qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "hw/sysbus.h"
  26#include "exec/address-spaces.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/i386/pc.h"
  31#include "hw/i386/apic-msidef.h"
  32#include "hw/boards.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "hw/i386/apic_internal.h"
  37#include "kvm_i386.h"
  38#include "trace.h"
  39
  40static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  41                            uint64_t wmask, uint64_t w1cmask)
  42{
  43    stq_le_p(&s->csr[addr], val);
  44    stq_le_p(&s->wmask[addr], wmask);
  45    stq_le_p(&s->w1cmask[addr], w1cmask);
  46}
  47
  48static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  49{
  50    stq_le_p(&s->womask[addr], mask);
  51}
  52
  53static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  54                            uint32_t wmask, uint32_t w1cmask)
  55{
  56    stl_le_p(&s->csr[addr], val);
  57    stl_le_p(&s->wmask[addr], wmask);
  58    stl_le_p(&s->w1cmask[addr], w1cmask);
  59}
  60
  61static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  62{
  63    stl_le_p(&s->womask[addr], mask);
  64}
  65
  66/* "External" get/set operations */
  67static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  68{
  69    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  70    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  71    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  72    stq_le_p(&s->csr[addr],
  73             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  74}
  75
  76static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  77{
  78    uint32_t oldval = ldl_le_p(&s->csr[addr]);
  79    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  80    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  81    stl_le_p(&s->csr[addr],
  82             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  83}
  84
  85static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  86{
  87    uint64_t val = ldq_le_p(&s->csr[addr]);
  88    uint64_t womask = ldq_le_p(&s->womask[addr]);
  89    return val & ~womask;
  90}
  91
  92static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  93{
  94    uint32_t val = ldl_le_p(&s->csr[addr]);
  95    uint32_t womask = ldl_le_p(&s->womask[addr]);
  96    return val & ~womask;
  97}
  98
  99/* "Internal" get/set operations */
 100static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 101{
 102    return ldq_le_p(&s->csr[addr]);
 103}
 104
 105static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 106{
 107    return ldl_le_p(&s->csr[addr]);
 108}
 109
 110static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 111{
 112    stq_le_p(&s->csr[addr], val);
 113}
 114
 115static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 116                                        uint32_t clear, uint32_t mask)
 117{
 118    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 119    stl_le_p(&s->csr[addr], new_val);
 120    return new_val;
 121}
 122
 123static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 124                                        uint64_t clear, uint64_t mask)
 125{
 126    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 127    stq_le_p(&s->csr[addr], new_val);
 128    return new_val;
 129}
 130
 131/* GHashTable functions */
 132static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 133{
 134    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 135}
 136
 137static guint vtd_uint64_hash(gconstpointer v)
 138{
 139    return (guint)*(const uint64_t *)v;
 140}
 141
 142static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 143                                          gpointer user_data)
 144{
 145    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 146    uint16_t domain_id = *(uint16_t *)user_data;
 147    return entry->domain_id == domain_id;
 148}
 149
 150/* The shift of an addr for a certain level of paging structure */
 151static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 152{
 153    assert(level != 0);
 154    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 155}
 156
 157static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 158{
 159    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 160}
 161
 162static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 163                                        gpointer user_data)
 164{
 165    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 166    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 167    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 168    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 169    return (entry->domain_id == info->domain_id) &&
 170            (((entry->gfn & info->mask) == gfn) ||
 171             (entry->gfn == gfn_tlb));
 172}
 173
 174/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 175 * IntelIOMMUState to 1.
 176 */
 177static void vtd_reset_context_cache(IntelIOMMUState *s)
 178{
 179    VTDAddressSpace *vtd_as;
 180    VTDBus *vtd_bus;
 181    GHashTableIter bus_it;
 182    uint32_t devfn_it;
 183
 184    trace_vtd_context_cache_reset();
 185
 186    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 187
 188    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 189        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
 190            vtd_as = vtd_bus->dev_as[devfn_it];
 191            if (!vtd_as) {
 192                continue;
 193            }
 194            vtd_as->context_cache_entry.context_cache_gen = 0;
 195        }
 196    }
 197    s->context_cache_gen = 1;
 198}
 199
 200static void vtd_reset_iotlb(IntelIOMMUState *s)
 201{
 202    assert(s->iotlb);
 203    g_hash_table_remove_all(s->iotlb);
 204}
 205
 206static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 207                                  uint32_t level)
 208{
 209    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 210           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 211}
 212
 213static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 214{
 215    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 216}
 217
 218static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 219                                       hwaddr addr)
 220{
 221    VTDIOTLBEntry *entry;
 222    uint64_t key;
 223    int level;
 224
 225    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 226        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 227                                source_id, level);
 228        entry = g_hash_table_lookup(s->iotlb, &key);
 229        if (entry) {
 230            goto out;
 231        }
 232    }
 233
 234out:
 235    return entry;
 236}
 237
 238static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 239                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 240                             uint8_t access_flags, uint32_t level)
 241{
 242    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 243    uint64_t *key = g_malloc(sizeof(*key));
 244    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 245
 246    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 247    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 248        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 249        vtd_reset_iotlb(s);
 250    }
 251
 252    entry->gfn = gfn;
 253    entry->domain_id = domain_id;
 254    entry->slpte = slpte;
 255    entry->access_flags = access_flags;
 256    entry->mask = vtd_slpt_level_page_mask(level);
 257    *key = vtd_get_iotlb_key(gfn, source_id, level);
 258    g_hash_table_replace(s->iotlb, key, entry);
 259}
 260
 261/* Given the reg addr of both the message data and address, generate an
 262 * interrupt via MSI.
 263 */
 264static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 265                                   hwaddr mesg_data_reg)
 266{
 267    MSIMessage msi;
 268
 269    assert(mesg_data_reg < DMAR_REG_SIZE);
 270    assert(mesg_addr_reg < DMAR_REG_SIZE);
 271
 272    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 273    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 274
 275    trace_vtd_irq_generate(msi.address, msi.data);
 276
 277    apic_get_class()->send_msi(&msi);
 278}
 279
 280/* Generate a fault event to software via MSI if conditions are met.
 281 * Notice that the value of FSTS_REG being passed to it should be the one
 282 * before any update.
 283 */
 284static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 285{
 286    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 287        pre_fsts & VTD_FSTS_IQE) {
 288        trace_vtd_err("There are previous interrupt conditions "
 289                      "to be serviced by software, fault event "
 290                      "is not generated.");
 291        return;
 292    }
 293    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 294    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 295        trace_vtd_err("Interrupt Mask set, irq is not generated.");
 296    } else {
 297        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 298        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 299    }
 300}
 301
 302/* Check if the Fault (F) field of the Fault Recording Register referenced by
 303 * @index is Set.
 304 */
 305static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 306{
 307    /* Each reg is 128-bit */
 308    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 309    addr += 8; /* Access the high 64-bit half */
 310
 311    assert(index < DMAR_FRCD_REG_NR);
 312
 313    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 314}
 315
 316/* Update the PPF field of Fault Status Register.
 317 * Should be called whenever change the F field of any fault recording
 318 * registers.
 319 */
 320static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 321{
 322    uint32_t i;
 323    uint32_t ppf_mask = 0;
 324
 325    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 326        if (vtd_is_frcd_set(s, i)) {
 327            ppf_mask = VTD_FSTS_PPF;
 328            break;
 329        }
 330    }
 331    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 332    trace_vtd_fsts_ppf(!!ppf_mask);
 333}
 334
 335static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 336{
 337    /* Each reg is 128-bit */
 338    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 339    addr += 8; /* Access the high 64-bit half */
 340
 341    assert(index < DMAR_FRCD_REG_NR);
 342
 343    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 344    vtd_update_fsts_ppf(s);
 345}
 346
 347/* Must not update F field now, should be done later */
 348static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 349                            uint16_t source_id, hwaddr addr,
 350                            VTDFaultReason fault, bool is_write)
 351{
 352    uint64_t hi = 0, lo;
 353    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 354
 355    assert(index < DMAR_FRCD_REG_NR);
 356
 357    lo = VTD_FRCD_FI(addr);
 358    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 359    if (!is_write) {
 360        hi |= VTD_FRCD_T;
 361    }
 362    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 363    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 364
 365    trace_vtd_frr_new(index, hi, lo);
 366}
 367
 368/* Try to collapse multiple pending faults from the same requester */
 369static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 370{
 371    uint32_t i;
 372    uint64_t frcd_reg;
 373    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 374
 375    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 376        frcd_reg = vtd_get_quad_raw(s, addr);
 377        if ((frcd_reg & VTD_FRCD_F) &&
 378            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 379            return true;
 380        }
 381        addr += 16; /* 128-bit for each */
 382    }
 383    return false;
 384}
 385
 386/* Log and report an DMAR (address translation) fault to software */
 387static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 388                                  hwaddr addr, VTDFaultReason fault,
 389                                  bool is_write)
 390{
 391    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 392
 393    assert(fault < VTD_FR_MAX);
 394
 395    if (fault == VTD_FR_RESERVED_ERR) {
 396        /* This is not a normal fault reason case. Drop it. */
 397        return;
 398    }
 399
 400    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 401
 402    if (fsts_reg & VTD_FSTS_PFO) {
 403        trace_vtd_err("New fault is not recorded due to "
 404                      "Primary Fault Overflow.");
 405        return;
 406    }
 407
 408    if (vtd_try_collapse_fault(s, source_id)) {
 409        trace_vtd_err("New fault is not recorded due to "
 410                      "compression of faults.");
 411        return;
 412    }
 413
 414    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 415        trace_vtd_err("Next Fault Recording Reg is used, "
 416                      "new fault is not recorded, set PFO field.");
 417        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 418        return;
 419    }
 420
 421    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 422
 423    if (fsts_reg & VTD_FSTS_PPF) {
 424        trace_vtd_err("There are pending faults already, "
 425                      "fault event is not generated.");
 426        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 427        s->next_frcd_reg++;
 428        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 429            s->next_frcd_reg = 0;
 430        }
 431    } else {
 432        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 433                                VTD_FSTS_FRI(s->next_frcd_reg));
 434        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 435        s->next_frcd_reg++;
 436        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 437            s->next_frcd_reg = 0;
 438        }
 439        /* This case actually cause the PPF to be Set.
 440         * So generate fault event (interrupt).
 441         */
 442         vtd_generate_fault_event(s, fsts_reg);
 443    }
 444}
 445
 446/* Handle Invalidation Queue Errors of queued invalidation interface error
 447 * conditions.
