qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16#include "crypto/hash.h"
  17
  18/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  19 * array of unsigned longs, but HBitmap is also optimized to provide fast
  20 * iteration over set bits; going from one bit to the next is O(logB n)
  21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  22 * that the number of levels is in fact fixed.
  23 *
  24 * In order to do this, it stacks multiple bitmaps with progressively coarser
  25 * granularity; in all levels except the last, bit N is set iff the N-th
  26 * unsigned long is nonzero in the immediately next level.  When iteration
  27 * completes on the last level it can examine the 2nd-last level to quickly
  28 * skip entire words, and even do so recursively to skip blocks of 64 words or
  29 * powers thereof (32 on 32-bit machines).
  30 *
  31 * Given an index in the bitmap, it can be split in group of bits like
  32 * this (for the 64-bit case):
  33 *
  34 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  35 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  36 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  37 *
  38 * So it is easy to move up simply by shifting the index right by
  39 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  40 * similarly, and add the word index within the group.  Iteration uses
  41 * ffs (find first set bit) to find the next word to examine; this
  42 * operation can be done in constant time in most current architectures.
  43 *
  44 * Setting or clearing a range of m bits on all levels, the work to perform
  45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  46 *
  47 * When iterating on a bitmap, each bit (on any level) is only visited
  48 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  49 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  51 * cost of advancing from one bit to the next is usually constant (worst case
  52 * O(logB n) as in the non-amortized complexity).
  53 */
  54
  55struct HBitmap {
  56    /* Number of total bits in the bottom level.  */
  57    uint64_t size;
  58
  59    /* Number of set bits in the bottom level.  */
  60    uint64_t count;
  61
  62    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  63     * will actually represent a group of 2^G elements.  Each operation on a
  64     * range of bits first rounds the bits to determine which group they land
  65     * in, and then affect the entire page; iteration will only visit the first
  66     * bit of each group.  Here is an example of operations in a size-16,
  67     * granularity-1 HBitmap:
  68     *
  69     *    initial state            00000000
  70     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  71     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  72     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  73     *    reset(start=5, count=5)  00000000
  74     *
  75     * From an implementation point of view, when setting or resetting bits,
  76     * the bitmap will scale bit numbers right by this amount of bits.  When
  77     * iterating, the bitmap will scale bit numbers left by this amount of
  78     * bits.
  79     */
  80    int granularity;
  81
  82    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  83    HBitmap *meta;
  84
  85    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  86     * coarsest).  Each bit in level N represents a word in level N+1 that
  87     * has a set bit, except the last level where each bit represents the
  88     * actual bitmap.
  89     *
  90     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  91     * bitmap will still allocate HBITMAP_LEVELS arrays.
  92     */
  93    unsigned long *levels[HBITMAP_LEVELS];
  94
  95    /* The length of each levels[] array. */
  96    uint64_t sizes[HBITMAP_LEVELS];
  97};
  98
  99/* Advance hbi to the next nonzero word and return it.  hbi->pos
 100 * is updated.  Returns zero if we reach the end of the bitmap.
 101 */
 102unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 103{
 104    size_t pos = hbi->pos;
 105    const HBitmap *hb = hbi->hb;
 106    unsigned i = HBITMAP_LEVELS - 1;
 107
 108    unsigned long cur;
 109    do {
 110        i--;
 111        pos >>= BITS_PER_LEVEL;
 112        cur = hbi->cur[i] & hb->levels[i][pos];
 113    } while (cur == 0);
 114
 115    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 116     * bits in the level 0 bitmap; thus we can repurpose the most significant
 117     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 118     * that the above loop ends even without an explicit check on i.
 119     */
 120
 121    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 122        return 0;
 123    }
 124    for (; i < HBITMAP_LEVELS - 1; i++) {
 125        /* Shift back pos to the left, matching the right shifts above.
 126         * The index of this word's least significant set bit provides
 127         * the low-order bits.
