qemu/hw/xtensa/xtfpga.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qapi/error.h"
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "sysemu/sysemu.h"
  33#include "hw/boards.h"
  34#include "hw/loader.h"
  35#include "elf.h"
  36#include "exec/memory.h"
  37#include "exec/address-spaces.h"
  38#include "hw/char/serial.h"
  39#include "net/net.h"
  40#include "hw/sysbus.h"
  41#include "hw/block/flash.h"
  42#include "sysemu/block-backend.h"
  43#include "chardev/char.h"
  44#include "sysemu/device_tree.h"
  45#include "qemu/error-report.h"
  46#include "bootparam.h"
  47
  48typedef struct LxBoardDesc {
  49    hwaddr flash_base;
  50    size_t flash_size;
  51    size_t flash_boot_base;
  52    size_t flash_sector_size;
  53    size_t sram_size;
  54} LxBoardDesc;
  55
  56typedef struct Lx60FpgaState {
  57    MemoryRegion iomem;
  58    uint32_t leds;
  59    uint32_t switches;
  60} Lx60FpgaState;
  61
  62static void lx60_fpga_reset(void *opaque)
  63{
  64    Lx60FpgaState *s = opaque;
  65
  66    s->leds = 0;
  67    s->switches = 0;
  68}
  69
  70static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
  71        unsigned size)
  72{
  73    Lx60FpgaState *s = opaque;
  74
  75    switch (addr) {
  76    case 0x0: /*build date code*/
  77        return 0x09272011;
  78
  79    case 0x4: /*processor clock frequency, Hz*/
  80        return 10000000;
  81
  82    case 0x8: /*LEDs (off = 0, on = 1)*/
  83        return s->leds;
  84
  85    case 0xc: /*DIP switches (off = 0, on = 1)*/
  86        return s->switches;
  87    }
  88    return 0;
  89}
  90
  91static void lx60_fpga_write(void *opaque, hwaddr addr,
  92        uint64_t val, unsigned size)
  93{
  94    Lx60FpgaState *s = opaque;
  95
  96    switch (addr) {
  97    case 0x8: /*LEDs (off = 0, on = 1)*/
  98        s->leds = val;
  99        break;
 100
 101    case 0x10: /*board reset*/
 102        if (val == 0xdead) {
 103            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 104        }
 105        break;
 106    }
 107}
 108
 109static const MemoryRegionOps lx60_fpga_ops = {
 110    .read = lx60_fpga_read,
 111    .write = lx60_fpga_write,
 112    .endianness = DEVICE_NATIVE_ENDIAN,
 113};
 114
 115static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
 116        hwaddr base)
 117{
 118    Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
 119
 120    memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
 121            "lx60.fpga", 0x10000);
 122    memory_region_add_subregion(address_space, base, &s->iomem);
 123    lx60_fpga_reset(s);
 124    qemu_register_reset(lx60_fpga_reset, s);
 125    return s;
 126}
 127
 128static void lx60_net_init(MemoryRegion *address_space,
 129        hwaddr base,
 130        hwaddr descriptors,
 131        hwaddr buffers,
 132        qemu_irq irq, NICInfo *nd)
 133{
 134    DeviceState *dev;
 135    SysBusDevice *s;
 136    MemoryRegion *ram;
 137
 138    dev = qdev_create(NULL, "open_eth");
 139    qdev_set_nic_properties(dev, nd);
 140    qdev_init_nofail(dev);
 141
 142    s = SYS_BUS_DEVICE(dev);
 143    sysbus_connect_irq(s, 0, irq);
 144    memory_region_add_subregion(address_space, base,
 145            sysbus_mmio_get_region(s, 0));
 146    memory_region_add_subregion(address_space, descriptors,
 147            sysbus_mmio_get_region(s, 1));
 148
 149    ram = g_malloc(sizeof(*ram));
 150    memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16384,
 151                           &error_fatal);
 152    vmstate_register_ram_global(ram);
 153    memory_region_add_subregion(address_space, buffers, ram);
 154}
 155
 156static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
 157                                   const LxBoardDesc *board,
 158                                   DriveInfo *dinfo, int be)
 159{
 160    SysBusDevice *s;
 161    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 162
 163    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 164                        &error_abort);
 165    qdev_prop_set_uint32(dev, "num-blocks",
 166                         board->flash_size / board->flash_sector_size);
 167    qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
 168    qdev_prop_set_uint8(dev, "width", 2);
 169    qdev_prop_set_bit(dev, "big-endian", be);
 170    qdev_prop_set_string(dev, "name", "lx60.io.flash");
 171    qdev_init_nofail(dev);
 172    s = SYS_BUS_DEVICE(dev);