 448 */
 449static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 450{
 451    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 452
 453    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 454    vtd_generate_fault_event(s, fsts_reg);
 455}
 456
 457/* Set the IWC field and try to generate an invalidation completion interrupt */
 458static void vtd_generate_completion_event(IntelIOMMUState *s)
 459{
 460    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 461        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 462        return;
 463    }
 464    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 465    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 466    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 467        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 468                                    "new event not generated");
 469        return;
 470    } else {
 471        /* Generate the interrupt event */
 472        trace_vtd_inv_desc_wait_irq("Generating complete event");
 473        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 474        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 475    }
 476}
 477
 478static inline bool vtd_root_entry_present(VTDRootEntry *root)
 479{
 480    return root->val & VTD_ROOT_ENTRY_P;
 481}
 482
 483static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 484                              VTDRootEntry *re)
 485{
 486    dma_addr_t addr;
 487
 488    addr = s->root + index * sizeof(*re);
 489    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 490        trace_vtd_re_invalid(re->rsvd, re->val);
 491        re->val = 0;
 492        return -VTD_FR_ROOT_TABLE_INV;
 493    }
 494    re->val = le64_to_cpu(re->val);
 495    return 0;
 496}
 497
 498static inline bool vtd_ce_present(VTDContextEntry *context)
 499{
 500    return context->lo & VTD_CONTEXT_ENTRY_P;
 501}
 502
 503static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
 504                                           VTDContextEntry *ce)
 505{
 506    dma_addr_t addr;
 507
 508    /* we have checked that root entry is present */
 509    addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
 510    if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
 511        trace_vtd_re_invalid(root->rsvd, root->val);
 512        return -VTD_FR_CONTEXT_TABLE_INV;
 513    }
 514    ce->lo = le64_to_cpu(ce->lo);
 515    ce->hi = le64_to_cpu(ce->hi);
 516    return 0;
 517}
 518
 519static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 520{
 521    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 522}
 523
 524static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
 525{
 526    return slpte & VTD_SL_PT_BASE_ADDR_MASK;
 527}
 528
 529/* Whether the pte indicates the address of the page frame */
 530static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 531{
 532    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 533}
 534
 535/* Get the content of a spte located in @base_addr[@index] */
 536static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 537{
 538    uint64_t slpte;
 539
 540    assert(index < VTD_SL_PT_ENTRY_NR);
 541
 542    if (dma_memory_read(&address_space_memory,
 543                        base_addr + index * sizeof(slpte), &slpte,
 544                        sizeof(slpte))) {
 545        slpte = (uint64_t)-1;
 546        return slpte;
 547    }
 548    slpte = le64_to_cpu(slpte);
 549    return slpte;
 550}
 551
 552/* Given an iova and the level of paging structure, return the offset
 553 * of current level.
 554 */
 555static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 556{
 557    return (iova >> vtd_slpt_level_shift(level)) &
 558            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 559}
 560
 561/* Check Capability Register to see if the @level of page-table is supported */
 562static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 563{
 564    return VTD_CAP_SAGAW_MASK & s->cap &
 565           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 566}
 567
 568/* Get the page-table level that hardware should use for the second-level
 569 * page-table walk from the Address Width field of context-entry.
 570 */
 571static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 572{
 573    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 574}
 575
 576static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 577{
 578    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 579}
 580
 581static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 582{
 583    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 584}
 585
 586/* Return true if check passed, otherwise false */
 587static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 588                                     VTDContextEntry *ce)
 589{
 590    switch (vtd_ce_get_type(ce)) {
 591    case VTD_CONTEXT_TT_MULTI_LEVEL:
 592        /* Always supported */
 593        break;
 594    case VTD_CONTEXT_TT_DEV_IOTLB:
 595        if (!x86_iommu->dt_supported) {
 596            return false;
 597        }
 598        break;
 599    case VTD_CONTEXT_TT_PASS_THROUGH:
 600        if (!x86_iommu->pt_supported) {
 601            return false;
 602        }
 603        break;
 604    default:
 605        /* Unknwon type */
 606        return false;
 607    }
 608    return true;
 609}
 610
 611static inline uint64_t vtd_iova_limit(VTDContextEntry *ce)
 612{
 613    uint32_t ce_agaw = vtd_ce_get_agaw(ce);
 614    return 1ULL << MIN(ce_agaw, VTD_MGAW);
 615}
 616
 617/* Return true if IOVA passes range check, otherwise false. */
 618static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce)
 619{
 620    /*
 621     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 622     * in CAP_REG and AW in context-entry.
 623     */
 624    return !(iova & ~(vtd_iova_limit(ce) - 1));
 625}
 626
 627static const uint64_t vtd_paging_entry_rsvd_field[] = {
 628    [0] = ~0ULL,
 629    /* For not large page */
 630    [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 631    [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 632    [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 633    [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 634    /* For large page */
 635    [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 636    [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 637    [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 638    [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 639};
 640
 641static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 642{
 643    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 644        /* Maybe large page */
 645        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 646    } else {
 647        return slpte & vtd_paging_entry_rsvd_field[level];
 648    }
 649}
 650
 651/* Find the VTD address space associated with a given bus number */
 652static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 653{
 654    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 655    if (!vtd_bus) {
 656        /*
 657         * Iterate over the registered buses to find the one which
 658         * currently hold this bus number, and update the bus_num
 659         * lookup table:
 660         */
 661        GHashTableIter iter;
 662
 663        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 664        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 665            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 666                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 667                return vtd_bus;
 668            }
 669        }
 670    }
 671    return vtd_bus;
 672}
 673
 674/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
 675 * of the translation, can be used for deciding the size of large page.
 676 */
 677static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
 678                             uint64_t *slptep, uint32_t *slpte_level,
 679                             bool *reads, bool *writes)
 680{
 681    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 682    uint32_t level = vtd_ce_get_level(ce);
 683    uint32_t offset;
 684    uint64_t slpte;
 685    uint64_t access_right_check;
 686
 687    if (!vtd_iova_range_check(iova, ce)) {
 688        trace_vtd_err_dmar_iova_overflow(iova);
 689        return -VTD_FR_ADDR_BEYOND_MGAW;
 690    }
 691
 692    /* FIXME: what is the Atomics request here? */
 693    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 694
 695    while (true) {
 696        offset = vtd_iova_level_offset(iova, level);
 697        slpte = vtd_get_slpte(addr, offset);
 698
 699        if (slpte == (uint64_t)-1) {
 700            trace_vtd_err_dmar_slpte_read_error(iova, level);
 701            if (level == vtd_ce_get_level(ce)) {
 702                /* Invalid programming of context-entry */
 703                return -VTD_FR_CONTEXT_ENTRY_INV;
 704            } else {
 705                return -VTD_FR_PAGING_ENTRY_INV;
 706            }
 707        }
 708        *reads = (*reads) && (slpte & VTD_SL_R);
 709        *writes = (*writes) && (slpte & VTD_SL_W);
 710        if (!(slpte & access_right_check)) {
 711            trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
 712            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 713        }
 714        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 715            trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
 716            return -VTD_FR_PAGING_ENTRY_RSVD;
 717        }
 718
 719        if (vtd_is_last_slpte(slpte, level)) {
 720            *slptep = slpte;
 721            *slpte_level = level;
 722            return 0;
 723        }
 724        addr = vtd_get_slpte_addr(slpte);
 725        level--;
 726    }
 727}
 728
 729typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
 730
 731/**
 732 * vtd_page_walk_level - walk over specific level for IOVA range
 733 *
 734 * @addr: base GPA addr to start the walk
 735 * @start: IOVA range start address
 736 * @end: IOVA range end address (start <= addr < end)
 737 * @hook_fn: hook func to be called when detected page
 738 * @private: private data to be passed into hook func
 739 * @read: whether parent level has read permission
 740 * @write: whether parent level has write permission
 741 * @notify_unmap: whether we should notify invalid entries
 742 */
 743static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
 744                               uint64_t end, vtd_page_walk_hook hook_fn,
 745                               void *private, uint32_t level,
 746                               bool read, bool write, bool notify_unmap)
 747{
 748    bool read_cur, write_cur, entry_valid;
 749    uint32_t offset;
 750    uint64_t slpte;
 751    uint64_t subpage_size, subpage_mask;
 752    IOMMUTLBEntry entry;
 753    uint64_t iova = start;
 754    uint64_t iova_next;
 755    int ret = 0;
 756
 757    trace_vtd_page_walk_level(addr, level, start, end);
 758
 759    subpage_size = 1ULL << vtd_slpt_level_shift(level);
 760    subpage_mask = vtd_slpt_level_page_mask(level);
 761
 762    while (iova < end) {
 763        iova_next = (iova & subpage_mask) + subpage_size;
 764
 765        offset = vtd_iova_level_offset(iova, level);
 766        slpte = vtd_get_slpte(addr, offset);
 767
 768        if (slpte == (uint64_t)-1) {
 769            trace_vtd_page_walk_skip_read(iova, iova_next);
 770            goto next;
 771        }
 772
 773        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 774            trace_vtd_page_walk_skip_reserve(iova, iova_next);
 775            goto next;
 776        }
 777
 778        /* Permissions are stacked with parents' */
 779        read_cur = read && (slpte & VTD_SL_R);
 780        write_cur = write && (slpte & VTD_SL_W);
 781
 782        /*
 783         * As long as we have either read/write permission, this is a
 784         * valid entry. The rule works for both page entries and page
 785         * table entries.
