qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "hw/hw.h"
  33#include "qemu/log.h"
  34#include "hw/fw-path-provider.h"
  35#include "elf.h"
  36#include "net/net.h"
  37#include "sysemu/device_tree.h"
  38#include "sysemu/block-backend.h"
  39#include "sysemu/cpus.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_ppc.h"
  42#include "migration/misc.h"
  43#include "migration/global_state.h"
  44#include "migration/register.h"
  45#include "mmu-hash64.h"
  46#include "mmu-book3s-v3.h"
  47#include "cpu-models.h"
  48#include "qom/cpu.h"
  49
  50#include "hw/boards.h"
  51#include "hw/ppc/ppc.h"
  52#include "hw/loader.h"
  53
  54#include "hw/ppc/fdt.h"
  55#include "hw/ppc/spapr.h"
  56#include "hw/ppc/spapr_vio.h"
  57#include "hw/pci-host/spapr.h"
  58#include "hw/ppc/xics.h"
  59#include "hw/pci/msi.h"
  60
  61#include "hw/pci/pci.h"
  62#include "hw/scsi/scsi.h"
  63#include "hw/virtio/virtio-scsi.h"
  64#include "hw/virtio/vhost-scsi-common.h"
  65
  66#include "exec/address-spaces.h"
  67#include "hw/usb.h"
  68#include "qemu/config-file.h"
  69#include "qemu/error-report.h"
  70#include "trace.h"
  71#include "hw/nmi.h"
  72#include "hw/intc/intc.h"
  73
  74#include "hw/compat.h"
  75#include "qemu/cutils.h"
  76#include "hw/ppc/spapr_cpu_core.h"
  77#include "qmp-commands.h"
  78
  79#include <libfdt.h>
  80
  81/* SLOF memory layout:
  82 *
  83 * SLOF raw image loaded at 0, copies its romfs right below the flat
  84 * device-tree, then position SLOF itself 31M below that
  85 *
  86 * So we set FW_OVERHEAD to 40MB which should account for all of that
  87 * and more
  88 *
  89 * We load our kernel at 4M, leaving space for SLOF initial image
  90 */
  91#define FDT_MAX_SIZE            0x100000
  92#define RTAS_MAX_SIZE           0x10000
  93#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  94#define FW_MAX_SIZE             0x400000
  95#define FW_FILE_NAME            "slof.bin"
  96#define FW_OVERHEAD             0x2800000
  97#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  98
  99#define MIN_RMA_SLOF            128UL
 100
 101#define PHANDLE_XICP            0x00001111
 102
 103static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 104                                  const char *type_ics,
 105                                  int nr_irqs, Error **errp)
 106{
 107    Error *local_err = NULL;
 108    Object *obj;
 109
 110    obj = object_new(type_ics);
 111    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 112    object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 113                                   &error_abort);
 114    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 115    if (local_err) {
 116        goto error;
 117    }
 118    object_property_set_bool(obj, true, "realized", &local_err);
 119    if (local_err) {
 120        goto error;
 121    }
 122
 123    return ICS_SIMPLE(obj);
 124
 125error:
 126    error_propagate(errp, local_err);
 127    return NULL;
 128}
 129
 130static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 131{
 132    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 133     * and newer QEMUs don't even have them. In both cases, we don't want
 134     * to send anything on the wire.
 135     */
 136    return false;
 137}
 138
 139static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 140    .name = "icp/server",
 141    .version_id = 1,
 142    .minimum_version_id = 1,
 143    .needed = pre_2_10_vmstate_dummy_icp_needed,
 144    .fields = (VMStateField[]) {
 145        VMSTATE_UNUSED(4), /* uint32_t xirr */
 146        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 147        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 148        VMSTATE_END_OF_LIST()
 149    },
 150};
 151
 152static void pre_2_10_vmstate_register_dummy_icp(int i)
 153{
 154    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 155                     (void *)(uintptr_t) i);
 156}
 157
 158static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 159{
 160    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 161                       (void *)(uintptr_t) i);
 162}
 163
 164static inline int xics_max_server_number(void)
 165{
 166    return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
 167}
 168
 169static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 170{
 171    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 172    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 173
 174    if (kvm_enabled()) {
 175        if (machine_kernel_irqchip_allowed(machine) &&
 176            !xics_kvm_init(spapr, errp)) {
 177            spapr->icp_type = TYPE_KVM_ICP;
 178            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
 179        }
 180        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 181            error_prepend(errp, "kernel_irqchip requested but unavailable: ");
 182            return;
 183        }
 184    }
 185
 186    if (!spapr->ics) {
 187        xics_spapr_init(spapr);
 188        spapr->icp_type = TYPE_ICP;
 189        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
 190        if (!spapr->ics) {
 191            return;
 192        }
 193    }
 194
 195    if (smc->pre_2_10_has_unused_icps) {
 196        int i;
 197
 198        for (i = 0; i < xics_max_server_number(); i++) {
 199            /* Dummy entries get deregistered when real ICPState objects
 200             * are registered during CPU core hotplug.
 201             */
 202            pre_2_10_vmstate_register_dummy_icp(i);
 203        }
 204    }
 205}
 206
 207static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 208                                  int smt_threads)
 209{
 210    int i, ret = 0;
 211    uint32_t servers_prop[smt_threads];
 212    uint32_t gservers_prop[smt_threads * 2];
 213    int index = spapr_vcpu_id(cpu);
 214
 215    if (cpu->compat_pvr) {
 216        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 217        if (ret < 0) {
 218            return ret;
 219        }
 220    }
 221
 222    /* Build interrupt servers and gservers properties */
 223    for (i = 0; i < smt_threads; i++) {
 224        servers_prop[i] = cpu_to_be32(index + i);
 225        /* Hack, direct the group queues back to cpu 0 */
 226        gservers_prop[i*2] = cpu_to_be32(index + i);
 227        gservers_prop[i*2 + 1] = 0;
 228    }
 229    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 230                      servers_prop, sizeof(servers_prop));
 231    if (ret < 0) {
 232        return ret;
 233    }
 234    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 235                      gservers_prop, sizeof(gservers_prop));
 236
 237    return ret;
 238}
 239
 240static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 241{
 242    int index = spapr_vcpu_id(cpu);
 243    uint32_t associativity[] = {cpu_to_be32(0x5),
 244                                cpu_to_be32(0x0),
 245                                cpu_to_be32(0x0),
 246                                cpu_to_be32(0x0),
 247                                cpu_to_be32(cpu->node_id),
 248                                cpu_to_be32(index)};
 249
 250    /* Advertise NUMA via ibm,associativity */
 251    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 252                          sizeof(associativity));
 253}
 254
 255/* Populate the "ibm,pa-features" property */
 256static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset,
 257                                       bool legacy_guest)
 258{
 259    CPUPPCState *env = &cpu->env;
 260    uint8_t pa_features_206[] = { 6, 0,
 261        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 262    uint8_t pa_features_207[] = { 24, 0,
 263        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 264        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 265        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 266        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 267    uint8_t pa_features_300[] = { 66, 0,
 268        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 269        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 270        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 271        /* 6: DS207 */
 272        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 273        /* 16: Vector */
 274        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 275        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 276        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 277        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 278        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 279        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 280        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 281        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 282        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 283        /* 42: PM, 44: PC RA, 46: SC vec'd */
 284        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 285        /* 48: SIMD, 50: QP BFP, 52: String */
 286        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 287        /* 54: DecFP, 56: DecI, 58: SHA */
 288        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 289        /* 60: NM atomic, 62: RNG */
 290        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 291    };
 292    uint8_t *pa_features = NULL;
 293    size_t pa_size;
 294
 295    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 296        pa_features = pa_features_206;
 297        pa_size = sizeof(pa_features_206);
 298    }
 299    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 300        pa_features = pa_features_207;
 301        pa_size = sizeof(pa_features_207);
 302    }
 303    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 304        pa_features = pa_features_300;
 305        pa_size = sizeof(pa_features_300);
 306    }
 307    if (!pa_features) {
 308        return;
 309    }
 310
 311    if (env->ci_large_pages) {
 312        /*
 313         * Note: we keep CI large pages off by default because a 64K capable
 314         * guest provisioned with large pages might otherwise try to map a qemu
 315         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 316         * even if that qemu runs on a 4k host.
