qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
  13 *
  14 *  http://www.nvmexpress.org/resources/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
  21 *              cmb_size_mb=<cmb_size_mb[optional]>
  22 *
  23 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  24 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "hw/block/block.h"
  29#include "hw/hw.h"
  30#include "hw/pci/msix.h"
  31#include "hw/pci/pci.h"
  32#include "sysemu/sysemu.h"
  33#include "qapi/error.h"
  34#include "qapi/visitor.h"
  35#include "sysemu/block-backend.h"
  36
  37#include "nvme.h"
  38
  39static void nvme_process_sq(void *opaque);
  40
  41static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
  42{
  43    if (n->cmbsz && addr >= n->ctrl_mem.addr &&
  44                addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
  45        memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
  46    } else {
  47        pci_dma_read(&n->parent_obj, addr, buf, size);
  48    }
  49}
  50
  51static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
  52{
  53    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
  54}
  55
  56static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
  57{
  58    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
  59}
  60
  61static void nvme_inc_cq_tail(NvmeCQueue *cq)
  62{
  63    cq->tail++;
  64    if (cq->tail >= cq->size) {
  65        cq->tail = 0;
  66        cq->phase = !cq->phase;
  67    }
  68}
  69
  70static void nvme_inc_sq_head(NvmeSQueue *sq)
  71{
  72    sq->head = (sq->head + 1) % sq->size;
  73}
  74
  75static uint8_t nvme_cq_full(NvmeCQueue *cq)
  76{
  77    return (cq->tail + 1) % cq->size == cq->head;
  78}
  79
  80static uint8_t nvme_sq_empty(NvmeSQueue *sq)
  81{
  82    return sq->head == sq->tail;
  83}
  84
  85static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
  86{
  87    if (cq->irq_enabled) {
  88        if (msix_enabled(&(n->parent_obj))) {
  89            msix_notify(&(n->parent_obj), cq->vector);
  90        } else {
  91            pci_irq_pulse(&n->parent_obj);
  92        }
  93    }
  94}
  95
  96static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
  97                             uint64_t prp2, uint32_t len, NvmeCtrl *n)
  98{
  99    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 100    trans_len = MIN(len, trans_len);
 101    int num_prps = (len >> n->page_bits) + 1;
 102
 103    if (!prp1) {
 104        return NVME_INVALID_FIELD | NVME_DNR;
 105    } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
 106               prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
 107        qsg->nsg = 0;
 108        qemu_iovec_init(iov, num_prps);
 109        qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
 110    } else {
 111        pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
 112        qemu_sglist_add(qsg, prp1, trans_len);
 113    }
 114    len -= trans_len;
 115    if (len) {
 116        if (!prp2) {
 117            goto unmap;
 118        }
 119        if (len > n->page_size) {
 120            uint64_t prp_list[n->max_prp_ents];
 121            uint32_t nents, prp_trans;
 122            int i = 0;
 123
 124            nents = (len + n->page_size - 1) >> n->page_bits;
 125            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 126            nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 127            while (len != 0) {
 128                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 129
 130                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 131                    if (!prp_ent || prp_ent & (n->page_size - 1)) {
 132                        goto unmap;
 133                    }
 134
 135                    i = 0;
 136                    nents = (len + n->page_size - 1) >> n->page_bits;
 137                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 138                    nvme_addr_read(n, prp_ent, (void *)prp_list,
 139                        prp_trans);
 140                    prp_ent = le64_to_cpu(prp_list[i]);
 141                }
 142
 143                if (!prp_ent || prp_ent & (n->page_size - 1)) {
 144                    goto unmap;
 145                }
 146
 147                trans_len = MIN(len, n->page_size);
 148                if (qsg->nsg){
 149                    qemu_sglist_add(qsg, prp_ent, trans_len);
 150                } else {
 151                    qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
 152                }
 153                len -= trans_len;
 154                i++;
 155            }
 156        } else {
 157            if (prp2 & (n->page_size - 1)) {
 158                goto unmap;
 159            }
 160            if (qsg->nsg) {
 161                qemu_sglist_add(qsg, prp2, len);
 162            } else {
 163                qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
 164            }
 165        }
 166    }
 167    return NVME_SUCCESS;
 168
 169 unmap:
 170    qemu_sglist_destroy(qsg);
 171    return NVME_INVALID_FIELD | NVME_DNR;
 172}
 173