 128         */
 129        assert(cur);
 130        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 131        hbi->cur[i] = cur & (cur - 1);
 132
 133        /* Set up next level for iteration.  */
 134        cur = hb->levels[i + 1][pos];
 135    }
 136
 137    hbi->pos = pos;
 138    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 139
 140    assert(cur);
 141    return cur;
 142}
 143
 144int64_t hbitmap_iter_next(HBitmapIter *hbi)
 145{
 146    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
 147            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
 148    int64_t item;
 149
 150    if (cur == 0) {
 151        cur = hbitmap_iter_skip_words(hbi);
 152        if (cur == 0) {
 153            return -1;
 154        }
 155    }
 156
 157    /* The next call will resume work from the next bit.  */
 158    hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
 159    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
 160
 161    return item << hbi->granularity;
 162}
 163
 164void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 165{
 166    unsigned i, bit;
 167    uint64_t pos;
 168
 169    hbi->hb = hb;
 170    pos = first >> hb->granularity;
 171    assert(pos < hb->size);
 172    hbi->pos = pos >> BITS_PER_LEVEL;
 173    hbi->granularity = hb->granularity;
 174
 175    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 176        bit = pos & (BITS_PER_LONG - 1);
 177        pos >>= BITS_PER_LEVEL;
 178
 179        /* Drop bits representing items before first.  */
 180        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 181
 182        /* We have already added level i+1, so the lowest set bit has
 183         * been processed.  Clear it.
 184         */
 185        if (i != HBITMAP_LEVELS - 1) {
 186            hbi->cur[i] &= ~(1UL << bit);
 187        }
 188    }
 189}
 190
 191bool hbitmap_empty(const HBitmap *hb)
 192{
 193    return hb->count == 0;
 194}
 195
 196int hbitmap_granularity(const HBitmap *hb)
 197{
 198    return hb->granularity;
 199}
 200
 201uint64_t hbitmap_count(const HBitmap *hb)
 202{
 203    return hb->count << hb->granularity;
 204}
 205
 206/* Count the number of set bits between start and end, not accounting for
 207 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 208 */
 209static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 210{
 211    HBitmapIter hbi;
 212    uint64_t count = 0;
 213    uint64_t end = last + 1;
 214    unsigned long cur;
 215    size_t pos;
 216
 217    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 218    for (;;) {
 219        pos = hbitmap_iter_next_word(&hbi, &cur);
 220        if (pos >= (end >> BITS_PER_LEVEL)) {
 221            break;
 222        }
 223        count += ctpopl(cur);
 224    }
 225
 226    if (pos == (end >> BITS_PER_LEVEL)) {
 227        /* Drop bits representing the END-th and subsequent items.  */
 228        int bit = end & (BITS_PER_LONG - 1);
 229        cur &= (1UL << bit) - 1;
 230        count += ctpopl(cur);
 231    }
 232
 233    return count;
 234}
 235
 236/* Setting starts at the last layer and propagates up if an element
 237 * changes.
 238 */
 239static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 240{
 241    unsigned long mask;
 242    unsigned long old;
 243
 244    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 245    assert(start <= last);
 246
 247    mask = 2UL << (last & (BITS_PER_LONG - 1));
 248    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 249    old = *elem;
 250    *elem |= mask;
 251    return old != *elem;
 252}
 253
 254/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 255 * Returns true if at least one bit is changed. */
 256static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 257                           uint64_t last)
 258{
 259    size_t pos = start >> BITS_PER_LEVEL;
 260    size_t lastpos = last >> BITS_PER_LEVEL;
 261    bool changed = false;
 262    size_t i;
 263
 264    i = pos;
 265    if (i < lastpos) {
 266        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 267        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 268        for (;;) {
 269            start = next;
 270            next += BITS_PER_LONG;
 271            if (++i == lastpos) {
 272                break;
 273            }
 274            changed |= (hb->levels[level][i] == 0);
 275            hb->levels[level][i] = ~0UL;
 276        }
 277    }
 278    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 279
 280    /* If there was any change in this layer, we may have to update
 281     * the one above.