 317         * We dd this bit back here if we are confident this is not an issue
 318         */
 319        pa_features[3] |= 0x20;
 320    }
 321    if (kvmppc_has_cap_htm() && pa_size > 24) {
 322        pa_features[24] |= 0x80;    /* Transactional memory support */
 323    }
 324    if (legacy_guest && pa_size > 40) {
 325        /* Workaround for broken kernels that attempt (guest) radix
 326         * mode when they can't handle it, if they see the radix bit set
 327         * in pa-features. So hide it from them. */
 328        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 329    }
 330
 331    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 332}
 333
 334static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 335{
 336    int ret = 0, offset, cpus_offset;
 337    CPUState *cs;
 338    char cpu_model[32];
 339    int smt = kvmppc_smt_threads();
 340    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 341
 342    CPU_FOREACH(cs) {
 343        PowerPCCPU *cpu = POWERPC_CPU(cs);
 344        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 345        int index = spapr_vcpu_id(cpu);
 346        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 347
 348        if ((index % smt) != 0) {
 349            continue;
 350        }
 351
 352        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 353
 354        cpus_offset = fdt_path_offset(fdt, "/cpus");
 355        if (cpus_offset < 0) {
 356            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 357            if (cpus_offset < 0) {
 358                return cpus_offset;
 359            }
 360        }
 361        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 362        if (offset < 0) {
 363            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 364            if (offset < 0) {
 365                return offset;
 366            }
 367        }
 368
 369        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 370                          pft_size_prop, sizeof(pft_size_prop));
 371        if (ret < 0) {
 372            return ret;
 373        }
 374
 375        if (nb_numa_nodes > 1) {
 376            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 377            if (ret < 0) {
 378                return ret;
 379            }
 380        }
 381
 382        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 383        if (ret < 0) {
 384            return ret;
 385        }
 386
 387        spapr_populate_pa_features(cpu, fdt, offset,
 388                                         spapr->cas_legacy_guest_workaround);
 389    }
 390    return ret;
 391}
 392
 393static hwaddr spapr_node0_size(MachineState *machine)
 394{
 395    if (nb_numa_nodes) {
 396        int i;
 397        for (i = 0; i < nb_numa_nodes; ++i) {
 398            if (numa_info[i].node_mem) {
 399                return MIN(pow2floor(numa_info[i].node_mem),
 400                           machine->ram_size);
 401            }
 402        }
 403    }
 404    return machine->ram_size;
 405}
 406
 407static void add_str(GString *s, const gchar *s1)
 408{
 409    g_string_append_len(s, s1, strlen(s1) + 1);
 410}
 411
 412static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 413                                       hwaddr size)
 414{
 415    uint32_t associativity[] = {
 416        cpu_to_be32(0x4), /* length */
 417        cpu_to_be32(0x0), cpu_to_be32(0x0),
 418        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 419    };
 420    char mem_name[32];
 421    uint64_t mem_reg_property[2];
 422    int off;
 423
 424    mem_reg_property[0] = cpu_to_be64(start);
 425    mem_reg_property[1] = cpu_to_be64(size);
 426
 427    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 428    off = fdt_add_subnode(fdt, 0, mem_name);
 429    _FDT(off);
 430    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 431    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 432                      sizeof(mem_reg_property))));
 433    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 434                      sizeof(associativity))));
 435    return off;
 436}
 437
 438static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 439{
 440    MachineState *machine = MACHINE(spapr);
 441    hwaddr mem_start, node_size;
 442    int i, nb_nodes = nb_numa_nodes;
 443    NodeInfo *nodes = numa_info;
 444    NodeInfo ramnode;
 445
 446    /* No NUMA nodes, assume there is just one node with whole RAM */
 447    if (!nb_numa_nodes) {
 448        nb_nodes = 1;
 449        ramnode.node_mem = machine->ram_size;
 450        nodes = &ramnode;
 451    }
 452
 453    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 454        if (!nodes[i].node_mem) {
 455            continue;
 456        }
 457        if (mem_start >= machine->ram_size) {
 458            node_size = 0;
 459        } else {
 460            node_size = nodes[i].node_mem;
 461            if (node_size > machine->ram_size - mem_start) {
 462                node_size = machine->ram_size - mem_start;
 463            }
 464        }
 465        if (!mem_start) {
 466            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 467            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 468            mem_start += spapr->rma_size;
 469            node_size -= spapr->rma_size;
 470        }
 471        for ( ; node_size; ) {
 472            hwaddr sizetmp = pow2floor(node_size);
 473
 474            /* mem_start != 0 here */
 475            if (ctzl(mem_start) < ctzl(sizetmp)) {
 476                sizetmp = 1ULL << ctzl(mem_start);
 477            }
 478
 479            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 480            node_size -= sizetmp;
 481            mem_start += sizetmp;
 482        }
 483    }
 484
 485    return 0;
 486}
 487
 488static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 489                                  sPAPRMachineState *spapr)
 490{
 491    PowerPCCPU *cpu = POWERPC_CPU(cs);
 492    CPUPPCState *env = &cpu->env;
 493    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 494    int index = spapr_vcpu_id(cpu);
 495    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 496                       0xffffffff, 0xffffffff};
 497    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 498        : SPAPR_TIMEBASE_FREQ;
 499    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 500    uint32_t page_sizes_prop[64];
 501    size_t page_sizes_prop_size;
 502    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 503    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 504    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 505    sPAPRDRConnector *drc;
 506    int drc_index;
 507    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 508    int i;
 509
 510    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 511    if (drc) {
 512        drc_index = spapr_drc_index(drc);
 513        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 514    }
 515
 516    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 517    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 518
 519    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 520    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 521                           env->dcache_line_size)));
 522    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 523                           env->dcache_line_size)));
 524    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 525                           env->icache_line_size)));
 526    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 527                           env->icache_line_size)));
 528
 529    if (pcc->l1_dcache_size) {
 530        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 531                               pcc->l1_dcache_size)));
 532    } else {
 533        warn_report("Unknown L1 dcache size for cpu");
 534    }
 535    if (pcc->l1_icache_size) {
 536        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 537                               pcc->l1_icache_size)));
 538    } else {
 539        warn_report("Unknown L1 icache size for cpu");
 540    }
 541
 542    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 543    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 544    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 545    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 546    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 547    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 548
 549    if (env->spr_cb[SPR_PURR].oea_read) {
 550        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 551    }
 552
 553    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 554        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 555                          segs, sizeof(segs))));
 556    }
 557
 558    /* Advertise VMX/VSX (vector extensions) if available
 559     *   0 / no property == no vector extensions
 560     *   1               == VMX / Altivec available
 561     *   2               == VSX available */
 562    if (env->insns_flags & PPC_ALTIVEC) {
 563        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 564
 565        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 566    }
 567
 568    /* Advertise DFP (Decimal Floating Point) if available
 569     *   0 / no property == no DFP
 570     *   1               == DFP available */
 571    if (env->insns_flags2 & PPC2_DFP) {
 572        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 573    }
 574
 575    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 576                                                  sizeof(page_sizes_prop));
 577    if (page_sizes_prop_size) {
 578        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 579                          page_sizes_prop, page_sizes_prop_size)));
 580    }
 581
 582    spapr_populate_pa_features(cpu, fdt, offset, false);
 583
 584    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 585                           cs->cpu_index / vcpus_per_socket)));
 586
 587    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 588                      pft_size_prop, sizeof(pft_size_prop))));
 589
 590    if (nb_numa_nodes > 1) {
 591        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 592    }
 593
 594    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 595
 596    if (pcc->radix_page_info) {
 597        for (i = 0; i < pcc->radix_page_info->count; i++) {
 598            radix_AP_encodings[i] =
 599                cpu_to_be32(pcc->radix_page_info->entries[i]);
 600        }
 601        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 602                          radix_AP_encodings,
 603                          pcc->radix_page_info->count *
 604                          sizeof(radix_AP_encodings[0]))));
 605    }
 606}
 607
 608static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 609{
 610    CPUState *cs;
 611    int cpus_offset;
 612    char *nodename;
 613    int smt = kvmppc_smt_threads();
 614
 615    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 616    _FDT(cpus_offset);
 617    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 618    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 619
 620    /*
 621     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 622     * created by fdt_add_subnode() end up in the right order in FDT
 623     * for the guest kernel the enumerate the CPUs correctly.
 624     */
 625    CPU_FOREACH_REVERSE(cs) {
 626        PowerPCCPU *cpu = POWERPC_CPU(cs);
 627        int index = spapr_vcpu_id(cpu);
 628        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 629        int offset;
 630
 631        if ((index % smt) != 0) {
 632            continue;
 633        }
 634
 635        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 636        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 637        g_free(nodename);
 638        _FDT(offset);
 639        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 640    }
 641
 642}
 643
 644/*
 645 * Adds ibm,dynamic-reconfiguration-memory node.
 646 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 647 * of this device tree node.
 648 */
 649static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 650{
 651    MachineState *machine = MACHINE(spapr);
 652    int ret, i, offset;
 653    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 654    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 655    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 656    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 657                       memory_region_size(&spapr->hotplug_memory.mr)) /
 658                       lmb_size;
 659    uint32_t *int_buf, *cur_index, buf_len;
 660    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 661
 662    /*
 663     * Don't create the node if there is no hotpluggable memory
 664     */
 665    if (machine->ram_size == machine->maxram_size) {
 666        return 0;
 667    }
 668
 669    /*
 670     * Allocate enough buffer size to fit in ibm,dynamic-memory
 671     * or ibm,associativity-lookup-arrays
 672     */
 673    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 674              * sizeof(uint32_t);
 675    cur_index = int_buf = g_malloc0(buf_len);
 676
 677    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 678
 679    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 680                    sizeof(prop_lmb_size));
 681    if (ret < 0) {
 682        goto out;
 683    }
 684
 685    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 686    if (ret < 0) {
 687        goto out;
 688    }
 689
 690    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 691    if (ret < 0) {
 692        goto out;
 693    }
 694
 695    /* ibm,dynamic-memory */
 696    int_buf[0] = cpu_to_be32(nr_lmbs);
 697    cur_index++;
 698    for (i = 0; i < nr_lmbs; i++) {
 699        uint64_t addr = i * lmb_size;
 700        uint32_t *dynamic_memory = cur_index;
 701
 702        if (i >= hotplug_lmb_start) {
 703            sPAPRDRConnector *drc;
 704
 705            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 706            g_assert(drc);
 707
 708            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 709            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 710            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 711            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 712            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 713            if (memory_region_present(get_system_memory(), addr)) {
 714                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 715            } else {
 716                dynamic_memory[5] = cpu_to_be32(0);
 717            }
 718        } else {
 719            /*
 720             * LMB information for RMA, boot time RAM and gap b/n RAM and
 721             * hotplug memory region -- all these are marked as reserved
 722             * and as having no valid DRC.
