qemu/include/qemu/timer.h
<<
>>
Prefs
   1#ifndef QEMU_TIMER_H
   2#define QEMU_TIMER_H
   3
   4#include "qemu-common.h"
   5#include "qemu/notify.h"
   6#include "qemu/host-utils.h"
   7
   8#define NANOSECONDS_PER_SECOND 1000000000LL
   9
  10/* timers */
  11
  12#define SCALE_MS 1000000
  13#define SCALE_US 1000
  14#define SCALE_NS 1
  15
  16/**
  17 * QEMUClockType:
  18 *
  19 * The following clock types are available:
  20 *
  21 * @QEMU_CLOCK_REALTIME: Real time clock
  22 *
  23 * The real time clock should be used only for stuff which does not
  24 * change the virtual machine state, as it runs even if the virtual
  25 * machine is stopped.
  26 *
  27 * @QEMU_CLOCK_VIRTUAL: virtual clock
  28 *
  29 * The virtual clock only runs during the emulation. It stops
  30 * when the virtual machine is stopped.
  31 *
  32 * @QEMU_CLOCK_HOST: host clock
  33 *
  34 * The host clock should be used for device models that emulate accurate
  35 * real time sources. It will continue to run when the virtual machine
  36 * is suspended, and it will reflect system time changes the host may
  37 * undergo (e.g. due to NTP).
  38 *
  39 * @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
  40 *
  41 * Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
  42 * In icount mode, this clock counts nanoseconds while the virtual
  43 * machine is running.  It is used to increase @QEMU_CLOCK_VIRTUAL
  44 * while the CPUs are sleeping and thus not executing instructions.
  45 */
  46
  47typedef enum {
  48    QEMU_CLOCK_REALTIME = 0,
  49    QEMU_CLOCK_VIRTUAL = 1,
  50    QEMU_CLOCK_HOST = 2,
  51    QEMU_CLOCK_VIRTUAL_RT = 3,
  52    QEMU_CLOCK_MAX
  53} QEMUClockType;
  54
  55typedef struct QEMUTimerList QEMUTimerList;
  56
  57struct QEMUTimerListGroup {
  58    QEMUTimerList *tl[QEMU_CLOCK_MAX];
  59};
  60
  61typedef void QEMUTimerCB(void *opaque);
  62typedef void QEMUTimerListNotifyCB(void *opaque, QEMUClockType type);
  63
  64struct QEMUTimer {
  65    int64_t expire_time;        /* in nanoseconds */
  66    QEMUTimerList *timer_list;
  67    QEMUTimerCB *cb;
  68    void *opaque;
  69    QEMUTimer *next;
  70    int scale;
  71};
  72
  73extern QEMUTimerListGroup main_loop_tlg;
  74
  75/*
  76 * qemu_clock_get_ns;
  77 * @type: the clock type
  78 *
  79 * Get the nanosecond value of a clock with
  80 * type @type
  81 *
  82 * Returns: the clock value in nanoseconds
  83 */
  84int64_t qemu_clock_get_ns(QEMUClockType type);
  85
  86/**
  87 * qemu_clock_get_ms;
  88 * @type: the clock type
  89 *
  90 * Get the millisecond value of a clock with
  91 * type @type
  92 *
  93 * Returns: the clock value in milliseconds
  94 */
  95static inline int64_t qemu_clock_get_ms(QEMUClockType type)
  96{
  97    return qemu_clock_get_ns(type) / SCALE_MS;
  98}
  99
 100/**
 101 * qemu_clock_get_us;
 102 * @type: the clock type
 103 *
 104 * Get the microsecond value of a clock with
 105 * type @type
 106 *
 107 * Returns: the clock value in microseconds
 108 */
 109static inline int64_t qemu_clock_get_us(QEMUClockType type)
 110{
 111    return qemu_clock_get_ns(type) / SCALE_US;
 112}
 113
 114/**
 115 * qemu_clock_has_timers:
 116 * @type: the clock type
 117 *
 118 * Determines whether a clock's default timer list
 119 * has timers attached
 120 *
 121 * Note that this function should not be used when other threads also access
 122 * the timer list.  The return value may be outdated by the time it is acted
 123 * upon.