 786         */
 787        entry_valid = read_cur | write_cur;
 788
 789        if (vtd_is_last_slpte(slpte, level)) {
 790            entry.target_as = &address_space_memory;
 791            entry.iova = iova & subpage_mask;
 792            /* NOTE: this is only meaningful if entry_valid == true */
 793            entry.translated_addr = vtd_get_slpte_addr(slpte);
 794            entry.addr_mask = ~subpage_mask;
 795            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
 796            if (!entry_valid && !notify_unmap) {
 797                trace_vtd_page_walk_skip_perm(iova, iova_next);
 798                goto next;
 799            }
 800            trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
 801                                    entry.addr_mask, entry.perm);
 802            if (hook_fn) {
 803                ret = hook_fn(&entry, private);
 804                if (ret < 0) {
 805                    return ret;
 806                }
 807            }
 808        } else {
 809            if (!entry_valid) {
 810                trace_vtd_page_walk_skip_perm(iova, iova_next);
 811                goto next;
 812            }
 813            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova,
 814                                      MIN(iova_next, end), hook_fn, private,
 815                                      level - 1, read_cur, write_cur,
 816                                      notify_unmap);
 817            if (ret < 0) {
 818                return ret;
 819            }
 820        }
 821
 822next:
 823        iova = iova_next;
 824    }
 825
 826    return 0;
 827}
 828
 829/**
 830 * vtd_page_walk - walk specific IOVA range, and call the hook
 831 *
 832 * @ce: context entry to walk upon
 833 * @start: IOVA address to start the walk
 834 * @end: IOVA range end address (start <= addr < end)
 835 * @hook_fn: the hook that to be called for each detected area
 836 * @private: private data for the hook function
 837 */
 838static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
 839                         vtd_page_walk_hook hook_fn, void *private,
 840                         bool notify_unmap)
 841{
 842    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 843    uint32_t level = vtd_ce_get_level(ce);
 844
 845    if (!vtd_iova_range_check(start, ce)) {
 846        return -VTD_FR_ADDR_BEYOND_MGAW;
 847    }
 848
 849    if (!vtd_iova_range_check(end, ce)) {
 850        /* Fix end so that it reaches the maximum */
 851        end = vtd_iova_limit(ce);
 852    }
 853
 854    return vtd_page_walk_level(addr, start, end, hook_fn, private,
 855                               level, true, true, notify_unmap);
 856}
 857
 858/* Map a device to its corresponding domain (context-entry) */
 859static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
 860                                    uint8_t devfn, VTDContextEntry *ce)
 861{
 862    VTDRootEntry re;
 863    int ret_fr;
 864    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 865
 866    ret_fr = vtd_get_root_entry(s, bus_num, &re);
 867    if (ret_fr) {
 868        return ret_fr;
 869    }
 870
 871    if (!vtd_root_entry_present(&re)) {
 872        /* Not error - it's okay we don't have root entry. */
 873        trace_vtd_re_not_present(bus_num);
 874        return -VTD_FR_ROOT_ENTRY_P;
 875    }
 876
 877    if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
 878        trace_vtd_re_invalid(re.rsvd, re.val);
 879        return -VTD_FR_ROOT_ENTRY_RSVD;
 880    }
 881
 882    ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
 883    if (ret_fr) {
 884        return ret_fr;
 885    }
 886
 887    if (!vtd_ce_present(ce)) {
 888        /* Not error - it's okay we don't have context entry. */
 889        trace_vtd_ce_not_present(bus_num, devfn);
 890        return -VTD_FR_CONTEXT_ENTRY_P;
 891    }
 892
 893    if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
 894        (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
 895        trace_vtd_ce_invalid(ce->hi, ce->lo);
 896        return -VTD_FR_CONTEXT_ENTRY_RSVD;
 897    }
 898
 899    /* Check if the programming of context-entry is valid */
 900    if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
 901        trace_vtd_ce_invalid(ce->hi, ce->lo);
 902        return -VTD_FR_CONTEXT_ENTRY_INV;
 903    }
 904
 905    /* Do translation type check */
 906    if (!vtd_ce_type_check(x86_iommu, ce)) {
 907        trace_vtd_ce_invalid(ce->hi, ce->lo);
 908        return -VTD_FR_CONTEXT_ENTRY_INV;
 909    }
 910
 911    return 0;
 912}
 913
 914/*
 915 * Fetch translation type for specific device. Returns <0 if error
 916 * happens, otherwise return the shifted type to check against
 917 * VTD_CONTEXT_TT_*.
 918 */
 919static int vtd_dev_get_trans_type(VTDAddressSpace *as)
 920{
 921    IntelIOMMUState *s;
 922    VTDContextEntry ce;
 923    int ret;
 924
 925    s = as->iommu_state;
 926
 927    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
 928                                   as->devfn, &ce);
 929    if (ret) {
 930        return ret;
 931    }
 932
 933    return vtd_ce_get_type(&ce);
 934}
 935
 936static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
 937{
 938    int ret;
 939
 940    assert(as);
 941
 942    ret = vtd_dev_get_trans_type(as);
 943    if (ret < 0) {
 944        /*
 945         * Possibly failed to parse the context entry for some reason
 946         * (e.g., during init, or any guest configuration errors on
 947         * context entries). We should assume PT not enabled for
 948         * safety.
 949         */
 950        return false;
 951    }
 952
 953    return ret == VTD_CONTEXT_TT_PASS_THROUGH;
 954}
 955
 956/* Return whether the device is using IOMMU translation. */
 957static bool vtd_switch_address_space(VTDAddressSpace *as)
 958{
 959    bool use_iommu;
 960    /* Whether we need to take the BQL on our own */
 961    bool take_bql = !qemu_mutex_iothread_locked();
 962
 963    assert(as);
 964
 965    use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
 966
 967    trace_vtd_switch_address_space(pci_bus_num(as->bus),
 968                                   VTD_PCI_SLOT(as->devfn),
 969                                   VTD_PCI_FUNC(as->devfn),
 970                                   use_iommu);
 971
 972    /*
 973     * It's possible that we reach here without BQL, e.g., when called
 974     * from vtd_pt_enable_fast_path(). However the memory APIs need
 975     * it. We'd better make sure we have had it already, or, take it.
 976     */
 977    if (take_bql) {
 978        qemu_mutex_lock_iothread();
 979    }
 980
 981    /* Turn off first then on the other */
 982    if (use_iommu) {
 983        memory_region_set_enabled(&as->sys_alias, false);
 984        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
 985    } else {
 986        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
 987        memory_region_set_enabled(&as->sys_alias, true);
 988    }
 989
 990    if (take_bql) {
 991        qemu_mutex_unlock_iothread();
 992    }
 993
 994    return use_iommu;
 995}
 996
 997static void vtd_switch_address_space_all(IntelIOMMUState *s)
 998{
 999    GHashTableIter iter;
1000    VTDBus *vtd_bus;
1001    int i;
1002
1003    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1004    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1005        for (i = 0; i < X86_IOMMU_PCI_DEVFN_MAX; i++) {
1006            if (!vtd_bus->dev_as[i]) {
1007                continue;
1008            }
1009            vtd_switch_address_space(vtd_bus->dev_as[i]);
1010        }
1011    }
1012}
1013
1014static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1015{
1016    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1017}
1018
1019static const bool vtd_qualified_faults[] = {
1020    [VTD_FR_RESERVED] = false,
1021    [VTD_FR_ROOT_ENTRY_P] = false,
1022    [VTD_FR_CONTEXT_ENTRY_P] = true,
1023    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1024    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1025    [VTD_FR_WRITE] = true,
1026    [VTD_FR_READ] = true,
1027    [VTD_FR_PAGING_ENTRY_INV] = true,
1028    [VTD_FR_ROOT_TABLE_INV] = false,
1029    [VTD_FR_CONTEXT_TABLE_INV] = false,
1030    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1031    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1032    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1033    [VTD_FR_RESERVED_ERR] = false,
1034    [VTD_FR_MAX] = false,
1035};
1036
1037/* To see if a fault condition is "qualified", which is reported to software
1038 * only if the FPD field in the context-entry used to process the faulting
1039 * request is 0.
1040 */
1041static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1042{
1043    return vtd_qualified_faults[fault];
1044}
1045
1046static inline bool vtd_is_interrupt_addr(hwaddr addr)
1047{
1048    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1049}
1050
1051static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1052{
1053    VTDBus *vtd_bus;
1054    VTDAddressSpace *vtd_as;
1055    bool success = false;
1056
1057    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1058    if (!vtd_bus) {
1059        goto out;
1060    }
1061
1062    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1063    if (!vtd_as) {
1064        goto out;
1065    }
1066
1067    if (vtd_switch_address_space(vtd_as) == false) {
1068        /* We switched off IOMMU region successfully. */
1069        success = true;
1070    }
1071
1072out:
1073    trace_vtd_pt_enable_fast_path(source_id, success);
1074}
1075
1076/* Map dev to context-entry then do a paging-structures walk to do a iommu
1077 * translation.
1078 *
1079 * Called from RCU critical section.
1080 *
1081 * @bus_num: The bus number
1082 * @devfn: The devfn, which is the  combined of device and function number
1083 * @is_write: The access is a write operation
1084 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1085 *
1086 * Returns true if translation is successful, otherwise false.
1087 */
1088static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1089                                   uint8_t devfn, hwaddr addr, bool is_write,
1090                                   IOMMUTLBEntry *entry)
1091{
1092    IntelIOMMUState *s = vtd_as->iommu_state;
1093    VTDContextEntry ce;
1094    uint8_t bus_num = pci_bus_num(bus);
1095    VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1096    uint64_t slpte, page_mask;
1097    uint32_t level;
1098    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1099    int ret_fr;
1100    bool is_fpd_set = false;
1101    bool reads = true;
1102    bool writes = true;
1103    uint8_t access_flags;
1104    VTDIOTLBEntry *iotlb_entry;
1105
1106    /*
1107     * We have standalone memory region for interrupt addresses, we
1108     * should never receive translation requests in this region.
1109     */
1110    assert(!vtd_is_interrupt_addr(addr));
1111
1112    /* Try to fetch slpte form IOTLB */
1113    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1114    if (iotlb_entry) {
1115        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1116                                 iotlb_entry->domain_id);
1117        slpte = iotlb_entry->slpte;
1118        access_flags = iotlb_entry->access_flags;
1119        page_mask = iotlb_entry->mask;
1120        goto out;
1121    }
1122
1123    /* Try to fetch context-entry from cache first */
1124    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1125        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1126                               cc_entry->context_entry.lo,
1127                               cc_entry->context_cache_gen);
1128        ce = cc_entry->context_entry;
1129        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1130    } else {
1131        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1132        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1133        if (ret_fr) {
1134            ret_fr = -ret_fr;
1135            if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1136                trace_vtd_fault_disabled();
1137            } else {
1138                vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1139            }
1140            goto error;
1141        }
1142        /* Update context-cache */
1143        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1144                                  cc_entry->context_cache_gen,
1145                                  s->context_cache_gen);
1146        cc_entry->context_entry = ce;
1147        cc_entry->context_cache_gen = s->context_cache_gen;
1148    }
1149
1150    /*
1151     * We don't need to translate for pass-through context entries.
1152     * Also, let's ignore IOTLB caching as well for PT devices.
1153     */
1154    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1155        entry->iova = addr & VTD_PAGE_MASK_4K;
1156        entry->translated_addr = entry->iova;
1157        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1158        entry->perm = IOMMU_RW;
1159        trace_vtd_translate_pt(source_id, entry->iova);
1160
1161        /*
1162         * When this happens, it means firstly caching-mode is not
1163         * enabled, and this is the first passthrough translation for
1164         * the device. Let's enable the fast path for passthrough.
1165         *
1166         * When passthrough is disabled again for the device, we can
1167         * capture it via the context entry invalidation, then the
1168         * IOMMU region can be swapped back.
