                                    const ARMCPRegInfo *regs, void *opaque);
1803void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1804                                       const ARMCPRegInfo *regs, void *opaque);
1805static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1806{
1807    define_arm_cp_regs_with_opaque(cpu, regs, 0);
1808}
1809static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1810{
1811    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1812}
1813const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1814
1815/* CPWriteFn that can be used to implement writes-ignored behaviour */
1816void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1817                         uint64_t value);
1818/* CPReadFn that can be used for read-as-zero behaviour */
1819uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1820
1821/* CPResetFn that does nothing, for use if no reset is required even
1822 * if fieldoffset is non zero.
1823 */
1824void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1825
1826/* Return true if this reginfo struct's field in the cpu state struct
1827 * is 64 bits wide.
1828 */
1829static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1830{
1831    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1832}
1833
1834static inline bool cp_access_ok(int current_el,
1835                                const ARMCPRegInfo *ri, int isread)
1836{
1837    return (ri->access >> ((current_el * 2) + isread)) & 1;
1838}
1839
1840/* Raw read of a coprocessor register (as needed for migration, etc) */
1841uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1842
1843/**
1844 * write_list_to_cpustate
1845 * @cpu: ARMCPU
1846 *
1847 * For each register listed in the ARMCPU cpreg_indexes list, write
1848 * its value from the cpreg_values list into the ARMCPUState structure.
1849 * This updates TCG's working data structures from KVM data or
1850 * from incoming migration state.
1851 *
1852 * Returns: true if all register values were updated correctly,
1853 * false if some register was unknown or could not be written.
1854 * Note that we do not stop early on failure -- we will attempt
1855 * writing all registers in the list.
1856 */
1857bool write_list_to_cpustate(ARMCPU *cpu);
1858
1859/**
1860 * write_cpustate_to_list:
1861 * @cpu: ARMCPU
1862 *
1863 * For each register listed in the ARMCPU cpreg_indexes list, write
1864 * its value from the ARMCPUState structure into the cpreg_values list.
1865 * This is used to copy info from TCG's working data structures into
1866 * KVM or for outbound migration.
1867 *
1868 * Returns: true if all register values were read correctly,
1869 * false if some register was unknown or could not be read.
1870 * Note that we do not stop early on failure -- we will attempt
1871 * reading all registers in the list.
1872 */
1873bool write_cpustate_to_list(ARMCPU *cpu);
1874
1875#define ARM_CPUID_TI915T      0x54029152
1876#define ARM_CPUID_TI925T      0x54029252
1877
1878#if defined(CONFIG_USER_ONLY)
1879#define TARGET_PAGE_BITS 12
1880#else
1881/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1882 * have to support 1K tiny pages.
1883 */
1884#define TARGET_PAGE_BITS_VARY
1885#define TARGET_PAGE_BITS_MIN 10
1886#endif
1887
1888#if defined(TARGET_AARCH64)
1889#  define TARGET_PHYS_ADDR_SPACE_BITS 48
1890#  define TARGET_VIRT_ADDR_SPACE_BITS 64
1891#else
1892#  define TARGET_PHYS_ADDR_SPACE_BITS 40
1893#  define TARGET_VIRT_ADDR_SPACE_BITS 32
1894#endif
1895
1896static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1897                                     unsigned int target_el)
1898{
1899    CPUARMState *env = cs->env_ptr;
1900    unsigned int cur_el = arm_current_el(env);
1901    bool secure = arm_is_secure(env);
1902    bool pstate_unmasked;
1903    int8_t unmasked = 0;
1904
1905    /* Don't take exceptions if they target a lower EL.
1906     * This check should catch any exceptions that would not be taken but left
1907     * pending.
