qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/block-backend.h"
  27#include "sysemu/blockdev.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31#include "qemu/error-report.h"
  32#include "qapi/error.h"
  33
  34#ifndef M25P80_ERR_DEBUG
  35#define M25P80_ERR_DEBUG 0
  36#endif
  37
  38#define DB_PRINT_L(level, ...) do { \
  39    if (M25P80_ERR_DEBUG > (level)) { \
  40        fprintf(stderr,  ": %s: ", __func__); \
  41        fprintf(stderr, ## __VA_ARGS__); \
  42    } \
  43} while (0);
  44
  45/* Fields for FlashPartInfo->flags */
  46
  47/* erase capabilities */
  48#define ER_4K 1
  49#define ER_32K 2
  50/* set to allow the page program command to write 0s back to 1. Useful for
  51 * modelling EEPROM with SPI flash command set
  52 */
  53#define EEPROM 0x100
  54
  55/* 16 MiB max in 3 byte address mode */
  56#define MAX_3BYTES_SIZE 0x1000000
  57
  58#define SPI_NOR_MAX_ID_LEN 6
  59
  60typedef struct FlashPartInfo {
  61    const char *part_name;
  62    /*
  63     * This array stores the ID bytes.
  64     * The first three bytes are the JEDIC ID.
  65     * JEDEC ID zero means "no ID" (mostly older chips).
  66     */
  67    uint8_t id[SPI_NOR_MAX_ID_LEN];
  68    uint8_t id_len;
  69    /* there is confusion between manufacturers as to what a sector is. In this
  70     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  71     * command (opcode 0xd8).
  72     */
  73    uint32_t sector_size;
  74    uint32_t n_sectors;
  75    uint32_t page_size;
  76    uint16_t flags;
  77    /*
  78     * Big sized spi nor are often stacked devices, thus sometime
  79     * replace chip erase with die erase.
  80     * This field inform how many die is in the chip.
  81     */
  82    uint8_t die_cnt;
  83} FlashPartInfo;
  84
  85/* adapted from linux */
  86/* Used when the "_ext_id" is two bytes at most */
  87#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  88    .part_name = _part_name,\
  89    .id = {\
  90        ((_jedec_id) >> 16) & 0xff,\
  91        ((_jedec_id) >> 8) & 0xff,\
  92        (_jedec_id) & 0xff,\
  93        ((_ext_id) >> 8) & 0xff,\
  94        (_ext_id) & 0xff,\
  95          },\
  96    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  97    .sector_size = (_sector_size),\
  98    .n_sectors = (_n_sectors),\
  99    .page_size = 256,\
 100    .flags = (_flags),\
 101    .die_cnt = 0
 102
 103#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
 104    .part_name = _part_name,\
 105    .id = {\
 106        ((_jedec_id) >> 16) & 0xff,\
 107        ((_jedec_id) >> 8) & 0xff,\
 108        (_jedec_id) & 0xff,\
 109        ((_ext_id) >> 16) & 0xff,\
 110        ((_ext_id) >> 8) & 0xff,\
 111        (_ext_id) & 0xff,\
 112          },\
 113    .id_len = 6,\
 114    .sector_size = (_sector_size),\
 115    .n_sectors = (_n_sectors),\
 116    .page_size = 256,\
 117    .flags = (_flags),\
 118    .die_cnt = 0
 119
 120#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 121                    _flags, _die_cnt)\
 122    .part_name = _part_name,\
 123    .id = {\
 124        ((_jedec_id) >> 16) & 0xff,\
 125        ((_jedec_id) >> 8) & 0xff,\
 126        (_jedec_id) & 0xff,\
 127        ((_ext_id) >> 8) & 0xff,\
 128        (_ext_id) & 0xff,\
 129          },\
 130    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 131    .sector_size = (_sector_size),\
 132    .n_sectors = (_n_sectors),\
 133    .page_size = 256,\
 134    .flags = (_flags),\
 135    .die_cnt = _die_cnt
 136
 137#define JEDEC_NUMONYX 0x20
 138#define JEDEC_WINBOND 0xEF
 139#define JEDEC_SPANSION 0x01
 140
 141/* Numonyx (Micron) Configuration register macros */
 142#define VCFG_DUMMY 0x1
 143#define VCFG_WRAP_SEQUENTIAL 0x2
 144#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 145#define NVCFG_XIP_MODE_MASK (7 << 9)
 146#define VCFG_XIP_MODE_ENABLED (1 << 3)
 147#define CFG_DUMMY_CLK_LEN 4
 148#define NVCFG_DUMMY_CLK_POS 12
 149#define VCFG_DUMMY_CLK_POS 4
 150#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 151#define EVCFG_VPP_ACCELERATOR (1 << 3)
 152#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 153#define NVCFG_DUAL_IO_MASK (1 << 2)
 154#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 155#define NVCFG_QUAD_IO_MASK (1 << 3)
 156#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 157#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 158#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 159
 160/* Numonyx (Micron) Flag Status Register macros */
 161#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 162#define FSR_FLASH_READY (1 << 7)
 163
 164/* Spansion configuration registers macros. */
 165#define SPANSION_QUAD_CFG_POS 0
 166#define SPANSION_QUAD_CFG_LEN 1
 167#define SPANSION_DUMMY_CLK_POS 0
 168#define SPANSION_DUMMY_CLK_LEN 4
 169#define SPANSION_ADDR_LEN_POS 7
 170#define SPANSION_ADDR_LEN_LEN 1
 171
 172/*
 173 * Spansion read mode command length in bytes,
 174 * the mode is currently not supported.