 723             */
 724            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 725            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 726            dynamic_memory[2] = cpu_to_be32(0);
 727            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 728            dynamic_memory[4] = cpu_to_be32(-1);
 729            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 730                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 731        }
 732
 733        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 734    }
 735    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 736    if (ret < 0) {
 737        goto out;
 738    }
 739
 740    /* ibm,associativity-lookup-arrays */
 741    cur_index = int_buf;
 742    int_buf[0] = cpu_to_be32(nr_nodes);
 743    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 744    cur_index += 2;
 745    for (i = 0; i < nr_nodes; i++) {
 746        uint32_t associativity[] = {
 747            cpu_to_be32(0x0),
 748            cpu_to_be32(0x0),
 749            cpu_to_be32(0x0),
 750            cpu_to_be32(i)
 751        };
 752        memcpy(cur_index, associativity, sizeof(associativity));
 753        cur_index += 4;
 754    }
 755    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 756            (cur_index - int_buf) * sizeof(uint32_t));
 757out:
 758    g_free(int_buf);
 759    return ret;
 760}
 761
 762static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 763                                sPAPROptionVector *ov5_updates)
 764{
 765    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 766    int ret = 0, offset;
 767
 768    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 769    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 770        g_assert(smc->dr_lmb_enabled);
 771        ret = spapr_populate_drconf_memory(spapr, fdt);
 772        if (ret) {
 773            goto out;
 774        }
 775    }
 776
 777    offset = fdt_path_offset(fdt, "/chosen");
 778    if (offset < 0) {
 779        offset = fdt_add_subnode(fdt, 0, "chosen");
 780        if (offset < 0) {
 781            return offset;
 782        }
 783    }
 784    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 785                                 "ibm,architecture-vec-5");
 786
 787out:
 788    return ret;
 789}
 790
 791static bool spapr_hotplugged_dev_before_cas(void)
 792{
 793    Object *drc_container, *obj;
 794    ObjectProperty *prop;
 795    ObjectPropertyIterator iter;
 796
 797    drc_container = container_get(object_get_root(), "/dr-connector");
 798    object_property_iter_init(&iter, drc_container);
 799    while ((prop = object_property_iter_next(&iter))) {
 800        if (!strstart(prop->type, "link<", NULL)) {
 801            continue;
 802        }
 803        obj = object_property_get_link(drc_container, prop->name, NULL);
 804        if (spapr_drc_needed(obj)) {
 805            return true;
 806        }
 807    }
 808    return false;
 809}
 810
 811int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 812                                 target_ulong addr, target_ulong size,
 813                                 sPAPROptionVector *ov5_updates)
 814{
 815    void *fdt, *fdt_skel;
 816    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 817
 818    if (spapr_hotplugged_dev_before_cas()) {
 819        return 1;
 820    }
 821
 822    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 823        error_report("SLOF provided an unexpected CAS buffer size "
 824                     TARGET_FMT_lu " (min: %zu, max: %u)",
 825                     size, sizeof(hdr), FW_MAX_SIZE);
 826        exit(EXIT_FAILURE);
 827    }
 828
 829    size -= sizeof(hdr);
 830
 831    /* Create skeleton */
 832    fdt_skel = g_malloc0(size);
 833    _FDT((fdt_create(fdt_skel, size)));
 834    _FDT((fdt_begin_node(fdt_skel, "")));
 835    _FDT((fdt_end_node(fdt_skel)));
 836    _FDT((fdt_finish(fdt_skel)));
 837    fdt = g_malloc0(size);
 838    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 839    g_free(fdt_skel);
 840
 841    /* Fixup cpu nodes */
 842    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 843
 844    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 845        return -1;
 846    }
 847
 848    /* Pack resulting tree */
 849    _FDT((fdt_pack(fdt)));
 850
 851    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 852        trace_spapr_cas_failed(size);
 853        return -1;
 854    }
 855
 856    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 857    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 858    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 859    g_free(fdt);
 860
 861    return 0;
 862}
 863
 864static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 865{
 866    int rtas;
 867    GString *hypertas = g_string_sized_new(256);
 868    GString *qemu_hypertas = g_string_sized_new(256);
 869    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 870    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 871        memory_region_size(&spapr->hotplug_memory.mr);
 872    uint32_t lrdr_capacity[] = {
 873        cpu_to_be32(max_hotplug_addr >> 32),
 874        cpu_to_be32(max_hotplug_addr & 0xffffffff),
 875        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 876        cpu_to_be32(max_cpus / smp_threads),
 877    };
 878
 879    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 880
 881    /* hypertas */
 882    add_str(hypertas, "hcall-pft");
 883    add_str(hypertas, "hcall-term");
 884    add_str(hypertas, "hcall-dabr");
 885    add_str(hypertas, "hcall-interrupt");
 886    add_str(hypertas, "hcall-tce");
 887    add_str(hypertas, "hcall-vio");
 888    add_str(hypertas, "hcall-splpar");
 889    add_str(hypertas, "hcall-bulk");
 890    add_str(hypertas, "hcall-set-mode");
 891    add_str(hypertas, "hcall-sprg0");
 892    add_str(hypertas, "hcall-copy");
 893    add_str(hypertas, "hcall-debug");
 894    add_str(qemu_hypertas, "hcall-memop1");
 895
 896    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 897        add_str(hypertas, "hcall-multi-tce");
 898    }
 899
 900    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 901        add_str(hypertas, "hcall-hpt-resize");
 902    }
 903
 904    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 905                     hypertas->str, hypertas->len));
 906    g_string_free(hypertas, TRUE);
 907    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 908                     qemu_hypertas->str, qemu_hypertas->len));
 909    g_string_free(qemu_hypertas, TRUE);
 910
 911    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 912                     refpoints, sizeof(refpoints)));
 913
 914    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 915                          RTAS_ERROR_LOG_MAX));
 916    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 917                          RTAS_EVENT_SCAN_RATE));
 918
 919    if (msi_nonbroken) {
 920        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 921    }
 922
 923    /*
 924     * According to PAPR, rtas ibm,os-term does not guarantee a return
 925     * back to the guest cpu.
 926     *
 927     * While an additional ibm,extended-os-term property indicates
 928     * that rtas call return will always occur. Set this property.
 929     */
 930    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 931
 932    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 933                     lrdr_capacity, sizeof(lrdr_capacity)));
 934
 935    spapr_dt_rtas_tokens(fdt, rtas);
 936}
 937
 938/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 939 * that the guest may request and thus the valid values for bytes 24..26 of
 940 * option vector 5: */
 941static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
 942{
 943    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 944
 945    char val[2 * 4] = {
 946        23, 0x00, /* Xive mode, filled in below. */
 947        24, 0x00, /* Hash/Radix, filled in below. */
 948        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 949        26, 0x40, /* Radix options: GTSE == yes. */
 950    };
 951
 952    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 953                          first_ppc_cpu->compat_pvr)) {
 954        /* If we're in a pre POWER9 compat mode then the guest should do hash */
 955        val[3] = 0x00; /* Hash */
 956    } else if (kvm_enabled()) {
 957        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 958            val[3] = 0x80; /* OV5_MMU_BOTH */
 959        } else if (kvmppc_has_cap_mmu_radix()) {
 960            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 961        } else {
 962            val[3] = 0x00; /* Hash */
 963        }
 964    } else {
 965        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
 966        val[3] = 0xC0;
 967    }
 968    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 969                     val, sizeof(val)));
 970}
 971
 972static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
 973{
 974    MachineState *machine = MACHINE(spapr);
 975    int chosen;
 976    const char *boot_device = machine->boot_order;
 977    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 978    size_t cb = 0;
 979    char *bootlist = get_boot_devices_list(&cb, true);
 980
 981    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 982
 983    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
 984    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 985                          spapr->initrd_base));
 986    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 987                          spapr->initrd_base + spapr->initrd_size));
 988
 989    if (spapr->kernel_size) {
 990        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 991                              cpu_to_be64(spapr->kernel_size) };
 992
 993        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 994                         &kprop, sizeof(kprop)));
 995        if (spapr->kernel_le) {
 996            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
 997        }
 998    }
 999    if (boot_menu) {
1000        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1001    }
1002    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1003    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1004    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1005
1006    if (cb && bootlist) {
1007        int i;
1008
1009        for (i = 0; i < cb; i++) {
1010            if (bootlist[i] == '\n') {
1011                bootlist[i] = ' ';
1012            }
1013        }
1014        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1015    }
1016
1017    if (boot_device && strlen(boot_device)) {
1018        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1019    }
1020
1021    if (!spapr->has_graphics && stdout_path) {
1022        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1023    }
1024
1025    spapr_dt_ov5_platform_support(fdt, chosen);
1026
1027    g_free(stdout_path);
1028    g_free(bootlist);
1029}
1030
1031static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1032{
1033    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1034     * KVM to work under pHyp with some guest co-operation */
1035    int hypervisor;
1036    uint8_t hypercall[16];
1037
1038    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1039    /* indicate KVM hypercall interface */
1040    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1041    if (kvmppc_has_cap_fixup_hcalls()) {
1042        /*
1043         * Older KVM versions with older guest kernels were broken
1044         * with the magic page, don't allow the guest to map it.
1045         */
1046        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1047                                  sizeof(hypercall))) {
1048            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1049                             hypercall, sizeof(hypercall)));
1050        }
1051    }
1052}
1053
1054static void *spapr_build_fdt(sPAPRMachineState *spapr,
1055                             hwaddr rtas_addr,
1056                             hwaddr rtas_size)
1057{
1058    MachineState *machine = MACHINE(spapr);
1059    MachineClass *mc = MACHINE_GET_CLASS(machine);
1060    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1061    int ret;
1062    void *fdt;
1063    sPAPRPHBState *phb;
1064    char *buf;
1065
1066    fdt = g_malloc0(FDT_MAX_SIZE);
1067    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1068
1069    /* Root node */
1070    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1071    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1072    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1073
1074    /*
1075     * Add info to guest to indentify which host is it being run on
1076     * and what is the uuid of the guest
1077     */
1078    if (kvmppc_get_host_model(&buf)) {
1079        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1080        g_free(buf);
1081    }
1082    if (kvmppc_get_host_serial(&buf)) {
1083        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1084        g_free(buf);
1085    }
1086
1087    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1088
1089    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1090    if (qemu_uuid_set) {
1091        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1092    }
1093    g_free(buf);
1094
1095    if (qemu_get_vm_name()) {
1096        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1097                                qemu_get_vm_name()));
1098    }
1099
1100    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1101    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1102
1103    /* /interrupt controller */
1104    spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1105
1106    ret = spapr_populate_memory(spapr, fdt);
1107    if (ret < 0) {
1108        error_report("couldn't setup memory nodes in fdt");
1109        exit(1);
1110    }
1111
1112    /* /vdevice */
1113    spapr_dt_vdevice(spapr->vio_bus, fdt);
1114
1115    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1116        ret = spapr_rng_populate_dt(fdt);
1117        if (ret < 0) {
1118            error_report("could not set up rng device in the fdt");
1119            exit(1);
1120        }
1121    }
1122
1123    QLIST_FOREACH(phb, &spapr->phbs, list) {
1124        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1125        if (ret < 0) {
1126            error_report("couldn't setup PCI devices in fdt");
1127            exit(1);
1128        }
1129    }
1130
1131    /* cpus */
1132    spapr_populate_cpus_dt_node(fdt, spapr);
1133
1134    if (smc->dr_lmb_enabled) {
1135        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1136    }
1137
1138    if (mc->has_hotpluggable_cpus) {
1139        int offset = fdt_path_offset(fdt, "/cpus");
1140        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1141                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1142        if (ret < 0) {
1143            error_report("Couldn't set up CPU DR device tree properties");
1144            exit(1);
1145        }
1146    }
1147
1148    /* /event-sources */
1149    spapr_dt_events(spapr, fdt);
1150
1151    /* /rtas */
1152    spapr_dt_rtas(spapr, fdt);
1153
1154    /* /chosen */
1155    spapr_dt_chosen(spapr, fdt);
1156
1157    /* /hypervisor */
1158    if (kvm_enabled()) {
1159        spapr_dt_hypervisor(spapr, fdt);
1160    }
1161
1162    /* Build memory reserve map */
1163    if (spapr->kernel_size) {
1164        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1165    }
1166    if (spapr->initrd_size) {
1167        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1168    }
1169
1170    /* ibm,client-architecture-support updates */
1171    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1172    if (ret < 0) {
1173        error_report("couldn't setup CAS properties fdt");
1174        exit(1);
1175    }
1176
1177    return fdt;
1178}
1179
1180static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1181{
1182    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1183}
1184
1185static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1186                                    PowerPCCPU *cpu)
1187{
1188    CPUPPCState *env = &cpu->env;
1189
1190    /* The TCG path should also be holding the BQL at this point */
1191    g_assert(qemu_mutex_iothread_locked());
1192
1193    if (msr_pr) {
1194        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1195        env->gpr[3] = H_PRIVILEGE;
1196    } else {
1197        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1198    }
1199}
1200
1201static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1202{
1203    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1204
1205    return spapr->patb_entry;
1206}
1207
1208#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1209#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1210#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1211#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1212#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1213
1214/*
1215 * Get the fd to access the kernel htab, re-opening it if necessary
1216 */
1217static int get_htab_fd(sPAPRMachineState *spapr)
1218{
1219    Error *local_err = NULL;
1220
1221    if (spapr->htab_fd >= 0) {
1222        return spapr->htab_fd;
1223    }
1224
1225    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1226    if (spapr->htab_fd < 0) {
1227        error_report_err(local_err);
1228    }
1229
1230    return spapr->htab_fd;
1231}
1232
1233void close_htab_fd(sPAPRMachineState *spapr)
1234{
1235    if (spapr->htab_fd >= 0) {
1236        close(spapr->htab_fd);
1237    }
1238    spapr->htab_fd = -1;
1239}
1240
1241static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1242{
1243    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1244
1245    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1246}
1247
1248static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1249{
1250    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1251
1252    assert(kvm_enabled());
1253
1254    if (!spapr->htab) {
1255        return 0;
1256    }
1257
1258    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1259}
1260
1261static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1262                                                hwaddr ptex, int n)
1263{
1264    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1265    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1266
1267    if (!spapr->htab) {
1268        /*
1269         * HTAB is controlled by KVM. Fetch into temporary buffer
1270         */
1271        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1272        kvmppc_read_hptes(hptes, ptex, n);
1273        return hptes;
1274    }
1275
1276    /*
1277     * HTAB is controlled by QEMU. Just point to the internally
1278     * accessible PTEG.
