qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/sysemu.h"
  27#include "sysemu/dma.h"
  28#include "hw/boards.h"
  29#include "hw/isa/isa.h"
  30#include "hw/nvram/fw_cfg.h"
  31#include "hw/sysbus.h"
  32#include "trace.h"
  33#include "qemu/error-report.h"
  34#include "qemu/config-file.h"
  35#include "qemu/cutils.h"
  36#include "qapi/error.h"
  37
  38#define FW_CFG_FILE_SLOTS_DFLT 0x20
  39
  40/* FW_CFG_VERSION bits */
  41#define FW_CFG_VERSION      0x01
  42#define FW_CFG_VERSION_DMA  0x02
  43
  44/* FW_CFG_DMA_CONTROL bits */
  45#define FW_CFG_DMA_CTL_ERROR   0x01
  46#define FW_CFG_DMA_CTL_READ    0x02
  47#define FW_CFG_DMA_CTL_SKIP    0x04
  48#define FW_CFG_DMA_CTL_SELECT  0x08
  49#define FW_CFG_DMA_CTL_WRITE   0x10
  50
  51#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  52
  53struct FWCfgEntry {
  54    uint32_t len;
  55    bool allow_write;
  56    uint8_t *data;
  57    void *callback_opaque;
  58    FWCfgCallback select_cb;
  59    FWCfgWriteCallback write_cb;
  60};
  61
  62#define JPG_FILE 0
  63#define BMP_FILE 1
  64
  65static char *read_splashfile(char *filename, gsize *file_sizep,
  66                             int *file_typep)
  67{
  68    GError *err = NULL;
  69    gboolean res;
  70    gchar *content;
  71    int file_type;
  72    unsigned int filehead;
  73    int bmp_bpp;
  74
  75    res = g_file_get_contents(filename, &content, file_sizep, &err);
  76    if (res == FALSE) {
  77        error_report("failed to read splash file '%s'", filename);
  78        g_error_free(err);
  79        return NULL;
  80    }
  81
  82    /* check file size */
  83    if (*file_sizep < 30) {
  84        goto error;
  85    }
  86
  87    /* check magic ID */
  88    filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
  89    if (filehead == 0xd8ff) {
  90        file_type = JPG_FILE;
  91    } else if (filehead == 0x4d42) {
  92        file_type = BMP_FILE;
  93    } else {
  94        goto error;
  95    }
  96
  97    /* check BMP bpp */
  98    if (file_type == BMP_FILE) {
  99        bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
 100        if (bmp_bpp != 24) {
 101            goto error;
 102        }
 103    }
 104
 105    /* return values */
 106    *file_typep = file_type;
 107
 108    return content;
 109
 110error:
 111    error_report("splash file '%s' format not recognized; must be JPEG "
 112                 "or 24 bit BMP", filename);
 113    g_free(content);
 114    return NULL;
 115}
 116
 117static void fw_cfg_bootsplash(FWCfgState *s)
 118{
 119    int boot_splash_time = -1;
 120    const char *boot_splash_filename = NULL;
 121    char *p;
 122    char *filename, *file_data;
 123    gsize file_size;
 124    int file_type;
 125    const char *temp;
 126
 127    /* get user configuration */
 128    QemuOptsList *plist = qemu_find_opts("boot-opts");
 129    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 130    if (opts != NULL) {
 131        temp = qemu_opt_get(opts, "splash");
 132        if (temp != NULL) {
 133            boot_splash_filename = temp;
 134        }
 135        temp = qemu_opt_get(opts, "splash-time");
 136        if (temp != NULL) {
 137            p = (char *)temp;
 138            boot_splash_time = strtol(p, &p, 10);
 139        }
 140    }
 141
 142    /* insert splash time if user configurated */
 143    if (boot_splash_time >= 0) {
 144        /* validate the input */
 145        if (boot_splash_time > 0xffff) {
 146            error_report("splash time is big than 65535, force it to 65535.");
 147            boot_splash_time = 0xffff;
 148        }
 149        /* use little endian format */
 150        qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
 151        qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
 152        fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
 153    }
 154
 155    /* insert splash file if user configurated */
 156    if (boot_splash_filename != NULL) {
 157        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 158        if (filename == NULL) {