 173    memory_region_add_subregion(address_space, board->flash_base,
 174                                sysbus_mmio_get_region(s, 0));
 175    return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
 176}
 177
 178static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
 179{
 180    XtensaCPU *cpu = opaque;
 181
 182    return cpu_get_phys_page_debug(CPU(cpu), addr);
 183}
 184
 185static void lx60_reset(void *opaque)
 186{
 187    XtensaCPU *cpu = opaque;
 188
 189    cpu_reset(CPU(cpu));
 190}
 191
 192static uint64_t lx60_io_read(void *opaque, hwaddr addr,
 193        unsigned size)
 194{
 195    return 0;
 196}
 197
 198static void lx60_io_write(void *opaque, hwaddr addr,
 199        uint64_t val, unsigned size)
 200{
 201}
 202
 203static const MemoryRegionOps lx60_io_ops = {
 204    .read = lx60_io_read,
 205    .write = lx60_io_write,
 206    .endianness = DEVICE_NATIVE_ENDIAN,
 207};
 208
 209static void lx_init(const LxBoardDesc *board, MachineState *machine)
 210{
 211#ifdef TARGET_WORDS_BIGENDIAN
 212    int be = 1;
 213#else
 214    int be = 0;
 215#endif
 216    MemoryRegion *system_memory = get_system_memory();
 217    XtensaCPU *cpu = NULL;
 218    CPUXtensaState *env = NULL;
 219    MemoryRegion *ram, *rom, *system_io;
 220    DriveInfo *dinfo;
 221    pflash_t *flash = NULL;
 222    QemuOpts *machine_opts = qemu_get_machine_opts();
 223    const char *cpu_model = machine->cpu_model;
 224    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
 225    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
 226    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
 227    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
 228    int n;
 229
 230    if (!cpu_model) {
 231        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
 232    }
 233
 234    for (n = 0; n < smp_cpus; n++) {
 235        cpu = cpu_xtensa_init(cpu_model);
 236        if (cpu == NULL) {
 237            error_report("unable to find CPU definition '%s'",
 238                         cpu_model);
 239            exit(EXIT_FAILURE);
 240        }
 241        env = &cpu->env;
 242
 243        env->sregs[PRID] = n;
 244        qemu_register_reset(lx60_reset, cpu);
 245        /* Need MMU initialized prior to ELF loading,
 246         * so that ELF gets loaded into virtual addresses
 247         */
 248        cpu_reset(CPU(cpu));
 249    }
 250
 251    ram = g_malloc(sizeof(*ram));
 252    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
 253                           &error_fatal);
 254    memory_region_add_subregion(system_memory, 0, ram);
 255
 256    system_io = g_malloc(sizeof(*system_io));
 257    memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
 258                          224 * 1024 * 1024);
 259    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
 260    lx60_fpga_init(system_io, 0x0d020000);
 261    if (nd_table[0].used) {
 262        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
 263                xtensa_get_extint(env, 1), nd_table);
 264    }
 265
 266    if (!serial_hds[0]) {
 267        serial_hds[0] = qemu_chr_new("serial0", "null");
 268    }
 269
 270    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
 271            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
 272
 273    dinfo = drive_get(IF_PFLASH, 0, 0);
 274    if (dinfo) {
 275        flash = xtfpga_flash_init(system_io, board, dinfo, be);
 276    }
 277
 278    /* Use presence of kernel file name as 'boot from SRAM' switch. */
 279    if (kernel_filename) {
 280        uint32_t entry_point = env->pc;
 281        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
 282        uint32_t tagptr = 0xfe000000 + board->sram_size;
 283        uint32_t cur_tagptr;
 284        BpMemInfo memory_location = {
 285            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
 286            .start = tswap32(0),
 287            .end = tswap32(machine->ram_size),
 288        };
 289        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
 290            machine->ram_size : 0x08000000;
 291        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
 292
 293        rom = g_malloc(sizeof(*rom));
 294        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
 295                               &error_fatal);
 296        memory_region_add_subregion(system_memory, 0xfe000000, rom);
 297
 298        if (kernel_cmdline) {