1908     */
1909    if (cur_el > target_el) {
1910        return false;
1911    }
1912
1913    switch (excp_idx) {
1914    case EXCP_FIQ:
1915        pstate_unmasked = !(env->daif & PSTATE_F);
1916        break;
1917
1918    case EXCP_IRQ:
1919        pstate_unmasked = !(env->daif & PSTATE_I);
1920        break;
1921
1922    case EXCP_VFIQ:
1923        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1924            /* VFIQs are only taken when hypervized and non-secure.  */
1925            return false;
1926        }
1927        return !(env->daif & PSTATE_F);
1928    case EXCP_VIRQ:
1929        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1930            /* VIRQs are only taken when hypervized and non-secure.  */
1931            return false;
1932        }
1933        return !(env->daif & PSTATE_I);
1934    default:
1935        g_assert_not_reached();
1936    }
1937
1938    /* Use the target EL, current execution state and SCR/HCR settings to
1939     * determine whether the corresponding CPSR bit is used to mask the
1940     * interrupt.
1941     */
1942    if ((target_el > cur_el) && (target_el != 1)) {
1943        /* Exceptions targeting a higher EL may not be maskable */
1944        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1945            /* 64-bit masking rules are simple: exceptions to EL3
1946             * can't be masked, and exceptions to EL2 can only be
1947             * masked from Secure state. The HCR and SCR settings
1948             * don't affect the masking logic, only the interrupt routing.
1949             */
1950            if (target_el == 3 || !secure) {
1951                unmasked = 1;
1952            }
1953        } else {
1954            /* The old 32-bit-only environment has a more complicated
1955             * masking setup. HCR and SCR bits not only affect interrupt
1956             * routing but also change the behaviour of masking.
1957             */
1958            bool hcr, scr;
1959
1960            switch (excp_idx) {
1961            case EXCP_FIQ:
1962                /* If FIQs are routed to EL3 or EL2 then there are cases where
1963                 * we override the CPSR.F in determining if the exception is
1964                 * masked or not. If neither of these are set then we fall back
1965                 * to the CPSR.F setting otherwise we further assess the state
1966                 * below.
1967                 */
1968                hcr = (env->cp15.hcr_el2 & HCR_FMO);
1969                scr = (env->cp15.scr_el3 & SCR_FIQ);
1970
1971                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1972                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1973                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1974                 * when non-secure but only when FIQs are only routed to EL3.
1975                 */
1976                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1977                break;
1978            case EXCP_IRQ:
1979                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1980                 * we may override the CPSR.I masking when in non-secure state.
1981                 * The SCR.IRQ setting has already been taken into consideration
1982                 * when setting the target EL, so it does not have a further
1983                 * affect here.
1984                 */
1985                hcr = (env->cp15.hcr_el2 & HCR_IMO);
1986                scr = false;
1987                break;
1988            default:
1989                g_assert_not_reached();
1990            }
1991
1992            if ((scr || hcr) && !secure) {
1993                unmasked = 1;
1994            }
1995        }
1996    }
1997
1998    /* The PSTATE bits only mask the interrupt if we have not overriden the
1999     * ability above.
2000     */
2001    return unmasked || pstate_unmasked;
2002}
2003
2004#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
2005
2006#define cpu_signal_handler cpu_arm_signal_handler
2007#define cpu_list arm_cpu_list
2008
2009/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2010 *
2011 * If EL3 is 64-bit:
2012 *  + NonSecure EL1 & 0 stage 1
2013 *  + NonSecure EL1 & 0 stage 2
2014 *  + NonSecure EL2
2015 *  + Secure EL1 & EL0
2016 *  + Secure EL3
2017 * If EL3 is 32-bit:
2018 *  + NonSecure PL1 & 0 stage 1
2019 *  + NonSecure PL1 & 0 stage 2
2020 *  + NonSecure PL2
2021 *  + Secure PL0 & PL1
2022 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2023 *
2024 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2025 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2026 *     may differ in access permissions even if the VA->PA map is the same
2027 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2028 *     translation, which means that we have one mmu_idx that deals with two
2029 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2030 *     architecturally permitted]
2031 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2032 *     handling via the TLB. The only way to do a stage 1 translation without
2033 *     the immediate stage 2 translation is via the ATS or AT system insns,
2034 *     which can be slow-pathed and always do a page table walk.