 159            error_report("failed to find file '%s'.", boot_splash_filename);
 160            return;
 161        }
 162
 163        /* loading file data */
 164        file_data = read_splashfile(filename, &file_size, &file_type);
 165        if (file_data == NULL) {
 166            g_free(filename);
 167            return;
 168        }
 169        g_free(boot_splash_filedata);
 170        boot_splash_filedata = (uint8_t *)file_data;
 171        boot_splash_filedata_size = file_size;
 172
 173        /* insert data */
 174        if (file_type == JPG_FILE) {
 175            fw_cfg_add_file(s, "bootsplash.jpg",
 176                    boot_splash_filedata, boot_splash_filedata_size);
 177        } else {
 178            fw_cfg_add_file(s, "bootsplash.bmp",
 179                    boot_splash_filedata, boot_splash_filedata_size);
 180        }
 181        g_free(filename);
 182    }
 183}
 184
 185static void fw_cfg_reboot(FWCfgState *s)
 186{
 187    int reboot_timeout = -1;
 188    char *p;
 189    const char *temp;
 190
 191    /* get user configuration */
 192    QemuOptsList *plist = qemu_find_opts("boot-opts");
 193    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 194    if (opts != NULL) {
 195        temp = qemu_opt_get(opts, "reboot-timeout");
 196        if (temp != NULL) {
 197            p = (char *)temp;
 198            reboot_timeout = strtol(p, &p, 10);
 199        }
 200    }
 201    /* validate the input */
 202    if (reboot_timeout > 0xffff) {
 203        error_report("reboot timeout is larger than 65535, force it to 65535.");
 204        reboot_timeout = 0xffff;
 205    }
 206    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
 207}
 208
 209static void fw_cfg_write(FWCfgState *s, uint8_t value)
 210{
 211    /* nothing, write support removed in QEMU v2.4+ */
 212}
 213
 214static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 215{
 216    return s->file_slots;
 217}
 218
 219/* Note: this function returns an exclusive limit. */
 220static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 221{
 222    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 223}
 224
 225static int fw_cfg_select(FWCfgState *s, uint16_t key)
 226{
 227    int arch, ret;
 228    FWCfgEntry *e;
 229
 230    s->cur_offset = 0;
 231    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 232        s->cur_entry = FW_CFG_INVALID;
 233        ret = 0;
 234    } else {
 235        s->cur_entry = key;
 236        ret = 1;
 237        /* entry successfully selected, now run callback if present */
 238        arch = !!(key & FW_CFG_ARCH_LOCAL);
 239        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 240        if (e->select_cb) {
 241            e->select_cb(e->callback_opaque);
 242        }
 243    }
 244
 245    trace_fw_cfg_select(s, key, ret);
 246    return ret;
 247}
 248
 249static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 250{
 251    FWCfgState *s = opaque;
 252    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 253    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 254                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 255    uint64_t value = 0;
 256
 257    assert(size > 0 && size <= sizeof(value));
 258    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 259        /* The least significant 'size' bytes of the return value are
 260         * expected to contain a string preserving portion of the item
 261         * data, padded with zeros on the right in case we run out early.
 262         * In technical terms, we're composing the host-endian representation
 263         * of the big endian interpretation of the fw_cfg string.
 264         */
 265        do {
 266            value = (value << 8) | e->data[s->cur_offset++];
 267        } while (--size && s->cur_offset < e->len);
 268        /* If size is still not zero, we *did* run out early, so continue
 269         * left-shifting, to add the appropriate number of padding zeros
 270         * on the right.