1169         */
1170        vtd_pt_enable_fast_path(s, source_id);
1171
1172        return true;
1173    }
1174
1175    ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1176                               &reads, &writes);
1177    if (ret_fr) {
1178        ret_fr = -ret_fr;
1179        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1180            trace_vtd_fault_disabled();
1181        } else {
1182            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1183        }
1184        goto error;
1185    }
1186
1187    page_mask = vtd_slpt_level_page_mask(level);
1188    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1189    vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1190                     access_flags, level);
1191out:
1192    entry->iova = addr & page_mask;
1193    entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
1194    entry->addr_mask = ~page_mask;
1195    entry->perm = access_flags;
1196    return true;
1197
1198error:
1199    entry->iova = 0;
1200    entry->translated_addr = 0;
1201    entry->addr_mask = 0;
1202    entry->perm = IOMMU_NONE;
1203    return false;
1204}
1205
1206static void vtd_root_table_setup(IntelIOMMUState *s)
1207{
1208    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1209    s->root_extended = s->root & VTD_RTADDR_RTT;
1210    s->root &= VTD_RTADDR_ADDR_MASK;
1211
1212    trace_vtd_reg_dmar_root(s->root, s->root_extended);
1213}
1214
1215static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1216                               uint32_t index, uint32_t mask)
1217{
1218    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1219}
1220
1221static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1222{
1223    uint64_t value = 0;
1224    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1225    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1226    s->intr_root = value & VTD_IRTA_ADDR_MASK;
1227    s->intr_eime = value & VTD_IRTA_EIME;
1228
1229    /* Notify global invalidation */
1230    vtd_iec_notify_all(s, true, 0, 0);
1231
1232    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1233}
1234
1235static void vtd_iommu_replay_all(IntelIOMMUState *s)
1236{
1237    IntelIOMMUNotifierNode *node;
1238
1239    QLIST_FOREACH(node, &s->notifiers_list, next) {
1240        memory_region_iommu_replay_all(&node->vtd_as->iommu);
1241    }
1242}
1243
1244static void vtd_context_global_invalidate(IntelIOMMUState *s)
1245{
1246    trace_vtd_inv_desc_cc_global();
1247    s->context_cache_gen++;
1248    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1249        vtd_reset_context_cache(s);
1250    }
1251    vtd_switch_address_space_all(s);
1252    /*
1253     * From VT-d spec 6.5.2.1, a global context entry invalidation
1254     * should be followed by a IOTLB global invalidation, so we should
1255     * be safe even without this. Hoewever, let's replay the region as
1256     * well to be safer, and go back here when we need finer tunes for
1257     * VT-d emulation codes.
1258     */
1259    vtd_iommu_replay_all(s);
1260}
1261
1262/* Do a context-cache device-selective invalidation.
1263 * @func_mask: FM field after shifting
1264 */
1265static void vtd_context_device_invalidate(IntelIOMMUState *s,
1266                                          uint16_t source_id,
1267                                          uint16_t func_mask)
1268{
1269    uint16_t mask;
1270    VTDBus *vtd_bus;
1271    VTDAddressSpace *vtd_as;
1272    uint8_t bus_n, devfn;
1273    uint16_t devfn_it;
1274
1275    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1276
1277    switch (func_mask & 3) {
1278    case 0:
1279        mask = 0;   /* No bits in the SID field masked */
1280        break;
1281    case 1:
1282        mask = 4;   /* Mask bit 2 in the SID field */
1283        break;
1284    case 2:
1285        mask = 6;   /* Mask bit 2:1 in the SID field */
1286        break;
1287    case 3:
1288        mask = 7;   /* Mask bit 2:0 in the SID field */
1289        break;
1290    }
1291    mask = ~mask;
1292
1293    bus_n = VTD_SID_TO_BUS(source_id);
1294    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1295    if (vtd_bus) {
1296        devfn = VTD_SID_TO_DEVFN(source_id);
1297        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
1298            vtd_as = vtd_bus->dev_as[devfn_it];
1299            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1300                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1301                                             VTD_PCI_FUNC(devfn_it));
1302                vtd_as->context_cache_entry.context_cache_gen = 0;
1303                /*
1304                 * Do switch address space when needed, in case if the
1305                 * device passthrough bit is switched.
1306                 */
1307                vtd_switch_address_space(vtd_as);
1308                /*
1309                 * So a device is moving out of (or moving into) a
1310                 * domain, a replay() suites here to notify all the
1311                 * IOMMU_NOTIFIER_MAP registers about this change.
1312                 * This won't bring bad even if we have no such
1313                 * notifier registered - the IOMMU notification
1314                 * framework will skip MAP notifications if that
1315                 * happened.
1316                 */
1317                memory_region_iommu_replay_all(&vtd_as->iommu);
1318            }
1319        }
1320    }
1321}
1322
1323/* Context-cache invalidation
1324 * Returns the Context Actual Invalidation Granularity.
1325 * @val: the content of the CCMD_REG
1326 */
1327static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1328{
1329    uint64_t caig;
1330    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1331
1332    switch (type) {
1333    case VTD_CCMD_DOMAIN_INVL:
1334        /* Fall through */
1335    case VTD_CCMD_GLOBAL_INVL:
1336        caig = VTD_CCMD_GLOBAL_INVL_A;
1337        vtd_context_global_invalidate(s);
1338        break;
1339
1340    case VTD_CCMD_DEVICE_INVL:
1341        caig = VTD_CCMD_DEVICE_INVL_A;
1342        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1343        break;
1344
1345    default:
1346        trace_vtd_err("Context cache invalidate type error.");
1347        caig = 0;
1348    }
1349    return caig;
1350}
1351
1352static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1353{
1354    trace_vtd_inv_desc_iotlb_global();
1355    vtd_reset_iotlb(s);
1356    vtd_iommu_replay_all(s);
1357}
1358
1359static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1360{
1361    IntelIOMMUNotifierNode *node;
1362    VTDContextEntry ce;
1363    VTDAddressSpace *vtd_as;
1364
1365    trace_vtd_inv_desc_iotlb_domain(domain_id);
1366
1367    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1368                                &domain_id);
1369
1370    QLIST_FOREACH(node, &s->notifiers_list, next) {
1371        vtd_as = node->vtd_as;
1372        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1373                                      vtd_as->devfn, &ce) &&
1374            domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1375            memory_region_iommu_replay_all(&vtd_as->iommu);
1376        }
1377    }
1378}
1379
1380static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1381                                           void *private)
1382{
1383    memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1384    return 0;
1385}
1386
1387static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1388                                           uint16_t domain_id, hwaddr addr,
1389                                           uint8_t am)
1390{
1391    IntelIOMMUNotifierNode *node;
1392    VTDContextEntry ce;
1393    int ret;
1394
1395    QLIST_FOREACH(node, &(s->notifiers_list), next) {
1396        VTDAddressSpace *vtd_as = node->vtd_as;
1397        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1398                                       vtd_as->devfn, &ce);
1399        if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1400            vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1401                          vtd_page_invalidate_notify_hook,
1402                          (void *)&vtd_as->iommu, true);
1403        }
1404    }
1405}
1406
1407static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1408                                      hwaddr addr, uint8_t am)
1409{
1410    VTDIOTLBPageInvInfo info;
1411
1412    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1413
1414    assert(am <= VTD_MAMV);
1415    info.domain_id = domain_id;
1416    info.addr = addr;
1417    info.mask = ~((1 << am) - 1);
1418    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1419    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1420}
1421
1422/* Flush IOTLB
1423 * Returns the IOTLB Actual Invalidation Granularity.
1424 * @val: the content of the IOTLB_REG
1425 */
1426static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1427{
1428    uint64_t iaig;
1429    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1430    uint16_t domain_id;
1431    hwaddr addr;
1432    uint8_t am;
1433
1434    switch (type) {
1435    case VTD_TLB_GLOBAL_FLUSH:
1436        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1437        vtd_iotlb_global_invalidate(s);
1438        break;
1439
1440    case VTD_TLB_DSI_FLUSH:
1441        domain_id = VTD_TLB_DID(val);
1442        iaig = VTD_TLB_DSI_FLUSH_A;
1443        vtd_iotlb_domain_invalidate(s, domain_id);
1444        break;
1445
1446    case VTD_TLB_PSI_FLUSH:
1447        domain_id = VTD_TLB_DID(val);
1448        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1449        am = VTD_IVA_AM(addr);
1450        addr = VTD_IVA_ADDR(addr);
1451        if (am > VTD_MAMV) {
1452            trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1453            iaig = 0;
1454            break;
1455        }
1456        iaig = VTD_TLB_PSI_FLUSH_A;
1457        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1458        break;
1459
1460    default:
1461        trace_vtd_err("IOTLB flush: invalid granularity.");
1462        iaig = 0;
1463    }
1464    return iaig;
1465}
1466
1467static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1468
1469static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1470{
1471    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1472           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1473}
1474
1475static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1476{
1477    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1478
1479    trace_vtd_inv_qi_enable(en);
1480
1481    if (en) {
1482        s->iq = iqa_val & VTD_IQA_IQA_MASK;
1483        /* 2^(x+8) entries */
1484        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1485        s->qi_enabled = true;
1486        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1487        /* Ok - report back to driver */
1488        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1489
1490        if (s->iq_tail != 0) {
1491            /*
1492             * This is a spec violation but Windows guests are known to set up
1493             * Queued Invalidation this way so we allow the write and process
1494             * Invalidation Descriptors right away.
