qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63
  64/*
  65 * For AArch64, map a given EL to an index in the banked_spsr array.
  66 * Note that this mapping and the AArch32 mapping defined in bank_number()
  67 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
  68 * mandated mapping between each other.
  69 */
  70static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
  71{
  72    static const unsigned int map[4] = {
  73        [1] = BANK_SVC, /* EL1.  */
  74        [2] = BANK_HYP, /* EL2.  */
  75        [3] = BANK_MON, /* EL3.  */
  76    };
  77    assert(el >= 1 && el <= 3);
  78    return map[el];
  79}
  80
  81/* Map CPU modes onto saved register banks.  */
  82static inline int bank_number(int mode)
  83{
  84    switch (mode) {
  85    case ARM_CPU_MODE_USR:
  86    case ARM_CPU_MODE_SYS:
  87        return BANK_USRSYS;
  88    case ARM_CPU_MODE_SVC:
  89        return BANK_SVC;
  90    case ARM_CPU_MODE_ABT:
  91        return BANK_ABT;
  92    case ARM_CPU_MODE_UND:
  93        return BANK_UND;
  94    case ARM_CPU_MODE_IRQ:
  95        return BANK_IRQ;
  96    case ARM_CPU_MODE_FIQ:
  97        return BANK_FIQ;
  98    case ARM_CPU_MODE_HYP:
  99        return BANK_HYP;
 100    case ARM_CPU_MODE_MON:
 101        return BANK_MON;
 102    }
 103    g_assert_not_reached();
 104}
 105
 106void switch_mode(CPUARMState *, int);
 107void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 108void arm_translate_init(void);
 109
 110enum arm_fprounding {
 111    FPROUNDING_TIEEVEN,
 112    FPROUNDING_POSINF,
 113    FPROUNDING_NEGINF,
 114    FPROUNDING_ZERO,
 115    FPROUNDING_TIEAWAY,
 116    FPROUNDING_ODD
 117};
 118
 119int arm_rmode_to_sf(int rmode);
 120
 121static inline void aarch64_save_sp(CPUARMState *env, int el)
 122{
 123    if (env->pstate & PSTATE_SP) {
 124        env->sp_el[el] = env->xregs[31];
 125    } else {
 126        env->sp_el[0] = env->xregs[31];
 127    }
 128}
 129
 130static inline void aarch64_restore_sp(CPUARMState *env, int el)
 131{
 132    if (env->pstate & PSTATE_SP) {
 133        env->xregs[31] = env->sp_el[el];
 134    } else {
 135        env->xregs[31] = env->sp_el[0];
 136    }
 137}
 138
 139static inline void update_spsel(CPUARMState *env, uint32_t imm)
 140{
 141    unsigned int cur_el = arm_current_el(env);
 142    /* Update PSTATE SPSel bit; this requires us to update the
 143     * working stack pointer in xregs[31].
 144     */
 145    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 146        return;
 147    }
 148    aarch64_save_sp(env, cur_el);
 149    env->pstate = deposit32(env->pstate, 0, 1, imm);
 150
 151    /* We rely on illegal updates to SPsel from EL0 to get trapped
 152     * at translation time.
 153     */
 154    assert(cur_el >= 1 && cur_el <= 3);
 155    aarch64_restore_sp(env, cur_el);
 156}
 157
 158/*
 159 * arm_pamax
 160 * @cpu: ARMCPU
 161 *
 162 * Returns the implementation defined bit-width of physical addresses.
 163 * The ARMv8 reference manuals refer to this as PAMax().
 164 */
 165static inline unsigned int arm_pamax(ARMCPU *cpu)
 166{
 167    static const unsigned int pamax_map[] = {
 168        [0] = 32,
 169        [1] = 36,
 170        [2] = 40,
 171        [3] = 42,
 172        [4] = 44,
 173        [5] = 48,
 174    };
 175    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 176
 177    /* id_aa64mmfr0 is a read-only register so values outside of the
 178     * supported mappings can be considered an implementation error.  */
 179    assert(parange < ARRAY_SIZE(pamax_map));
 180    return pamax_map[parange];
 181}
 182
 183/* Return true if extended addresses are enabled.
 184 * This is always the case if our translation regime is 64 bit,
 185 * but depends on TTBCR.EAE for 32 bit.