 124 *
 125 * Returns: true if the clock's default timer list
 126 * has timers attached
 127 */
 128bool qemu_clock_has_timers(QEMUClockType type);
 129
 130/**
 131 * qemu_clock_expired:
 132 * @type: the clock type
 133 *
 134 * Determines whether a clock's default timer list
 135 * has an expired timer.
 136 *
 137 * Returns: true if the clock's default timer list has
 138 * an expired timer
 139 */
 140bool qemu_clock_expired(QEMUClockType type);
 141
 142/**
 143 * qemu_clock_use_for_deadline:
 144 * @type: the clock type
 145 *
 146 * Determine whether a clock should be used for deadline
 147 * calculations. Some clocks, for instance vm_clock with
 148 * use_icount set, do not count in nanoseconds. Such clocks
 149 * are not used for deadline calculations, and are presumed
 150 * to interrupt any poll using qemu_notify/aio_notify
 151 * etc.
 152 *
 153 * Returns: true if the clock runs in nanoseconds and
 154 * should be used for a deadline.
 155 */
 156bool qemu_clock_use_for_deadline(QEMUClockType type);
 157
 158/**
 159 * qemu_clock_deadline_ns_all:
 160 * @type: the clock type
 161 *
 162 * Calculate the deadline across all timer lists associated
 163 * with a clock (as opposed to just the default one)
 164 * in nanoseconds, or -1 if no timer is set to expire.
 165 *
 166 * Returns: time until expiry in nanoseconds or -1
 167 */
 168int64_t qemu_clock_deadline_ns_all(QEMUClockType type);
 169
 170/**
 171 * qemu_clock_get_main_loop_timerlist:
 172 * @type: the clock type
 173 *
 174 * Return the default timer list associated with a clock.
 175 *
 176 * Returns: the default timer list
 177 */
 178QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type);
 179
 180/**
 181 * qemu_clock_nofify:
 182 * @type: the clock type
 183 *
 184 * Call the notifier callback connected with the default timer
 185 * list linked to the clock, or qemu_notify() if none.
 186 */
 187void qemu_clock_notify(QEMUClockType type);
 188
 189/**
 190 * qemu_clock_enable:
 191 * @type: the clock type
 192 * @enabled: true to enable, false to disable
 193 *
 194 * Enable or disable a clock
 195 * Disabling the clock will wait for related timerlists to stop
 196 * executing qemu_run_timers.  Thus, this functions should not
 197 * be used from the callback of a timer that is based on @clock.
 198 * Doing so would cause a deadlock.
 199 *
 200 * Caller should hold BQL.
 201 */
 202void qemu_clock_enable(QEMUClockType type, bool enabled);
 203
 204/**
 205 * qemu_start_warp_timer:
 206 *
 207 * Starts a timer for virtual clock update
 208 */
 209void qemu_start_warp_timer(void);
 210
 211/**
 212 * qemu_clock_register_reset_notifier:
 213 * @type: the clock type
 214 * @notifier: the notifier function
 215 *
 216 * Register a notifier function to call when the clock
 217 * concerned is reset.
 218 */
 219void qemu_clock_register_reset_notifier(QEMUClockType type,
 220                                        Notifier *notifier);
 221
 222/**
 223 * qemu_clock_unregister_reset_notifier:
 224 * @type: the clock type
 225 * @notifier: the notifier function
 226 *
 227 * Unregister a notifier function to call when the clock
 228 * concerned is reset.
 229 */
 230void qemu_clock_unregister_reset_notifier(QEMUClockType type,
 231                                          Notifier *notifier);
 232
 233/**
 234 * qemu_clock_run_timers:
 235 * @type: clock on which to operate
 236 *
 237 * Run all the timers associated with the default timer list
 238 * of a clock.
 239 *
 240 * Returns: true if any timer ran.
 241 */
 242bool qemu_clock_run_timers(QEMUClockType type);
 243
 244/**
 245 * qemu_clock_run_all_timers:
 246 *
 247 * Run all the timers associated with the default timer list
 248 * of every clock.
 249 *
 250 * Returns: true if any timer ran.