 174static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 175    uint64_t prp1, uint64_t prp2)
 176{
 177    QEMUSGList qsg;
 178    QEMUIOVector iov;
 179    uint16_t status = NVME_SUCCESS;
 180
 181    if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
 182        return NVME_INVALID_FIELD | NVME_DNR;
 183    }
 184    if (qsg.nsg > 0) {
 185        if (dma_buf_read(ptr, len, &qsg)) {
 186            status = NVME_INVALID_FIELD | NVME_DNR;
 187        }
 188        qemu_sglist_destroy(&qsg);
 189    } else {
 190        if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
 191            status = NVME_INVALID_FIELD | NVME_DNR;
 192        }
 193        qemu_iovec_destroy(&iov);
 194    }
 195    return status;
 196}
 197
 198static void nvme_post_cqes(void *opaque)
 199{
 200    NvmeCQueue *cq = opaque;
 201    NvmeCtrl *n = cq->ctrl;
 202    NvmeRequest *req, *next;
 203
 204    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 205        NvmeSQueue *sq;
 206        hwaddr addr;
 207
 208        if (nvme_cq_full(cq)) {
 209            break;
 210        }
 211
 212        QTAILQ_REMOVE(&cq->req_list, req, entry);
 213        sq = req->sq;
 214        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 215        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 216        req->cqe.sq_head = cpu_to_le16(sq->head);
 217        addr = cq->dma_addr + cq->tail * n->cqe_size;
 218        nvme_inc_cq_tail(cq);
 219        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 220            sizeof(req->cqe));
 221        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 222    }
 223    nvme_isr_notify(n, cq);
 224}
 225
 226static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 227{
 228    assert(cq->cqid == req->sq->cqid);
 229    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 230    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 231    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 232}
 233
 234static void nvme_rw_cb(void *opaque, int ret)
 235{
 236    NvmeRequest *req = opaque;
 237    NvmeSQueue *sq = req->sq;
 238    NvmeCtrl *n = sq->ctrl;
 239    NvmeCQueue *cq = n->cq[sq->cqid];
 240
 241    if (!ret) {
 242        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
 243        req->status = NVME_SUCCESS;
 244    } else {
 245        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
 246        req->status = NVME_INTERNAL_DEV_ERROR;
 247    }
 248    if (req->has_sg) {
 249        qemu_sglist_destroy(&req->qsg);
 250    }
 251    nvme_enqueue_req_completion(cq, req);
 252}
 253
 254static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 255    NvmeRequest *req)
 256{
 257    req->has_sg = false;
 258    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 259         BLOCK_ACCT_FLUSH);
 260    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
 261
 262    return NVME_NO_COMPLETE;
 263}
 264
 265static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 266    NvmeRequest *req)
 267{
 268    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 269    const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 270    const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 271    uint64_t slba = le64_to_cpu(rw->slba);
 272    uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
 273    uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
 274    uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
 275
 276    if (slba + nlb > ns->id_ns.nsze) {
 277        return NVME_LBA_RANGE | NVME_DNR;
 278    }
 279
 280    req->has_sg = false;
 281    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 282                     BLOCK_ACCT_WRITE);
 283    req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
 284                                        BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
 285    return NVME_NO_COMPLETE;
 286}
 287
 288static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 289    NvmeRequest *req)
 290{
 291    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 292    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
 293    uint64_t slba = le64_to_cpu(rw->slba);
 294    uint64_t prp1 = le64_to_cpu(rw->prp1);
 295    uint64_t prp2 = le64_to_cpu(rw->prp2);
 296
 297    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 298    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 299    uint64_t data_size = (uint64_t)nlb << data_shift;
 300    uint64_t data_offset = slba << data_shift;
 301    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
 302    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 303
 304    if ((slba + nlb) > ns->id_ns.nsze) {
 305        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 306        return NVME_LBA_RANGE | NVME_DNR;
 307    }
 308
 309    if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
 310        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 311        return NVME_INVALID_FIELD | NVME_DNR;
 312    }
 313
 314    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
 315    if (req->qsg.nsg > 0) {
 316        req->has_sg = true;
 317        req->aiocb = is_write ?