1495             */
1496            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1497            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1498                vtd_fetch_inv_desc(s);
1499            }
1500        }
1501    } else {
1502        if (vtd_queued_inv_disable_check(s)) {
1503            /* disable Queued Invalidation */
1504            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1505            s->iq_head = 0;
1506            s->qi_enabled = false;
1507            /* Ok - report back to driver */
1508            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1509        } else {
1510            trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1511        }
1512    }
1513}
1514
1515/* Set Root Table Pointer */
1516static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1517{
1518    vtd_root_table_setup(s);
1519    /* Ok - report back to driver */
1520    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1521}
1522
1523/* Set Interrupt Remap Table Pointer */
1524static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1525{
1526    vtd_interrupt_remap_table_setup(s);
1527    /* Ok - report back to driver */
1528    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1529}
1530
1531/* Handle Translation Enable/Disable */
1532static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1533{
1534    if (s->dmar_enabled == en) {
1535        return;
1536    }
1537
1538    trace_vtd_dmar_enable(en);
1539
1540    if (en) {
1541        s->dmar_enabled = true;
1542        /* Ok - report back to driver */
1543        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1544    } else {
1545        s->dmar_enabled = false;
1546
1547        /* Clear the index of Fault Recording Register */
1548        s->next_frcd_reg = 0;
1549        /* Ok - report back to driver */
1550        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1551    }
1552
1553    vtd_switch_address_space_all(s);
1554}
1555
1556/* Handle Interrupt Remap Enable/Disable */
1557static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1558{
1559    trace_vtd_ir_enable(en);
1560
1561    if (en) {
1562        s->intr_enabled = true;
1563        /* Ok - report back to driver */
1564        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1565    } else {
1566        s->intr_enabled = false;
1567        /* Ok - report back to driver */
1568        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1569    }
1570}
1571
1572/* Handle write to Global Command Register */
1573static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1574{
1575    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1576    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1577    uint32_t changed = status ^ val;
1578
1579    trace_vtd_reg_write_gcmd(status, val);
1580    if (changed & VTD_GCMD_TE) {
1581        /* Translation enable/disable */
1582        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1583    }
1584    if (val & VTD_GCMD_SRTP) {
1585        /* Set/update the root-table pointer */
1586        vtd_handle_gcmd_srtp(s);
1587    }
1588    if (changed & VTD_GCMD_QIE) {
1589        /* Queued Invalidation Enable */
1590        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1591    }
1592    if (val & VTD_GCMD_SIRTP) {
1593        /* Set/update the interrupt remapping root-table pointer */
1594        vtd_handle_gcmd_sirtp(s);
1595    }
1596    if (changed & VTD_GCMD_IRE) {
1597        /* Interrupt remap enable/disable */
1598        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1599    }
1600}
1601
1602/* Handle write to Context Command Register */
1603static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1604{
1605    uint64_t ret;
1606    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1607
1608    /* Context-cache invalidation request */
1609    if (val & VTD_CCMD_ICC) {
1610        if (s->qi_enabled) {
1611            trace_vtd_err("Queued Invalidation enabled, "
1612                          "should not use register-based invalidation");
1613            return;
1614        }
1615        ret = vtd_context_cache_invalidate(s, val);
1616        /* Invalidation completed. Change something to show */
1617        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1618        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1619                                      ret);
1620    }
1621}
1622
1623/* Handle write to IOTLB Invalidation Register */
1624static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1625{
1626    uint64_t ret;
1627    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1628
1629    /* IOTLB invalidation request */
1630    if (val & VTD_TLB_IVT) {
1631        if (s->qi_enabled) {
1632            trace_vtd_err("Queued Invalidation enabled, "
1633                          "should not use register-based invalidation.");
1634            return;
1635        }
1636        ret = vtd_iotlb_flush(s, val);
1637        /* Invalidation completed. Change something to show */
1638        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1639        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1640                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1641    }
1642}
1643
1644/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1645static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1646                             VTDInvDesc *inv_desc)
1647{
1648    dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1649    if (dma_memory_read(&address_space_memory, addr, inv_desc,
1650        sizeof(*inv_desc))) {
1651        trace_vtd_err("Read INV DESC failed.");
1652        inv_desc->lo = 0;
1653        inv_desc->hi = 0;
1654        return false;
1655    }
1656    inv_desc->lo = le64_to_cpu(inv_desc->lo);
1657    inv_desc->hi = le64_to_cpu(inv_desc->hi);
1658    return true;
1659}
1660
1661static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1662{
1663    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1664        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1665        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1666        return false;
1667    }
1668    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1669        /* Status Write */
1670        uint32_t status_data = (uint32_t)(inv_desc->lo >>
1671                               VTD_INV_DESC_WAIT_DATA_SHIFT);
1672
1673        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1674
1675        /* FIXME: need to be masked with HAW? */
1676        dma_addr_t status_addr = inv_desc->hi;
1677        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1678        status_data = cpu_to_le32(status_data);
1679        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1680                             sizeof(status_data))) {
1681            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1682            return false;
1683        }
1684    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1685        /* Interrupt flag */
1686        vtd_generate_completion_event(s);
1687    } else {
1688        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1689        return false;
1690    }
1691    return true;
1692}
1693
1694static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1695                                           VTDInvDesc *inv_desc)
1696{
1697    uint16_t sid, fmask;
1698
1699    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1700        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1701        return false;
1702    }
1703    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1704    case VTD_INV_DESC_CC_DOMAIN:
1705        trace_vtd_inv_desc_cc_domain(
1706            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1707        /* Fall through */
1708    case VTD_INV_DESC_CC_GLOBAL:
1709        vtd_context_global_invalidate(s);
1710        break;
1711
1712    case VTD_INV_DESC_CC_DEVICE:
1713        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1714        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1715        vtd_context_device_invalidate(s, sid, fmask);
1716        break;
1717
1718    default:
1719        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1720        return false;
1721    }
1722    return true;
1723}
1724
1725static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1726{
1727    uint16_t domain_id;
1728    uint8_t am;
1729    hwaddr addr;
1730
1731    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1732        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1733        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1734        return false;
1735    }
1736
1737    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1738    case VTD_INV_DESC_IOTLB_GLOBAL:
1739        vtd_iotlb_global_invalidate(s);
1740        break;
1741
1742    case VTD_INV_DESC_IOTLB_DOMAIN:
1743        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1744        vtd_iotlb_domain_invalidate(s, domain_id);
1745        break;
1746
1747    case VTD_INV_DESC_IOTLB_PAGE:
1748        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1749        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1750        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1751        if (am > VTD_MAMV) {
1752            trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1753            return false;
1754        }
1755        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1756        break;
1757
1758    default:
1759        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1760        return false;
1761    }
1762    return true;
1763}
1764
1765static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1766                                     VTDInvDesc *inv_desc)
1767{
1768    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1769                           inv_desc->iec.index,
1770                           inv_desc->iec.index_mask);
1771
1772    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1773                       inv_desc->iec.index,
1774                       inv_desc->iec.index_mask);
1775    return true;
1776}
1777
1778static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1779                                          VTDInvDesc *inv_desc)
1780{
1781    VTDAddressSpace *vtd_dev_as;
1782    IOMMUTLBEntry entry;
1783    struct VTDBus *vtd_bus;
1784    hwaddr addr;
1785    uint64_t sz;
1786    uint16_t sid;
1787    uint8_t devfn;
1788    bool size;
1789    uint8_t bus_num;
1790
1791    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1792    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1793    devfn = sid & 0xff;
1794    bus_num = sid >> 8;
1795    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1796
1797    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1798        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1799        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1800        return false;
1801    }
1802
1803    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1804    if (!vtd_bus) {
1805        goto done;
1806    }
1807
1808    vtd_dev_as = vtd_bus->dev_as[devfn];
1809    if (!vtd_dev_as) {
1810        goto done;
1811    }
1812
1813    /* According to ATS spec table 2.4:
1814     * S = 0, bits 15:12 = xxxx     range size: 4K
1815     * S = 1, bits 15:12 = xxx0     range size: 8K
1816     * S = 1, bits 15:12 = xx01     range size: 16K
1817     * S = 1, bits 15:12 = x011     range size: 32K
1818     * S = 1, bits 15:12 = 0111     range size: 64K
1819     * ...
1820     */
1821    if (size) {
1822        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1823        addr &= ~(sz - 1);
1824    } else {
1825        sz = VTD_PAGE_SIZE;
1826    }
1827
1828    entry.target_as = &vtd_dev_as->as;
1829    entry.addr_mask = sz - 1;
1830    entry.iova = addr;
1831    entry.perm = IOMMU_NONE;
1832    entry.translated_addr = 0;
1833    memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1834
1835done:
1836    return true;
1837}
1838
1839static bool vtd_process_inv_desc(IntelIOMMUState *s)
1840{
1841    VTDInvDesc inv_desc;
1842    uint8_t desc_type;
1843
1844    trace_vtd_inv_qi_head(s->iq_head);
1845    if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1846        s->iq_last_desc_type = VTD_INV_DESC_NONE;
1847        return false;
1848    }
1849    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1850    /* FIXME: should update at first or at last? */
1851    s->iq_last_desc_type = desc_type;
1852
1853    switch (desc_type) {
1854    case VTD_INV_DESC_CC:
1855        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1856        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1857            return false;
1858        }
1859        break;
1860
1861    case VTD_INV_DESC_IOTLB:
1862        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1863        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1864            return false;
1865        }
1866        break;
1867
1868    case VTD_INV_DESC_WAIT:
1869        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1870        if (!vtd_process_wait_desc(s, &inv_desc)) {
1871            return false;
1872        }
1873        break;
1874
1875    case VTD_INV_DESC_IEC:
1876        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1877        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1878            return false;
1879        }
1880        break;
1881
1882    case VTD_INV_DESC_DEVICE:
1883        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1884        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1885            return false;
1886        }
1887        break;
1888
1889    default:
1890        trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1891        return false;
1892    }
1893    s->iq_head++;
1894    if (s->iq_head == s->iq_size) {
1895        s->iq_head = 0;
1896    }
1897    return true;
1898}
1899
1900/* Try to fetch and process more Invalidation Descriptors */
1901static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1902{
1903    trace_vtd_inv_qi_fetch();
1904
1905    if (s->iq_tail >= s->iq_size) {
1906        /* Detects an invalid Tail pointer */
1907        trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1908        vtd_handle_inv_queue_error(s);
1909        return;
1910    }
1911    while (s->iq_head != s->iq_tail) {
1912        if (!vtd_process_inv_desc(s)) {
1913            /* Invalidation Queue Errors */
1914            vtd_handle_inv_queue_error(s);
1915            break;
1916        }
1917        /* Must update the IQH_REG in time */
1918        vtd_set_quad_raw(s, DMAR_IQH_REG,
1919                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1920                         VTD_IQH_QH_MASK);
1921    }
1922}
1923
1924/* Handle write to Invalidation Queue Tail Register */
1925static void vtd_handle_iqt_write(IntelIOMMUState *s)
1926{
1927    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1928
1929    s->iq_tail = VTD_IQT_QT(val);
1930    trace_vtd_inv_qi_tail(s->iq_tail);
1931
1932    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1933        /* Process Invalidation Queue here */
1934        vtd_fetch_inv_desc(s);
1935    }
1936}
1937
1938static void vtd_handle_fsts_write(IntelIOMMUState *s)
1939{
1940    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1941    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1942    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1943
1944    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1945        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1946        trace_vtd_fsts_clear_ip();
1947    }
1948    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1949     * Descriptors if there are any when Queued Invalidation is enabled?
1950     */
1951}
1952
1953static void vtd_handle_fectl_write(IntelIOMMUState *s)
1954{
1955    uint32_t fectl_reg;
1956    /* FIXME: when software clears the IM field, check the IP field. But do we
1957     * need to compare the old value and the new value to conclude that
1958     * software clears the IM field? Or just check if the IM field is zero?
1959     */
1960    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1961
1962    trace_vtd_reg_write_fectl(fectl_reg);
1963
1964    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1965        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1966        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1967    }
1968}
1969
1970static void vtd_handle_ics_write(IntelIOMMUState *s)
1971{
1972    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1973    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1974
1975    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1976        trace_vtd_reg_ics_clear_ip();
1977        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1978    }
1979}
1980
1981static void vtd_handle_iectl_write(IntelIOMMUState *s)
1982{
1983    uint32_t iectl_reg;
1984    /* FIXME: when software clears the IM field, check the IP field. But do we
1985     * need to compare the old value and the new value to conclude that
1986     * software clears the IM field? Or just check if the IM field is zero?