2035 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2036 *     translation regimes, because they map reasonably well to each other
2037 *     and they can't both be active at the same time.
2038 * This gives us the following list of mmu_idx values:
2039 *
2040 * NS EL0 (aka NS PL0) stage 1+2
2041 * NS EL1 (aka NS PL1) stage 1+2
2042 * NS EL2 (aka NS PL2)
2043 * S EL3 (aka S PL1)
2044 * S EL0 (aka S PL0)
2045 * S EL1 (not used if EL3 is 32 bit)
2046 * NS EL0+1 stage 2
2047 *
2048 * (The last of these is an mmu_idx because we want to be able to use the TLB
2049 * for the accesses done as part of a stage 1 page table walk, rather than
2050 * having to walk the stage 2 page table over and over.)
2051 *
2052 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2053 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2054 * NS EL2 if we ever model a Cortex-R52).
2055 *
2056 * M profile CPUs are rather different as they do not have a true MMU.
2057 * They have the following different MMU indexes:
2058 *  User
2059 *  Privileged
2060 *  Execution priority negative (this is like privileged, but the
2061 *  MPU HFNMIENA bit means that it may have different access permission
2062 *  check results to normal privileged code, so can't share a TLB).
2063 *
2064 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2065 * are not quite the same -- different CPU types (most notably M profile
2066 * vs A/R profile) would like to use MMU indexes with different semantics,
2067 * but since we don't ever need to use all of those in a single CPU we
2068 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2069 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2070 * the same for any particular CPU.
2071 * Variables of type ARMMUIdx are always full values, and the core
2072 * index values are in variables of type 'int'.
2073 *
2074 * Our enumeration includes at the end some entries which are not "true"
2075 * mmu_idx values in that they don't have corresponding TLBs and are only
2076 * valid for doing slow path page table walks.
2077 *
2078 * The constant names here are patterned after the general style of the names
2079 * of the AT/ATS operations.
2080 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2081 */
2082#define ARM_MMU_IDX_A 0x10 /* A profile */
2083#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2084#define ARM_MMU_IDX_M 0x40 /* M profile */
2085
2086#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2087#define ARM_MMU_IDX_COREIDX_MASK 0x7
2088
2089typedef enum ARMMMUIdx {
2090    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2091    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2092    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2093    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2094    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2095    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2096    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2097    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2098    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2099    ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2100    /* Indexes below here don't have TLBs and are used only for AT system
2101     * instructions or for the first stage of an S12 page table walk.
2102     */
2103    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2104    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2105} ARMMMUIdx;
2106
2107/* Bit macros for the core-mmu-index values for each index,
2108 * for use when calling tlb_flush_by_mmuidx() and friends.
2109 */
2110typedef enum ARMMMUIdxBit {
2111    ARMMMUIdxBit_S12NSE0 = 1 << 0,
2112    ARMMMUIdxBit_S12NSE1 = 1 << 1,
2113    ARMMMUIdxBit_S1E2 = 1 << 2,
2114    ARMMMUIdxBit_S1E3 = 1 << 3,
2115    ARMMMUIdxBit_S1SE0 = 1 << 4,
2116    ARMMMUIdxBit_S1SE1 = 1 << 5,
2117    ARMMMUIdxBit_S2NS = 1 << 6,
2118    ARMMMUIdxBit_MUser = 1 << 0,
2119    ARMMMUIdxBit_MPriv = 1 << 1,
2120    ARMMMUIdxBit_MNegPri = 1 << 2,
2121} ARMMMUIdxBit;
2122
2123#define MMU_USER_IDX 0
2124
2125static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2126{
2127    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2128}
2129
2130static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2131{
2132    if (arm_feature(env, ARM_FEATURE_M)) {
2133        return mmu_idx | ARM_MMU_IDX_M;
2134    } else {
2135        return mmu_idx | ARM_MMU_IDX_A;
2136    }
2137}
2138
2139/* Return the exception level we're running at if this is our mmu_idx */
2140static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2141{
2142    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2143    case ARM_MMU_IDX_A:
2144        return mmu_idx & 3;
2145    case ARM_MMU_IDX_M:
2146        return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
2147    default:
2148        g_assert_not_reached();
2149    }
2150}
2151
2152/* Determine the current mmu_idx to use for normal loads/stores */
2153static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2154{
2155    int el = arm_current_el(env);
2156
2157    if (arm_feature(env, ARM_FEATURE_M)) {
2158        ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2159
2160        /* Execution priority is negative if FAULTMASK is set or
2161         * we're in a HardFault or NMI handler.