 282     */
 283    if (level > 0 && changed) {
 284        hb_set_between(hb, level - 1, pos, lastpos);
 285    }
 286    return changed;
 287}
 288
 289void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 290{
 291    /* Compute range in the last layer.  */
 292    uint64_t first, n;
 293    uint64_t last = start + count - 1;
 294
 295    trace_hbitmap_set(hb, start, count,
 296                      start >> hb->granularity, last >> hb->granularity);
 297
 298    first = start >> hb->granularity;
 299    last >>= hb->granularity;
 300    assert(last < hb->size);
 301    n = last - first + 1;
 302
 303    hb->count += n - hb_count_between(hb, first, last);
 304    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 305        hb->meta) {
 306        hbitmap_set(hb->meta, start, count);
 307    }
 308}
 309
 310/* Resetting works the other way round: propagate up if the new
 311 * value is zero.
 312 */
 313static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 314{
 315    unsigned long mask;
 316    bool blanked;
 317
 318    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 319    assert(start <= last);
 320
 321    mask = 2UL << (last & (BITS_PER_LONG - 1));
 322    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 323    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 324    *elem &= ~mask;
 325    return blanked;
 326}
 327
 328/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 329 * Returns true if at least one bit is changed. */
 330static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 331                             uint64_t last)
 332{
 333    size_t pos = start >> BITS_PER_LEVEL;
 334    size_t lastpos = last >> BITS_PER_LEVEL;
 335    bool changed = false;
 336    size_t i;
 337
 338    i = pos;
 339    if (i < lastpos) {
 340        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 341
 342        /* Here we need a more complex test than when setting bits.  Even if
 343         * something was changed, we must not blank bits in the upper level
 344         * unless the lower-level word became entirely zero.  So, remove pos
 345         * from the upper-level range if bits remain set.
 346         */
 347        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 348            changed = true;
 349        } else {
 350            pos++;
 351        }
 352
 353        for (;;) {
 354            start = next;
 355            next += BITS_PER_LONG;
 356            if (++i == lastpos) {
 357                break;
 358            }
 359            changed |= (hb->levels[level][i] != 0);
 360            hb->levels[level][i] = 0UL;
 361        }
 362    }
 363
 364    /* Same as above, this time for lastpos.  */
 365    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 366        changed = true;
 367    } else {
 368        lastpos--;
 369    }
 370
 371    if (level > 0 && changed) {
 372        hb_reset_between(hb, level - 1, pos, lastpos);
 373    }
 374
 375    return changed;
 376
 377}
 378
 379void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 380{
 381    /* Compute range in the last layer.  */
 382    uint64_t first;
 383    uint64_t last = start + count - 1;
 384
 385    trace_hbitmap_reset(hb, start, count,
 386                        start >> hb->granularity, last >> hb->granularity);
 387
 388    first = start >> hb->granularity;
 389    last >>= hb->granularity;
 390    assert(last < hb->size);
 391
 392    hb->count -= hb_count_between(hb, first, last);
 393    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 394        hb->meta) {
 395        hbitmap_set(hb->meta, start, count);
 396    }
 397}
 398
 399void hbitmap_reset_all(HBitmap *hb)
 400{
 401    unsigned int i;
 402
 403    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 404    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 405        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 406    }
 407
 408    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 409    hb->count = 0;
 410}
 411
 412bool hbitmap_is_serializable(const HBitmap *hb)
 413{
 414    /* Every serialized chunk must be aligned to 64 bits so that endianness
 415     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
 416     * We have hbitmap_serialization_granularity() which converts this
 417     * alignment requirement from bitmap bits to items covered (e.g. sectors).
 418     * That value is:
 419     *    64 << hb->granularity
 420     * Since this value must not exceed UINT64_MAX, hb->granularity must be
 421     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
 422     *
 423     * In order for hbitmap_serialization_granularity() to always return a
 424     * meaningful value, bitmaps that are to be serialized must have a
 425     * granularity of less than 58. */
 426
 427    return hb->granularity < 58;
 428}
 429
 430bool hbitmap_get(const HBitmap *hb, uint64_t item)
 431{
 432    /* Compute position and bit in the last layer.  */
 433    uint64_t pos = item >> hb->granularity;
 434    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 435    assert(pos < hb->size);
 436
 437    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 438}
 439
 440uint64_t hbitmap_serialization_granularity(const HBitmap *hb)
 441{
 442    assert(hbitmap_is_serializable(hb));
 443
 444    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 445     * hosts. */
 446    return UINT64_C(64) << hb->granularity;
 447}
 448
 449/* Start should be aligned to serialization granularity, chunk size should be
 450 * aligned to serialization granularity too, except for last chunk.