1987     */
1988    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1989
1990    trace_vtd_reg_write_iectl(iectl_reg);
1991
1992    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1993        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1994        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1995    }
1996}
1997
1998static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1999{
2000    IntelIOMMUState *s = opaque;
2001    uint64_t val;
2002
2003    trace_vtd_reg_read(addr, size);
2004
2005    if (addr + size > DMAR_REG_SIZE) {
2006        trace_vtd_err("Read MMIO over range.");
2007        return (uint64_t)-1;
2008    }
2009
2010    switch (addr) {
2011    /* Root Table Address Register, 64-bit */
2012    case DMAR_RTADDR_REG:
2013        if (size == 4) {
2014            val = s->root & ((1ULL << 32) - 1);
2015        } else {
2016            val = s->root;
2017        }
2018        break;
2019
2020    case DMAR_RTADDR_REG_HI:
2021        assert(size == 4);
2022        val = s->root >> 32;
2023        break;
2024
2025    /* Invalidation Queue Address Register, 64-bit */
2026    case DMAR_IQA_REG:
2027        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2028        if (size == 4) {
2029            val = val & ((1ULL << 32) - 1);
2030        }
2031        break;
2032
2033    case DMAR_IQA_REG_HI:
2034        assert(size == 4);
2035        val = s->iq >> 32;
2036        break;
2037
2038    default:
2039        if (size == 4) {
2040            val = vtd_get_long(s, addr);
2041        } else {
2042            val = vtd_get_quad(s, addr);
2043        }
2044    }
2045
2046    return val;
2047}
2048
2049static void vtd_mem_write(void *opaque, hwaddr addr,
2050                          uint64_t val, unsigned size)
2051{
2052    IntelIOMMUState *s = opaque;
2053
2054    trace_vtd_reg_write(addr, size, val);
2055
2056    if (addr + size > DMAR_REG_SIZE) {
2057        trace_vtd_err("Write MMIO over range.");
2058        return;
2059    }
2060
2061    switch (addr) {
2062    /* Global Command Register, 32-bit */
2063    case DMAR_GCMD_REG:
2064        vtd_set_long(s, addr, val);
2065        vtd_handle_gcmd_write(s);
2066        break;
2067
2068    /* Context Command Register, 64-bit */
2069    case DMAR_CCMD_REG:
2070        if (size == 4) {
2071            vtd_set_long(s, addr, val);
2072        } else {
2073            vtd_set_quad(s, addr, val);
2074            vtd_handle_ccmd_write(s);
2075        }
2076        break;
2077
2078    case DMAR_CCMD_REG_HI:
2079        assert(size == 4);
2080        vtd_set_long(s, addr, val);
2081        vtd_handle_ccmd_write(s);
2082        break;
2083
2084    /* IOTLB Invalidation Register, 64-bit */
2085    case DMAR_IOTLB_REG:
2086        if (size == 4) {
2087            vtd_set_long(s, addr, val);
2088        } else {
2089            vtd_set_quad(s, addr, val);
2090            vtd_handle_iotlb_write(s);
2091        }
2092        break;
2093
2094    case DMAR_IOTLB_REG_HI:
2095        assert(size == 4);
2096        vtd_set_long(s, addr, val);
2097        vtd_handle_iotlb_write(s);
2098        break;
2099
2100    /* Invalidate Address Register, 64-bit */
2101    case DMAR_IVA_REG:
2102        if (size == 4) {
2103            vtd_set_long(s, addr, val);
2104        } else {
2105            vtd_set_quad(s, addr, val);
2106        }
2107        break;
2108
2109    case DMAR_IVA_REG_HI:
2110        assert(size == 4);
2111        vtd_set_long(s, addr, val);
2112        break;
2113
2114    /* Fault Status Register, 32-bit */
2115    case DMAR_FSTS_REG:
2116        assert(size == 4);
2117        vtd_set_long(s, addr, val);
2118        vtd_handle_fsts_write(s);
2119        break;
2120
2121    /* Fault Event Control Register, 32-bit */
2122    case DMAR_FECTL_REG:
2123        assert(size == 4);
2124        vtd_set_long(s, addr, val);
2125        vtd_handle_fectl_write(s);
2126        break;
2127
2128    /* Fault Event Data Register, 32-bit */
2129    case DMAR_FEDATA_REG:
2130        assert(size == 4);
2131        vtd_set_long(s, addr, val);
2132        break;
2133
2134    /* Fault Event Address Register, 32-bit */
2135    case DMAR_FEADDR_REG:
2136        assert(size == 4);
2137        vtd_set_long(s, addr, val);
2138        break;
2139
2140    /* Fault Event Upper Address Register, 32-bit */
2141    case DMAR_FEUADDR_REG:
2142        assert(size == 4);
2143        vtd_set_long(s, addr, val);
2144        break;
2145
2146    /* Protected Memory Enable Register, 32-bit */
2147    case DMAR_PMEN_REG:
2148        assert(size == 4);
2149        vtd_set_long(s, addr, val);
2150        break;
2151
2152    /* Root Table Address Register, 64-bit */
2153    case DMAR_RTADDR_REG:
2154        if (size == 4) {
2155            vtd_set_long(s, addr, val);
2156        } else {
2157            vtd_set_quad(s, addr, val);
2158        }
2159        break;
2160
2161    case DMAR_RTADDR_REG_HI:
2162        assert(size == 4);
2163        vtd_set_long(s, addr, val);
2164        break;
2165
2166    /* Invalidation Queue Tail Register, 64-bit */
2167    case DMAR_IQT_REG:
2168        if (size == 4) {
2169            vtd_set_long(s, addr, val);
2170        } else {
2171            vtd_set_quad(s, addr, val);
2172        }
2173        vtd_handle_iqt_write(s);
2174        break;
2175
2176    case DMAR_IQT_REG_HI:
2177        assert(size == 4);
2178        vtd_set_long(s, addr, val);
2179        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2180        break;
2181
2182    /* Invalidation Queue Address Register, 64-bit */
2183    case DMAR_IQA_REG:
2184        if (size == 4) {
2185            vtd_set_long(s, addr, val);
2186        } else {
2187            vtd_set_quad(s, addr, val);
2188        }
2189        break;
2190
2191    case DMAR_IQA_REG_HI:
2192        assert(size == 4);
2193        vtd_set_long(s, addr, val);
2194        break;
2195
2196    /* Invalidation Completion Status Register, 32-bit */
2197    case DMAR_ICS_REG:
2198        assert(size == 4);
2199        vtd_set_long(s, addr, val);
2200        vtd_handle_ics_write(s);
2201        break;
2202
2203    /* Invalidation Event Control Register, 32-bit */
2204    case DMAR_IECTL_REG:
2205        assert(size == 4);
2206        vtd_set_long(s, addr, val);
2207        vtd_handle_iectl_write(s);
2208        break;
2209
2210    /* Invalidation Event Data Register, 32-bit */
2211    case DMAR_IEDATA_REG:
2212        assert(size == 4);
2213        vtd_set_long(s, addr, val);
2214        break;
2215
2216    /* Invalidation Event Address Register, 32-bit */
2217    case DMAR_IEADDR_REG:
2218        assert(size == 4);
2219        vtd_set_long(s, addr, val);
2220        break;
2221
2222    /* Invalidation Event Upper Address Register, 32-bit */
2223    case DMAR_IEUADDR_REG:
2224        assert(size == 4);
2225        vtd_set_long(s, addr, val);
2226        break;
2227
2228    /* Fault Recording Registers, 128-bit */
2229    case DMAR_FRCD_REG_0_0:
2230        if (size == 4) {
2231            vtd_set_long(s, addr, val);
2232        } else {
2233            vtd_set_quad(s, addr, val);
2234        }
2235        break;
2236
2237    case DMAR_FRCD_REG_0_1:
2238        assert(size == 4);
2239        vtd_set_long(s, addr, val);
2240        break;
2241
2242    case DMAR_FRCD_REG_0_2:
2243        if (size == 4) {
2244            vtd_set_long(s, addr, val);
2245        } else {
2246            vtd_set_quad(s, addr, val);
2247            /* May clear bit 127 (Fault), update PPF */
2248            vtd_update_fsts_ppf(s);
2249        }
2250        break;
2251
2252    case DMAR_FRCD_REG_0_3:
2253        assert(size == 4);
2254        vtd_set_long(s, addr, val);
2255        /* May clear bit 127 (Fault), update PPF */
2256        vtd_update_fsts_ppf(s);
2257        break;
2258
2259    case DMAR_IRTA_REG:
2260        if (size == 4) {
2261            vtd_set_long(s, addr, val);
2262        } else {
2263            vtd_set_quad(s, addr, val);
2264        }
2265        break;
2266
2267    case DMAR_IRTA_REG_HI:
2268        assert(size == 4);
2269        vtd_set_long(s, addr, val);
2270        break;
2271
2272    default:
2273        if (size == 4) {
2274            vtd_set_long(s, addr, val);
2275        } else {
2276            vtd_set_quad(s, addr, val);
2277        }
2278    }
2279}
2280
2281static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2282                                         IOMMUAccessFlags flag)
2283{
2284    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2285    IntelIOMMUState *s = vtd_as->iommu_state;
2286    IOMMUTLBEntry iotlb = {
2287        /* We'll fill in the rest later. */
2288        .target_as = &address_space_memory,
2289    };
2290    bool success;
2291
2292    if (likely(s->dmar_enabled)) {
2293        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2294                                         addr, flag & IOMMU_WO, &iotlb);
2295    } else {
2296        /* DMAR disabled, passthrough, use 4k-page*/
2297        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2298        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2299        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2300        iotlb.perm = IOMMU_RW;
2301        success = true;
2302    }
2303
2304    if (likely(success)) {
2305        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2306                                 VTD_PCI_SLOT(vtd_as->devfn),
2307                                 VTD_PCI_FUNC(vtd_as->devfn),
2308                                 iotlb.iova, iotlb.translated_addr,
2309                                 iotlb.addr_mask);
2310    } else {
2311        trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2312                                     VTD_PCI_SLOT(vtd_as->devfn),
2313                                     VTD_PCI_FUNC(vtd_as->devfn),
2314                                     iotlb.iova);
2315    }
2316
2317    return iotlb;
2318}
2319
2320static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2321                                          IOMMUNotifierFlag old,
2322                                          IOMMUNotifierFlag new)
2323{
2324    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2325    IntelIOMMUState *s = vtd_as->iommu_state;
2326    IntelIOMMUNotifierNode *node = NULL;
2327    IntelIOMMUNotifierNode *next_node = NULL;
2328
2329    if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2330        error_report("We need to set cache_mode=1 for intel-iommu to enable "
2331                     "device assignment with IOMMU protection.");
2332        exit(1);
2333    }
2334
2335    if (old == IOMMU_NOTIFIER_NONE) {
2336        node = g_malloc0(sizeof(*node));
2337        node->vtd_as = vtd_as;
2338        QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2339        return;
2340    }
2341
2342    /* update notifier node with new flags */
2343    QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2344        if (node->vtd_as == vtd_as) {
2345            if (new == IOMMU_NOTIFIER_NONE) {
2346                QLIST_REMOVE(node, next);
2347                g_free(node);
2348            }
2349            return;
2350        }
2351    }
2352}
2353
2354static int vtd_post_load(void *opaque, int version_id)
2355{
2356    IntelIOMMUState *iommu = opaque;
2357
2358    /*
2359     * Memory regions are dynamically turned on/off depending on
2360     * context entry configurations from the guest. After migration,
2361     * we need to make sure the memory regions are still correct.