 318            dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 319                          nvme_rw_cb, req) :
 320            dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 321                         nvme_rw_cb, req);
 322    } else {
 323        req->has_sg = false;
 324        req->aiocb = is_write ?
 325            blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 326                            req) :
 327            blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 328                           req);
 329    }
 330
 331    return NVME_NO_COMPLETE;
 332}
 333
 334static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 335{
 336    NvmeNamespace *ns;
 337    uint32_t nsid = le32_to_cpu(cmd->nsid);
 338
 339    if (nsid == 0 || nsid > n->num_namespaces) {
 340        return NVME_INVALID_NSID | NVME_DNR;
 341    }
 342
 343    ns = &n->namespaces[nsid - 1];
 344    switch (cmd->opcode) {
 345    case NVME_CMD_FLUSH:
 346        return nvme_flush(n, ns, cmd, req);
 347    case NVME_CMD_WRITE_ZEROS:
 348        return nvme_write_zeros(n, ns, cmd, req);
 349    case NVME_CMD_WRITE:
 350    case NVME_CMD_READ:
 351        return nvme_rw(n, ns, cmd, req);
 352    default:
 353        return NVME_INVALID_OPCODE | NVME_DNR;
 354    }
 355}
 356
 357static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 358{
 359    n->sq[sq->sqid] = NULL;
 360    timer_del(sq->timer);
 361    timer_free(sq->timer);
 362    g_free(sq->io_req);
 363    if (sq->sqid) {
 364        g_free(sq);
 365    }
 366}
 367
 368static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
 369{
 370    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 371    NvmeRequest *req, *next;
 372    NvmeSQueue *sq;
 373    NvmeCQueue *cq;
 374    uint16_t qid = le16_to_cpu(c->qid);
 375
 376    if (!qid || nvme_check_sqid(n, qid)) {
 377        return NVME_INVALID_QID | NVME_DNR;
 378    }
 379
 380    sq = n->sq[qid];
 381    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 382        req = QTAILQ_FIRST(&sq->out_req_list);
 383        assert(req->aiocb);
 384        blk_aio_cancel(req->aiocb);
 385    }
 386    if (!nvme_check_cqid(n, sq->cqid)) {
 387        cq = n->cq[sq->cqid];
 388        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 389
 390        nvme_post_cqes(cq);
 391        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 392            if (req->sq == sq) {
 393                QTAILQ_REMOVE(&cq->req_list, req, entry);
 394                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 395            }
 396        }
 397    }
 398
 399    nvme_free_sq(sq, n);
 400    return NVME_SUCCESS;
 401}
 402
 403static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 404    uint16_t sqid, uint16_t cqid, uint16_t size)
 405{
 406    int i;
 407    NvmeCQueue *cq;
 408
 409    sq->ctrl = n;
 410    sq->dma_addr = dma_addr;
 411    sq->sqid = sqid;
 412    sq->size = size;
 413    sq->cqid = cqid;
 414    sq->head = sq->tail = 0;
 415    sq->io_req = g_new(NvmeRequest, sq->size);
 416
 417    QTAILQ_INIT(&sq->req_list);
 418    QTAILQ_INIT(&sq->out_req_list);
 419    for (i = 0; i < sq->size; i++) {
 420        sq->io_req[i].sq = sq;
 421        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 422    }
 423    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 424
 425    assert(n->cq[cqid]);
 426    cq = n->cq[cqid];
 427    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 428    n->sq[sqid] = sq;
 429}
 430
 431static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
 432{
 433    NvmeSQueue *sq;
 434    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
 435
 436    uint16_t cqid = le16_to_cpu(c->cqid);
 437    uint16_t sqid = le16_to_cpu(c->sqid);
 438    uint16_t qsize = le16_to_cpu(c->qsize);
 439    uint16_t qflags = le16_to_cpu(c->sq_flags);
 440    uint64_t prp1 = le64_to_cpu(c->prp1);
 441
 442    if (!cqid || nvme_check_cqid(n, cqid)) {
 443        return NVME_INVALID_CQID | NVME_DNR;
 444    }
 445    if (!sqid || !nvme_check_sqid(n, sqid)) {
 446        return NVME_INVALID_QID | NVME_DNR;
 447    }
 448    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
 449        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 450    }
 451    if (!prp1 || prp1 & (n->page_size - 1)) {