1279     */
1280    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1281}
1282
1283static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1284                              const ppc_hash_pte64_t *hptes,
1285                              hwaddr ptex, int n)
1286{
1287    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1288
1289    if (!spapr->htab) {
1290        g_free((void *)hptes);
1291    }
1292
1293    /* Nothing to do for qemu managed HPT */
1294}
1295
1296static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1297                             uint64_t pte0, uint64_t pte1)
1298{
1299    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1300    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1301
1302    if (!spapr->htab) {
1303        kvmppc_write_hpte(ptex, pte0, pte1);
1304    } else {
1305        stq_p(spapr->htab + offset, pte0);
1306        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1307    }
1308}
1309
1310int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1311{
1312    int shift;
1313
1314    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1315     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1316     * that's much more than is needed for Linux guests */
1317    shift = ctz64(pow2ceil(ramsize)) - 7;
1318    shift = MAX(shift, 18); /* Minimum architected size */
1319    shift = MIN(shift, 46); /* Maximum architected size */
1320    return shift;
1321}
1322
1323void spapr_free_hpt(sPAPRMachineState *spapr)
1324{
1325    g_free(spapr->htab);
1326    spapr->htab = NULL;
1327    spapr->htab_shift = 0;
1328    close_htab_fd(spapr);
1329}
1330
1331void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1332                          Error **errp)
1333{
1334    long rc;
1335
1336    /* Clean up any HPT info from a previous boot */
1337    spapr_free_hpt(spapr);
1338
1339    rc = kvmppc_reset_htab(shift);
1340    if (rc < 0) {
1341        /* kernel-side HPT needed, but couldn't allocate one */
1342        error_setg_errno(errp, errno,
1343                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1344                         shift);
1345        /* This is almost certainly fatal, but if the caller really
1346         * wants to carry on with shift == 0, it's welcome to try */
1347    } else if (rc > 0) {
1348        /* kernel-side HPT allocated */
1349        if (rc != shift) {
1350            error_setg(errp,
1351                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1352                       shift, rc);
1353        }
1354
1355        spapr->htab_shift = shift;
1356        spapr->htab = NULL;
1357    } else {
1358        /* kernel-side HPT not needed, allocate in userspace instead */
1359        size_t size = 1ULL << shift;
1360        int i;
1361
1362        spapr->htab = qemu_memalign(size, size);
1363        if (!spapr->htab) {
1364            error_setg_errno(errp, errno,
1365                             "Could not allocate HPT of order %d", shift);
1366            return;
1367        }
1368
1369        memset(spapr->htab, 0, size);
1370        spapr->htab_shift = shift;
1371
1372        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1373            DIRTY_HPTE(HPTE(spapr->htab, i));
1374        }
1375    }
1376    /* We're setting up a hash table, so that means we're not radix */
1377    spapr->patb_entry = 0;
1378}
1379
1380void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1381{
1382    int hpt_shift;
1383
1384    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1385        || (spapr->cas_reboot
1386            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1387        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1388    } else {
1389        uint64_t current_ram_size;
1390
1391        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1392        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1393    }
1394    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1395
1396    if (spapr->vrma_adjust) {
1397        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1398                                          spapr->htab_shift);
1399    }
1400}
1401
1402static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1403{
1404    bool matched = false;
1405
1406    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1407        matched = true;
1408    }
1409
1410    if (!matched) {
1411        error_report("Device %s is not supported by this machine yet.",
1412                     qdev_fw_name(DEVICE(sbdev)));
1413        exit(1);
1414    }
1415}
1416
1417static int spapr_reset_drcs(Object *child, void *opaque)
1418{
1419    sPAPRDRConnector *drc =
1420        (sPAPRDRConnector *) object_dynamic_cast(child,
1421                                                 TYPE_SPAPR_DR_CONNECTOR);
1422
1423    if (drc) {
1424        spapr_drc_reset(drc);
1425    }
1426
1427    return 0;
1428}
1429
1430static void ppc_spapr_reset(void)
1431{
1432    MachineState *machine = MACHINE(qdev_get_machine());
1433    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1434    PowerPCCPU *first_ppc_cpu;
1435    uint32_t rtas_limit;
1436    hwaddr rtas_addr, fdt_addr;
1437    void *fdt;
1438    int rc;
1439
1440    /* Check for unknown sysbus devices */
1441    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1442
1443    if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1444        /* If using KVM with radix mode available, VCPUs can be started
1445         * without a HPT because KVM will start them in radix mode.
1446         * Set the GR bit in PATB so that we know there is no HPT. */
1447        spapr->patb_entry = PATBE1_GR;
1448    } else {
1449        spapr_setup_hpt_and_vrma(spapr);
1450    }
1451
1452    qemu_devices_reset();
1453
1454    /* DRC reset may cause a device to be unplugged. This will cause troubles
1455     * if this device is used by another device (eg, a running vhost backend
1456     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1457     * situations, we reset DRCs after all devices have been reset.
1458     */
1459    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1460
1461    spapr_clear_pending_events(spapr);
1462
1463    /*
1464     * We place the device tree and RTAS just below either the top of the RMA,
1465     * or just below 2GB, whichever is lowere, so that it can be
1466     * processed with 32-bit real mode code if necessary
1467     */
1468    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1469    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1470    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1471
1472    /* if this reset wasn't generated by CAS, we should reset our
1473     * negotiated options and start from scratch */
1474    if (!spapr->cas_reboot) {
1475        spapr_ovec_cleanup(spapr->ov5_cas);
1476        spapr->ov5_cas = spapr_ovec_new();
1477
1478        ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1479    }
1480
1481    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1482
1483    spapr_load_rtas(spapr, fdt, rtas_addr);
1484
1485    rc = fdt_pack(fdt);
1486
1487    /* Should only fail if we've built a corrupted tree */
1488    assert(rc == 0);
1489
1490    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1491        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1492                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1493        exit(1);
1494    }
1495
1496    /* Load the fdt */
1497    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1498    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1499    g_free(fdt);
1500
1501    /* Set up the entry state */
1502    first_ppc_cpu = POWERPC_CPU(first_cpu);
1503    first_ppc_cpu->env.gpr[3] = fdt_addr;
1504    first_ppc_cpu->env.gpr[5] = 0;
1505    first_cpu->halted = 0;
1506    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1507
1508    spapr->cas_reboot = false;
1509}
1510
1511static void spapr_create_nvram(sPAPRMachineState *spapr)
1512{
1513    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1514    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1515
1516    if (dinfo) {
1517        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1518                            &error_fatal);
1519    }
1520
1521    qdev_init_nofail(dev);
1522
1523    spapr->nvram = (struct sPAPRNVRAM *)dev;
1524}
1525
1526static void spapr_rtc_create(sPAPRMachineState *spapr)
1527{
1528    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1529    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1530                              &error_fatal);
1531    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1532                              &error_fatal);
1533    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1534                              "date", &error_fatal);
1535}
1536
1537/* Returns whether we want to use VGA or not */
1538static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1539{
1540    switch (vga_interface_type) {
1541    case VGA_NONE:
1542        return false;
1543    case VGA_DEVICE:
1544        return true;
1545    case VGA_STD:
1546    case VGA_VIRTIO:
1547        return pci_vga_init(pci_bus) != NULL;
1548    default:
1549        error_setg(errp,
1550                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1551        return false;
1552    }
1553}
1554
1555static int spapr_post_load(void *opaque, int version_id)
1556{
1557    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1558    int err = 0;
1559
1560    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1561        CPUState *cs;
1562        CPU_FOREACH(cs) {
1563            PowerPCCPU *cpu = POWERPC_CPU(cs);
1564            icp_resend(ICP(cpu->intc));
1565        }
1566    }
1567
1568    /* In earlier versions, there was no separate qdev for the PAPR
1569     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1570     * So when migrating from those versions, poke the incoming offset
1571     * value into the RTC device */
1572    if (version_id < 3) {
1573        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1574    }
1575
1576    if (kvm_enabled() && spapr->patb_entry) {
1577        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1578        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1579        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1580
1581        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1582        if (err) {
1583            error_report("Process table config unsupported by the host");
1584            return -EINVAL;
1585        }
1586    }
1587
1588    return err;
1589}
1590
1591static bool version_before_3(void *opaque, int version_id)
1592{
1593    return version_id < 3;
1594}
1595
1596static bool spapr_pending_events_needed(void *opaque)
1597{
1598    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1599    return !QTAILQ_EMPTY(&spapr->pending_events);
1600}
1601
1602static const VMStateDescription vmstate_spapr_event_entry = {
1603    .name = "spapr_event_log_entry",
1604    .version_id = 1,
1605    .minimum_version_id = 1,
1606    .fields = (VMStateField[]) {
1607        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1608        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1609        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1610                                     NULL, extended_length),
1611        VMSTATE_END_OF_LIST()
1612    },
1613};
1614
1615static const VMStateDescription vmstate_spapr_pending_events = {
1616    .name = "spapr_pending_events",
1617    .version_id = 1,
1618    .minimum_version_id = 1,
1619    .needed = spapr_pending_events_needed,
1620    .fields = (VMStateField[]) {
1621        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1622                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1623        VMSTATE_END_OF_LIST()
1624    },
1625};
1626
1627static bool spapr_ov5_cas_needed(void *opaque)
1628{
1629    sPAPRMachineState *spapr = opaque;
1630    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1631    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1632    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1633    bool cas_needed;
1634
1635    /* Prior to the introduction of sPAPROptionVector, we had two option
1636     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1637     * Both of these options encode machine topology into the device-tree
1638     * in such a way that the now-booted OS should still be able to interact
1639     * appropriately with QEMU regardless of what options were actually
1640     * negotiatied on the source side.