2362     */
2363    vtd_switch_address_space_all(iommu);
2364
2365    return 0;
2366}
2367
2368static const VMStateDescription vtd_vmstate = {
2369    .name = "iommu-intel",
2370    .version_id = 1,
2371    .minimum_version_id = 1,
2372    .priority = MIG_PRI_IOMMU,
2373    .post_load = vtd_post_load,
2374    .fields = (VMStateField[]) {
2375        VMSTATE_UINT64(root, IntelIOMMUState),
2376        VMSTATE_UINT64(intr_root, IntelIOMMUState),
2377        VMSTATE_UINT64(iq, IntelIOMMUState),
2378        VMSTATE_UINT32(intr_size, IntelIOMMUState),
2379        VMSTATE_UINT16(iq_head, IntelIOMMUState),
2380        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2381        VMSTATE_UINT16(iq_size, IntelIOMMUState),
2382        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2383        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2384        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2385        VMSTATE_BOOL(root_extended, IntelIOMMUState),
2386        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2387        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2388        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2389        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2390        VMSTATE_END_OF_LIST()
2391    }
2392};
2393
2394static const MemoryRegionOps vtd_mem_ops = {
2395    .read = vtd_mem_read,
2396    .write = vtd_mem_write,
2397    .endianness = DEVICE_LITTLE_ENDIAN,
2398    .impl = {
2399        .min_access_size = 4,
2400        .max_access_size = 8,
2401    },
2402    .valid = {
2403        .min_access_size = 4,
2404        .max_access_size = 8,
2405    },
2406};
2407
2408static Property vtd_properties[] = {
2409    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2410    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2411                            ON_OFF_AUTO_AUTO),
2412    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2413    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2414    DEFINE_PROP_END_OF_LIST(),
2415};
2416
2417/* Read IRTE entry with specific index */
2418static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2419                        VTD_IR_TableEntry *entry, uint16_t sid)
2420{
2421    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2422        {0xffff, 0xfffb, 0xfff9, 0xfff8};
2423    dma_addr_t addr = 0x00;
2424    uint16_t mask, source_id;
2425    uint8_t bus, bus_max, bus_min;
2426
2427    addr = iommu->intr_root + index * sizeof(*entry);
2428    if (dma_memory_read(&address_space_memory, addr, entry,
2429                        sizeof(*entry))) {
2430        trace_vtd_err("Memory read failed for IRTE.");
2431        return -VTD_FR_IR_ROOT_INVAL;
2432    }
2433
2434    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2435                          le64_to_cpu(entry->data[0]));
2436
2437    if (!entry->irte.present) {
2438        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2439                           le64_to_cpu(entry->data[0]));
2440        return -VTD_FR_IR_ENTRY_P;
2441    }
2442
2443    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2444        entry->irte.__reserved_2) {
2445        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2446                           le64_to_cpu(entry->data[0]));
2447        return -VTD_FR_IR_IRTE_RSVD;
2448    }
2449
2450    if (sid != X86_IOMMU_SID_INVALID) {
2451        /* Validate IRTE SID */
2452        source_id = le32_to_cpu(entry->irte.source_id);
2453        switch (entry->irte.sid_vtype) {
2454        case VTD_SVT_NONE:
2455            break;
2456
2457        case VTD_SVT_ALL:
2458            mask = vtd_svt_mask[entry->irte.sid_q];
2459            if ((source_id & mask) != (sid & mask)) {
2460                trace_vtd_err_irte_sid(index, sid, source_id);
2461                return -VTD_FR_IR_SID_ERR;
2462            }
2463            break;
2464
2465        case VTD_SVT_BUS:
2466            bus_max = source_id >> 8;
2467            bus_min = source_id & 0xff;
2468            bus = sid >> 8;
2469            if (bus > bus_max || bus < bus_min) {
2470                trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2471                return -VTD_FR_IR_SID_ERR;
2472            }
2473            break;
2474
2475        default:
2476            trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2477            /* Take this as verification failure. */
2478            return -VTD_FR_IR_SID_ERR;
2479            break;
2480        }
2481    }
2482
2483    return 0;
2484}
2485
2486/* Fetch IRQ information of specific IR index */
2487static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2488                             VTDIrq *irq, uint16_t sid)
2489{
2490    VTD_IR_TableEntry irte = {};
2491    int ret = 0;
2492
2493    ret = vtd_irte_get(iommu, index, &irte, sid);
2494    if (ret) {
2495        return ret;
2496    }
2497
2498    irq->trigger_mode = irte.irte.trigger_mode;
2499    irq->vector = irte.irte.vector;
2500    irq->delivery_mode = irte.irte.delivery_mode;
2501    irq->dest = le32_to_cpu(irte.irte.dest_id);
2502    if (!iommu->intr_eime) {
2503#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2504#define  VTD_IR_APIC_DEST_SHIFT        (8)
2505        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2506            VTD_IR_APIC_DEST_SHIFT;
2507    }
2508    irq->dest_mode = irte.irte.dest_mode;
2509    irq->redir_hint = irte.irte.redir_hint;
2510
2511    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2512                       irq->delivery_mode, irq->dest, irq->dest_mode);
2513
2514    return 0;
2515}
2516
2517/* Generate one MSI message from VTDIrq info */
2518static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2519{
2520    VTD_MSIMessage msg = {};
2521
2522    /* Generate address bits */
2523    msg.dest_mode = irq->dest_mode;
2524    msg.redir_hint = irq->redir_hint;
2525    msg.dest = irq->dest;
2526    msg.__addr_hi = irq->dest & 0xffffff00;
2527    msg.__addr_head = cpu_to_le32(0xfee);
2528    /* Keep this from original MSI address bits */
2529    msg.__not_used = irq->msi_addr_last_bits;
2530
2531    /* Generate data bits */
2532    msg.vector = irq->vector;
2533    msg.delivery_mode = irq->delivery_mode;
2534    msg.level = 1;
2535    msg.trigger_mode = irq->trigger_mode;
2536
2537    msg_out->address = msg.msi_addr;
2538    msg_out->data = msg.msi_data;
2539}
2540
2541/* Interrupt remapping for MSI/MSI-X entry */
2542static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2543                                   MSIMessage *origin,
2544                                   MSIMessage *translated,
2545                                   uint16_t sid)
2546{
2547    int ret = 0;
2548    VTD_IR_MSIAddress addr;
2549    uint16_t index;
2550    VTDIrq irq = {};
2551
2552    assert(origin && translated);
2553
2554    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2555
2556    if (!iommu || !iommu->intr_enabled) {
2557        memcpy(translated, origin, sizeof(*origin));
2558        goto out;
2559    }
2560
2561    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2562        trace_vtd_err("MSI address high 32 bits non-zero when "
2563                      "Interrupt Remapping enabled.");
2564        return -VTD_FR_IR_REQ_RSVD;
2565    }
2566
2567    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2568    if (addr.addr.__head != 0xfee) {
2569        trace_vtd_err("MSI addr low 32 bit invalid.");
2570        return -VTD_FR_IR_REQ_RSVD;
2571    }
2572
2573    /* This is compatible mode. */
2574    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2575        memcpy(translated, origin, sizeof(*origin));
2576        goto out;
2577    }
2578
2579    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2580
2581#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2582#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2583
2584    if (addr.addr.sub_valid) {
2585        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2586        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2587    }
2588
2589    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2590    if (ret) {
2591        return ret;
2592    }
2593
2594    if (addr.addr.sub_valid) {
2595        trace_vtd_ir_remap_type("MSI");
2596        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2597            trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2598            return -VTD_FR_IR_REQ_RSVD;
2599        }
2600    } else {
2601        uint8_t vector = origin->data & 0xff;
2602        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2603
2604        trace_vtd_ir_remap_type("IOAPIC");
2605        /* IOAPIC entry vector should be aligned with IRTE vector
2606         * (see vt-d spec 5.1.5.1). */
2607        if (vector != irq.vector) {
2608            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2609        }
2610
2611        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2612         * (see vt-d spec 5.1.5.1). */
2613        if (trigger_mode != irq.trigger_mode) {
2614            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2615                                      irq.trigger_mode);
2616        }
2617    }
2618
2619    /*
2620     * We'd better keep the last two bits, assuming that guest OS
2621     * might modify it. Keep it does not hurt after all.
2622     */
2623    irq.msi_addr_last_bits = addr.addr.__not_care;
2624
2625    /* Translate VTDIrq to MSI message */
2626    vtd_generate_msi_message(&irq, translated);
2627
2628out:
2629    trace_vtd_ir_remap_msi(origin->address, origin->data,
2630                           translated->address, translated->data);
2631    return 0;
2632}
2633
2634static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2635                         MSIMessage *dst, uint16_t sid)
2636{
2637    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2638                                   src, dst, sid);
2639}
2640
2641static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2642                                   uint64_t *data, unsigned size,
2643                                   MemTxAttrs attrs)
2644{
2645    return MEMTX_OK;
2646}
2647
2648static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2649                                    uint64_t value, unsigned size,
2650                                    MemTxAttrs attrs)
2651{
2652    int ret = 0;
2653    MSIMessage from = {}, to = {};
2654    uint16_t sid = X86_IOMMU_SID_INVALID;
2655
2656    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2657    from.data = (uint32_t) value;
2658
2659    if (!attrs.unspecified) {
2660        /* We have explicit Source ID */
2661        sid = attrs.requester_id;
2662    }
2663
2664    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2665    if (ret) {
2666        /* TODO: report error */
2667        /* Drop this interrupt */
2668        return MEMTX_ERROR;
2669    }
2670
2671    apic_get_class()->send_msi(&to);
2672
2673    return MEMTX_OK;
2674}
2675
2676static const MemoryRegionOps vtd_mem_ir_ops = {
2677    .read_with_attrs = vtd_mem_ir_read,
2678    .write_with_attrs = vtd_mem_ir_write,
2679    .endianness = DEVICE_LITTLE_ENDIAN,
2680    .impl = {
2681        .min_access_size = 4,
2682        .max_access_size = 4,
2683    },
2684    .valid = {
2685        .min_access_size = 4,
2686        .max_access_size = 4,
2687    },
2688};
2689
2690VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2691{
2692    uintptr_t key = (uintptr_t)bus;
2693    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2694    VTDAddressSpace *vtd_dev_as;
2695    char name[128];
2696
2697    if (!vtd_bus) {
2698        uintptr_t *new_key = g_malloc(sizeof(*new_key));
2699        *new_key = (uintptr_t)bus;
2700        /* No corresponding free() */
2701        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2702                            X86_IOMMU_PCI_DEVFN_MAX);
2703        vtd_bus->bus = bus;
2704        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2705    }
2706
2707    vtd_dev_as = vtd_bus->dev_as[devfn];
2708
2709    if (!vtd_dev_as) {
2710        snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2711        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2712
2713        vtd_dev_as->bus = bus;
2714        vtd_dev_as->devfn = (uint8_t)devfn;
2715        vtd_dev_as->iommu_state = s;
2716        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2717
2718        /*
2719         * Memory region relationships looks like (Address range shows
2720         * only lower 32 bits to make it short in length...):
2721         *
2722         * |-----------------+-------------------+----------|
2723         * | Name            | Address range     | Priority |
2724         * |-----------------+-------------------+----------+
2725         * | vtd_root        | 00000000-ffffffff |        0 |
2726         * |  intel_iommu    | 00000000-ffffffff |        1 |
2727         * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2728         * |  intel_iommu_ir | fee00000-feefffff |       64 |
2729         * |-----------------+-------------------+----------|
2730         *
2731         * We enable/disable DMAR by switching enablement for
2732         * vtd_sys_alias and intel_iommu regions. IR region is always
2733         * enabled.