2162         */
2163        if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2164            || env->daif & PSTATE_F) {
2165            return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
2166        }
2167
2168        return arm_to_core_mmu_idx(mmu_idx);
2169    }
2170
2171    if (el < 2 && arm_is_secure_below_el3(env)) {
2172        return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2173    }
2174    return el;
2175}
2176
2177/* Indexes used when registering address spaces with cpu_address_space_init */
2178typedef enum ARMASIdx {
2179    ARMASIdx_NS = 0,
2180    ARMASIdx_S = 1,
2181} ARMASIdx;
2182
2183/* Return the Exception Level targeted by debug exceptions. */
2184static inline int arm_debug_target_el(CPUARMState *env)
2185{
2186    bool secure = arm_is_secure(env);
2187    bool route_to_el2 = false;
2188
2189    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2190        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2191                       env->cp15.mdcr_el2 & (1 << 8);
2192    }
2193
2194    if (route_to_el2) {
2195        return 2;
2196    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2197               !arm_el_is_aa64(env, 3) && secure) {
2198        return 3;
2199    } else {
2200        return 1;
2201    }
2202}
2203
2204static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2205{
2206    if (arm_is_secure(env)) {
2207        /* MDCR_EL3.SDD disables debug events from Secure state */
2208        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2209            || arm_current_el(env) == 3) {
2210            return false;
2211        }
2212    }
2213
2214    if (arm_current_el(env) == arm_debug_target_el(env)) {
2215        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2216            || (env->daif & PSTATE_D)) {
2217            return false;
2218        }
2219    }
2220    return true;
2221}
2222
2223static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2224{
2225    int el = arm_current_el(env);
2226
2227    if (el == 0 && arm_el_is_aa64(env, 1)) {
2228        return aa64_generate_debug_exceptions(env);
2229    }
2230
2231    if (arm_is_secure(env)) {
2232        int spd;
2233
2234        if (el == 0 && (env->cp15.sder & 1)) {
2235            /* SDER.SUIDEN means debug exceptions from Secure EL0
2236             * are always enabled. Otherwise they are controlled by
2237             * SDCR.SPD like those from other Secure ELs.
2238             */
2239            return true;
2240        }
2241
2242        spd = extract32(env->cp15.mdcr_el3, 14, 2);
2243        switch (spd) {
2244        case 1:
2245            /* SPD == 0b01 is reserved, but behaves as 0b00. */
2246        case 0:
2247            /* For 0b00 we return true if external secure invasive debug
2248             * is enabled. On real hardware this is controlled by external
2249             * signals to the core. QEMU always permits debug, and behaves
2250             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2251             */
2252            return true;
2253        case 2:
2254            return false;
2255        case 3:
2256            return true;
2257        }
2258    }
2259
2260    return el != 2;
2261}
2262
2263/* Return true if debugging exceptions are currently enabled.
2264 * This corresponds to what in ARM ARM pseudocode would be
2265 *    if UsingAArch32() then
2266 *        return AArch32.GenerateDebugExceptions()
2267 *    else
2268 *        return AArch64.GenerateDebugExceptions()
2269 * We choose to push the if() down into this function for clarity,
2270 * since the pseudocode has it at all callsites except for the one in
2271 * CheckSoftwareStep(), where it is elided because both branches would
2272 * always return the same value.
2273 *
2274 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2275 * don't yet implement those exception levels or their associated trap bits.