 251 */
 252bool qemu_clock_run_all_timers(void);
 253
 254/*
 255 * QEMUTimerList
 256 */
 257
 258/**
 259 * timerlist_new:
 260 * @type: the clock type to associate with the timerlist
 261 * @cb: the callback to call on notification
 262 * @opaque: the opaque pointer to pass to the callback
 263 *
 264 * Create a new timerlist associated with the clock of
 265 * type @type.
 266 *
 267 * Returns: a pointer to the QEMUTimerList created
 268 */
 269QEMUTimerList *timerlist_new(QEMUClockType type,
 270                             QEMUTimerListNotifyCB *cb, void *opaque);
 271
 272/**
 273 * timerlist_free:
 274 * @timer_list: the timer list to free
 275 *
 276 * Frees a timer_list. It must have no active timers.
 277 */
 278void timerlist_free(QEMUTimerList *timer_list);
 279
 280/**
 281 * timerlist_has_timers:
 282 * @timer_list: the timer list to operate on
 283 *
 284 * Determine whether a timer list has active timers
 285 *
 286 * Note that this function should not be used when other threads also access
 287 * the timer list.  The return value may be outdated by the time it is acted
 288 * upon.
 289 *
 290 * Returns: true if the timer list has timers.
 291 */
 292bool timerlist_has_timers(QEMUTimerList *timer_list);
 293
 294/**
 295 * timerlist_expired:
 296 * @timer_list: the timer list to operate on
 297 *
 298 * Determine whether a timer list has any timers which
 299 * are expired.
 300 *
 301 * Returns: true if the timer list has timers which
 302 * have expired.
 303 */
 304bool timerlist_expired(QEMUTimerList *timer_list);
 305
 306/**
 307 * timerlist_deadline_ns:
 308 * @timer_list: the timer list to operate on
 309 *
 310 * Determine the deadline for a timer_list, i.e.
 311 * the number of nanoseconds until the first timer
 312 * expires. Return -1 if there are no timers.
 313 *
 314 * Returns: the number of nanoseconds until the earliest
 315 * timer expires -1 if none
 316 */
 317int64_t timerlist_deadline_ns(QEMUTimerList *timer_list);
 318
 319/**
 320 * timerlist_get_clock:
 321 * @timer_list: the timer list to operate on
 322 *
 323 * Determine the clock type associated with a timer list.
 324 *
 325 * Returns: the clock type associated with the
 326 * timer list.
 327 */
 328QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list);
 329
 330/**
 331 * timerlist_run_timers:
 332 * @timer_list: the timer list to use
 333 *
 334 * Call all expired timers associated with the timer list.
 335 *
 336 * Returns: true if any timer expired
 337 */
 338bool timerlist_run_timers(QEMUTimerList *timer_list);
 339
 340/**
 341 * timerlist_notify:
 342 * @timer_list: the timer list to use
 343 *
 344 * call the notifier callback associated with the timer list.
 345 */
 346void timerlist_notify(QEMUTimerList *timer_list);
 347
 348/*
 349 * QEMUTimerListGroup
 350 */
 351
 352/**
 353 * timerlistgroup_init:
 354 * @tlg: the timer list group
 355 * @cb: the callback to call when a notify is required
 356 * @opaque: the opaque pointer to be passed to the callback.
 357 *
 358 * Initialise a timer list group. This must already be
 359 * allocated in memory and zeroed. The notifier callback is
 360 * called whenever a clock in the timer list group is
 361 * reenabled or whenever a timer associated with any timer
 362 * list is modified. If @cb is specified as null, qemu_notify()
 363 * is used instead.
 364 */
 365void timerlistgroup_init(QEMUTimerListGroup *tlg,
 366                         QEMUTimerListNotifyCB *cb, void *opaque);
 367
 368/**
 369 * timerlistgroup_deinit:
 370 * @tlg: the timer list group
 371 *
 372 * Deinitialise a timer list group. This must already be
 373 * initialised. Note the memory is not freed.
 374 */
 375void timerlistgroup_deinit(QEMUTimerListGroup *tlg);
 376
 377/**
 378 * timerlistgroup_run_timers:
 379 * @tlg: the timer list group
 380 *
 381 * Run the timers associated with a timer list group.
 382 * This will run timers on multiple clocks.