 271         */
 272        value <<= 8 * size;
 273    }
 274
 275    trace_fw_cfg_read(s, value);
 276    return value;
 277}
 278
 279static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 280                                  uint64_t value, unsigned size)
 281{
 282    FWCfgState *s = opaque;
 283    unsigned i = size;
 284
 285    do {
 286        fw_cfg_write(s, value >> (8 * --i));
 287    } while (i);
 288}
 289
 290static void fw_cfg_dma_transfer(FWCfgState *s)
 291{
 292    dma_addr_t len;
 293    FWCfgDmaAccess dma;
 294    int arch;
 295    FWCfgEntry *e;
 296    int read = 0, write = 0;
 297    dma_addr_t dma_addr;
 298
 299    /* Reset the address before the next access */
 300    dma_addr = s->dma_addr;
 301    s->dma_addr = 0;
 302
 303    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 304        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 305                   FW_CFG_DMA_CTL_ERROR);
 306        return;
 307    }
 308
 309    dma.address = be64_to_cpu(dma.address);
 310    dma.length = be32_to_cpu(dma.length);
 311    dma.control = be32_to_cpu(dma.control);
 312
 313    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 314        fw_cfg_select(s, dma.control >> 16);
 315    }
 316
 317    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 318    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 319        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 320
 321    if (dma.control & FW_CFG_DMA_CTL_READ) {
 322        read = 1;
 323        write = 0;
 324    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 325        read = 0;
 326        write = 1;
 327    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 328        read = 0;
 329        write = 0;
 330    } else {
 331        dma.length = 0;
 332    }
 333
 334    dma.control = 0;
 335
 336    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 337        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 338                                s->cur_offset >= e->len) {
 339            len = dma.length;
 340
 341            /* If the access is not a read access, it will be a skip access,
 342             * tested before.
 343             */
 344            if (read) {
 345                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 346                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 347                }
 348            }
 349            if (write) {
 350                dma.control |= FW_CFG_DMA_CTL_ERROR;
 351            }
 352        } else {
 353            if (dma.length <= (e->len - s->cur_offset)) {
 354                len = dma.length;
 355            } else {
 356                len = (e->len - s->cur_offset);
 357            }
 358
 359            /* If the access is not a read access, it will be a skip access,
 360             * tested before.
 361             */
 362            if (read) {
 363                if (dma_memory_write(s->dma_as, dma.address,
 364                                    &e->data[s->cur_offset], len)) {
 365                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 366                }
 367            }
 368            if (write) {
 369                if (!e->allow_write ||
 370                    len != dma.length ||
 371                    dma_memory_read(s->dma_as, dma.address,
 372                                    &e->data[s->cur_offset], len)) {
 373                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 374                } else if (e->write_cb) {
 375                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 376                }
 377            }
 378
 379            s->cur_offset += len;
 380        }
 381
 382        dma.address += len;
 383        dma.length  -= len;
 384
 385    }
 386
 387    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 388                dma.control);
 389
 390    trace_fw_cfg_read(s, 0);
 391}
 392
 393static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 394                                    unsigned size)
 395{
 396    /* Return a signature value (and handle various read sizes) */
 397    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 398}
 399
 400static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 401                                 uint64_t value, unsigned size)
 402{
 403    FWCfgState *s = opaque;
 404
 405    if (size == 4) {
 406        if (addr == 0) {
 407            /* FWCfgDmaAccess high address */
 408            s->dma_addr = value << 32;
 409        } else if (addr == 4) {
 410            /* FWCfgDmaAccess low address */
 411            s->dma_addr |= value;
 412            fw_cfg_dma_transfer(s);
 413        }
 414    } else if (size == 8 && addr == 0) {
 415        s->dma_addr = value;
 416        fw_cfg_dma_transfer(s);
 417    }
 418}
 419
 420static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 421                                  unsigned size, bool is_write)
 422{
 423    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 424                         (size == 8 && addr == 0));
 425}
 426
 427static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 428                                  unsigned size, bool is_write)
 429{
 430    return addr == 0;
 431}
 432
 433static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 434                                 uint64_t value, unsigned size)