 175*/
 176
 177#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 178#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 179
 180static const FlashPartInfo known_devices[] = {
 181    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 182    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 183    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 184
 185    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 186    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 187    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 188
 189    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 190    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 191    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 192    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 193
 194    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 195
 196    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 197     * is set to 0. Block protection is not supported.
 198     */
 199    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 200    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 201
 202    /* EON -- en25xxx */
 203    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 204    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 205    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 206    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 207    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 208
 209    /* GigaDevice */
 210    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 211    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 212
 213    /* Intel/Numonyx -- xxxs33b */
 214    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 215    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 216    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 217    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 218
 219    /* Macronix */
 220    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 221    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 222    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 223    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 224    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 225    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 226    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 227    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 228    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
 229    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 230    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 231    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 232    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 233
 234    /* Micron */
 235    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 236    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 237    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 238    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 239    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 240    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 241    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 242    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 243    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 244    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 245    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 246    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 247    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 248    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 249    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 250
 251    /* Spansion -- single (large) sector size only, at least
 252     * for the chips listed here (without boot sectors).
 253     */
 254    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 255    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 256    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 257    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 258    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 259    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 260    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 261    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 262    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 263    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 264    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 265    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 266    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 267    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 268    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 269    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 270    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 271
 272    /* Spansion --  boot sectors support  */
 273    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 274    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 275
 276    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 277    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 278    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 279    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 280    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 281    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 282    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 283    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 284    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 285    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 286