 383 *
 384 * Returns: true if any timer callback ran
 385 */
 386bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg);
 387
 388/**
 389 * timerlistgroup_deadline_ns:
 390 * @tlg: the timer list group
 391 *
 392 * Determine the deadline of the soonest timer to
 393 * expire associated with any timer list linked to
 394 * the timer list group. Only clocks suitable for
 395 * deadline calculation are included.
 396 *
 397 * Returns: the deadline in nanoseconds or -1 if no
 398 * timers are to expire.
 399 */
 400int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg);
 401
 402/*
 403 * QEMUTimer
 404 */
 405
 406/**
 407 * timer_init_tl:
 408 * @ts: the timer to be initialised
 409 * @timer_list: the timer list to attach the timer to
 410 * @scale: the scale value for the timer
 411 * @cb: the callback to be called when the timer expires
 412 * @opaque: the opaque pointer to be passed to the callback
 413 *
 414 * Initialise a new timer and associate it with @timer_list.
 415 * The caller is responsible for allocating the memory.
 416 *
 417 * You need not call an explicit deinit call. Simply make
 418 * sure it is not on a list with timer_del.
 419 */
 420void timer_init_tl(QEMUTimer *ts,
 421                   QEMUTimerList *timer_list, int scale,
 422                   QEMUTimerCB *cb, void *opaque);
 423
 424/**
 425 * timer_init:
 426 * @ts: the timer to be initialised
 427 * @type: the clock to associate with the timer
 428 * @scale: the scale value for the timer
 429 * @cb: the callback to call when the timer expires
 430 * @opaque: the opaque pointer to pass to the callback
 431 *
 432 * Initialize a timer with the given scale on the default timer list
 433 * associated with the clock.
 434 *
 435 * You need not call an explicit deinit call. Simply make
 436 * sure it is not on a list with timer_del.
 437 */
 438static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale,
 439                              QEMUTimerCB *cb, void *opaque)
 440{
 441    timer_init_tl(ts, main_loop_tlg.tl[type], scale, cb, opaque);
 442}
 443
 444/**
 445 * timer_init_ns:
 446 * @ts: the timer to be initialised
 447 * @type: the clock to associate with the timer
 448 * @cb: the callback to call when the timer expires
 449 * @opaque: the opaque pointer to pass to the callback
 450 *
 451 * Initialize a timer with nanosecond scale on the default timer list
 452 * associated with the clock.
 453 *
 454 * You need not call an explicit deinit call. Simply make
 455 * sure it is not on a list with timer_del.
 456 */
 457static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type,
 458                                 QEMUTimerCB *cb, void *opaque)
 459{
 460    timer_init(ts, type, SCALE_NS, cb, opaque);
 461}
 462
 463/**
 464 * timer_init_us:
 465 * @ts: the timer to be initialised
 466 * @type: the clock to associate with the timer
 467 * @cb: the callback to call when the timer expires
 468 * @opaque: the opaque pointer to pass to the callback
 469 *
 470 * Initialize a timer with microsecond scale on the default timer list
 471 * associated with the clock.
 472 *
 473 * You need not call an explicit deinit call. Simply make
 474 * sure it is not on a list with timer_del.
 475 */
 476static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type,
 477                                 QEMUTimerCB *cb, void *opaque)
 478{
 479    timer_init(ts, type, SCALE_US, cb, opaque);
 480}
 481
 482/**
 483 * timer_init_ms:
 484 * @ts: the timer to be initialised
 485 * @type: the clock to associate with the timer
 486 * @cb: the callback to call when the timer expires
 487 * @opaque: the opaque pointer to pass to the callback
 488 *
 489 * Initialize a timer with millisecond scale on the default timer list
 490 * associated with the clock.
 491 *
 492 * You need not call an explicit deinit call. Simply make
 493 * sure it is not on a list with timer_del.
 494 */
 495static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type,
 496                                 QEMUTimerCB *cb, void *opaque)
 497{
 498    timer_init(ts, type, SCALE_MS, cb, opaque);
 499}
 500
 501/**
 502 * timer_new_tl:
 503 * @timer_list: the timer list to attach the timer to
 504 * @scale: the scale value for the timer
 505 * @cb: the callback to be called when the timer expires
 506 * @opaque: the opaque pointer to be passed to the callback
 507 *
 508 * Create a new timer and associate it with @timer_list.