 452        return NVME_INVALID_FIELD | NVME_DNR;
 453    }
 454    if (!(NVME_SQ_FLAGS_PC(qflags))) {
 455        return NVME_INVALID_FIELD | NVME_DNR;
 456    }
 457    sq = g_malloc0(sizeof(*sq));
 458    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 459    return NVME_SUCCESS;
 460}
 461
 462static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 463{
 464    n->cq[cq->cqid] = NULL;
 465    timer_del(cq->timer);
 466    timer_free(cq->timer);
 467    msix_vector_unuse(&n->parent_obj, cq->vector);
 468    if (cq->cqid) {
 469        g_free(cq);
 470    }
 471}
 472
 473static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
 474{
 475    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 476    NvmeCQueue *cq;
 477    uint16_t qid = le16_to_cpu(c->qid);
 478
 479    if (!qid || nvme_check_cqid(n, qid)) {
 480        return NVME_INVALID_CQID | NVME_DNR;
 481    }
 482
 483    cq = n->cq[qid];
 484    if (!QTAILQ_EMPTY(&cq->sq_list)) {
 485        return NVME_INVALID_QUEUE_DEL;
 486    }
 487    nvme_free_cq(cq, n);
 488    return NVME_SUCCESS;
 489}
 490
 491static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 492    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
 493{
 494    cq->ctrl = n;
 495    cq->cqid = cqid;
 496    cq->size = size;
 497    cq->dma_addr = dma_addr;
 498    cq->phase = 1;
 499    cq->irq_enabled = irq_enabled;
 500    cq->vector = vector;
 501    cq->head = cq->tail = 0;
 502    QTAILQ_INIT(&cq->req_list);
 503    QTAILQ_INIT(&cq->sq_list);
 504    msix_vector_use(&n->parent_obj, cq->vector);
 505    n->cq[cqid] = cq;
 506    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 507}
 508
 509static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
 510{
 511    NvmeCQueue *cq;
 512    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
 513    uint16_t cqid = le16_to_cpu(c->cqid);
 514    uint16_t vector = le16_to_cpu(c->irq_vector);
 515    uint16_t qsize = le16_to_cpu(c->qsize);
 516    uint16_t qflags = le16_to_cpu(c->cq_flags);
 517    uint64_t prp1 = le64_to_cpu(c->prp1);
 518
 519    if (!cqid || !nvme_check_cqid(n, cqid)) {
 520        return NVME_INVALID_CQID | NVME_DNR;
 521    }
 522    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
 523        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 524    }
 525    if (!prp1) {
 526        return NVME_INVALID_FIELD | NVME_DNR;
 527    }
 528    if (vector > n->num_queues) {
 529        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 530    }
 531    if (!(NVME_CQ_FLAGS_PC(qflags))) {
 532        return NVME_INVALID_FIELD | NVME_DNR;
 533    }
 534
 535    cq = g_malloc0(sizeof(*cq));
 536    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 537        NVME_CQ_FLAGS_IEN(qflags));
 538    return NVME_SUCCESS;
 539}
 540
 541static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
 542{
 543    uint64_t prp1 = le64_to_cpu(c->prp1);
 544    uint64_t prp2 = le64_to_cpu(c->prp2);
 545
 546    return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
 547        prp1, prp2);
 548}
 549
 550static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
 551{
 552    NvmeNamespace *ns;
 553    uint32_t nsid = le32_to_cpu(c->nsid);
 554    uint64_t prp1 = le64_to_cpu(c->prp1);
 555    uint64_t prp2 = le64_to_cpu(c->prp2);
 556
 557    if (nsid == 0 || nsid > n->num_namespaces) {
 558        return NVME_INVALID_NSID | NVME_DNR;
 559    }
 560
 561    ns = &n->namespaces[nsid - 1];
 562    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
 563        prp1, prp2);
 564}
 565
 566static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
 567{
 568    static const int data_len = 4096;
 569    uint32_t min_nsid = le32_to_cpu(c->nsid);
 570    uint64_t prp1 = le64_to_cpu(c->prp1);
 571    uint64_t prp2 = le64_to_cpu(c->prp2);
 572    uint32_t *list;
 573    uint16_t ret;
 574    int i, j = 0;
 575
 576    list = g_malloc0(data_len);
 577    for (i = 0; i < n->num_namespaces; i++) {
 578        if (i < min_nsid) {
 579            continue;
 580        }
 581        list[j++] = cpu_to_le32(i + 1);
 582        if (j == data_len / sizeof(uint32_t)) {
 583            break;
 584        }
 585    }
 586    ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
 587    g_free(list);
 588    return ret;