1641     *
1642     * As such, we can avoid migrating the CAS-negotiated options if these
1643     * are the only options available on the current machine/platform.
1644     * Since these are the only options available for pseries-2.7 and
1645     * earlier, this allows us to maintain old->new/new->old migration
1646     * compatibility.
1647     *
1648     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1649     * via default pseries-2.8 machines and explicit command-line parameters.
1650     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1651     * of the actual CAS-negotiated values to continue working properly. For
1652     * example, availability of memory unplug depends on knowing whether
1653     * OV5_HP_EVT was negotiated via CAS.
1654     *
1655     * Thus, for any cases where the set of available CAS-negotiatable
1656     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1657     * include the CAS-negotiated options in the migration stream.
1658     */
1659    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1660    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1661
1662    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1663     * the mask itself since in the future it's possible "legacy" bits may be
1664     * removed via machine options, which could generate a false positive
1665     * that breaks migration.
1666     */
1667    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1668    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1669
1670    spapr_ovec_cleanup(ov5_mask);
1671    spapr_ovec_cleanup(ov5_legacy);
1672    spapr_ovec_cleanup(ov5_removed);
1673
1674    return cas_needed;
1675}
1676
1677static const VMStateDescription vmstate_spapr_ov5_cas = {
1678    .name = "spapr_option_vector_ov5_cas",
1679    .version_id = 1,
1680    .minimum_version_id = 1,
1681    .needed = spapr_ov5_cas_needed,
1682    .fields = (VMStateField[]) {
1683        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1684                                 vmstate_spapr_ovec, sPAPROptionVector),
1685        VMSTATE_END_OF_LIST()
1686    },
1687};
1688
1689static bool spapr_patb_entry_needed(void *opaque)
1690{
1691    sPAPRMachineState *spapr = opaque;
1692
1693    return !!spapr->patb_entry;
1694}
1695
1696static const VMStateDescription vmstate_spapr_patb_entry = {
1697    .name = "spapr_patb_entry",
1698    .version_id = 1,
1699    .minimum_version_id = 1,
1700    .needed = spapr_patb_entry_needed,
1701    .fields = (VMStateField[]) {
1702        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1703        VMSTATE_END_OF_LIST()
1704    },
1705};
1706
1707static const VMStateDescription vmstate_spapr = {
1708    .name = "spapr",
1709    .version_id = 3,
1710    .minimum_version_id = 1,
1711    .post_load = spapr_post_load,
1712    .fields = (VMStateField[]) {
1713        /* used to be @next_irq */
1714        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1715
1716        /* RTC offset */
1717        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1718
1719        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1720        VMSTATE_END_OF_LIST()
1721    },
1722    .subsections = (const VMStateDescription*[]) {
1723        &vmstate_spapr_ov5_cas,
1724        &vmstate_spapr_patb_entry,
1725        &vmstate_spapr_pending_events,
1726        NULL
1727    }
1728};
1729
1730static int htab_save_setup(QEMUFile *f, void *opaque)
1731{
1732    sPAPRMachineState *spapr = opaque;
1733
1734    /* "Iteration" header */
1735    if (!spapr->htab_shift) {
1736        qemu_put_be32(f, -1);
1737    } else {
1738        qemu_put_be32(f, spapr->htab_shift);
1739    }
1740
1741    if (spapr->htab) {
1742        spapr->htab_save_index = 0;
1743        spapr->htab_first_pass = true;
1744    } else {
1745        if (spapr->htab_shift) {
1746            assert(kvm_enabled());
1747        }
1748    }
1749
1750
1751    return 0;
1752}
1753
1754static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1755                            int chunkstart, int n_valid, int n_invalid)
1756{
1757    qemu_put_be32(f, chunkstart);
1758    qemu_put_be16(f, n_valid);
1759    qemu_put_be16(f, n_invalid);
1760    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1761                    HASH_PTE_SIZE_64 * n_valid);
1762}
1763
1764static void htab_save_end_marker(QEMUFile *f)
1765{
1766    qemu_put_be32(f, 0);
1767    qemu_put_be16(f, 0);
1768    qemu_put_be16(f, 0);
1769}
1770
1771static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1772                                 int64_t max_ns)
1773{
1774    bool has_timeout = max_ns != -1;
1775    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1776    int index = spapr->htab_save_index;
1777    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1778
1779    assert(spapr->htab_first_pass);
1780
1781    do {
1782        int chunkstart;
1783
1784        /* Consume invalid HPTEs */
1785        while ((index < htabslots)
1786               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1787            CLEAN_HPTE(HPTE(spapr->htab, index));
1788            index++;
1789        }
1790
1791        /* Consume valid HPTEs */
1792        chunkstart = index;
1793        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1794               && HPTE_VALID(HPTE(spapr->htab, index))) {
1795            CLEAN_HPTE(HPTE(spapr->htab, index));
1796            index++;
1797        }
1798
1799        if (index > chunkstart) {
1800            int n_valid = index - chunkstart;
1801
1802            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1803
1804            if (has_timeout &&
1805                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1806                break;
1807            }
1808        }
1809    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1810
1811    if (index >= htabslots) {
1812        assert(index == htabslots);
1813        index = 0;
1814        spapr->htab_first_pass = false;
1815    }
1816    spapr->htab_save_index = index;
1817}
1818
1819static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1820                                int64_t max_ns)
1821{
1822    bool final = max_ns < 0;
1823    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1824    int examined = 0, sent = 0;
1825    int index = spapr->htab_save_index;
1826    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1827
1828    assert(!spapr->htab_first_pass);
1829
1830    do {
1831        int chunkstart, invalidstart;
1832
1833        /* Consume non-dirty HPTEs */
1834        while ((index < htabslots)
1835               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1836            index++;
1837            examined++;
1838        }
1839
1840        chunkstart = index;
1841        /* Consume valid dirty HPTEs */
1842        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1843               && HPTE_DIRTY(HPTE(spapr->htab, index))
1844               && HPTE_VALID(HPTE(spapr->htab, index))) {
1845            CLEAN_HPTE(HPTE(spapr->htab, index));
1846            index++;
1847            examined++;
1848        }
1849
1850        invalidstart = index;
1851        /* Consume invalid dirty HPTEs */
1852        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1853               && HPTE_DIRTY(HPTE(spapr->htab, index))
1854               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1855            CLEAN_HPTE(HPTE(spapr->htab, index));
1856            index++;
1857            examined++;
1858        }
1859
1860        if (index > chunkstart) {
1861            int n_valid = invalidstart - chunkstart;
1862            int n_invalid = index - invalidstart;
1863
1864            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1865            sent += index - chunkstart;
1866
1867            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1868                break;
1869            }
1870        }
1871
1872        if (examined >= htabslots) {
1873            break;
1874        }
1875
1876        if (index >= htabslots) {
1877            assert(index == htabslots);
1878            index = 0;
1879        }
1880    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1881
1882    if (index >= htabslots) {
1883        assert(index == htabslots);
1884        index = 0;
1885    }
1886
1887    spapr->htab_save_index = index;
1888
1889    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1890}
1891
1892#define MAX_ITERATION_NS    5000000 /* 5 ms */
1893#define MAX_KVM_BUF_SIZE    2048
1894
1895static int htab_save_iterate(QEMUFile *f, void *opaque)
1896{
1897    sPAPRMachineState *spapr = opaque;
1898    int fd;
1899    int rc = 0;
1900
1901    /* Iteration header */
1902    if (!spapr->htab_shift) {
1903        qemu_put_be32(f, -1);
1904        return 1;
1905    } else {
1906        qemu_put_be32(f, 0);
1907    }
1908
1909    if (!spapr->htab) {
1910        assert(kvm_enabled());
1911
1912        fd = get_htab_fd(spapr);
1913        if (fd < 0) {
1914            return fd;
1915        }
1916
1917        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1918        if (rc < 0) {
1919            return rc;
1920        }
1921    } else  if (spapr->htab_first_pass) {
1922        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1923    } else {
1924        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1925    }
1926
1927    htab_save_end_marker(f);
1928
1929    return rc;
1930}
1931
1932static int htab_save_complete(QEMUFile *f, void *opaque)
1933{
1934    sPAPRMachineState *spapr = opaque;
1935    int fd;
1936
1937    /* Iteration header */
1938    if (!spapr->htab_shift) {
1939        qemu_put_be32(f, -1);
1940        return 0;
1941    } else {
1942        qemu_put_be32(f, 0);
1943    }
1944
1945    if (!spapr->htab) {
1946        int rc;
1947
1948        assert(kvm_enabled());
1949
1950        fd = get_htab_fd(spapr);
1951        if (fd < 0) {
1952            return fd;
1953        }
1954
1955        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1956        if (rc < 0) {
1957            return rc;
1958        }
1959    } else {
1960        if (spapr->htab_first_pass) {
1961            htab_save_first_pass(f, spapr, -1);
1962        }
1963        htab_save_later_pass(f, spapr, -1);
1964    }
1965
1966    /* End marker */
1967    htab_save_end_marker(f);
1968
1969    return 0;
1970}
1971
1972static int htab_load(QEMUFile *f, void *opaque, int version_id)
1973{
1974    sPAPRMachineState *spapr = opaque;
1975    uint32_t section_hdr;
1976    int fd = -1;
1977    Error *local_err = NULL;
1978
1979    if (version_id < 1 || version_id > 1) {
1980        error_report("htab_load() bad version");
1981        return -EINVAL;
1982    }
1983
1984    section_hdr = qemu_get_be32(f);
1985
1986    if (section_hdr == -1) {
1987        spapr_free_hpt(spapr);
1988        return 0;
1989    }
1990
1991    if (section_hdr) {
1992        /* First section gives the htab size */
1993        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1994        if (local_err) {
1995            error_report_err(local_err);
1996            return -EINVAL;
1997        }
1998        return 0;
1999    }
2000
2001    if (!spapr->htab) {
2002        assert(kvm_enabled());
2003
2004        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2005        if (fd < 0) {
2006            error_report_err(local_err);
2007            return fd;
2008        }
2009    }
2010
2011    while (true) {
2012        uint32_t index;
2013        uint16_t n_valid, n_invalid;
2014
2015        index = qemu_get_be32(f);
2016        n_valid = qemu_get_be16(f);
2017        n_invalid = qemu_get_be16(f);
2018
2019        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2020            /* End of Stream */
2021            break;
2022        }
2023
2024        if ((index + n_valid + n_invalid) >
2025            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2026            /* Bad index in stream */
2027            error_report(
2028                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2029                index, n_valid, n_invalid, spapr->htab_shift);
2030            return -EINVAL;
2031        }
2032
2033        if (spapr->htab) {
2034            if (n_valid) {
2035                qemu_get_buffer(f, HPTE(spapr->htab, index),
2036                                HASH_PTE_SIZE_64 * n_valid);
2037            }
2038            if (n_invalid) {
2039                memset(HPTE(spapr->htab, index + n_valid), 0,
2040                       HASH_PTE_SIZE_64 * n_invalid);
2041            }
2042        } else {
2043            int rc;
2044
2045            assert(fd >= 0);
2046
2047            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2048            if (rc < 0) {
2049                return rc;
2050            }
2051        }
2052    }
2053
2054    if (!spapr->htab) {
2055        assert(fd >= 0);
2056        close(fd);
2057    }
2058
2059    return 0;
2060}
2061
2062static void htab_save_cleanup(void *opaque)
2063{
2064    sPAPRMachineState *spapr = opaque;
2065
2066    close_htab_fd(spapr);
2067}
2068
2069static SaveVMHandlers savevm_htab_handlers = {
2070    .save_setup = htab_save_setup,
2071    .save_live_iterate = htab_save_iterate,
2072    .save_live_complete_precopy = htab_save_complete,
2073    .save_cleanup = htab_save_cleanup,
2074    .load_state = htab_load,