 509 * The memory is allocated by the function.
 510 *
 511 * This is not the preferred interface unless you know you
 512 * are going to call timer_free. Use timer_init instead.
 513 *
 514 * Returns: a pointer to the timer
 515 */
 516static inline QEMUTimer *timer_new_tl(QEMUTimerList *timer_list,
 517                                      int scale,
 518                                      QEMUTimerCB *cb,
 519                                      void *opaque)
 520{
 521    QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer));
 522    timer_init_tl(ts, timer_list, scale, cb, opaque);
 523    return ts;
 524}
 525
 526/**
 527 * timer_new:
 528 * @type: the clock type to use
 529 * @scale: the scale value for the timer
 530 * @cb: the callback to be called when the timer expires
 531 * @opaque: the opaque pointer to be passed to the callback
 532 *
 533 * Create a new timer and associate it with the default
 534 * timer list for the clock type @type.
 535 *
 536 * The default timer list has one special feature: in icount mode,
 537 * %QEMU_CLOCK_VIRTUAL timers are run in the vCPU thread.  This is
 538 * not true of other timer lists, which are typically associated
 539 * with an AioContext---each of them runs its timer callbacks in its own
 540 * AioContext thread.
 541 *
 542 * Returns: a pointer to the timer
 543 */
 544static inline QEMUTimer *timer_new(QEMUClockType type, int scale,
 545                                   QEMUTimerCB *cb, void *opaque)
 546{
 547    return timer_new_tl(main_loop_tlg.tl[type], scale, cb, opaque);
 548}
 549
 550/**
 551 * timer_new_ns:
 552 * @type: the clock type to associate with the timer
 553 * @cb: the callback to call when the timer expires
 554 * @opaque: the opaque pointer to pass to the callback
 555 *
 556 * Create a new timer with nanosecond scale on the default timer list
 557 * associated with the clock.
 558 *
 559 * The default timer list has one special feature: in icount mode,
 560 * %QEMU_CLOCK_VIRTUAL timers are run in the vCPU thread.  This is
 561 * not true of other timer lists, which are typically associated
 562 * with an AioContext---each of them runs its timer callbacks in its own
 563 * AioContext thread.
 564 *
 565 * Returns: a pointer to the newly created timer
 566 */
 567static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb,
 568                                      void *opaque)
 569{
 570    return timer_new(type, SCALE_NS, cb, opaque);
 571}
 572
 573/**
 574 * timer_new_us:
 575 * @type: the clock type to associate with the timer
 576 * @cb: the callback to call when the timer expires
 577 * @opaque: the opaque pointer to pass to the callback
 578 *
 579 * The default timer list has one special feature: in icount mode,
 580 * %QEMU_CLOCK_VIRTUAL timers are run in the vCPU thread.  This is
 581 * not true of other timer lists, which are typically associated
 582 * with an AioContext---each of them runs its timer callbacks in its own
 583 * AioContext thread.
 584 *
 585 * Create a new timer with microsecond scale on the default timer list
 586 * associated with the clock.
 587 *
 588 * Returns: a pointer to the newly created timer
 589 */
 590static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb,
 591                                      void *opaque)
 592{
 593    return timer_new(type, SCALE_US, cb, opaque);
 594}
 595
 596/**
 597 * timer_new_ms:
 598 * @type: the clock type to associate with the timer
 599 * @cb: the callback to call when the timer expires
 600 * @opaque: the opaque pointer to pass to the callback
 601 *
 602 * The default timer list has one special feature: in icount mode,
 603 * %QEMU_CLOCK_VIRTUAL timers are run in the vCPU thread.  This is
 604 * not true of other timer lists, which are typically associated
 605 * with an AioContext---each of them runs its timer callbacks in its own
 606 * AioContext thread.
 607 *
 608 * Create a new timer with millisecond scale on the default timer list
 609 * associated with the clock.
 610 *
 611 * Returns: a pointer to the newly created timer
 612 */
 613static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb,
 614                                      void *opaque)
 615{
 616    return timer_new(type, SCALE_MS, cb, opaque);
 617}
 618
 619/**
 620 * timer_deinit:
 621 * @ts: the timer to be de-initialised
 622 *
 623 * Deassociate the timer from any timerlist.  You should
 624 * call timer_del before.  After this call, any further
 625 * timer_del call cannot cause dangling pointer accesses
 626 * even if the previously used timerlist is freed.