 589}
 590
 591
 592static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
 593{
 594    NvmeIdentify *c = (NvmeIdentify *)cmd;
 595
 596    switch (le32_to_cpu(c->cns)) {
 597    case 0x00:
 598        return nvme_identify_ns(n, c);
 599    case 0x01:
 600        return nvme_identify_ctrl(n, c);
 601    case 0x02:
 602        return nvme_identify_nslist(n, c);
 603    default:
 604        return NVME_INVALID_FIELD | NVME_DNR;
 605    }
 606}
 607
 608static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 609{
 610    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 611    uint32_t result;
 612
 613    switch (dw10) {
 614    case NVME_VOLATILE_WRITE_CACHE:
 615        result = blk_enable_write_cache(n->conf.blk);
 616        break;
 617    case NVME_NUMBER_OF_QUEUES:
 618        result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 619        break;
 620    default:
 621        return NVME_INVALID_FIELD | NVME_DNR;
 622    }
 623
 624    req->cqe.result = result;
 625    return NVME_SUCCESS;
 626}
 627
 628static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 629{
 630    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 631    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 632
 633    switch (dw10) {
 634    case NVME_VOLATILE_WRITE_CACHE:
 635        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
 636        break;
 637    case NVME_NUMBER_OF_QUEUES:
 638        req->cqe.result =
 639            cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 640        break;
 641    default:
 642        return NVME_INVALID_FIELD | NVME_DNR;
 643    }
 644    return NVME_SUCCESS;
 645}
 646
 647static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 648{
 649    switch (cmd->opcode) {
 650    case NVME_ADM_CMD_DELETE_SQ:
 651        return nvme_del_sq(n, cmd);
 652    case NVME_ADM_CMD_CREATE_SQ:
 653        return nvme_create_sq(n, cmd);
 654    case NVME_ADM_CMD_DELETE_CQ:
 655        return nvme_del_cq(n, cmd);
 656    case NVME_ADM_CMD_CREATE_CQ:
 657        return nvme_create_cq(n, cmd);
 658    case NVME_ADM_CMD_IDENTIFY:
 659        return nvme_identify(n, cmd);
 660    case NVME_ADM_CMD_SET_FEATURES:
 661        return nvme_set_feature(n, cmd, req);
 662    case NVME_ADM_CMD_GET_FEATURES:
 663        return nvme_get_feature(n, cmd, req);
 664    default:
 665        return NVME_INVALID_OPCODE | NVME_DNR;
 666    }
 667}
 668
 669static void nvme_process_sq(void *opaque)
 670{
 671    NvmeSQueue *sq = opaque;
 672    NvmeCtrl *n = sq->ctrl;
 673    NvmeCQueue *cq = n->cq[sq->cqid];
 674
 675    uint16_t status;
 676    hwaddr addr;
 677    NvmeCmd cmd;
 678    NvmeRequest *req;
 679
 680    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 681        addr = sq->dma_addr + sq->head * n->sqe_size;
 682        nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
 683        nvme_inc_sq_head(sq);
 684
 685        req = QTAILQ_FIRST(&sq->req_list);
 686        QTAILQ_REMOVE(&sq->req_list, req, entry);
 687        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 688        memset(&req->cqe, 0, sizeof(req->cqe));
 689        req->cqe.cid = cmd.cid;
 690
 691        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
 692            nvme_admin_cmd(n, &cmd, req);
 693        if (status != NVME_NO_COMPLETE) {
 694            req->status = status;
 695            nvme_enqueue_req_completion(cq, req);
 696        }
 697    }
 698}
 699
 700static void nvme_clear_ctrl(NvmeCtrl *n)
 701{
 702    int i;
 703
 704    for (i = 0; i < n->num_queues; i++) {
 705        if (n->sq[i] != NULL) {
 706            nvme_free_sq(n->sq[i], n);
 707        }
 708    }
 709    for (i = 0; i < n->num_queues; i++) {
 710        if (n->cq[i] != NULL) {
 711            nvme_free_cq(n->cq[i], n);
 712        }
 713    }
 714
 715    blk_flush(n->conf.blk);
 716    n->bar.cc = 0;
 717}
 718
 719static int nvme_start_ctrl(NvmeCtrl *n)
 720{
 721    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
 722    uint32_t page_size = 1 << page_bits;
 723
 724    if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
 725            n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
 726            NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
 727            NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