2075};
2076
2077static void spapr_boot_set(void *opaque, const char *boot_device,
2078                           Error **errp)
2079{
2080    MachineState *machine = MACHINE(opaque);
2081    machine->boot_order = g_strdup(boot_device);
2082}
2083
2084static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2085{
2086    MachineState *machine = MACHINE(spapr);
2087    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2088    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2089    int i;
2090
2091    for (i = 0; i < nr_lmbs; i++) {
2092        uint64_t addr;
2093
2094        addr = i * lmb_size + spapr->hotplug_memory.base;
2095        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2096                               addr / lmb_size);
2097    }
2098}
2099
2100/*
2101 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2102 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2103 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2104 */
2105static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2106{
2107    int i;
2108
2109    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2110        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2111                   " is not aligned to %llu MiB",
2112                   machine->ram_size,
2113                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2114        return;
2115    }
2116
2117    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2118        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2119                   " is not aligned to %llu MiB",
2120                   machine->ram_size,
2121                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2122        return;
2123    }
2124
2125    for (i = 0; i < nb_numa_nodes; i++) {
2126        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2127            error_setg(errp,
2128                       "Node %d memory size 0x%" PRIx64
2129                       " is not aligned to %llu MiB",
2130                       i, numa_info[i].node_mem,
2131                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2132            return;
2133        }
2134    }
2135}
2136
2137/* find cpu slot in machine->possible_cpus by core_id */
2138static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2139{
2140    int index = id / smp_threads;
2141
2142    if (index >= ms->possible_cpus->len) {
2143        return NULL;
2144    }
2145    if (idx) {
2146        *idx = index;
2147    }
2148    return &ms->possible_cpus->cpus[index];
2149}
2150
2151static void spapr_init_cpus(sPAPRMachineState *spapr)
2152{
2153    MachineState *machine = MACHINE(spapr);
2154    MachineClass *mc = MACHINE_GET_CLASS(machine);
2155    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2156    int smt = kvmppc_smt_threads();
2157    const CPUArchIdList *possible_cpus;
2158    int boot_cores_nr = smp_cpus / smp_threads;
2159    int i;
2160
2161    if (!type) {
2162        error_report("Unable to find sPAPR CPU Core definition");
2163        exit(1);
2164    }
2165
2166    possible_cpus = mc->possible_cpu_arch_ids(machine);
2167    if (mc->has_hotpluggable_cpus) {
2168        if (smp_cpus % smp_threads) {
2169            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2170                         smp_cpus, smp_threads);
2171            exit(1);
2172        }
2173        if (max_cpus % smp_threads) {
2174            error_report("max_cpus (%u) must be multiple of threads (%u)",
2175                         max_cpus, smp_threads);
2176            exit(1);
2177        }
2178    } else {
2179        if (max_cpus != smp_cpus) {
2180            error_report("This machine version does not support CPU hotplug");
2181            exit(1);
2182        }
2183        boot_cores_nr = possible_cpus->len;
2184    }
2185
2186    for (i = 0; i < possible_cpus->len; i++) {
2187        int core_id = i * smp_threads;
2188
2189        if (mc->has_hotpluggable_cpus) {
2190            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2191                                   (core_id / smp_threads) * smt);
2192        }
2193
2194        if (i < boot_cores_nr) {
2195            Object *core  = object_new(type);
2196            int nr_threads = smp_threads;
2197
2198            /* Handle the partially filled core for older machine types */
2199            if ((i + 1) * smp_threads >= smp_cpus) {
2200                nr_threads = smp_cpus - i * smp_threads;
2201            }
2202
2203            object_property_set_int(core, nr_threads, "nr-threads",
2204                                    &error_fatal);
2205            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2206                                    &error_fatal);
2207            object_property_set_bool(core, true, "realized", &error_fatal);
2208        }
2209    }
2210}
2211
2212static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2213{
2214    Error *local_err = NULL;
2215    bool vsmt_user = !!spapr->vsmt;
2216    int kvm_smt = kvmppc_smt_threads();
2217    int ret;
2218
2219    if (!kvm_enabled() && (smp_threads > 1)) {
2220        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2221                     "on a pseries machine");
2222        goto out;
2223    }
2224    if (!is_power_of_2(smp_threads)) {
2225        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2226                     "machine because it must be a power of 2", smp_threads);
2227        goto out;
2228    }
2229
2230    /* Detemine the VSMT mode to use: */
2231    if (vsmt_user) {
2232        if (spapr->vsmt < smp_threads) {
2233            error_setg(&local_err, "Cannot support VSMT mode %d"
2234                         " because it must be >= threads/core (%d)",
2235                         spapr->vsmt, smp_threads);
2236            goto out;
2237        }
2238        /* In this case, spapr->vsmt has been set by the command line */
2239    } else {
2240        /* Choose a VSMT mode that may be higher than necessary but is
2241         * likely to be compatible with hosts that don't have VSMT. */
2242        spapr->vsmt = MAX(kvm_smt, smp_threads);
2243    }
2244
2245    /* KVM: If necessary, set the SMT mode: */
2246    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2247        ret = kvmppc_set_smt_threads(spapr->vsmt);
2248        if (ret) {
2249            error_setg(&local_err,
2250                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2251                       spapr->vsmt, ret);
2252            if (!vsmt_user) {
2253                error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2254                             "core on a host with %d threads/core requires "
2255                             " the use of VSMT mode %d.\n",
2256                             smp_threads, kvm_smt, spapr->vsmt);
2257            }
2258            kvmppc_hint_smt_possible(&local_err);
2259            goto out;
2260        }
2261    }
2262    /* else TCG: nothing to do currently */
2263out:
2264    error_propagate(errp, local_err);
2265}
2266
2267/* pSeries LPAR / sPAPR hardware init */
2268static void ppc_spapr_init(MachineState *machine)
2269{
2270    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2271    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2272    const char *kernel_filename = machine->kernel_filename;
2273    const char *initrd_filename = machine->initrd_filename;
2274    PCIHostState *phb;
2275    int i;
2276    MemoryRegion *sysmem = get_system_memory();
2277    MemoryRegion *ram = g_new(MemoryRegion, 1);
2278    MemoryRegion *rma_region;
2279    void *rma = NULL;
2280    hwaddr rma_alloc_size;
2281    hwaddr node0_size = spapr_node0_size(machine);
2282    long load_limit, fw_size;
2283    char *filename;
2284    Error *resize_hpt_err = NULL;
2285
2286    msi_nonbroken = true;
2287
2288    QLIST_INIT(&spapr->phbs);
2289    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2290
2291    /* Check HPT resizing availability */
2292    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2293    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2294        /*
2295         * If the user explicitly requested a mode we should either
2296         * supply it, or fail completely (which we do below).  But if
2297         * it's not set explicitly, we reset our mode to something
2298         * that works
2299         */
2300        if (resize_hpt_err) {
2301            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2302            error_free(resize_hpt_err);
2303            resize_hpt_err = NULL;
2304        } else {
2305            spapr->resize_hpt = smc->resize_hpt_default;
2306        }
2307    }
2308
2309    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2310
2311    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2312        /*
2313         * User requested HPT resize, but this host can't supply it.  Bail out
2314         */
2315        error_report_err(resize_hpt_err);
2316        exit(1);
2317    }
2318
2319    /* Allocate RMA if necessary */
2320    rma_alloc_size = kvmppc_alloc_rma(&rma);
2321
2322    if (rma_alloc_size == -1) {
2323        error_report("Unable to create RMA");
2324        exit(1);
2325    }
2326
2327    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2328        spapr->rma_size = rma_alloc_size;
2329    } else {
2330        spapr->rma_size = node0_size;
2331
2332        /* With KVM, we don't actually know whether KVM supports an
2333         * unbounded RMA (PR KVM) or is limited by the hash table size
2334         * (HV KVM using VRMA), so we always assume the latter
2335         *
2336         * In that case, we also limit the initial allocations for RTAS
2337         * etc... to 256M since we have no way to know what the VRMA size
2338         * is going to be as it depends on the size of the hash table
2339         * isn't determined yet.
2340         */
2341        if (kvm_enabled()) {
2342            spapr->vrma_adjust = 1;
2343            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2344        }
2345
2346        /* Actually we don't support unbounded RMA anymore since we
2347         * added proper emulation of HV mode. The max we can get is
2348         * 16G which also happens to be what we configure for PAPR
2349         * mode so make sure we don't do anything bigger than that
2350         */
2351        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2352    }
2353
2354    if (spapr->rma_size > node0_size) {
2355        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2356                     spapr->rma_size);
2357        exit(1);
2358    }
2359
2360    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2361    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2362
2363    /* Set up Interrupt Controller before we create the VCPUs */
2364    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2365
2366    /* Set up containers for ibm,client-architecture-support negotiated options
2367     */
2368    spapr->ov5 = spapr_ovec_new();
2369    spapr->ov5_cas = spapr_ovec_new();
2370
2371    if (smc->dr_lmb_enabled) {
2372        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2373        spapr_validate_node_memory(machine, &error_fatal);
2374    }
2375
2376    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2377    if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2378        /* KVM and TCG always allow GTSE with radix... */
2379        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2380    }
2381    /* ... but not with hash (currently). */
2382
2383    /* advertise support for dedicated HP event source to guests */
2384    if (spapr->use_hotplug_event_source) {
2385        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2386    }
2387
2388    /* advertise support for HPT resizing */
2389    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2390        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2391    }
2392
2393    /* init CPUs */
2394    spapr_set_vsmt_mode(spapr, &error_fatal);
2395
2396    spapr_init_cpus(spapr);
2397
2398    if (kvm_enabled()) {
2399        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2400        kvmppc_enable_logical_ci_hcalls();
2401        kvmppc_enable_set_mode_hcall();
2402
2403        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2404        kvmppc_enable_clear_ref_mod_hcalls();
2405    }
2406
2407    /* allocate RAM */
2408    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2409                                         machine->ram_size);
2410    memory_region_add_subregion(sysmem, 0, ram);
2411
2412    if (rma_alloc_size && rma) {
2413        rma_region = g_new(MemoryRegion, 1);
2414        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2415                                   rma_alloc_size, rma);
2416        vmstate_register_ram_global(rma_region);
2417        memory_region_add_subregion(sysmem, 0, rma_region);
2418    }
2419
2420    /* initialize hotplug memory address space */
2421    if (machine->ram_size < machine->maxram_size) {
2422        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2423        /*
2424         * Limit the number of hotpluggable memory slots to half the number
2425         * slots that KVM supports, leaving the other half for PCI and other
2426         * devices. However ensure that number of slots doesn't drop below 32.