 627 */
 628void timer_deinit(QEMUTimer *ts);
 629
 630/**
 631 * timer_free:
 632 * @ts: the timer
 633 *
 634 * Free a timer (it must not be on the active list)
 635 */
 636static inline void timer_free(QEMUTimer *ts)
 637{
 638    g_free(ts);
 639}
 640
 641/**
 642 * timer_del:
 643 * @ts: the timer
 644 *
 645 * Delete a timer from the active list.
 646 *
 647 * This function is thread-safe but the timer and its timer list must not be
 648 * freed while this function is running.
 649 */
 650void timer_del(QEMUTimer *ts);
 651
 652/**
 653 * timer_mod_ns:
 654 * @ts: the timer
 655 * @expire_time: the expiry time in nanoseconds
 656 *
 657 * Modify a timer to expire at @expire_time
 658 *
 659 * This function is thread-safe but the timer and its timer list must not be
 660 * freed while this function is running.
 661 */
 662void timer_mod_ns(QEMUTimer *ts, int64_t expire_time);
 663
 664/**
 665 * timer_mod_anticipate_ns:
 666 * @ts: the timer
 667 * @expire_time: the expiry time in nanoseconds
 668 *
 669 * Modify a timer to expire at @expire_time or the current time,
 670 * whichever comes earlier.
 671 *
 672 * This function is thread-safe but the timer and its timer list must not be
 673 * freed while this function is running.
 674 */
 675void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time);
 676
 677/**
 678 * timer_mod:
 679 * @ts: the timer
 680 * @expire_time: the expire time in the units associated with the timer
 681 *
 682 * Modify a timer to expiry at @expire_time, taking into
 683 * account the scale associated with the timer.
 684 *
 685 * This function is thread-safe but the timer and its timer list must not be
 686 * freed while this function is running.
 687 */
 688void timer_mod(QEMUTimer *ts, int64_t expire_timer);
 689
 690/**
 691 * timer_mod_anticipate:
 692 * @ts: the timer
 693 * @expire_time: the expiry time in nanoseconds
 694 *
 695 * Modify a timer to expire at @expire_time or the current time, whichever
 696 * comes earlier, taking into account the scale associated with the timer.
 697 *
 698 * This function is thread-safe but the timer and its timer list must not be
 699 * freed while this function is running.
 700 */
 701void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time);
 702
 703/**
 704 * timer_pending:
 705 * @ts: the timer
 706 *
 707 * Determines whether a timer is pending (i.e. is on the
 708 * active list of timers, whether or not it has not yet expired).
 709 *
 710 * Returns: true if the timer is pending
 711 */
 712bool timer_pending(QEMUTimer *ts);
 713
 714/**
 715 * timer_expired:
 716 * @ts: the timer
 717 * @current_time: the current time
 718 *
 719 * Determines whether a timer has expired.
 720 *
 721 * Returns: true if the timer has expired
 722 */
 723bool timer_expired(QEMUTimer *timer_head, int64_t current_time);
 724
 725/**
 726 * timer_expire_time_ns:
 727 * @ts: the timer
 728 *
 729 * Determine the expiry time of a timer
 730 *
 731 * Returns: the expiry time in nanoseconds
 732 */
 733uint64_t timer_expire_time_ns(QEMUTimer *ts);
 734
 735/**
 736 * timer_get:
 737 * @f: the file
 738 * @ts: the timer
 739 *
 740 * Read a timer @ts from a file @f
 741 */
 742void timer_get(QEMUFile *f, QEMUTimer *ts);
 743
 744/**
 745 * timer_put:
 746 * @f: the file
 747 * @ts: the timer
 748 */
 749void timer_put(QEMUFile *f, QEMUTimer *ts);
 750
 751/*
 752 * General utility functions
 753 */
 754
 755/**
 756 * qemu_timeout_ns_to_ms:
 757 * @ns: nanosecond timeout value
 758 *
 759 * Convert a nanosecond timeout value (or -1) to
 760 * a millisecond value (or -1), always rounding up.