 728            NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
 729            NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
 730            NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
 731            NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
 732            !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
 733        return -1;
 734    }
 735
 736    n->page_bits = page_bits;
 737    n->page_size = page_size;
 738    n->max_prp_ents = n->page_size / sizeof(uint64_t);
 739    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
 740    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
 741    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
 742        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
 743    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
 744        NVME_AQA_ASQS(n->bar.aqa) + 1);
 745
 746    return 0;
 747}
 748
 749static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
 750    unsigned size)
 751{
 752    switch (offset) {
 753    case 0xc:
 754        n->bar.intms |= data & 0xffffffff;
 755        n->bar.intmc = n->bar.intms;
 756        break;
 757    case 0x10:
 758        n->bar.intms &= ~(data & 0xffffffff);
 759        n->bar.intmc = n->bar.intms;
 760        break;
 761    case 0x14:
 762        /* Windows first sends data, then sends enable bit */
 763        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
 764            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
 765        {
 766            n->bar.cc = data;
 767        }
 768
 769        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
 770            n->bar.cc = data;
 771            if (nvme_start_ctrl(n)) {
 772                n->bar.csts = NVME_CSTS_FAILED;
 773            } else {
 774                n->bar.csts = NVME_CSTS_READY;
 775            }
 776        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
 777            nvme_clear_ctrl(n);
 778            n->bar.csts &= ~NVME_CSTS_READY;
 779        }
 780        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
 781                nvme_clear_ctrl(n);
 782                n->bar.cc = data;
 783                n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
 784        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
 785                n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
 786                n->bar.cc = data;
 787        }
 788        break;
 789    case 0x24:
 790        n->bar.aqa = data & 0xffffffff;
 791        break;
 792    case 0x28:
 793        n->bar.asq = data;
 794        break;
 795    case 0x2c:
 796        n->bar.asq |= data << 32;
 797        break;
 798    case 0x30:
 799        n->bar.acq = data;
 800        break;
 801    case 0x34:
 802        n->bar.acq |= data << 32;
 803        break;
 804    default:
 805        break;
 806    }
 807}
 808
 809static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
 810{
 811    NvmeCtrl *n = (NvmeCtrl *)opaque;
 812    uint8_t *ptr = (uint8_t *)&n->bar;
 813    uint64_t val = 0;
 814
 815    if (addr < sizeof(n->bar)) {
 816        memcpy(&val, ptr + addr, size);
 817    }
 818    return val;
 819}
 820
 821static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
 822{
 823    uint32_t qid;
 824
 825    if (addr & ((1 << 2) - 1)) {
 826        return;
 827    }
 828
 829    if (((addr - 0x1000) >> 2) & 1) {
 830        uint16_t new_head = val & 0xffff;
 831        int start_sqs;
 832        NvmeCQueue *cq;
 833
 834        qid = (addr - (0x1000 + (1 << 2))) >> 3;
 835        if (nvme_check_cqid(n, qid)) {
 836            return;
 837        }
 838
 839        cq = n->cq[qid];
 840        if (new_head >= cq->size) {
 841            return;
 842        }
 843
 844        start_sqs = nvme_cq_full(cq) ? 1 : 0;
 845        cq->head = new_head;
 846        if (start_sqs) {
 847            NvmeSQueue *sq;
 848            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
 849                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 850            }
 851            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 852        }
 853
 854        if (cq->tail != cq->head) {
 855            nvme_isr_notify(n, cq);
 856        }
 857    } else {
 858        uint16_t new_tail = val & 0xffff;