 299            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
 300        }
 301        if (dtb_filename) {
 302            bp_size += get_tag_size(sizeof(uint32_t));
 303        }
 304        if (initrd_filename) {
 305            bp_size += get_tag_size(sizeof(BpMemInfo));
 306        }
 307
 308        /* Put kernel bootparameters to the end of that SRAM */
 309        tagptr = (tagptr - bp_size) & ~0xff;
 310        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
 311        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
 312                             sizeof(memory_location), &memory_location);
 313
 314        if (kernel_cmdline) {
 315            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
 316                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
 317        }
 318#ifdef CONFIG_FDT
 319        if (dtb_filename) {
 320            int fdt_size;
 321            void *fdt = load_device_tree(dtb_filename, &fdt_size);
 322            uint32_t dtb_addr = tswap32(cur_lowmem);
 323
 324            if (!fdt) {
 325                error_report("could not load DTB '%s'", dtb_filename);
 326                exit(EXIT_FAILURE);
 327            }
 328
 329            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
 330            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
 331                                 sizeof(dtb_addr), &dtb_addr);
 332            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
 333        }
 334#else
 335        if (dtb_filename) {
 336            error_report("could not load DTB '%s': "
 337                         "FDT support is not configured in QEMU",
 338                         dtb_filename);
 339            exit(EXIT_FAILURE);
 340        }
 341#endif
 342        if (initrd_filename) {
 343            BpMemInfo initrd_location = { 0 };
 344            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
 345                                           lowmem_end - cur_lowmem);
 346
 347            if (initrd_size < 0) {
 348                initrd_size = load_image_targphys(initrd_filename,
 349                                                  cur_lowmem,
 350                                                  lowmem_end - cur_lowmem);
 351            }
 352            if (initrd_size < 0) {
 353                error_report("could not load initrd '%s'", initrd_filename);
 354                exit(EXIT_FAILURE);
 355            }
 356            initrd_location.start = tswap32(cur_lowmem);
 357            initrd_location.end = tswap32(cur_lowmem + initrd_size);
 358            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
 359                                 sizeof(initrd_location), &initrd_location);
 360            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
 361        }
 362        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
 363        env->regs[2] = tagptr;
 364
 365        uint64_t elf_entry;
 366        uint64_t elf_lowaddr;
 367        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
 368                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
 369        if (success > 0) {
 370            entry_point = elf_entry;
 371        } else {
 372            hwaddr ep;
 373            int is_linux;
 374            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
 375                                  translate_phys_addr, cpu);
 376            if (success > 0 && is_linux) {
 377                entry_point = ep;
 378            } else {
 379                error_report("could not load kernel '%s'",
 380                             kernel_filename);
 381                exit(EXIT_FAILURE);
 382            }
 383        }
 384        if (entry_point != env->pc) {
 385            static const uint8_t jx_a0[] = {
 386#ifdef TARGET_WORDS_BIGENDIAN
 387                0x0a, 0, 0,
 388#else
 389                0xa0, 0, 0,
 390#endif
 391            };
 392            env->regs[0] = entry_point;
 393            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
 394        }
 395    } else {
 396        if (flash) {
 397            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
 398            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
 399
 400            memory_region_init_alias(flash_io, NULL, "lx60.flash",
 401                    flash_mr, board->flash_boot_base,
 402                    board->flash_size - board->flash_boot_base < 0x02000000 ?