 761 *
 762 * Returns: millisecond timeout value
 763 */
 764int qemu_timeout_ns_to_ms(int64_t ns);
 765
 766/**
 767 * qemu_poll_ns:
 768 * @fds: Array of file descriptors
 769 * @nfds: number of file descriptors
 770 * @timeout: timeout in nanoseconds
 771 *
 772 * Perform a poll like g_poll but with a timeout in nanoseconds.
 773 * See g_poll documentation for further details.
 774 *
 775 * Returns: number of fds ready
 776 */
 777int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout);
 778
 779/**
 780 * qemu_soonest_timeout:
 781 * @timeout1: first timeout in nanoseconds (or -1 for infinite)
 782 * @timeout2: second timeout in nanoseconds (or -1 for infinite)
 783 *
 784 * Calculates the soonest of two timeout values. -1 means infinite, which
 785 * is later than any other value.
 786 *
 787 * Returns: soonest timeout value in nanoseconds (or -1 for infinite)
 788 */
 789static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2)
 790{
 791    /* we can abuse the fact that -1 (which means infinite) is a maximal
 792     * value when cast to unsigned. As this is disgusting, it's kept in
 793     * one inline function.
 794     */
 795    return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2;
 796}
 797
 798/**
 799 * initclocks:
 800 *
 801 * Initialise the clock & timer infrastructure
 802 */
 803void init_clocks(QEMUTimerListNotifyCB *notify_cb);
 804
 805int64_t cpu_get_ticks(void);
 806/* Caller must hold BQL */
 807void cpu_enable_ticks(void);
 808/* Caller must hold BQL */
 809void cpu_disable_ticks(void);
 810
 811static inline int64_t get_max_clock_jump(void)
 812{
 813    /* This should be small enough to prevent excessive interrupts from being
 814     * generated by the RTC on clock jumps, but large enough to avoid frequent
 815     * unnecessary resets in idle VMs.
 816     */
 817    return 60 * NANOSECONDS_PER_SECOND;
 818}
 819
 820/*
 821 * Low level clock functions
 822 */
 823
 824/* get host real time in nanosecond */
 825static inline int64_t get_clock_realtime(void)
 826{
 827    struct timeval tv;
 828
 829    gettimeofday(&tv, NULL);
 830    return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
 831}
 832
 833/* Warning: don't insert tracepoints into these functions, they are
 834   also used by simpletrace backend and tracepoints would cause
 835   an infinite recursion! */
 836#ifdef _WIN32
 837extern int64_t clock_freq;
 838
 839static inline int64_t get_clock(void)
 840{
 841    LARGE_INTEGER ti;
 842    QueryPerformanceCounter(&ti);
 843    return muldiv64(ti.QuadPart, NANOSECONDS_PER_SECOND, clock_freq);
 844}
 845
 846#else
 847
 848extern int use_rt_clock;
 849
 850static inline int64_t get_clock(void)
 851{
 852#ifdef CLOCK_MONOTONIC
 853    if (use_rt_clock) {
 854        struct timespec ts;
 855        clock_gettime(CLOCK_MONOTONIC, &ts);
 856        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
 857    } else
 858#endif
 859    {
 860        /* XXX: using gettimeofday leads to problems if the date
 861           changes, so it should be avoided. */
 862        return get_clock_realtime();
 863    }
 864}
 865#endif
 866
 867/* icount */
 868int64_t cpu_get_icount_raw(void);
 869int64_t cpu_get_icount(void);
 870int64_t cpu_get_clock(void);
 871int64_t cpu_icount_to_ns(int64_t icount);
 872void    cpu_update_icount(CPUState *cpu);
 873
 874/*******************************************/
 875/* host CPU ticks (if available) */
 876
 877#if defined(_ARCH_PPC)
 878
 879static inline int64_t cpu_get_host_ticks(void)
 880{
 881    int64_t retval;
 882#ifdef _ARCH_PPC64
 883    /* This reads timebase in one 64bit go and includes Cell workaround from:
 884       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
 885    */
 886    __asm__ __volatile__ ("mftb    %0\n\t"
 887                          "cmpwi   %0,0\n\t"
 888                          "beq-    $-8"
 889                          : "=r" (retval));
 890#else
 891    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