 859        NvmeSQueue *sq;
 860
 861        qid = (addr - 0x1000) >> 3;
 862        if (nvme_check_sqid(n, qid)) {
 863            return;
 864        }
 865
 866        sq = n->sq[qid];
 867        if (new_tail >= sq->size) {
 868            return;
 869        }
 870
 871        sq->tail = new_tail;
 872        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 873    }
 874}
 875
 876static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
 877    unsigned size)
 878{
 879    NvmeCtrl *n = (NvmeCtrl *)opaque;
 880    if (addr < sizeof(n->bar)) {
 881        nvme_write_bar(n, addr, data, size);
 882    } else if (addr >= 0x1000) {
 883        nvme_process_db(n, addr, data);
 884    }
 885}
 886
 887static const MemoryRegionOps nvme_mmio_ops = {
 888    .read = nvme_mmio_read,
 889    .write = nvme_mmio_write,
 890    .endianness = DEVICE_LITTLE_ENDIAN,
 891    .impl = {
 892        .min_access_size = 2,
 893        .max_access_size = 8,
 894    },
 895};
 896
 897static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
 898    unsigned size)
 899{
 900    NvmeCtrl *n = (NvmeCtrl *)opaque;
 901    memcpy(&n->cmbuf[addr], &data, size);
 902}
 903
 904static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
 905{
 906    uint64_t val;
 907    NvmeCtrl *n = (NvmeCtrl *)opaque;
 908
 909    memcpy(&val, &n->cmbuf[addr], size);
 910    return val;
 911}
 912
 913static const MemoryRegionOps nvme_cmb_ops = {
 914    .read = nvme_cmb_read,
 915    .write = nvme_cmb_write,
 916    .endianness = DEVICE_LITTLE_ENDIAN,
 917    .impl = {
 918        .min_access_size = 2,
 919        .max_access_size = 8,
 920    },
 921};
 922
 923static int nvme_init(PCIDevice *pci_dev)
 924{
 925    NvmeCtrl *n = NVME(pci_dev);
 926    NvmeIdCtrl *id = &n->id_ctrl;
 927
 928    int i;
 929    int64_t bs_size;
 930    uint8_t *pci_conf;
 931    Error *local_err = NULL;
 932
 933    if (!n->conf.blk) {
 934        return -1;
 935    }
 936
 937    bs_size = blk_getlength(n->conf.blk);
 938    if (bs_size < 0) {
 939        return -1;
 940    }
 941
 942    blkconf_serial(&n->conf, &n->serial);
 943    if (!n->serial) {
 944        return -1;
 945    }
 946    blkconf_blocksizes(&n->conf);
 947    blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
 948                                  false, &local_err);
 949    if (local_err) {
 950        error_report_err(local_err);
 951        return -1;
 952    }
 953
 954    pci_conf = pci_dev->config;
 955    pci_conf[PCI_INTERRUPT_PIN] = 1;
 956    pci_config_set_prog_interface(pci_dev->config, 0x2);
 957    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
 958    pcie_endpoint_cap_init(&n->parent_obj, 0x80);
 959
 960    n->num_namespaces = 1;
 961    n->num_queues = 64;
 962    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
 963    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
 964
 965    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
 966    n->sq = g_new0(NvmeSQueue *, n->num_queues);
 967    n->cq = g_new0(NvmeCQueue *, n->num_queues);
 968
 969    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
 970                          "nvme", n->reg_size);
 971    pci_register_bar(&n->parent_obj, 0,
 972        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
 973        &n->iomem);
 974    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
 975
 976    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
 977    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
 978    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
 979    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
 980    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
 981    id->rab = 6;
 982    id->ieee[0] = 0x00;
 983    id->ieee[1] = 0x02;
 984    id->ieee[2] = 0xb3;
 985    id->oacs = cpu_to_le16(0);
 986    id->frmw = 7 << 1;
 987    id->lpa = 1 << 0;
 988    id->sqes = (0x6 << 4) | 0x6;
 989    id->cqes = (0x4 << 4) | 0x4;
 990    id->nn = cpu_to_le32(n->num_namespaces);
 991    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
 992    id->psd[0].mp = cpu_to_le16(0x9c4);
 993    id->psd[0].enlat = cpu_to_le32(0x10);
 994    id->psd[0].exlat = cpu_to_le32(0x4);
 995    if (blk_enable_write_cache(n->conf.blk)) {
 996        id->vwc = 1;
 997    }
 998