 403                    board->flash_size - board->flash_boot_base : 0x02000000);
 404            memory_region_add_subregion(system_memory, 0xfe000000,
 405                    flash_io);
 406        }
 407    }
 408}
 409
 410static void xtensa_lx60_init(MachineState *machine)
 411{
 412    static const LxBoardDesc lx60_board = {
 413        .flash_base = 0x08000000,
 414        .flash_size = 0x00400000,
 415        .flash_sector_size = 0x10000,
 416        .sram_size = 0x20000,
 417    };
 418    lx_init(&lx60_board, machine);
 419}
 420
 421static void xtensa_lx200_init(MachineState *machine)
 422{
 423    static const LxBoardDesc lx200_board = {
 424        .flash_base = 0x08000000,
 425        .flash_size = 0x01000000,
 426        .flash_sector_size = 0x20000,
 427        .sram_size = 0x2000000,
 428    };
 429    lx_init(&lx200_board, machine);
 430}
 431
 432static void xtensa_ml605_init(MachineState *machine)
 433{
 434    static const LxBoardDesc ml605_board = {
 435        .flash_base = 0x08000000,
 436        .flash_size = 0x01000000,
 437        .flash_sector_size = 0x20000,
 438        .sram_size = 0x2000000,
 439    };
 440    lx_init(&ml605_board, machine);
 441}
 442
 443static void xtensa_kc705_init(MachineState *machine)
 444{
 445    static const LxBoardDesc kc705_board = {
 446        .flash_base = 0x00000000,
 447        .flash_size = 0x08000000,
 448        .flash_boot_base = 0x06000000,
 449        .flash_sector_size = 0x20000,
 450        .sram_size = 0x2000000,
 451    };
 452    lx_init(&kc705_board, machine);
 453}
 454
 455static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
 456{
 457    MachineClass *mc = MACHINE_CLASS(oc);
 458
 459    mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 460    mc->init = xtensa_lx60_init;
 461    mc->max_cpus = 4;
 462}
 463
 464static const TypeInfo xtensa_lx60_type = {
 465    .name = MACHINE_TYPE_NAME("lx60"),
 466    .parent = TYPE_MACHINE,
 467    .class_init = xtensa_lx60_class_init,
 468};
 469
 470static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
 471{
 472    MachineClass *mc = MACHINE_CLASS(oc);
 473
 474    mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 475    mc->init = xtensa_lx200_init;
 476    mc->max_cpus = 4;
 477}
 478
 479static const TypeInfo xtensa_lx200_type = {
 480    .name = MACHINE_TYPE_NAME("lx200"),
 481    .parent = TYPE_MACHINE,
 482    .class_init = xtensa_lx200_class_init,
 483};
 484
 485static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
 486{
 487    MachineClass *mc = MACHINE_CLASS(oc);
 488
 489    mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 490    mc->init = xtensa_ml605_init;
 491    mc->max_cpus = 4;
 492}
 493
 494static const TypeInfo xtensa_ml605_type = {
 495    .name = MACHINE_TYPE_NAME("ml605"),
 496    .parent = TYPE_MACHINE,
 497    .class_init = xtensa_ml605_class_init,
 498};
 499
 500static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
 501{
 502    MachineClass *mc = MACHINE_CLASS(oc);
 503
 504    mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 505    mc->init = xtensa_kc705_init;
 506    mc->max_cpus = 4;
 507}
 508
 509static const TypeInfo xtensa_kc705_type = {
 510    .name = MACHINE_TYPE_NAME("kc705"),
 511    .parent = TYPE_MACHINE,
 512    .class_init = xtensa_kc705_class_init,
 513};
 514
 515static void xtensa_lx_machines_init(void)
 516{
 517    type_register_static(&xtensa_lx60_type);
 518    type_register_static(&xtensa_lx200_type);
 519    type_register_static(&xtensa_ml605_type);
 520    type_register_static(&xtensa_kc705_type);
 521}
 522
 523type_init(xtensa_lx_machines_init)
 524