2276 */
2277static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2278{
2279    if (env->aarch64) {
2280        return aa64_generate_debug_exceptions(env);
2281    } else {
2282        return aa32_generate_debug_exceptions(env);
2283    }
2284}
2285
2286/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2287 * implicitly means this always returns false in pre-v8 CPUs.)
2288 */
2289static inline bool arm_singlestep_active(CPUARMState *env)
2290{
2291    return extract32(env->cp15.mdscr_el1, 0, 1)
2292        && arm_el_is_aa64(env, arm_debug_target_el(env))
2293        && arm_generate_debug_exceptions(env);
2294}
2295
2296static inline bool arm_sctlr_b(CPUARMState *env)
2297{
2298    return
2299        /* We need not implement SCTLR.ITD in user-mode emulation, so
2300         * let linux-user ignore the fact that it conflicts with SCTLR_B.
2301         * This lets people run BE32 binaries with "-cpu any".
2302         */
2303#ifndef CONFIG_USER_ONLY
2304        !arm_feature(env, ARM_FEATURE_V7) &&
2305#endif
2306        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2307}
2308
2309/* Return true if the processor is in big-endian mode. */
2310static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2311{
2312    int cur_el;
2313
2314    /* In 32bit endianness is determined by looking at CPSR's E bit */
2315    if (!is_a64(env)) {
2316        return
2317#ifdef CONFIG_USER_ONLY
2318            /* In system mode, BE32 is modelled in line with the
2319             * architecture (as word-invariant big-endianness), where loads
2320             * and stores are done little endian but from addresses which
2321             * are adjusted by XORing with the appropriate constant. So the
2322             * endianness to use for the raw data access is not affected by
2323             * SCTLR.B.
2324             * In user mode, however, we model BE32 as byte-invariant
2325             * big-endianness (because user-only code cannot tell the
2326             * difference), and so we need to use a data access endianness
2327             * that depends on SCTLR.B.
2328             */
2329            arm_sctlr_b(env) ||
2330#endif
2331                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2332    }
2333
2334    cur_el = arm_current_el(env);
2335
2336    if (cur_el == 0) {
2337        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2338    }
2339
2340    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2341}
2342
2343#include "exec/cpu-all.h"
2344
2345/* Bit usage in the TB flags field: bit 31 indicates whether we are
2346 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2347 * We put flags which are shared between 32 and 64 bit mode at the top
2348 * of the word, and flags which apply to only one mode at the bottom.
2349 */
2350#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2351#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2352#define ARM_TBFLAG_MMUIDX_SHIFT 28
2353#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2354#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2355#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2356#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2357#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2358/* Target EL if we take a floating-point-disabled exception */
2359#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2360#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2361
2362/* Bit usage when in AArch32 state: */
2363#define ARM_TBFLAG_THUMB_SHIFT      0
2364#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2365#define ARM_TBFLAG_VECLEN_SHIFT     1
2366#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2367#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2368#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2369#define ARM_TBFLAG_VFPEN_SHIFT      7
2370#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2371#define ARM_TBFLAG_CONDEXEC_SHIFT   8
2372#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2373#define ARM_TBFLAG_SCTLR_B_SHIFT    16
2374#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2375/* We store the bottom two bits of the CPAR as TB flags and handle
2376 * checks on the other bits at runtime
2377 */
2378#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2379#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2380/* Indicates whether cp register reads and writes by guest code should access
2381 * the secure or nonsecure bank of banked registers; note that this is not
2382 * the same thing as the current security state of the processor!