 186 */
 187static inline bool extended_addresses_enabled(CPUARMState *env)
 188{
 189    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 190    return arm_el_is_aa64(env, 1) ||
 191           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 192}
 193
 194/* Valid Syndrome Register EC field values */
 195enum arm_exception_class {
 196    EC_UNCATEGORIZED          = 0x00,
 197    EC_WFX_TRAP               = 0x01,
 198    EC_CP15RTTRAP             = 0x03,
 199    EC_CP15RRTTRAP            = 0x04,
 200    EC_CP14RTTRAP             = 0x05,
 201    EC_CP14DTTRAP             = 0x06,
 202    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 203    EC_FPIDTRAP               = 0x08,
 204    EC_CP14RRTTRAP            = 0x0c,
 205    EC_ILLEGALSTATE           = 0x0e,
 206    EC_AA32_SVC               = 0x11,
 207    EC_AA32_HVC               = 0x12,
 208    EC_AA32_SMC               = 0x13,
 209    EC_AA64_SVC               = 0x15,
 210    EC_AA64_HVC               = 0x16,
 211    EC_AA64_SMC               = 0x17,
 212    EC_SYSTEMREGISTERTRAP     = 0x18,
 213    EC_INSNABORT              = 0x20,
 214    EC_INSNABORT_SAME_EL      = 0x21,
 215    EC_PCALIGNMENT            = 0x22,
 216    EC_DATAABORT              = 0x24,
 217    EC_DATAABORT_SAME_EL      = 0x25,
 218    EC_SPALIGNMENT            = 0x26,
 219    EC_AA32_FPTRAP            = 0x28,
 220    EC_AA64_FPTRAP            = 0x2c,
 221    EC_SERROR                 = 0x2f,
 222    EC_BREAKPOINT             = 0x30,
 223    EC_BREAKPOINT_SAME_EL     = 0x31,
 224    EC_SOFTWARESTEP           = 0x32,
 225    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 226    EC_WATCHPOINT             = 0x34,
 227    EC_WATCHPOINT_SAME_EL     = 0x35,
 228    EC_AA32_BKPT              = 0x38,
 229    EC_VECTORCATCH            = 0x3a,
 230    EC_AA64_BKPT              = 0x3c,
 231};
 232
 233#define ARM_EL_EC_SHIFT 26
 234#define ARM_EL_IL_SHIFT 25
 235#define ARM_EL_ISV_SHIFT 24
 236#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 237#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 238
 239/* Utility functions for constructing various kinds of syndrome value.
 240 * Note that in general we follow the AArch64 syndrome values; in a
 241 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 242 * mode differs slightly, so if we ever implemented Hyp mode then the
 243 * syndrome value would need some massaging on exception entry.
 244 * (One example of this is that AArch64 defaults to IL bit set for
 245 * exceptions which don't specifically indicate information about the
 246 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 247 */
 248static inline uint32_t syn_uncategorized(void)
 249{
 250    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 251}
 252
 253static inline uint32_t syn_aa64_svc(uint32_t imm16)
 254{
 255    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 256}
 257
 258static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 259{
 260    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 261}
 262
 263static inline uint32_t syn_aa64_smc(uint32_t imm16)
 264{
 265    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 266}
 267
 268static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 269{
 270    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 271        | (is_16bit ? 0 : ARM_EL_IL);
 272}
 273
 274static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 275{
 276    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 277}
 278
 279static inline uint32_t syn_aa32_smc(void)
 280{
 281    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 282}
 283
 284static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 285{
 286    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 287}
 288
 289static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 290{
 291    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 292        | (is_16bit ? 0 : ARM_EL_IL);
 293}
 294
 295static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 296                                           int crn, int crm, int rt,
 297                                           int isread)
 298{
 299    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 300        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 301        | (crm << 1) | isread;
 302}
 303
 304static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 305                                        int crn, int crm, int rt, int isread,
 306                                        bool is_16bit)
 307{
 308    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 309        | (is_16bit ? 0 : ARM_EL_IL)
 310        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 311        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 312}
 313
 314static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 315                                        int crn, int crm, int rt, int isread,
 316                                        bool is_16bit)
 317{
 318    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 319        | (is_16bit ? 0 : ARM_EL_IL)
 320        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 321        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 322}
 323
 324static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 325                                         int rt, int rt2, int isread,
 326                                         bool is_16bit)
 327{
 328    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 329        | (is_16bit ? 0 : ARM_EL_IL)
 330        | (cv << 24) | (cond << 20) | (opc1 << 16)
 331        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 332}
 333