 999    n->bar.cap = 0;
1000    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1001    NVME_CAP_SET_CQR(n->bar.cap, 1);
1002    NVME_CAP_SET_AMS(n->bar.cap, 1);
1003    NVME_CAP_SET_TO(n->bar.cap, 0xf);
1004    NVME_CAP_SET_CSS(n->bar.cap, 1);
1005    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1006
1007    n->bar.vs = 0x00010200;
1008    n->bar.intmc = n->bar.intms = 0;
1009
1010    if (n->cmb_size_mb) {
1011
1012        NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1013        NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1014
1015        NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1016        NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1017        NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1018        NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1019        NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1020        NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1021        NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1022
1023        n->cmbloc = n->bar.cmbloc;
1024        n->cmbsz = n->bar.cmbsz;
1025
1026        n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1027        memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1028                              "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1029        pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1030            PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1031            PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1032
1033    }
1034
1035    for (i = 0; i < n->num_namespaces; i++) {
1036        NvmeNamespace *ns = &n->namespaces[i];
1037        NvmeIdNs *id_ns = &ns->id_ns;
1038        id_ns->nsfeat = 0;
1039        id_ns->nlbaf = 0;
1040        id_ns->flbas = 0;
1041        id_ns->mc = 0;
1042        id_ns->dpc = 0;
1043        id_ns->dps = 0;
1044        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1045        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1046            cpu_to_le64(n->ns_size >>
1047                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1048    }
1049    return 0;
1050}
1051
1052static void nvme_exit(PCIDevice *pci_dev)
1053{
1054    NvmeCtrl *n = NVME(pci_dev);
1055
1056    nvme_clear_ctrl(n);
1057    g_free(n->namespaces);
1058    g_free(n->cq);
1059    g_free(n->sq);
1060    if (n->cmbsz) {
1061        memory_region_unref(&n->ctrl_mem);
1062    }
1063
1064    msix_uninit_exclusive_bar(pci_dev);
1065}
1066
1067static Property nvme_props[] = {
1068    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1069    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1070    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1071    DEFINE_PROP_END_OF_LIST(),
1072};
1073
1074static const VMStateDescription nvme_vmstate = {
1075    .name = "nvme",
1076    .unmigratable = 1,
1077};
1078
1079static void nvme_class_init(ObjectClass *oc, void *data)
1080{
1081    DeviceClass *dc = DEVICE_CLASS(oc);
1082    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1083
1084    pc->init = nvme_init;
1085    pc->exit = nvme_exit;
1086    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1087    pc->vendor_id = PCI_VENDOR_ID_INTEL;
1088    pc->device_id = 0x5845;
1089    pc->revision = 2;
1090    pc->is_express = 1;
1091
1092    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1093    dc->desc = "Non-Volatile Memory Express";
1094    dc->props = nvme_props;
1095    dc->vmsd = &nvme_vmstate;
1096}
1097
1098static void nvme_instance_init(Object *obj)
1099{
1100    NvmeCtrl *s = NVME(obj);
1101
1102    device_add_bootindex_property(obj, &s->conf.bootindex,
1103                                  "bootindex", "/namespace@1,0",
1104                                  DEVICE(obj), &error_abort);
1105}
1106
1107static const TypeInfo nvme_info = {
1108    .name          = "nvme",
1109    .parent        = TYPE_PCI_DEVICE,
1110    .instance_size = sizeof(NvmeCtrl),
1111    .class_init    = nvme_class_init,
1112    .instance_init = nvme_instance_init,
1113    .interfaces = (InterfaceInfo[]) {
1114        { INTERFACE_PCIE_DEVICE },
1115        { }
1116    },
1117};
1118
1119static void nvme_register_types(void)
1120{
1121    type_register_static(&nvme_info);
1122}
1123
1124type_init(nvme_register_types)
1125