2427         */
2428        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2429                           SPAPR_MAX_RAM_SLOTS;
2430
2431        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2432            max_memslots = SPAPR_MAX_RAM_SLOTS;
2433        }
2434        if (machine->ram_slots > max_memslots) {
2435            error_report("Specified number of memory slots %"
2436                         PRIu64" exceeds max supported %d",
2437                         machine->ram_slots, max_memslots);
2438            exit(1);
2439        }
2440
2441        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2442                                              SPAPR_HOTPLUG_MEM_ALIGN);
2443        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2444                           "hotplug-memory", hotplug_mem_size);
2445        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2446                                    &spapr->hotplug_memory.mr);
2447    }
2448
2449    if (smc->dr_lmb_enabled) {
2450        spapr_create_lmb_dr_connectors(spapr);
2451    }
2452
2453    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2454    if (!filename) {
2455        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2456        exit(1);
2457    }
2458    spapr->rtas_size = get_image_size(filename);
2459    if (spapr->rtas_size < 0) {
2460        error_report("Could not get size of LPAR rtas '%s'", filename);
2461        exit(1);
2462    }
2463    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2464    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2465        error_report("Could not load LPAR rtas '%s'", filename);
2466        exit(1);
2467    }
2468    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2469        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2470                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2471        exit(1);
2472    }
2473    g_free(filename);
2474
2475    /* Set up RTAS event infrastructure */
2476    spapr_events_init(spapr);
2477
2478    /* Set up the RTC RTAS interfaces */
2479    spapr_rtc_create(spapr);
2480
2481    /* Set up VIO bus */
2482    spapr->vio_bus = spapr_vio_bus_init();
2483
2484    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2485        if (serial_hds[i]) {
2486            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2487        }
2488    }
2489
2490    /* We always have at least the nvram device on VIO */
2491    spapr_create_nvram(spapr);
2492
2493    /* Set up PCI */
2494    spapr_pci_rtas_init();
2495
2496    phb = spapr_create_phb(spapr, 0);
2497
2498    for (i = 0; i < nb_nics; i++) {
2499        NICInfo *nd = &nd_table[i];
2500
2501        if (!nd->model) {
2502            nd->model = g_strdup("ibmveth");
2503        }
2504
2505        if (strcmp(nd->model, "ibmveth") == 0) {
2506            spapr_vlan_create(spapr->vio_bus, nd);
2507        } else {
2508            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2509        }
2510    }
2511
2512    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2513        spapr_vscsi_create(spapr->vio_bus);
2514    }
2515
2516    /* Graphics */
2517    if (spapr_vga_init(phb->bus, &error_fatal)) {
2518        spapr->has_graphics = true;
2519        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2520    }
2521
2522    if (machine->usb) {
2523        if (smc->use_ohci_by_default) {
2524            pci_create_simple(phb->bus, -1, "pci-ohci");
2525        } else {
2526            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2527        }
2528
2529        if (spapr->has_graphics) {
2530            USBBus *usb_bus = usb_bus_find(-1);
2531
2532            usb_create_simple(usb_bus, "usb-kbd");
2533            usb_create_simple(usb_bus, "usb-mouse");
2534        }
2535    }
2536
2537    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2538        error_report(
2539            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2540            MIN_RMA_SLOF);
2541        exit(1);
2542    }
2543
2544    if (kernel_filename) {
2545        uint64_t lowaddr = 0;
2546
2547        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2548                                      NULL, NULL, &lowaddr, NULL, 1,
2549                                      PPC_ELF_MACHINE, 0, 0);
2550        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2551            spapr->kernel_size = load_elf(kernel_filename,
2552                                          translate_kernel_address, NULL, NULL,
2553                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2554                                          0, 0);
2555            spapr->kernel_le = spapr->kernel_size > 0;
2556        }
2557        if (spapr->kernel_size < 0) {
2558            error_report("error loading %s: %s", kernel_filename,
2559                         load_elf_strerror(spapr->kernel_size));
2560            exit(1);
2561        }
2562
2563        /* load initrd */
2564        if (initrd_filename) {
2565            /* Try to locate the initrd in the gap between the kernel
2566             * and the firmware. Add a bit of space just in case
2567             */
2568            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2569                                  + 0x1ffff) & ~0xffff;
2570            spapr->initrd_size = load_image_targphys(initrd_filename,
2571                                                     spapr->initrd_base,
2572                                                     load_limit
2573                                                     - spapr->initrd_base);
2574            if (spapr->initrd_size < 0) {
2575                error_report("could not load initial ram disk '%s'",
2576                             initrd_filename);
2577                exit(1);
2578            }
2579        }
2580    }
2581
2582    if (bios_name == NULL) {
2583        bios_name = FW_FILE_NAME;
2584    }
2585    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2586    if (!filename) {
2587        error_report("Could not find LPAR firmware '%s'", bios_name);
2588        exit(1);
2589    }
2590    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2591    if (fw_size <= 0) {
2592        error_report("Could not load LPAR firmware '%s'", filename);
2593        exit(1);
2594    }
2595    g_free(filename);
2596
2597    /* FIXME: Should register things through the MachineState's qdev
2598     * interface, this is a legacy from the sPAPREnvironment structure
2599     * which predated MachineState but had a similar function */
2600    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2601    register_savevm_live(NULL, "spapr/htab", -1, 1,
2602                         &savevm_htab_handlers, spapr);
2603
2604    qemu_register_boot_set(spapr_boot_set, spapr);
2605
2606    if (kvm_enabled()) {
2607        /* to stop and start vmclock */
2608        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2609                                         &spapr->tb);
2610
2611        kvmppc_spapr_enable_inkernel_multitce();
2612    }
2613}
2614
2615static int spapr_kvm_type(const char *vm_type)
2616{
2617    if (!vm_type) {
2618        return 0;
2619    }
2620
2621    if (!strcmp(vm_type, "HV")) {
2622        return 1;
2623    }
2624
2625    if (!strcmp(vm_type, "PR")) {
2626        return 2;
2627    }
2628
2629    error_report("Unknown kvm-type specified '%s'", vm_type);
2630    exit(1);
2631}
2632
2633/*
2634 * Implementation of an interface to adjust firmware path
2635 * for the bootindex property handling.
2636 */
2637static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2638                                   DeviceState *dev)
2639{
2640#define CAST(type, obj, name) \
2641    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2642    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2643    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2644    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2645
2646    if (d) {
2647        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2648        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2649        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2650
2651        if (spapr) {
2652            /*
2653             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2654             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2655             * in the top 16 bits of the 64-bit LUN
2656             */
2657            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2658            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2659                                   (uint64_t)id << 48);
2660        } else if (virtio) {
2661            /*
2662             * We use SRP luns of the form 01000000 | (target << 8) | lun
2663             * in the top 32 bits of the 64-bit LUN
2664             * Note: the quote above is from SLOF and it is wrong,
2665             * the actual binding is:
2666             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2667             */
2668            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2669            if (d->lun >= 256) {
2670                /* Use the LUN "flat space addressing method" */
2671                id |= 0x4000;
2672            }
2673            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2674                                   (uint64_t)id << 32);
2675        } else if (usb) {
2676            /*
2677             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2678             * in the top 32 bits of the 64-bit LUN
2679             */
2680            unsigned usb_port = atoi(usb->port->path);
2681            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2682            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2683                                   (uint64_t)id << 32);
2684        }
2685    }
2686
2687    /*
2688     * SLOF probes the USB devices, and if it recognizes that the device is a
2689     * storage device, it changes its name to "storage" instead of "usb-host",
2690     * and additionally adds a child node for the SCSI LUN, so the correct
2691     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2692     */
2693    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2694        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2695        if (usb_host_dev_is_scsi_storage(usbdev)) {
2696            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2697        }
2698    }
2699
2700    if (phb) {
2701        /* Replace "pci" with "pci@800000020000000" */
2702        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2703    }
2704
2705    if (vsc) {
2706        /* Same logic as virtio above */
2707        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2708        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2709    }
2710
2711    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2712        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2713        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2714        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2715    }
2716
2717    return NULL;
2718}
2719
2720static char *spapr_get_kvm_type(Object *obj, Error **errp)
2721{
2722    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2723
2724    return g_strdup(spapr->kvm_type);
2725}
2726
2727static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2728{
2729    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2730
2731    g_free(spapr->kvm_type);
2732    spapr->kvm_type = g_strdup(value);
2733}
2734
2735static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2736{
2737    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2738
2739    return spapr->use_hotplug_event_source;
2740}
2741
2742static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2743                                            Error **errp)
2744{
2745    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2746
2747    spapr->use_hotplug_event_source = value;
2748}
2749
2750static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2751{
2752    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2753
2754    switch (spapr->resize_hpt) {
2755    case SPAPR_RESIZE_HPT_DEFAULT:
2756        return g_strdup("default");
2757    case SPAPR_RESIZE_HPT_DISABLED:
2758        return g_strdup("disabled");
2759    case SPAPR_RESIZE_HPT_ENABLED:
2760        return g_strdup("enabled");
2761    case SPAPR_RESIZE_HPT_REQUIRED:
2762        return g_strdup("required");
2763    }
2764    g_assert_not_reached();
2765}
2766
2767static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2768{
2769    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2770
2771    if (strcmp(value, "default") == 0) {
2772        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2773    } else if (strcmp(value, "disabled") == 0) {
2774        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2775    } else if (strcmp(value, "enabled") == 0) {
2776        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2777    } else if (strcmp(value, "required") == 0) {
2778        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2779    } else {
2780        error_setg(errp, "Bad value for \"resize-hpt\" property");
2781    }
2782}
2783
2784static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2785                                   void *opaque, Error **errp)
2786{
2787    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2788}
2789
2790static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2791                                   void *opaque, Error **errp)
2792{
2793    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2794}
2795
2796static void spapr_machine_initfn(Object *obj)
2797{
2798    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2799
2800    spapr->htab_fd = -1;
2801    spapr->use_hotplug_event_source = true;
2802    object_property_add_str(obj, "kvm-type",
2803                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2804    object_property_set_description(obj, "kvm-type",
2805                                    "Specifies the KVM virtualization mode (HV, PR)",