 451 */
 452static void serialization_chunk(const HBitmap *hb,
 453                                uint64_t start, uint64_t count,
 454                                unsigned long **first_el, uint64_t *el_count)
 455{
 456    uint64_t last = start + count - 1;
 457    uint64_t gran = hbitmap_serialization_granularity(hb);
 458
 459    assert((start & (gran - 1)) == 0);
 460    assert((last >> hb->granularity) < hb->size);
 461    if ((last >> hb->granularity) != hb->size - 1) {
 462        assert((count & (gran - 1)) == 0);
 463    }
 464
 465    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 466    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 467
 468    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 469    *el_count = last - start + 1;
 470}
 471
 472uint64_t hbitmap_serialization_size(const HBitmap *hb,
 473                                    uint64_t start, uint64_t count)
 474{
 475    uint64_t el_count;
 476    unsigned long *cur;
 477
 478    if (!count) {
 479        return 0;
 480    }
 481    serialization_chunk(hb, start, count, &cur, &el_count);
 482
 483    return el_count * sizeof(unsigned long);
 484}
 485
 486void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 487                            uint64_t start, uint64_t count)
 488{
 489    uint64_t el_count;
 490    unsigned long *cur, *end;
 491
 492    if (!count) {
 493        return;
 494    }
 495    serialization_chunk(hb, start, count, &cur, &el_count);
 496    end = cur + el_count;
 497
 498    while (cur != end) {
 499        unsigned long el =
 500            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 501
 502        memcpy(buf, &el, sizeof(el));
 503        buf += sizeof(el);
 504        cur++;
 505    }
 506}
 507
 508void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 509                              uint64_t start, uint64_t count,
 510                              bool finish)
 511{
 512    uint64_t el_count;
 513    unsigned long *cur, *end;
 514
 515    if (!count) {
 516        return;
 517    }
 518    serialization_chunk(hb, start, count, &cur, &el_count);
 519    end = cur + el_count;
 520
 521    while (cur != end) {
 522        memcpy(cur, buf, sizeof(*cur));
 523
 524        if (BITS_PER_LONG == 32) {
 525            le32_to_cpus((uint32_t *)cur);
 526        } else {
 527            le64_to_cpus((uint64_t *)cur);
 528        }
 529
 530        buf += sizeof(unsigned long);
 531        cur++;
 532    }
 533    if (finish) {
 534        hbitmap_deserialize_finish(hb);
 535    }
 536}
 537
 538void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 539                                bool finish)
 540{
 541    uint64_t el_count;
 542    unsigned long *first;
 543
 544    if (!count) {
 545        return;
 546    }
 547    serialization_chunk(hb, start, count, &first, &el_count);
 548
 549    memset(first, 0, el_count * sizeof(unsigned long));
 550    if (finish) {
 551        hbitmap_deserialize_finish(hb);
 552    }
 553}
 554
 555void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
 556                              bool finish)
 557{
 558    uint64_t el_count;
 559    unsigned long *first;
 560
 561    if (!count) {
 562        return;
 563    }
 564    serialization_chunk(hb, start, count, &first, &el_count);
 565
 566    memset(first, 0xff, el_count * sizeof(unsigned long));
 567    if (finish) {
 568        hbitmap_deserialize_finish(hb);
 569    }
 570}
 571
 572void hbitmap_deserialize_finish(HBitmap *bitmap)
 573{
 574    int64_t i, size, prev_size;
 575    int lev;
 576
 577    /* restore levels starting from penultimate to zero level, assuming
 578     * that the last level is ok */
 579    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 580    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 581        prev_size = size;
 582        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 583        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 584
 585        for (i = 0; i < prev_size; ++i) {
 586            if (bitmap->levels[lev + 1][i]) {
 587                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 588                    1UL << (i & (BITS_PER_LONG - 1));
 589            }
 590        }
 591    }
 592
 593    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 594}
 595
 596void hbitmap_free(HBitmap *hb)
 597{
 598    unsigned i;
 599    assert(!hb->meta);
 600    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 601        g_free(hb->levels[i]);
 602    }
 603    g_free(hb);
 604}
 605
 606HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 607{
 608    HBitmap *hb = g_new0(struct HBitmap, 1);
 609    unsigned i;
 610
 611    assert(granularity >= 0 && granularity < 64);
 612    size = (size + (1ULL << granularity) - 1) >> granularity;
 613    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 614
 615    hb->size = size;
 616    hb->granularity = granularity;
 617    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 618        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 619        hb->sizes[i] = size;
 620        hb->levels[i] = g_new0(unsigned long, size);
 621    }
 622
 623    /* We necessarily have free bits in level 0 due to the definition
 624     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 625     * hbitmap_iter_skip_words.