2383 */
2384#define ARM_TBFLAG_NS_SHIFT         19
2385#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2386#define ARM_TBFLAG_BE_DATA_SHIFT    20
2387#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2388/* For M profile only, Handler (ie not Thread) mode */
2389#define ARM_TBFLAG_HANDLER_SHIFT    21
2390#define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2391
2392/* Bit usage when in AArch64 state */
2393#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2394#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2395#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2396#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2397
2398/* some convenience accessor macros */
2399#define ARM_TBFLAG_AARCH64_STATE(F) \
2400    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2401#define ARM_TBFLAG_MMUIDX(F) \
2402    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2403#define ARM_TBFLAG_SS_ACTIVE(F) \
2404    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2405#define ARM_TBFLAG_PSTATE_SS(F) \
2406    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2407#define ARM_TBFLAG_FPEXC_EL(F) \
2408    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2409#define ARM_TBFLAG_THUMB(F) \
2410    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2411#define ARM_TBFLAG_VECLEN(F) \
2412    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2413#define ARM_TBFLAG_VECSTRIDE(F) \
2414    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2415#define ARM_TBFLAG_VFPEN(F) \
2416    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2417#define ARM_TBFLAG_CONDEXEC(F) \
2418    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2419#define ARM_TBFLAG_SCTLR_B(F) \
2420    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2421#define ARM_TBFLAG_XSCALE_CPAR(F) \
2422    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2423#define ARM_TBFLAG_NS(F) \
2424    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2425#define ARM_TBFLAG_BE_DATA(F) \
2426    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2427#define ARM_TBFLAG_HANDLER(F) \
2428    (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2429#define ARM_TBFLAG_TBI0(F) \
2430    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2431#define ARM_TBFLAG_TBI1(F) \
2432    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2433
2434static inline bool bswap_code(bool sctlr_b)
2435{
2436#ifdef CONFIG_USER_ONLY
2437    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2438     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2439     * would also end up as a mixed-endian mode with BE code, LE data.
2440     */
2441    return
2442#ifdef TARGET_WORDS_BIGENDIAN
2443        1 ^
2444#endif
2445        sctlr_b;
2446#else
2447    /* All code access in ARM is little endian, and there are no loaders
2448     * doing swaps that need to be reversed
2449     */
2450    return 0;
2451#endif
2452}
2453
2454/* Return the exception level to which FP-disabled exceptions should
2455 * be taken, or 0 if FP is enabled.
2456 */
2457static inline int fp_exception_el(CPUARMState *env)
2458{
2459    int fpen;
2460    int cur_el = arm_current_el(env);
2461
2462    /* CPACR and the CPTR registers don't exist before v6, so FP is
2463     * always accessible
2464     */
2465    if (!arm_feature(env, ARM_FEATURE_V6)) {
2466        return 0;
2467    }
2468
2469    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2470     * 0, 2 : trap EL0 and EL1/PL1 accesses
2471     * 1    : trap only EL0 accesses
2472     * 3    : trap no accesses
2473     */
2474    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2475    switch (fpen) {
2476    case 0:
2477    case 2:
2478        if (cur_el == 0 || cur_el == 1) {
2479            /* Trap to PL1, which might be EL1 or EL3 */
2480            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2481                return 3;
2482            }
2483            return 1;
2484        }
2485        if (cur_el == 3 && !is_a64(env)) {
2486            /* Secure PL1 running at EL3 */
2487            return 3;
2488        }
2489        break;
2490    case 1:
2491        if (cur_el == 0) {
2492            return 1;
2493        }
2494        break;
2495    case 3:
2496        break;
2497    }
2498
2499    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2500     * check because zero bits in the registers mean "don't trap".
2501     */
2502
2503    /* CPTR_EL2 : present in v7VE or v8 */
2504    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2505        && !arm_is_secure_below_el3(env)) {
2506        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2507        return 2;
2508    }
2509
2510    /* CPTR_EL3 : present in v8 */
2511    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2512        /* Trap all FP ops to EL3 */
2513        return 3;
2514    }
2515
2516    return 0;
2517}
2518
2519#ifdef CONFIG_USER_ONLY
2520static inline bool arm_cpu_bswap_data(CPUARMState *env)
2521{
2522    return
2523#ifdef TARGET_WORDS_BIGENDIAN
2524       1 ^
2525#endif
2526       arm_cpu_data_is_big_endian(env);
2527}
2528#endif
2529
2530#ifndef CONFIG_USER_ONLY
2531/**
2532 * arm_regime_tbi0:
2533 * @env: CPUARMState
2534 * @mmu_idx: MMU index indicating required translation regime
2535 *
2536 * Extracts the TBI0 value from the appropriate TCR for the current EL
2537 *
2538 * Returns: the TBI0 value.