 435{
 436    fw_cfg_select(opaque, (uint16_t)value);
 437}
 438
 439static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 440                                 unsigned size, bool is_write)
 441{
 442    return is_write && size == 2;
 443}
 444
 445static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 446                              uint64_t value, unsigned size)
 447{
 448    switch (size) {
 449    case 1:
 450        fw_cfg_write(opaque, (uint8_t)value);
 451        break;
 452    case 2:
 453        fw_cfg_select(opaque, (uint16_t)value);
 454        break;
 455    }
 456}
 457
 458static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 459                                  unsigned size, bool is_write)
 460{
 461    return (size == 1) || (is_write && size == 2);
 462}
 463
 464static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 465    .write = fw_cfg_ctl_mem_write,
 466    .endianness = DEVICE_BIG_ENDIAN,
 467    .valid.accepts = fw_cfg_ctl_mem_valid,
 468};
 469
 470static const MemoryRegionOps fw_cfg_data_mem_ops = {
 471    .read = fw_cfg_data_read,
 472    .write = fw_cfg_data_mem_write,
 473    .endianness = DEVICE_BIG_ENDIAN,
 474    .valid = {
 475        .min_access_size = 1,
 476        .max_access_size = 1,
 477        .accepts = fw_cfg_data_mem_valid,
 478    },
 479};
 480
 481static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 482    .read = fw_cfg_data_read,
 483    .write = fw_cfg_comb_write,
 484    .endianness = DEVICE_LITTLE_ENDIAN,
 485    .valid.accepts = fw_cfg_comb_valid,
 486};
 487
 488static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 489    .read = fw_cfg_dma_mem_read,
 490    .write = fw_cfg_dma_mem_write,
 491    .endianness = DEVICE_BIG_ENDIAN,
 492    .valid.accepts = fw_cfg_dma_mem_valid,
 493    .valid.max_access_size = 8,
 494    .impl.max_access_size = 8,
 495};
 496
 497static void fw_cfg_reset(DeviceState *d)
 498{
 499    FWCfgState *s = FW_CFG(d);
 500
 501    /* we never register a read callback for FW_CFG_SIGNATURE */
 502    fw_cfg_select(s, FW_CFG_SIGNATURE);
 503}
 504
 505/* Save restore 32 bit int as uint16_t
 506   This is a Big hack, but it is how the old state did it.
 507   Or we broke compatibility in the state, or we can't use struct tm
 508 */
 509
 510static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 511                                VMStateField *field)
 512{
 513    uint32_t *v = pv;
 514    *v = qemu_get_be16(f);
 515    return 0;
 516}
 517
 518static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field,
 519                      QJSON *vmdesc)
 520{
 521    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 522    fprintf(stderr, "This functions shouldn't be called.\n");
 523
 524    return 0;
 525}
 526
 527static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 528    .name = "int32_as_uint16",
 529    .get  = get_uint32_as_uint16,
 530    .put  = put_unused,
 531};
 532
 533#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 534    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 535
 536
 537static bool is_version_1(void *opaque, int version_id)
 538{
 539    return version_id == 1;
 540}
 541
 542bool fw_cfg_dma_enabled(void *opaque)
 543{
 544    FWCfgState *s = opaque;
 545
 546    return s->dma_enabled;
 547}
 548
 549static const VMStateDescription vmstate_fw_cfg_dma = {
 550    .name = "fw_cfg/dma",
 551    .needed = fw_cfg_dma_enabled,
 552    .fields = (VMStateField[]) {
 553        VMSTATE_UINT64(dma_addr, FWCfgState),
 554        VMSTATE_END_OF_LIST()
 555    },
 556};
 557
 558static const VMStateDescription vmstate_fw_cfg = {
 559    .name = "fw_cfg",
 560    .version_id = 2,
 561    .minimum_version_id = 1,
 562    .fields = (VMStateField[]) {
 563        VMSTATE_UINT16(cur_entry, FWCfgState),
 564        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 565        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 566        VMSTATE_END_OF_LIST()
 567    },
 568    .subsections = (const VMStateDescription*[]) {
 569        &vmstate_fw_cfg_dma,
 570        NULL,
 571    }
 572};
 573
 574static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 575                                      FWCfgCallback select_cb,
 576                                      FWCfgWriteCallback write_cb,
 577                                      void *callback_opaque,
 578                                      void *data, size_t len,
 579                                      bool read_only)
 580{
 581    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 582
 583    key &= FW_CFG_ENTRY_MASK;
 584
 585    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 586    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 587
 588    s->entries[arch][key].data = data;
 589    s->entries[arch][key].len = (uint32_t)len;
 590    s->entries[arch][key].select_cb = select_cb;
 591    s->entries[arch][key].write_cb = write_cb;
 592    s->entries[arch][key].callback_opaque = callback_opaque;
 593    s->entries[arch][key].allow_write = !read_only;
 594}
 595
 596static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 597                                              void *data, size_t len)
 598{
 599    void *ptr;
 600    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 601
 602    key &= FW_CFG_ENTRY_MASK;
 603