 287    /* ST Microelectronics -- newer production may have feature updates */
 288    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 289    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 290    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 291    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 292    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 293    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 294    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 295    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 296    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 297    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 298
 299    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 300    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 301    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 302
 303    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 304    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 305    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 306
 307    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 308    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 309    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 310    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 311
 312    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 313    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 314    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 315    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 316    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 317    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 318    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 319    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 320    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 321    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 322    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 323    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 324    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 325    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 326};
 327
 328typedef enum {
 329    NOP = 0,
 330    WRSR = 0x1,
 331    WRDI = 0x4,
 332    RDSR = 0x5,
 333    WREN = 0x6,
 334    JEDEC_READ = 0x9f,
 335    BULK_ERASE = 0xc7,
 336    READ_FSR = 0x70,
 337    RDCR = 0x15,
 338
 339    READ = 0x03,
 340    READ4 = 0x13,
 341    FAST_READ = 0x0b,
 342    FAST_READ4 = 0x0c,
 343    DOR = 0x3b,
 344    DOR4 = 0x3c,
 345    QOR = 0x6b,
 346    QOR4 = 0x6c,
 347    DIOR = 0xbb,
 348    DIOR4 = 0xbc,
 349    QIOR = 0xeb,
 350    QIOR4 = 0xec,
 351
 352    PP = 0x02,
 353    PP4 = 0x12,
 354    PP4_4 = 0x3e,
 355    DPP = 0xa2,
 356    QPP = 0x32,
 357    QPP_4 = 0x34,
 358
 359    ERASE_4K = 0x20,
 360    ERASE4_4K = 0x21,
 361    ERASE_32K = 0x52,
 362    ERASE4_32K = 0x5c,
 363    ERASE_SECTOR = 0xd8,
 364    ERASE4_SECTOR = 0xdc,
 365
 366    EN_4BYTE_ADDR = 0xB7,
 367    EX_4BYTE_ADDR = 0xE9,
 368
 369    EXTEND_ADDR_READ = 0xC8,
 370    EXTEND_ADDR_WRITE = 0xC5,
 371
 372    RESET_ENABLE = 0x66,
 373    RESET_MEMORY = 0x99,
 374
 375    /*
 376     * Micron: 0x35 - enable QPI
 377     * Spansion: 0x35 - read control register
 378     */
 379    RDCR_EQIO = 0x35,
 380    RSTQIO = 0xf5,
 381
 382    RNVCR = 0xB5,
 383    WNVCR = 0xB1,
 384
 385    RVCR = 0x85,
 386    WVCR = 0x81,
 387
 388    REVCR = 0x65,
 389    WEVCR = 0x61,
 390
 391    DIE_ERASE = 0xC4,
 392} FlashCMD;
 393
 394typedef enum {
 395    STATE_IDLE,
 396    STATE_PAGE_PROGRAM,
 397    STATE_READ,
 398    STATE_COLLECTING_DATA,
 399    STATE_COLLECTING_VAR_LEN_DATA,
 400    STATE_READING_DATA,
 401} CMDState;
 402
 403typedef enum {
 404    MAN_SPANSION,
 405    MAN_MACRONIX,
 406    MAN_NUMONYX,
 407    MAN_WINBOND,
 408    MAN_GENERIC,
 409} Manufacturer;
 410
 411#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 412
 413typedef struct Flash {
 414    SSISlave parent_obj;
 415
 416    BlockBackend *blk;
 417
 418    uint8_t *storage;
 419    uint32_t size;
 420    int page_size;
 421
 422    uint8_t state;
 423    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 424    uint32_t len;
 425    uint32_t pos;
 426    uint8_t needed_bytes;
 427    uint8_t cmd_in_progress;
 428    uint32_t cur_addr;
 429    uint32_t nonvolatile_cfg;
 430    /* Configuration register for Macronix */
 431    uint32_t volatile_cfg;
 432    uint32_t enh_volatile_cfg;
 433    /* Spansion cfg registers. */
 434    uint8_t spansion_cr1nv;
 435    uint8_t spansion_cr2nv;
 436    uint8_t spansion_cr3nv;
 437    uint8_t spansion_cr4nv;
 438    uint8_t spansion_cr1v;
 439    uint8_t spansion_cr2v;
 440    uint8_t spansion_cr3v;
 441    uint8_t spansion_cr4v;
 442    bool write_enable;
 443    bool four_bytes_address_mode;
 444    bool reset_enable;
 445    bool quad_enable;
 446    uint8_t ear;
 447
 448    int64_t dirty_page;
 449
 450    const FlashPartInfo *pi;
 451
 452} Flash;
 453
 454typedef struct M25P80Class {
 455    SSISlaveClass parent_class;