 334static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 335                                         int rt, int rt2, int isread,
 336                                         bool is_16bit)
 337{
 338    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 339        | (is_16bit ? 0 : ARM_EL_IL)
 340        | (cv << 24) | (cond << 20) | (opc1 << 16)
 341        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 342}
 343
 344static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 345{
 346    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 347        | (is_16bit ? 0 : ARM_EL_IL)
 348        | (cv << 24) | (cond << 20);
 349}
 350
 351static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 352{
 353    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 354        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 355}
 356
 357static inline uint32_t syn_data_abort_no_iss(int same_el,
 358                                             int ea, int cm, int s1ptw,
 359                                             int wnr, int fsc)
 360{
 361    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 362           | ARM_EL_IL
 363           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 364}
 365
 366static inline uint32_t syn_data_abort_with_iss(int same_el,
 367                                               int sas, int sse, int srt,
 368                                               int sf, int ar,
 369                                               int ea, int cm, int s1ptw,
 370                                               int wnr, int fsc,
 371                                               bool is_16bit)
 372{
 373    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 374           | (is_16bit ? 0 : ARM_EL_IL)
 375           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 376           | (sf << 15) | (ar << 14)
 377           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 378}
 379
 380static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 381{
 382    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 383        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 384}
 385
 386static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 387{
 388    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 389        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 390}
 391
 392static inline uint32_t syn_breakpoint(int same_el)
 393{
 394    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 395        | ARM_EL_IL | 0x22;
 396}
 397
 398static inline uint32_t syn_wfx(int cv, int cond, int ti)
 399{
 400    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 401           (cv << 24) | (cond << 20) | ti;
 402}
 403
 404/* Update a QEMU watchpoint based on the information the guest has set in the
 405 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 406 */
 407void hw_watchpoint_update(ARMCPU *cpu, int n);
 408/* Update the QEMU watchpoints for every guest watchpoint. This does a
 409 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 410 * suitable for use after migration or on reset.
 411 */
 412void hw_watchpoint_update_all(ARMCPU *cpu);
 413/* Update a QEMU breakpoint based on the information the guest has set in the
 414 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 415 */
 416void hw_breakpoint_update(ARMCPU *cpu, int n);
 417/* Update the QEMU breakpoints for every guest breakpoint. This does a
 418 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 419 * suitable for use after migration or on reset.
 420 */
 421void hw_breakpoint_update_all(ARMCPU *cpu);
 422
 423/* Callback function for checking if a watchpoint should trigger. */
 424bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 425
 426/* Adjust addresses (in BE32 mode) before testing against watchpoint
 427 * addresses.
 428 */
 429vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 430
 431/* Callback function for when a watchpoint or breakpoint triggers. */
 432void arm_debug_excp_handler(CPUState *cs);
 433
 434#ifdef CONFIG_USER_ONLY
 435static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 436{
 437    return false;
 438}
 439#else
 440/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 441bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 442/* Actually handle a PSCI call */
 443void arm_handle_psci_call(ARMCPU *cpu);
 444#endif
 445
 446/**
 447 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 448 * @s2addr: Address that caused a fault at stage 2
 449 * @stage2: True if we faulted at stage 2
 450 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 451 */
 452typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 453struct ARMMMUFaultInfo {
 454    target_ulong s2addr;
 455    bool stage2;
 456    bool s1ptw;
 457};
 458
 459/* Do a page table walk and add page to TLB if possible */
 460bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
 461                  uint32_t *fsr, ARMMMUFaultInfo *fi);
 462
 463/* Return true if the stage 1 translation regime is using LPAE format page
 464 * tables */
 465bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 466
 467/* Raise a data fault alignment exception for the specified virtual address */
 468void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 469                                 MMUAccessType access_type,
 470                                 int mmu_idx, uintptr_t retaddr);
 471
 472/* Call the EL change hook if one has been registered */
 473static inline void arm_call_el_change_hook(ARMCPU *cpu)
 474{
 475    if (cpu->el_change_hook) {
 476        cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
 477    }
 478}
 479
 480#endif
 481