 604    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 605
 606    /* return the old data to the function caller, avoid memory leak */
 607    ptr = s->entries[arch][key].data;
 608    s->entries[arch][key].data = data;
 609    s->entries[arch][key].len = len;
 610    s->entries[arch][key].callback_opaque = NULL;
 611    s->entries[arch][key].allow_write = false;
 612
 613    return ptr;
 614}
 615
 616void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 617{
 618    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 619}
 620
 621void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 622{
 623    size_t sz = strlen(value) + 1;
 624
 625    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 626}
 627
 628void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 629{
 630    uint16_t *copy;
 631
 632    copy = g_malloc(sizeof(value));
 633    *copy = cpu_to_le16(value);
 634    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 635}
 636
 637void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 638{
 639    uint16_t *copy, *old;
 640
 641    copy = g_malloc(sizeof(value));
 642    *copy = cpu_to_le16(value);
 643    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 644    g_free(old);
 645}
 646
 647void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 648{
 649    uint32_t *copy;
 650
 651    copy = g_malloc(sizeof(value));
 652    *copy = cpu_to_le32(value);
 653    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 654}
 655
 656void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 657{
 658    uint64_t *copy;
 659
 660    copy = g_malloc(sizeof(value));
 661    *copy = cpu_to_le64(value);
 662    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 663}
 664
 665void fw_cfg_set_order_override(FWCfgState *s, int order)
 666{
 667    assert(s->fw_cfg_order_override == 0);
 668    s->fw_cfg_order_override = order;
 669}
 670
 671void fw_cfg_reset_order_override(FWCfgState *s)
 672{
 673    assert(s->fw_cfg_order_override != 0);
 674    s->fw_cfg_order_override = 0;
 675}
 676
 677/*
 678 * This is the legacy order list.  For legacy systems, files are in
 679 * the fw_cfg in the order defined below, by the "order" value.  Note
 680 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 681 * specific area, but there may be more than one and they occur in the
 682 * order that the user specifies them on the command line.  Those are
 683 * handled in a special manner, using the order override above.
 684 *
 685 * For non-legacy, the files are sorted by filename to avoid this kind
 686 * of complexity in the future.
 687 *
 688 * This is only for x86, other arches don't implement versioning so
 689 * they won't set legacy mode.
 690 */
 691static struct {
 692    const char *name;
 693    int order;
 694} fw_cfg_order[] = {
 695    { "etc/boot-menu-wait", 10 },
 696    { "bootsplash.jpg", 11 },
 697    { "bootsplash.bmp", 12 },
 698    { "etc/boot-fail-wait", 15 },
 699    { "etc/smbios/smbios-tables", 20 },
 700    { "etc/smbios/smbios-anchor", 30 },
 701    { "etc/e820", 40 },
 702    { "etc/reserved-memory-end", 50 },
 703    { "genroms/kvmvapic.bin", 55 },
 704    { "genroms/linuxboot.bin", 60 },
 705    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 706    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 707    { "etc/system-states", 90 },
 708    { }, /* User ROMs come here, 100. */
 709    { }, /* Device FW comes here, 110. */
 710    { "etc/extra-pci-roots", 120 },
 711    { "etc/acpi/tables", 130 },
 712    { "etc/table-loader", 140 },
 713    { "etc/tpm/log", 150 },
 714    { "etc/acpi/rsdp", 160 },
 715    { "bootorder", 170 },
 716
 717#define FW_CFG_ORDER_OVERRIDE_LAST 200
 718};
 719
 720static int get_fw_cfg_order(FWCfgState *s, const char *name)
 721{
 722    int i;
 723
 724    if (s->fw_cfg_order_override > 0) {
 725        return s->fw_cfg_order_override;
 726    }
 727
 728    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 729        if (fw_cfg_order[i].name == NULL) {
 730            continue;
 731        }
 732
 733        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 734            return fw_cfg_order[i].order;
 735        }
 736    }
 737
 738    /* Stick unknown stuff at the end. */
 739    warn_report("Unknown firmware file in legacy mode: %s", name);
 740    return FW_CFG_ORDER_OVERRIDE_LAST;
 741}
 742
 743void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 744                              FWCfgCallback select_cb,
 745                              FWCfgWriteCallback write_cb,
 746                              void *callback_opaque,
 747                              void *data, size_t len, bool read_only)
 748{
 749    int i, index, count;
 750    size_t dsize;
 751    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 752    int order = 0;
 753
 754    if (!s->files) {
 755        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 756        s->files = g_malloc0(dsize);
 757        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 758    }
 759
 760    count = be32_to_cpu(s->files->count);
 761    assert(count < fw_cfg_file_slots(s));
 762
 763    /* Find the insertion point. */
 764    if (mc->legacy_fw_cfg_order) {
 765        /*
 766         * Sort by order. For files with the same order, we keep them
 767         * in the sequence in which they were added.