2539 */
2540uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2541
2542/**
2543 * arm_regime_tbi1:
2544 * @env: CPUARMState
2545 * @mmu_idx: MMU index indicating required translation regime
2546 *
2547 * Extracts the TBI1 value from the appropriate TCR for the current EL
2548 *
2549 * Returns: the TBI1 value.
2550 */
2551uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2552#else
2553/* We can't handle tagged addresses properly in user-only mode */
2554static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2555{
2556    return 0;
2557}
2558
2559static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2560{
2561    return 0;
2562}
2563#endif
2564
2565static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2566                                        target_ulong *cs_base, uint32_t *flags)
2567{
2568    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2569    if (is_a64(env)) {
2570        *pc = env->pc;
2571        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2572        /* Get control bits for tagged addresses */
2573        *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2574        *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2575    } else {
2576        *pc = env->regs[15];
2577        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2578            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2579            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2580            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2581            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2582        if (!(access_secure_reg(env))) {
2583            *flags |= ARM_TBFLAG_NS_MASK;
2584        }
2585        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2586            || arm_el_is_aa64(env, 1)) {
2587            *flags |= ARM_TBFLAG_VFPEN_MASK;
2588        }
2589        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2590                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2591    }
2592
2593    *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2594
2595    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2596     * states defined in the ARM ARM for software singlestep:
2597     *  SS_ACTIVE   PSTATE.SS   State
2598     *     0            x       Inactive (the TB flag for SS is always 0)
2599     *     1            0       Active-pending
2600     *     1            1       Active-not-pending
2601     */
2602    if (arm_singlestep_active(env)) {
2603        *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2604        if (is_a64(env)) {
2605            if (env->pstate & PSTATE_SS) {
2606                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2607            }
2608        } else {
2609            if (env->uncached_cpsr & PSTATE_SS) {
2610                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2611            }
2612        }
2613    }
2614    if (arm_cpu_data_is_big_endian(env)) {
2615        *flags |= ARM_TBFLAG_BE_DATA_MASK;
2616    }
2617    *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2618
2619    if (env->v7m.exception != 0) {
2620        *flags |= ARM_TBFLAG_HANDLER_MASK;
2621    }
2622
2623    *cs_base = 0;
2624}
2625
2626enum {
2627    QEMU_PSCI_CONDUIT_DISABLED = 0,
2628    QEMU_PSCI_CONDUIT_SMC = 1,
2629    QEMU_PSCI_CONDUIT_HVC = 2,
2630};
2631
2632#ifndef CONFIG_USER_ONLY
2633/* Return the address space index to use for a memory access */
2634static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2635{
2636    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2637}
2638
2639/* Return the AddressSpace to use for a memory access
2640 * (which depends on whether the access is S or NS, and whether
2641 * the board gave us a separate AddressSpace for S accesses).
2642 */
2643static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2644{
2645    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2646}
2647#endif
2648
2649/**
2650 * arm_register_el_change_hook:
2651 * Register a hook function which will be called back whenever this
2652 * CPU changes exception level or mode. The hook function will be
2653 * passed a pointer to the ARMCPU and the opaque data pointer passed
2654 * to this function when the hook was registered.
2655 *
2656 * Note that we currently only support registering a single hook function,
2657 * and will assert if this function is called twice.
2658 * This facility is intended for the use of the GICv3 emulation.
2659 */
2660void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2661                                 void *opaque);
2662
2663/**
2664 * arm_get_el_change_hook_opaque:
2665 * Return the opaque data that will be used by the el_change_hook
2666 * for this CPU.
2667 */
2668static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2669{
2670    return cpu->el_change_hook_opaque;
2671}
2672
2673#endif
2674