 892    unsigned long junk;
 893    __asm__ __volatile__ ("mfspr   %1,269\n\t"  /* mftbu */
 894                          "mfspr   %L0,268\n\t" /* mftb */
 895                          "mfspr   %0,269\n\t"  /* mftbu */
 896                          "cmpw    %0,%1\n\t"
 897                          "bne     $-16"
 898                          : "=r" (retval), "=r" (junk));
 899#endif
 900    return retval;
 901}
 902
 903#elif defined(__i386__)
 904
 905static inline int64_t cpu_get_host_ticks(void)
 906{
 907    int64_t val;
 908    asm volatile ("rdtsc" : "=A" (val));
 909    return val;
 910}
 911
 912#elif defined(__x86_64__)
 913
 914static inline int64_t cpu_get_host_ticks(void)
 915{
 916    uint32_t low,high;
 917    int64_t val;
 918    asm volatile("rdtsc" : "=a" (low), "=d" (high));
 919    val = high;
 920    val <<= 32;
 921    val |= low;
 922    return val;
 923}
 924
 925#elif defined(__hppa__)
 926
 927static inline int64_t cpu_get_host_ticks(void)
 928{
 929    int val;
 930    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
 931    return val;
 932}
 933
 934#elif defined(__ia64)
 935
 936static inline int64_t cpu_get_host_ticks(void)
 937{
 938    int64_t val;
 939    asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
 940    return val;
 941}
 942
 943#elif defined(__s390__)
 944
 945static inline int64_t cpu_get_host_ticks(void)
 946{
 947    int64_t val;
 948    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
 949    return val;
 950}
 951
 952#elif defined(__sparc__)
 953
 954static inline int64_t cpu_get_host_ticks (void)
 955{
 956#if defined(_LP64)
 957    uint64_t        rval;
 958    asm volatile("rd %%tick,%0" : "=r"(rval));
 959    return rval;
 960#else
 961    /* We need an %o or %g register for this.  For recent enough gcc
 962       there is an "h" constraint for that.  Don't bother with that.  */
 963    union {
 964        uint64_t i64;
 965        struct {
 966            uint32_t high;
 967            uint32_t low;
 968        }       i32;
 969    } rval;
 970    asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1"
 971                 : "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1");
 972    return rval.i64;
 973#endif
 974}
 975
 976#elif defined(__mips__) && \
 977    ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
 978/*
 979 * binutils wants to use rdhwr only on mips32r2
 980 * but as linux kernel emulate it, it's fine
 981 * to use it.
 982 *
 983 */
 984#define MIPS_RDHWR(rd, value) {                         \
 985        __asm__ __volatile__ (".set   push\n\t"         \
 986                              ".set mips32r2\n\t"       \
 987                              "rdhwr  %0, "rd"\n\t"     \
 988                              ".set   pop"              \
 989                              : "=r" (value));          \
 990    }
 991
 992static inline int64_t cpu_get_host_ticks(void)
 993{
 994    /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
 995    uint32_t count;
 996    static uint32_t cyc_per_count = 0;
 997
 998    if (!cyc_per_count) {
 999        MIPS_RDHWR("$3", cyc_per_count);
1000    }
1001
1002    MIPS_RDHWR("$2", count);
1003    return (int64_t)(count * cyc_per_count);
1004}
1005
1006#elif defined(__alpha__)
1007
1008static inline int64_t cpu_get_host_ticks(void)
1009{
1010    uint64_t cc;
1011    uint32_t cur, ofs;
1012
1013    asm volatile("rpcc %0" : "=r"(cc));
1014    cur = cc;
1015    ofs = cc >> 32;
1016    return cur - ofs;
1017}
1018
1019#else
1020/* The host CPU doesn't have an easily accessible cycle counter.
1021   Just return a monotonically increasing value.  This will be
1022   totally wrong, but hopefully better than nothing.  */
1023static inline int64_t cpu_get_host_ticks(void)
1024{
1025    return get_clock();
1026}
1027#endif
1028
1029#ifdef CONFIG_PROFILER
1030static inline int64_t profile_getclock(void)
1031{
1032    return get_clock();
1033}
1034
1035extern int64_t tcg_time;
1036extern int64_t dev_time;
1037#endif
1038
1039#endif
1040