 768         */
 769        order = get_fw_cfg_order(s, filename);
 770        for (index = count;
 771             index > 0 && order < s->entry_order[index - 1];
 772             index--);
 773    } else {
 774        /* Sort by file name. */
 775        for (index = count;
 776             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 777             index--);
 778    }
 779
 780    /*
 781     * Move all the entries from the index point and after down one
 782     * to create a slot for the new entry.  Because calculations are
 783     * being done with the index, make it so that "i" is the current
 784     * index and "i - 1" is the one being copied from, thus the
 785     * unusual start and end in the for statement.
 786     */
 787    for (i = count + 1; i > index; i--) {
 788        s->files->f[i] = s->files->f[i - 1];
 789        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 790        s->entries[0][FW_CFG_FILE_FIRST + i] =
 791            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 792        s->entry_order[i] = s->entry_order[i - 1];
 793    }
 794
 795    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 796    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 797
 798    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 799    for (i = 0; i <= count; i++) {
 800        if (i != index &&
 801            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 802            error_report("duplicate fw_cfg file name: %s",
 803                         s->files->f[index].name);
 804            exit(1);
 805        }
 806    }
 807
 808    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 809                              select_cb, write_cb,
 810                              callback_opaque, data, len,
 811                              read_only);
 812
 813    s->files->f[index].size   = cpu_to_be32(len);
 814    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 815    s->entry_order[index] = order;
 816    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 817
 818    s->files->count = cpu_to_be32(count+1);
 819}
 820
 821void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 822                     void *data, size_t len)
 823{
 824    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 825}
 826
 827void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
 828                        void *data, size_t len)
 829{
 830    int i, index;
 831    void *ptr = NULL;
 832
 833    assert(s->files);
 834
 835    index = be32_to_cpu(s->files->count);
 836    assert(index < fw_cfg_file_slots(s));
 837
 838    for (i = 0; i < index; i++) {
 839        if (strcmp(filename, s->files->f[i].name) == 0) {
 840            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
 841                                           data, len);
 842            s->files->f[i].size   = cpu_to_be32(len);
 843            return ptr;
 844        }
 845    }
 846    /* add new one */
 847    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 848    return NULL;
 849}
 850
 851static void fw_cfg_machine_reset(void *opaque)
 852{
 853    void *ptr;
 854    size_t len;
 855    FWCfgState *s = opaque;
 856    char *bootindex = get_boot_devices_list(&len, false);
 857
 858    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
 859    g_free(ptr);
 860}
 861
 862static void fw_cfg_machine_ready(struct Notifier *n, void *data)
 863{
 864    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
 865    qemu_register_reset(fw_cfg_machine_reset, s);
 866}
 867
 868
 869
 870static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
 871{
 872    FWCfgState *s = FW_CFG(dev);
 873    MachineState *machine = MACHINE(qdev_get_machine());
 874    uint32_t version = FW_CFG_VERSION;
 875
 876    if (!fw_cfg_find()) {
 877        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
 878        return;
 879    }
 880
 881    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
 882    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
 883    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
 884    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
 885    fw_cfg_bootsplash(s);
 886    fw_cfg_reboot(s);
 887
 888    if (s->dma_enabled) {
 889        version |= FW_CFG_VERSION_DMA;
 890    }
 891
 892    fw_cfg_add_i32(s, FW_CFG_ID, version);
 893