2734         */
2735        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2736                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2737                                 "intel_iommu_dmar",
2738                                 UINT64_MAX);
2739        memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2740                                 "vtd_sys_alias", get_system_memory(),
2741                                 0, memory_region_size(get_system_memory()));
2742        memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2743                              &vtd_mem_ir_ops, s, "intel_iommu_ir",
2744                              VTD_INTERRUPT_ADDR_SIZE);
2745        memory_region_init(&vtd_dev_as->root, OBJECT(s),
2746                           "vtd_root", UINT64_MAX);
2747        memory_region_add_subregion_overlap(&vtd_dev_as->root,
2748                                            VTD_INTERRUPT_ADDR_FIRST,
2749                                            &vtd_dev_as->iommu_ir, 64);
2750        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2751        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2752                                            &vtd_dev_as->sys_alias, 1);
2753        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2754                                            MEMORY_REGION(&vtd_dev_as->iommu),
2755                                            1);
2756        vtd_switch_address_space(vtd_dev_as);
2757    }
2758    return vtd_dev_as;
2759}
2760
2761/* Unmap the whole range in the notifier's scope. */
2762static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2763{
2764    IOMMUTLBEntry entry;
2765    hwaddr size;
2766    hwaddr start = n->start;
2767    hwaddr end = n->end;
2768
2769    /*
2770     * Note: all the codes in this function has a assumption that IOVA
2771     * bits are no more than VTD_MGAW bits (which is restricted by
2772     * VT-d spec), otherwise we need to consider overflow of 64 bits.
2773     */
2774
2775    if (end > VTD_ADDRESS_SIZE) {
2776        /*
2777         * Don't need to unmap regions that is bigger than the whole
2778         * VT-d supported address space size
2779         */
2780        end = VTD_ADDRESS_SIZE;
2781    }
2782
2783    assert(start <= end);
2784    size = end - start;
2785
2786    if (ctpop64(size) != 1) {
2787        /*
2788         * This size cannot format a correct mask. Let's enlarge it to
2789         * suite the minimum available mask.
2790         */
2791        int n = 64 - clz64(size);
2792        if (n > VTD_MGAW) {
2793            /* should not happen, but in case it happens, limit it */
2794            n = VTD_MGAW;
2795        }
2796        size = 1ULL << n;
2797    }
2798
2799    entry.target_as = &address_space_memory;
2800    /* Adjust iova for the size */
2801    entry.iova = n->start & ~(size - 1);
2802    /* This field is meaningless for unmap */
2803    entry.translated_addr = 0;
2804    entry.perm = IOMMU_NONE;
2805    entry.addr_mask = size - 1;
2806
2807    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2808                             VTD_PCI_SLOT(as->devfn),
2809                             VTD_PCI_FUNC(as->devfn),
2810                             entry.iova, size);
2811
2812    memory_region_notify_one(n, &entry);
2813}
2814
2815static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2816{
2817    IntelIOMMUNotifierNode *node;
2818    VTDAddressSpace *vtd_as;
2819    IOMMUNotifier *n;
2820
2821    QLIST_FOREACH(node, &s->notifiers_list, next) {
2822        vtd_as = node->vtd_as;
2823        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2824            vtd_address_space_unmap(vtd_as, n);
2825        }
2826    }
2827}
2828
2829static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2830{
2831    memory_region_notify_one((IOMMUNotifier *)private, entry);
2832    return 0;
2833}
2834
2835static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2836{
2837    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2838    IntelIOMMUState *s = vtd_as->iommu_state;
2839    uint8_t bus_n = pci_bus_num(vtd_as->bus);
2840    VTDContextEntry ce;
2841
2842    /*
2843     * The replay can be triggered by either a invalidation or a newly
2844     * created entry. No matter what, we release existing mappings
2845     * (it means flushing caches for UNMAP-only registers).
2846     */
2847    vtd_address_space_unmap(vtd_as, n);
2848
2849    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2850        trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2851                                  PCI_FUNC(vtd_as->devfn),
2852                                  VTD_CONTEXT_ENTRY_DID(ce.hi),
2853                                  ce.hi, ce.lo);
2854        vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false);
2855    } else {
2856        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2857                                    PCI_FUNC(vtd_as->devfn));
2858    }
2859
2860    return;
2861}
2862
2863/* Do the initialization. It will also be called when reset, so pay
2864 * attention when adding new initialization stuff.
2865 */
2866static void vtd_init(IntelIOMMUState *s)
2867{
2868    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2869
2870    memset(s->csr, 0, DMAR_REG_SIZE);
2871    memset(s->wmask, 0, DMAR_REG_SIZE);
2872    memset(s->w1cmask, 0, DMAR_REG_SIZE);
2873    memset(s->womask, 0, DMAR_REG_SIZE);
2874
2875    s->root = 0;
2876    s->root_extended = false;
2877    s->dmar_enabled = false;
2878    s->iq_head = 0;
2879    s->iq_tail = 0;
2880    s->iq = 0;
2881    s->iq_size = 0;
2882    s->qi_enabled = false;
2883    s->iq_last_desc_type = VTD_INV_DESC_NONE;
2884    s->next_frcd_reg = 0;
2885    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2886             VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2887    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2888
2889    if (x86_iommu->intr_supported) {
2890        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2891        if (s->intr_eim == ON_OFF_AUTO_ON) {
2892            s->ecap |= VTD_ECAP_EIM;
2893        }
2894        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2895    }
2896
2897    if (x86_iommu->dt_supported) {
2898        s->ecap |= VTD_ECAP_DT;
2899    }
2900
2901    if (x86_iommu->pt_supported) {
2902        s->ecap |= VTD_ECAP_PT;
2903    }
2904
2905    if (s->caching_mode) {
2906        s->cap |= VTD_CAP_CM;
2907    }
2908
2909    vtd_reset_context_cache(s);
2910    vtd_reset_iotlb(s);
2911
2912    /* Define registers with default values and bit semantics */
2913    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2914    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2915    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2916    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2917    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2918    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2919    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2920    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2921    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2922
2923    /* Advanced Fault Logging not supported */
2924    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2925    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2926    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2927    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2928
2929    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2930     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2931     */
2932    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2933
2934    /* Treated as RO for implementations that PLMR and PHMR fields reported
2935     * as Clear in the CAP_REG.
2936     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2937     */
2938    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2939
2940    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2941    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2942    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2943    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2944    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2945    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2946    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2947    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2948    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2949
2950    /* IOTLB registers */
2951    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2952    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2953    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2954
2955    /* Fault Recording Registers, 128-bit */
2956    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2957    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2958
2959    /*
2960     * Interrupt remapping registers.
2961     */
2962    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2963}
2964
2965/* Should not reset address_spaces when reset because devices will still use
2966 * the address space they got at first (won't ask the bus again).
2967 */
2968static void vtd_reset(DeviceState *dev)
2969{
2970    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2971
2972    vtd_init(s);
2973
2974    /*
2975     * When device reset, throw away all mappings and external caches
2976     */
2977    vtd_address_space_unmap_all(s);
2978}
2979
2980static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2981{
2982    IntelIOMMUState *s = opaque;
2983    VTDAddressSpace *vtd_as;
2984
2985    assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2986
2987    vtd_as = vtd_find_add_as(s, bus, devfn);
2988    return &vtd_as->as;
2989}
2990
2991static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2992{
2993    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2994
2995    /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2996    if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2997        !kvm_irqchip_is_split()) {
2998        error_setg(errp, "Intel Interrupt Remapping cannot work with "
2999                         "kernel-irqchip=on, please use 'split|off'.");
3000        return false;
3001    }
3002    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3003        error_setg(errp, "eim=on cannot be selected without intremap=on");
3004        return false;
3005    }
3006
3007    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3008        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3009                      && x86_iommu->intr_supported ?
3010                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3011    }
3012    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3013        if (!kvm_irqchip_in_kernel()) {
3014            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3015            return false;
3016        }
3017        if (!kvm_enable_x2apic()) {
3018            error_setg(errp, "eim=on requires support on the KVM side"
3019                             "(X2APIC_API, first shipped in v4.7)");
3020            return false;
3021        }
3022    }
3023
3024    return true;
3025}
3026
3027static void vtd_realize(DeviceState *dev, Error **errp)
3028{
3029    MachineState *ms = MACHINE(qdev_get_machine());
3030    MachineClass *mc = MACHINE_GET_CLASS(ms);
3031    PCMachineState *pcms =
3032        PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE));
3033    PCIBus *bus;
3034    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3035    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3036
3037    if (!pcms) {
3038        error_setg(errp, "Machine-type '%s' not supported by intel-iommu",
3039                   mc->name);
3040        return;
3041    }
3042
3043    bus = pcms->bus;
3044    x86_iommu->type = TYPE_INTEL;
3045
3046    if (!vtd_decide_config(s, errp)) {
3047        return;
3048    }
3049
3050    QLIST_INIT(&s->notifiers_list);
3051    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3052    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3053                          "intel_iommu", DMAR_REG_SIZE);
3054    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3055    /* No corresponding destroy */
3056    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3057                                     g_free, g_free);
3058    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3059                                              g_free, g_free);
3060    vtd_init(s);
3061    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3062    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3063    /* Pseudo address space under root PCI bus. */
3064    pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3065}
3066
3067static void vtd_class_init(ObjectClass *klass, void *data)
3068{
3069    DeviceClass *dc = DEVICE_CLASS(klass);
3070    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3071
3072    dc->reset = vtd_reset;
3073    dc->vmsd = &vtd_vmstate;
3074    dc->props = vtd_properties;
3075    dc->hotpluggable = false;
3076    x86_class->realize = vtd_realize;
3077    x86_class->int_remap = vtd_int_remap;
3078    /* Supported by the pc-q35-* machine types */
3079    dc->user_creatable = true;
3080}
3081
3082static const TypeInfo vtd_info = {
3083    .name          = TYPE_INTEL_IOMMU_DEVICE,
3084    .parent        = TYPE_X86_IOMMU_DEVICE,
3085    .instance_size = sizeof(IntelIOMMUState),
3086    .class_init    = vtd_class_init,
3087};
3088
3089static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3090                                                     void *data)
3091{
3092    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3093
3094    imrc->translate = vtd_iommu_translate;
3095    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3096    imrc->replay = vtd_iommu_replay;
3097}
3098
3099static const TypeInfo vtd_iommu_memory_region_info = {
3100    .parent = TYPE_IOMMU_MEMORY_REGION,
3101    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3102    .class_init = vtd_iommu_memory_region_class_init,
3103};
3104
3105static void vtd_register_types(void)
3106{
3107    type_register_static(&vtd_info);
3108    type_register_static(&vtd_iommu_memory_region_info);
3109}
3110
3111type_init(vtd_register_types)
3112