 456    FlashPartInfo *pi;
 457} M25P80Class;
 458
 459#define TYPE_M25P80 "m25p80-generic"
 460#define M25P80(obj) \
 461     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 462#define M25P80_CLASS(klass) \
 463     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 464#define M25P80_GET_CLASS(obj) \
 465     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 466
 467static inline Manufacturer get_man(Flash *s)
 468{
 469    switch (s->pi->id[0]) {
 470    case 0x20:
 471        return MAN_NUMONYX;
 472    case 0xEF:
 473        return MAN_WINBOND;
 474    case 0x01:
 475        return MAN_SPANSION;
 476    case 0xC2:
 477        return MAN_MACRONIX;
 478    default:
 479        return MAN_GENERIC;
 480    }
 481}
 482
 483static void blk_sync_complete(void *opaque, int ret)
 484{
 485    QEMUIOVector *iov = opaque;
 486
 487    qemu_iovec_destroy(iov);
 488    g_free(iov);
 489
 490    /* do nothing. Masters do not directly interact with the backing store,
 491     * only the working copy so no mutexing required.
 492     */
 493}
 494
 495static void flash_sync_page(Flash *s, int page)
 496{
 497    QEMUIOVector *iov;
 498
 499    if (!s->blk || blk_is_read_only(s->blk)) {
 500        return;
 501    }
 502
 503    iov = g_new(QEMUIOVector, 1);
 504    qemu_iovec_init(iov, 1);
 505    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 506                   s->pi->page_size);
 507    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 508                    blk_sync_complete, iov);
 509}
 510
 511static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 512{
 513    QEMUIOVector *iov;
 514
 515    if (!s->blk || blk_is_read_only(s->blk)) {
 516        return;
 517    }
 518
 519    assert(!(len % BDRV_SECTOR_SIZE));
 520    iov = g_new(QEMUIOVector, 1);
 521    qemu_iovec_init(iov, 1);
 522    qemu_iovec_add(iov, s->storage + off, len);
 523    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 524}
 525
 526static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 527{
 528    uint32_t len;
 529    uint8_t capa_to_assert = 0;
 530
 531    switch (cmd) {
 532    case ERASE_4K:
 533    case ERASE4_4K:
 534        len = 4 << 10;
 535        capa_to_assert = ER_4K;
 536        break;
 537    case ERASE_32K:
 538    case ERASE4_32K:
 539        len = 32 << 10;
 540        capa_to_assert = ER_32K;
 541        break;
 542    case ERASE_SECTOR:
 543    case ERASE4_SECTOR:
 544        len = s->pi->sector_size;
 545        break;
 546    case BULK_ERASE:
 547        len = s->size;
 548        break;
 549    case DIE_ERASE:
 550        if (s->pi->die_cnt) {
 551            len = s->size / s->pi->die_cnt;
 552            offset = offset & (~(len - 1));
 553        } else {
 554            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 555                          " by device\n");
 556            return;
 557        }
 558        break;
 559    default:
 560        abort();
 561    }
 562
 563    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 564    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 565        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 566                      " device\n", len);
 567    }
 568
 569    if (!s->write_enable) {
 570        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 571        return;
 572    }
 573    memset(s->storage + offset, 0xff, len);
 574    flash_sync_area(s, offset, len);
 575}
 576
 577static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 578{
 579    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 580        flash_sync_page(s, s->dirty_page);
 581        s->dirty_page = newpage;
 582    }
 583}
 584
 585static inline
 586void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 587{
 588    uint32_t page = addr / s->pi->page_size;
 589    uint8_t prev = s->storage[s->cur_addr];
 590
 591    if (!s->write_enable) {
 592        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 593    }
 594
 595    if ((prev ^ data) & data) {
 596        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
 597                   " -> %" PRIx8 "\n", addr, prev, data);
 598    }
 599
 600    if (s->pi->flags & EEPROM) {
 601        s->storage[s->cur_addr] = data;
 602    } else {
 603        s->storage[s->cur_addr] &= data;
 604    }
 605
 606    flash_sync_dirty(s, page);
 607    s->dirty_page = page;
 608}
 609
 610static inline int get_addr_length(Flash *s)
 611{
 612   /* check if eeprom is in use */
 613    if (s->pi->flags == EEPROM) {
 614        return 2;
 615    }
 616
 617   switch (s->cmd_in_progress) {
 618   case PP4:
 619   case PP4_4:
 620   case QPP_4:
 621   case READ4:
 622   case QIOR4:
 623   case ERASE4_4K:
 624   case ERASE4_32K:
 625   case ERASE4_SECTOR:
 626   case FAST_READ4:
 627   case DOR4:
 628   case QOR4:
 629   case DIOR4:
 630       return 4;
 631   default:
 632       return s->four_bytes_address_mode ? 4 : 3;
 633   }
 634}
 635
 636static void complete_collecting_data(Flash *s)
 637{
 638    int i, n;
 639
 640    n = get_addr_length(s);
 641    s->cur_addr = (n == 3 ? s->ear : 0);
 642    for (i = 0; i < n; ++i) {
 643        s->cur_addr <<= 8;
 644        s->cur_addr |= s->data[i];
 645    }
 646
 647    s->cur_addr &= s->size - 1;
 648
 649    s->state = STATE_IDLE;
 650
 651    switch (s->cmd_in_progress) {
 652    case DPP:
 653    case QPP:
 654    case QPP_4:
 655    case PP:
 656    case PP4:
 657    case PP4_4:
 658        s->state = STATE_PAGE_PROGRAM;
 659        break;
 660    case READ:
 661    case READ4:
 662    case FAST_READ:
 663    case FAST_READ4:
 664    case DOR:
 665    case DOR4:
 666    case QOR:
 667    case QOR4:
 668    case DIOR:
 669    case DIOR4:
 670    case QIOR:
 671    case QIOR4:
 672        s->state = STATE_READ;
 673        break;
 674    case ERASE_4K:
 675    case ERASE4_4K:
 676    case ERASE_32K:
 677    case ERASE4_32K:
 678    case ERASE_SECTOR:
 679    case ERASE4_SECTOR:
 680    case DIE_ERASE:
 681        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 682        break;
 683    case WRSR:
 684        switch (get_man(s)) {
 685        case MAN_SPANSION:
 686            s->quad_enable = !!(s->data[1] & 0x02);
 687            break;
 688        case MAN_MACRONIX:
 689            s->quad_enable = extract32(s->data[0], 6, 1);
 690            if (s->len > 1) {
 691                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 692            }
 693            break;
 694        default:
 695            break;
 696        }
 697        if (s->write_enable) {
 698            s->write_enable = false;
 699        }
 700        break;
 701    case EXTEND_ADDR_WRITE:
 702        s->ear = s->data[0];
 703        break;
 704    case WNVCR:
 705        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 706        break;
 707    case WVCR:
 708        s->volatile_cfg = s->data[0];
 709        break;
 710    case WEVCR:
 711        s->enh_volatile_cfg = s->data[0];
 712        break;
 713    default:
 714        break;
 715    }
 716}
 717
 718static void reset_memory(Flash *s)
 719{
 720    s->cmd_in_progress = NOP;
 721    s->cur_addr = 0;
 722    s->ear = 0;
 723    s->four_bytes_address_mode = false;
 724    s->len = 0;
 725    s->needed_bytes = 0;
 726    s->pos = 0;
 727    s->state = STATE_IDLE;
 728    s->write_enable = false;
 729    s->reset_enable = false;
 730    s->quad_enable = false;
 731
 732    switch (get_man(s)) {
 733    case MAN_NUMONYX:
 734        s->volatile_cfg = 0;
 735        s->volatile_cfg |= VCFG_DUMMY;
 736        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 737        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 738                                != NVCFG_XIP_MODE_DISABLED) {
 739            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 740        }
 741        s->volatile_cfg |= deposit32(s->volatile_cfg,
 742                            VCFG_DUMMY_CLK_POS,
 743                            CFG_DUMMY_CLK_LEN,
 744                            extract32(s->nonvolatile_cfg,
 745                                        NVCFG_DUMMY_CLK_POS,
 746                                        CFG_DUMMY_CLK_LEN)
 747                            );
 748
 749        s->enh_volatile_cfg = 0;
 750        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 751        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 752        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 753        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 754            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 755        }
 756        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 757            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 758        }
 759        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 760            s->four_bytes_address_mode = true;
 761        }
 762        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 763            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 764        }
 765        break;
 766    case MAN_MACRONIX:
 767        s->volatile_cfg = 0x7;
 768        break;
 769    case MAN_SPANSION:
 770        s->spansion_cr1v = s->spansion_cr1nv;
 771        s->spansion_cr2v = s->spansion_cr2nv;
 772        s->spansion_cr3v = s->spansion_cr3nv;
 773        s->spansion_cr4v = s->spansion_cr4nv;
 774        s->quad_enable = extract32(s->spansion_cr1v,
 775                                   SPANSION_QUAD_CFG_POS,
 776                                   SPANSION_QUAD_CFG_LEN
 777                                   );
 778        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 779                SPANSION_ADDR_LEN_POS,
 780                SPANSION_ADDR_LEN_LEN
 781                );
 782        break;
 783    default:
 784        break;
 785    }
 786
 787    DB_PRINT_L(0, "Reset done.\n");
 788}
 789
 790static void decode_fast_read_cmd(Flash *s)
 791{
 792    s->needed_bytes = get_addr_length(s);
 793    switch (get_man(s)) {
 794    /* Dummy cycles - modeled with bytes writes instead of bits */
 795    case MAN_WINBOND:
 796        s->needed_bytes += 8;
 797        break;
 798    case MAN_NUMONYX:
 799        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 800        break;
 801    case MAN_MACRONIX:
 802        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 803            s->needed_bytes += 6;
 804        } else {
 805            s->needed_bytes += 8;
 806        }
 807        break;
 808    case MAN_SPANSION:
 809        s->needed_bytes += extract32(s->spansion_cr2v,
 810                                    SPANSION_DUMMY_CLK_POS,
 811                                    SPANSION_DUMMY_CLK_LEN
 812                                    );