 894    s->machine_ready.notify = fw_cfg_machine_ready;
 895    qemu_add_machine_init_done_notifier(&s->machine_ready);
 896}
 897
 898FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
 899                                AddressSpace *dma_as)
 900{
 901    DeviceState *dev;
 902    SysBusDevice *sbd;
 903    FWCfgIoState *ios;
 904    FWCfgState *s;
 905    bool dma_requested = dma_iobase && dma_as;
 906
 907    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
 908    if (!dma_requested) {
 909        qdev_prop_set_bit(dev, "dma_enabled", false);
 910    }
 911
 912    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 913                              OBJECT(dev), NULL);
 914    qdev_init_nofail(dev);
 915
 916    sbd = SYS_BUS_DEVICE(dev);
 917    ios = FW_CFG_IO(dev);
 918    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
 919
 920    s = FW_CFG(dev);
 921
 922    if (s->dma_enabled) {
 923        /* 64 bits for the address field */
 924        s->dma_as = dma_as;
 925        s->dma_addr = 0;
 926        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
 927    }
 928
 929    return s;
 930}
 931
 932FWCfgState *fw_cfg_init_io(uint32_t iobase)
 933{
 934    return fw_cfg_init_io_dma(iobase, 0, NULL);
 935}
 936
 937FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
 938                                 hwaddr data_addr, uint32_t data_width,
 939                                 hwaddr dma_addr, AddressSpace *dma_as)
 940{
 941    DeviceState *dev;
 942    SysBusDevice *sbd;
 943    FWCfgState *s;
 944    bool dma_requested = dma_addr && dma_as;
 945
 946    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
 947    qdev_prop_set_uint32(dev, "data_width", data_width);
 948    if (!dma_requested) {
 949        qdev_prop_set_bit(dev, "dma_enabled", false);
 950    }
 951
 952    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 953                              OBJECT(dev), NULL);
 954    qdev_init_nofail(dev);
 955
 956    sbd = SYS_BUS_DEVICE(dev);
 957    sysbus_mmio_map(sbd, 0, ctl_addr);
 958    sysbus_mmio_map(sbd, 1, data_addr);
 959
 960    s = FW_CFG(dev);
 961
 962    if (s->dma_enabled) {
 963        s->dma_as = dma_as;
 964        s->dma_addr = 0;
 965        sysbus_mmio_map(sbd, 2, dma_addr);
 966    }
 967
 968    return s;
 969}
 970
 971FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
 972{
 973    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
 974                                fw_cfg_data_mem_ops.valid.max_access_size,
 975                                0, NULL);
 976}
 977
 978
 979FWCfgState *fw_cfg_find(void)
 980{
 981    /* Returns NULL unless there is exactly one fw_cfg device */
 982    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
 983}
 984
 985
 986static void fw_cfg_class_init(ObjectClass *klass, void *data)
 987{
 988    DeviceClass *dc = DEVICE_CLASS(klass);
 989
 990    dc->reset = fw_cfg_reset;
 991    dc->vmsd = &vmstate_fw_cfg;
 992}
 993
 994static const TypeInfo fw_cfg_info = {
 995    .name          = TYPE_FW_CFG,
 996    .parent        = TYPE_SYS_BUS_DEVICE,
 997    .abstract      = true,
 998    .instance_size = sizeof(FWCfgState),
 999    .class_init    = fw_cfg_class_init,
1000};
1001
1002static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1003{
1004    uint16_t file_slots_max;
1005
1006    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1007        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1008                   FW_CFG_FILE_SLOTS_MIN);
1009        return;
1010    }
1011
1012    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1013     * that we permit. The actual (exclusive) value coming from the
1014     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1015    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1016    if (fw_cfg_file_slots(s) > file_slots_max) {
1017        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1018                   file_slots_max);
1019        return;
1020    }
1021
1022    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1023    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1024    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1025}
1026
1027static Property fw_cfg_io_properties[] = {
1028    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1029                     true),