 626     */
 627    assert(size == 1);
 628    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 629    return hb;
 630}
 631
 632void hbitmap_truncate(HBitmap *hb, uint64_t size)
 633{
 634    bool shrink;
 635    unsigned i;
 636    uint64_t num_elements = size;
 637    uint64_t old;
 638
 639    /* Size comes in as logical elements, adjust for granularity. */
 640    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 641    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 642    shrink = size < hb->size;
 643
 644    /* bit sizes are identical; nothing to do. */
 645    if (size == hb->size) {
 646        return;
 647    }
 648
 649    /* If we're losing bits, let's clear those bits before we invalidate all of
 650     * our invariants. This helps keep the bitcount consistent, and will prevent
 651     * us from carrying around garbage bits beyond the end of the map.
 652     */
 653    if (shrink) {
 654        /* Don't clear partial granularity groups;
 655         * start at the first full one. */
 656        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 657        uint64_t fix_count = (hb->size << hb->granularity) - start;
 658
 659        assert(fix_count);
 660        hbitmap_reset(hb, start, fix_count);
 661    }
 662
 663    hb->size = size;
 664    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 665        size = MAX(BITS_TO_LONGS(size), 1);
 666        if (hb->sizes[i] == size) {
 667            break;
 668        }
 669        old = hb->sizes[i];
 670        hb->sizes[i] = size;
 671        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 672        if (!shrink) {
 673            memset(&hb->levels[i][old], 0x00,
 674                   (size - old) * sizeof(*hb->levels[i]));
 675        }
 676    }
 677    if (hb->meta) {
 678        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 679    }
 680}
 681
 682
 683/**
 684 * Given HBitmaps A and B, let A := A (BITOR) B.
 685 * Bitmap B will not be modified.
 686 *
 687 * @return true if the merge was successful,
 688 *         false if it was not attempted.
 689 */
 690bool hbitmap_merge(HBitmap *a, const HBitmap *b)
 691{
 692    int i;
 693    uint64_t j;
 694
 695    if ((a->size != b->size) || (a->granularity != b->granularity)) {
 696        return false;
 697    }
 698
 699    if (hbitmap_count(b) == 0) {
 700        return true;
 701    }
 702
 703    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 704     * It may be possible to improve running times for sparsely populated maps
 705     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 706     */
 707    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 708        for (j = 0; j < a->sizes[i]; j++) {
 709            a->levels[i][j] |= b->levels[i][j];
 710        }
 711    }
 712
 713    return true;
 714}
 715
 716HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
 717{
 718    assert(!(chunk_size & (chunk_size - 1)));
 719    assert(!hb->meta);
 720    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
 721                             hb->granularity + ctz32(chunk_size));
 722    return hb->meta;
 723}
 724
 725void hbitmap_free_meta(HBitmap *hb)
 726{
 727    assert(hb->meta);
 728    hbitmap_free(hb->meta);
 729    hb->meta = NULL;
 730}
 731
 732char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
 733{
 734    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
 735    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
 736    char *hash = NULL;
 737    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
 738
 739    return hash;
 740}
 741