 813        break;
 814    default:
 815        break;
 816    }
 817    s->pos = 0;
 818    s->len = 0;
 819    s->state = STATE_COLLECTING_DATA;
 820}
 821
 822static void decode_dio_read_cmd(Flash *s)
 823{
 824    s->needed_bytes = get_addr_length(s);
 825    /* Dummy cycles modeled with bytes writes instead of bits */
 826    switch (get_man(s)) {
 827    case MAN_WINBOND:
 828        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 829        break;
 830    case MAN_SPANSION:
 831        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 832        s->needed_bytes += extract32(s->spansion_cr2v,
 833                                    SPANSION_DUMMY_CLK_POS,
 834                                    SPANSION_DUMMY_CLK_LEN
 835                                    );
 836        break;
 837    case MAN_NUMONYX:
 838        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 839        break;
 840    case MAN_MACRONIX:
 841        switch (extract32(s->volatile_cfg, 6, 2)) {
 842        case 1:
 843            s->needed_bytes += 6;
 844            break;
 845        case 2:
 846            s->needed_bytes += 8;
 847            break;
 848        default:
 849            s->needed_bytes += 4;
 850            break;
 851        }
 852        break;
 853    default:
 854        break;
 855    }
 856    s->pos = 0;
 857    s->len = 0;
 858    s->state = STATE_COLLECTING_DATA;
 859}
 860
 861static void decode_qio_read_cmd(Flash *s)
 862{
 863    s->needed_bytes = get_addr_length(s);
 864    /* Dummy cycles modeled with bytes writes instead of bits */
 865    switch (get_man(s)) {
 866    case MAN_WINBOND:
 867        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 868        s->needed_bytes += 4;
 869        break;
 870    case MAN_SPANSION:
 871        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 872        s->needed_bytes += extract32(s->spansion_cr2v,
 873                                    SPANSION_DUMMY_CLK_POS,
 874                                    SPANSION_DUMMY_CLK_LEN
 875                                    );
 876        break;
 877    case MAN_NUMONYX:
 878        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 879        break;
 880    case MAN_MACRONIX:
 881        switch (extract32(s->volatile_cfg, 6, 2)) {
 882        case 1:
 883            s->needed_bytes += 4;
 884            break;
 885        case 2:
 886            s->needed_bytes += 8;
 887            break;
 888        default:
 889            s->needed_bytes += 6;
 890            break;
 891        }
 892        break;
 893    default:
 894        break;
 895    }
 896    s->pos = 0;
 897    s->len = 0;
 898    s->state = STATE_COLLECTING_DATA;
 899}
 900
 901static void decode_new_cmd(Flash *s, uint32_t value)
 902{
 903    s->cmd_in_progress = value;
 904    int i;
 905    DB_PRINT_L(0, "decoded new command:%x\n", value);
 906
 907    if (value != RESET_MEMORY) {
 908        s->reset_enable = false;
 909    }
 910
 911    switch (value) {
 912
 913    case ERASE_4K:
 914    case ERASE4_4K:
 915    case ERASE_32K:
 916    case ERASE4_32K:
 917    case ERASE_SECTOR:
 918    case ERASE4_SECTOR:
 919    case READ:
 920    case READ4:
 921    case DPP:
 922    case QPP:
 923    case QPP_4:
 924    case PP:
 925    case PP4:
 926    case PP4_4:
 927    case DIE_ERASE:
 928        s->needed_bytes = get_addr_length(s);
 929        s->pos = 0;
 930        s->len = 0;
 931        s->state = STATE_COLLECTING_DATA;
 932        break;
 933
 934    case FAST_READ:
 935    case FAST_READ4:
 936    case DOR:
 937    case DOR4:
 938    case QOR:
 939    case QOR4:
 940        decode_fast_read_cmd(s);
 941        break;
 942
 943    case DIOR:
 944    case DIOR4:
 945        decode_dio_read_cmd(s);
 946        break;
 947
 948    case QIOR:
 949    case QIOR4:
 950        decode_qio_read_cmd(s);
 951        break;
 952
 953    case WRSR:
 954        if (s->write_enable) {
 955            switch (get_man(s)) {
 956            case MAN_SPANSION:
 957                s->needed_bytes = 2;
 958                s->state = STATE_COLLECTING_DATA;
 959                break;
 960            case MAN_MACRONIX:
 961                s->needed_bytes = 2;
 962                s->state = STATE_COLLECTING_VAR_LEN_DATA;
 963                break;
 964            default:
 965                s->needed_bytes = 1;
 966                s->state = STATE_COLLECTING_DATA;
 967            }
 968            s->pos = 0;
 969        }
 970        break;
 971
 972    case WRDI:
 973        s->write_enable = false;
 974        break;
 975    case WREN:
 976        s->write_enable = true;
 977        break;
 978
 979    case RDSR:
 980        s->data[0] = (!!s->write_enable) << 1;
 981        if (get_man(s) == MAN_MACRONIX) {
 982            s->data[0] |= (!!s->quad_enable) << 6;
 983        }
 984        s->pos = 0;
 985        s->len = 1;
 986        s->state = STATE_READING_DATA;
 987        break;
 988
 989    case READ_FSR:
 990        s->data[0] = FSR_FLASH_READY;
 991        if (s->four_bytes_address_mode) {
 992            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
 993        }
 994        s->pos = 0;
 995        s->len = 1;
 996        s->state = STATE_READING_DATA;
 997        break;
 998
 999    case JEDEC_READ:
1000        DB_PRINT_L(0, "populated jedec code\n");