1030    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1031                       FW_CFG_FILE_SLOTS_DFLT),
1032    DEFINE_PROP_END_OF_LIST(),
1033};
1034
1035static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1036{
1037    FWCfgIoState *s = FW_CFG_IO(dev);
1038    Error *local_err = NULL;
1039
1040    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1041    if (local_err) {
1042        error_propagate(errp, local_err);
1043        return;
1044    }
1045
1046    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1047     * with half of the 16-bit control register. Hence, the total size
1048     * of the i/o region used is FW_CFG_CTL_SIZE */
1049    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1050                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1051
1052    if (FW_CFG(s)->dma_enabled) {
1053        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1054                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1055                              sizeof(dma_addr_t));
1056    }
1057
1058    fw_cfg_common_realize(dev, errp);
1059}
1060
1061static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1062{
1063    DeviceClass *dc = DEVICE_CLASS(klass);
1064
1065    dc->realize = fw_cfg_io_realize;
1066    dc->props = fw_cfg_io_properties;
1067}
1068
1069static const TypeInfo fw_cfg_io_info = {
1070    .name          = TYPE_FW_CFG_IO,
1071    .parent        = TYPE_FW_CFG,
1072    .instance_size = sizeof(FWCfgIoState),
1073    .class_init    = fw_cfg_io_class_init,
1074};
1075
1076
1077static Property fw_cfg_mem_properties[] = {
1078    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1079    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1080                     true),
1081    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1082                       FW_CFG_FILE_SLOTS_DFLT),
1083    DEFINE_PROP_END_OF_LIST(),
1084};
1085
1086static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1087{
1088    FWCfgMemState *s = FW_CFG_MEM(dev);
1089    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1090    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1091    Error *local_err = NULL;
1092
1093    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1094    if (local_err) {
1095        error_propagate(errp, local_err);
1096        return;
1097    }
1098
1099    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1100                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1101    sysbus_init_mmio(sbd, &s->ctl_iomem);
1102
1103    if (s->data_width > data_ops->valid.max_access_size) {
1104        /* memberwise copy because the "old_mmio" member is const */
1105        s->wide_data_ops.read       = data_ops->read;
1106        s->wide_data_ops.write      = data_ops->write;
1107        s->wide_data_ops.endianness = data_ops->endianness;
1108        s->wide_data_ops.valid      = data_ops->valid;
1109        s->wide_data_ops.impl       = data_ops->impl;
1110
1111        s->wide_data_ops.valid.max_access_size = s->data_width;
1112        s->wide_data_ops.impl.max_access_size  = s->data_width;
1113        data_ops = &s->wide_data_ops;
1114    }
1115    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1116                          "fwcfg.data", data_ops->valid.max_access_size);
1117    sysbus_init_mmio(sbd, &s->data_iomem);
1118
1119    if (FW_CFG(s)->dma_enabled) {
1120        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1121                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1122                              sizeof(dma_addr_t));
1123        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1124    }
1125
1126    fw_cfg_common_realize(dev, errp);
1127}
1128
1129static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1130{
1131    DeviceClass *dc = DEVICE_CLASS(klass);
1132
1133    dc->realize = fw_cfg_mem_realize;
1134    dc->props = fw_cfg_mem_properties;
1135}
1136
1137static const TypeInfo fw_cfg_mem_info = {
1138    .name          = TYPE_FW_CFG_MEM,
1139    .parent        = TYPE_FW_CFG,
1140    .instance_size = sizeof(FWCfgMemState),
1141    .class_init    = fw_cfg_mem_class_init,
1142};
1143
1144
1145static void fw_cfg_register_types(void)
1146{
1147    type_register_static(&fw_cfg_info);
1148    type_register_static(&fw_cfg_io_info);
1149    type_register_static(&fw_cfg_mem_info);
1150}
1151
1152type_init(fw_cfg_register_types)
1153