1001        for (i = 0; i < s->pi->id_len; i++) {
1002            s->data[i] = s->pi->id[i];
1003        }
1004
1005        s->len = s->pi->id_len;
1006        s->pos = 0;
1007        s->state = STATE_READING_DATA;
1008        break;
1009
1010    case RDCR:
1011        s->data[0] = s->volatile_cfg & 0xFF;
1012        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1013        s->pos = 0;
1014        s->len = 1;
1015        s->state = STATE_READING_DATA;
1016        break;
1017
1018    case BULK_ERASE:
1019        if (s->write_enable) {
1020            DB_PRINT_L(0, "chip erase\n");
1021            flash_erase(s, 0, BULK_ERASE);
1022        } else {
1023            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1024                          "protect!\n");
1025        }
1026        break;
1027    case NOP:
1028        break;
1029    case EN_4BYTE_ADDR:
1030        s->four_bytes_address_mode = true;
1031        break;
1032    case EX_4BYTE_ADDR:
1033        s->four_bytes_address_mode = false;
1034        break;
1035    case EXTEND_ADDR_READ:
1036        s->data[0] = s->ear;
1037        s->pos = 0;
1038        s->len = 1;
1039        s->state = STATE_READING_DATA;
1040        break;
1041    case EXTEND_ADDR_WRITE:
1042        if (s->write_enable) {
1043            s->needed_bytes = 1;
1044            s->pos = 0;
1045            s->len = 0;
1046            s->state = STATE_COLLECTING_DATA;
1047        }
1048        break;
1049    case RNVCR:
1050        s->data[0] = s->nonvolatile_cfg & 0xFF;
1051        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1052        s->pos = 0;
1053        s->len = 2;
1054        s->state = STATE_READING_DATA;
1055        break;
1056    case WNVCR:
1057        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1058            s->needed_bytes = 2;
1059            s->pos = 0;
1060            s->len = 0;
1061            s->state = STATE_COLLECTING_DATA;
1062        }
1063        break;
1064    case RVCR:
1065        s->data[0] = s->volatile_cfg & 0xFF;
1066        s->pos = 0;
1067        s->len = 1;
1068        s->state = STATE_READING_DATA;
1069        break;
1070    case WVCR:
1071        if (s->write_enable) {
1072            s->needed_bytes = 1;
1073            s->pos = 0;
1074            s->len = 0;
1075            s->state = STATE_COLLECTING_DATA;
1076        }
1077        break;
1078    case REVCR:
1079        s->data[0] = s->enh_volatile_cfg & 0xFF;
1080        s->pos = 0;
1081        s->len = 1;
1082        s->state = STATE_READING_DATA;
1083        break;
1084    case WEVCR:
1085        if (s->write_enable) {
1086            s->needed_bytes = 1;
1087            s->pos = 0;
1088            s->len = 0;
1089            s->state = STATE_COLLECTING_DATA;
1090        }
1091        break;
1092    case RESET_ENABLE:
1093        s->reset_enable = true;
1094        break;
1095    case RESET_MEMORY:
1096        if (s->reset_enable) {
1097            reset_memory(s);
1098        }
1099        break;
1100    case RDCR_EQIO:
1101        switch (get_man(s)) {
1102        case MAN_SPANSION:
1103            s->data[0] = (!!s->quad_enable) << 1;
1104            s->pos = 0;
1105            s->len = 1;
1106            s->state = STATE_READING_DATA;
1107            break;
1108        case MAN_MACRONIX:
1109            s->quad_enable = true;
1110            break;
1111        default:
1112            break;
1113        }
1114        break;
1115    case RSTQIO:
1116        s->quad_enable = false;
1117        break;
1118    default:
1119        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1120        break;
1121    }
1122}
1123
1124static int m25p80_cs(SSISlave *ss, bool select)
1125{
1126    Flash *s = M25P80(ss);
1127
1128    if (select) {
1129        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1130            complete_collecting_data(s);
1131        }
1132        s->len = 0;
1133        s->pos = 0;
1134        s->state = STATE_IDLE;
1135        flash_sync_dirty(s, -1);
1136    }
1137
1138    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1139
1140    return 0;
1141}
1142
1143static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1144{
1145    Flash *s = M25P80(ss);
1146    uint32_t r = 0;
1147
1148    switch (s->state) {
1149
1150    case STATE_PAGE_PROGRAM:
1151        DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1152                   s->cur_addr, (uint8_t)tx);
1153        flash_write8(s, s->cur_addr, (uint8_t)tx);
1154        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1155        break;
1156
1157    case STATE_READ:
1158        r = s->storage[s->cur_addr];
1159        DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1160                   (uint8_t)r);
1161        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1162        break;
1163
1164    case STATE_COLLECTING_DATA:
1165    case STATE_COLLECTING_VAR_LEN_DATA:
1166
1167        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1168            qemu_log_mask(LOG_GUEST_ERROR,
1169                          "M25P80: Write overrun internal data buffer. "
1170                          "SPI controller (QEMU emulator or guest driver) "
1171                          "is misbehaving\n");
1172            s->len = s->pos = 0;
1173            s->state = STATE_IDLE;
1174            break;
1175        }
1176
1177        s->data[s->len] = (uint8_t)tx;
1178        s->len++;
1179
1180        if (s->len == s->needed_bytes) {
1181            complete_collecting_data(s);
1182        }
1183        break;
1184
1185    case STATE_READING_DATA:
1186
1187        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1188            qemu_log_mask(LOG_GUEST_ERROR,
1189                          "M25P80: Read overrun internal data buffer. "
1190                          "SPI controller (QEMU emulator or guest driver) "
1191                          "is misbehaving\n");
1192            s->len = s->pos = 0;
1193            s->state = STATE_IDLE;
1194            break;
1195        }
1196
1197        r = s->data[s->pos];
1198        s->pos++;
1199        if (s->pos == s->len) {
1200            s->pos = 0;
1201            s->state = STATE_IDLE;
1202        }
1203        break;
1204
1205    default:
1206    case STATE_IDLE:
1207        decode_new_cmd(s, (uint8_t)tx);
1208        break;
1209    }
1210
1211    return r;
1212}
1213
1214static void m25p80_realize(SSISlave *ss, Error **errp)
1215{
1216    Flash *s = M25P80(ss);
1217    M25P80Class *mc = M25P80_GET_CLASS(s);
1218    int ret;
1219
1220    s->pi = mc->pi;
1221
1222    s->size = s->pi->sector_size * s->pi->n_sectors;
1223    s->dirty_page = -1;
1224
1225    if (s->blk) {
1226        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1227                        (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1228        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1229        if (ret < 0) {
1230            return;
1231        }
1232
1233        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1234        s->storage = blk_blockalign(s->blk, s->size);
1235
1236        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1237            error_setg(errp, "failed to read the initial flash content");
1238            return;
1239        }
1240    } else {
1241        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1242        s->storage = blk_blockalign(NULL, s->size);
1243        memset(s->storage, 0xFF, s->size);
1244    }
1245}
1246
1247static void m25p80_reset(DeviceState *d)
1248{
1249    Flash *s = M25P80(d);
1250
1251    reset_memory(s);
1252}
1253
1254static int m25p80_pre_save(void *opaque)
1255{
1256    flash_sync_dirty((Flash *)opaque, -1);
1257
1258    return 0;
1259}
1260
1261static Property m25p80_properties[] = {
1262    /* This is default value for Micron flash */
1263    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1264    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1265    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1266    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1267    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1268    DEFINE_PROP_DRIVE("drive", Flash, blk),
1269    DEFINE_PROP_END_OF_LIST(),
1270};
1271
1272static const VMStateDescription vmstate_m25p80 = {
1273    .name = "m25p80",
1274    .version_id = 0,
1275    .minimum_version_id = 0,
1276    .pre_save = m25p80_pre_save,
1277    .fields = (VMStateField[]) {
1278        VMSTATE_UINT8(state, Flash),
1279        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1280        VMSTATE_UINT32(len, Flash),
1281        VMSTATE_UINT32(pos, Flash),
1282        VMSTATE_UINT8(needed_bytes, Flash),
1283        VMSTATE_UINT8(cmd_in_progress, Flash),
1284        VMSTATE_UINT32(cur_addr, Flash),
1285        VMSTATE_BOOL(write_enable, Flash),
1286        VMSTATE_BOOL(reset_enable, Flash),
1287        VMSTATE_UINT8(ear, Flash),
1288        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1289        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1290        VMSTATE_UINT32(volatile_cfg, Flash),
1291        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1292        VMSTATE_BOOL(quad_enable, Flash),
1293        VMSTATE_UINT8(spansion_cr1nv, Flash),
1294        VMSTATE_UINT8(spansion_cr2nv, Flash),
1295        VMSTATE_UINT8(spansion_cr3nv, Flash),
1296        VMSTATE_UINT8(spansion_cr4nv, Flash),
1297        VMSTATE_END_OF_LIST()
1298    }
1299};
1300
1301static void m25p80_class_init(ObjectClass *klass, void *data)
1302{
1303    DeviceClass *dc = DEVICE_CLASS(klass);
1304    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1305    M25P80Class *mc = M25P80_CLASS(klass);
1306
1307    k->realize = m25p80_realize;
1308    k->transfer = m25p80_transfer8;
1309    k->set_cs = m25p80_cs;
1310    k->cs_polarity = SSI_CS_LOW;
1311    dc->vmsd = &vmstate_m25p80;
1312    dc->props = m25p80_properties;
1313    dc->reset = m25p80_reset;
1314    mc->pi = data;
1315}
1316
1317static const TypeInfo m25p80_info = {
1318    .name           = TYPE_M25P80,
1319    .parent         = TYPE_SSI_SLAVE,
1320    .instance_size  = sizeof(Flash),
1321    .class_size     = sizeof(M25P80Class),
1322    .abstract       = true,
1323};
1324
1325static void m25p80_register_types(void)
1326{
1327    int i;
1328
1329    type_register_static(&m25p80_info);
1330    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1331        TypeInfo ti = {
1332            .name       = known_devices[i].part_name,
1333            .parent     = TYPE_M25P80,
1334            .class_init = m25p80_class_init,
1335            .class_data = (void *)&known_devices[i],
1336        };
1337        type_register(&ti);
1338    }
1339}
1340
1341type_init(m25p80_register_types)
1342