2806                                    NULL);
2807    object_property_add_bool(obj, "modern-hotplug-events",
2808                            spapr_get_modern_hotplug_events,
2809                            spapr_set_modern_hotplug_events,
2810                            NULL);
2811    object_property_set_description(obj, "modern-hotplug-events",
2812                                    "Use dedicated hotplug event mechanism in"
2813                                    " place of standard EPOW events when possible"
2814                                    " (required for memory hot-unplug support)",
2815                                    NULL);
2816
2817    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2818                            "Maximum permitted CPU compatibility mode",
2819                            &error_fatal);
2820
2821    object_property_add_str(obj, "resize-hpt",
2822                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2823    object_property_set_description(obj, "resize-hpt",
2824                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
2825                                    NULL);
2826    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2827                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2828    object_property_set_description(obj, "vsmt",
2829                                    "Virtual SMT: KVM behaves as if this were"
2830                                    " the host's SMT mode", &error_abort);
2831}
2832
2833static void spapr_machine_finalizefn(Object *obj)
2834{
2835    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2836
2837    g_free(spapr->kvm_type);
2838}
2839
2840void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2841{
2842    cpu_synchronize_state(cs);
2843    ppc_cpu_do_system_reset(cs);
2844}
2845
2846static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2847{
2848    CPUState *cs;
2849
2850    CPU_FOREACH(cs) {
2851        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2852    }
2853}
2854
2855static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2856                           uint32_t node, bool dedicated_hp_event_source,
2857                           Error **errp)
2858{
2859    sPAPRDRConnector *drc;
2860    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2861    int i, fdt_offset, fdt_size;
2862    void *fdt;
2863    uint64_t addr = addr_start;
2864    bool hotplugged = spapr_drc_hotplugged(dev);
2865    Error *local_err = NULL;
2866
2867    for (i = 0; i < nr_lmbs; i++) {
2868        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2869                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2870        g_assert(drc);
2871
2872        fdt = create_device_tree(&fdt_size);
2873        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2874                                                SPAPR_MEMORY_BLOCK_SIZE);
2875
2876        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2877        if (local_err) {
2878            while (addr > addr_start) {
2879                addr -= SPAPR_MEMORY_BLOCK_SIZE;
2880                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2881                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
2882                spapr_drc_detach(drc);
2883            }
2884            g_free(fdt);
2885            error_propagate(errp, local_err);
2886            return;
2887        }
2888        if (!hotplugged) {
2889            spapr_drc_reset(drc);
2890        }
2891        addr += SPAPR_MEMORY_BLOCK_SIZE;
2892    }
2893    /* send hotplug notification to the
2894     * guest only in case of hotplugged memory
2895     */
2896    if (hotplugged) {
2897        if (dedicated_hp_event_source) {
2898            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2899                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2900            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2901                                                   nr_lmbs,
2902                                                   spapr_drc_index(drc));
2903        } else {
2904            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2905                                           nr_lmbs);
2906        }
2907    }
2908}
2909
2910static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2911                              uint32_t node, Error **errp)
2912{
2913    Error *local_err = NULL;
2914    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2915    PCDIMMDevice *dimm = PC_DIMM(dev);
2916    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2917    MemoryRegion *mr;
2918    uint64_t align, size, addr;
2919
2920    mr = ddc->get_memory_region(dimm, &local_err);
2921    if (local_err) {
2922        goto out;
2923    }
2924    align = memory_region_get_alignment(mr);
2925    size = memory_region_size(mr);
2926
2927    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2928    if (local_err) {
2929        goto out;
2930    }
2931
2932    addr = object_property_get_uint(OBJECT(dimm),
2933                                    PC_DIMM_ADDR_PROP, &local_err);
2934    if (local_err) {
2935        goto out_unplug;
2936    }
2937
2938    spapr_add_lmbs(dev, addr, size, node,
2939                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2940                   &local_err);
2941    if (local_err) {
2942        goto out_unplug;
2943    }
2944
2945    return;
2946
2947out_unplug:
2948    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2949out:
2950    error_propagate(errp, local_err);
2951}
2952
2953static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2954                                  Error **errp)
2955{
2956    PCDIMMDevice *dimm = PC_DIMM(dev);
2957    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2958    MemoryRegion *mr;
2959    uint64_t size;
2960    char *mem_dev;
2961
2962    mr = ddc->get_memory_region(dimm, errp);
2963    if (!mr) {
2964        return;
2965    }
2966    size = memory_region_size(mr);
2967
2968    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2969        error_setg(errp, "Hotplugged memory size must be a multiple of "
2970                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2971        return;
2972    }
2973
2974    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2975    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2976        error_setg(errp, "Memory backend has bad page size. "
2977                   "Use 'memory-backend-file' with correct mem-path.");
2978        goto out;
2979    }
2980
2981out:
2982    g_free(mem_dev);
2983}
2984
2985struct sPAPRDIMMState {
2986    PCDIMMDevice *dimm;
2987    uint32_t nr_lmbs;
2988    QTAILQ_ENTRY(sPAPRDIMMState) next;
2989};
2990
2991static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2992                                                       PCDIMMDevice *dimm)
2993{
2994    sPAPRDIMMState *dimm_state = NULL;
2995
2996    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2997        if (dimm_state->dimm == dimm) {
2998            break;
2999        }
3000    }
3001    return dimm_state;
3002}
3003
3004static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3005                                                      uint32_t nr_lmbs,
3006                                                      PCDIMMDevice *dimm)
3007{
3008    sPAPRDIMMState *ds = NULL;
3009
3010    /*
3011     * If this request is for a DIMM whose removal had failed earlier
3012     * (due to guest's refusal to remove the LMBs), we would have this
3013     * dimm already in the pending_dimm_unplugs list. In that
3014     * case don't add again.
3015     */
3016    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3017    if (!ds) {
3018        ds = g_malloc0(sizeof(sPAPRDIMMState));
3019        ds->nr_lmbs = nr_lmbs;
3020        ds->dimm = dimm;
3021        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3022    }
3023    return ds;
3024}
3025
3026static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3027                                              sPAPRDIMMState *dimm_state)
3028{
3029    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3030    g_free(dimm_state);
3031}
3032
3033static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3034                                                        PCDIMMDevice *dimm)
3035{
3036    sPAPRDRConnector *drc;
3037    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3038    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3039    uint64_t size = memory_region_size(mr);
3040    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3041    uint32_t avail_lmbs = 0;
3042    uint64_t addr_start, addr;
3043    int i;
3044
3045    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3046                                         &error_abort);
3047
3048    addr = addr_start;
3049    for (i = 0; i < nr_lmbs; i++) {
3050        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3051                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3052        g_assert(drc);
3053        if (drc->dev) {
3054            avail_lmbs++;
3055        }
3056        addr += SPAPR_MEMORY_BLOCK_SIZE;
3057    }
3058
3059    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3060}
3061
3062/* Callback to be called during DRC release. */
3063void spapr_lmb_release(DeviceState *dev)
3064{
3065    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3066    PCDIMMDevice *dimm = PC_DIMM(dev);
3067    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3068    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3069    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3070
3071    /* This information will get lost if a migration occurs
3072     * during the unplug process. In this case recover it. */
3073    if (ds == NULL) {
3074        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3075        g_assert(ds);
3076        /* The DRC being examined by the caller at least must be counted */
3077        g_assert(ds->nr_lmbs);
3078    }
3079
3080    if (--ds->nr_lmbs) {
3081        return;
3082    }
3083
3084    /*
3085     * Now that all the LMBs have been removed by the guest, call the
3086     * pc-dimm unplug handler to cleanup up the pc-dimm device.
3087     */
3088    pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3089    object_unparent(OBJECT(dev));
3090    spapr_pending_dimm_unplugs_remove(spapr, ds);
3091}
3092
3093static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3094                                        DeviceState *dev, Error **errp)
3095{
3096    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3097    Error *local_err = NULL;
3098    PCDIMMDevice *dimm = PC_DIMM(dev);
3099    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3100    MemoryRegion *mr;
3101    uint32_t nr_lmbs;
3102    uint64_t size, addr_start, addr;
3103    int i;
3104    sPAPRDRConnector *drc;
3105
3106    mr = ddc->get_memory_region(dimm, &local_err);
3107    if (local_err) {
3108        goto out;
3109    }
3110    size = memory_region_size(mr);
3111    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3112
3113    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3114                                         &local_err);
3115    if (local_err) {
3116        goto out;
3117    }
3118
3119    /*
3120     * An existing pending dimm state for this DIMM means that there is an
3121     * unplug operation in progress, waiting for the spapr_lmb_release
3122     * callback to complete the job (BQL can't cover that far). In this case,
3123     * bail out to avoid detaching DRCs that were already released.
3124     */
3125    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3126        error_setg(&local_err,
3127                   "Memory unplug already in progress for device %s",
3128                   dev->id);
3129        goto out;
3130    }
3131
3132    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3133
3134    addr = addr_start;
3135    for (i = 0; i < nr_lmbs; i++) {
3136        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3137                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3138        g_assert(drc);
3139
3140        spapr_drc_detach(drc);
3141        addr += SPAPR_MEMORY_BLOCK_SIZE;
3142    }
3143
3144    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3145                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3146    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3147                                              nr_lmbs, spapr_drc_index(drc));
3148out:
3149    error_propagate(errp, local_err);
3150}
3151
3152static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3153                                           sPAPRMachineState *spapr)
3154{
3155    PowerPCCPU *cpu = POWERPC_CPU(cs);
3156    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3157    int id = spapr_vcpu_id(cpu);
3158    void *fdt;
3159    int offset, fdt_size;
3160    char *nodename;
3161
3162    fdt = create_device_tree(&fdt_size);
3163    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3164    offset = fdt_add_subnode(fdt, 0, nodename);
3165
3166    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3167    g_free(nodename);
3168
3169    *fdt_offset = offset;
3170    return fdt;
3171}
3172
3173/* Callback to be called during DRC release. */
3174void spapr_core_release(DeviceState *dev)
3175{
3176    MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3177    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3178    CPUCore *cc = CPU_CORE(dev);
3179    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3180
3181    if (smc->pre_2_10_has_unused_icps) {
3182        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3183        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3184        size_t size = object_type_get_instance_size(scc->cpu_type);
3185        int i;
3186
3187        for (i = 0; i < cc->nr_threads; i++) {
3188            CPUState *cs = CPU(sc->threads + i * size);
3189
3190            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3191        }
3192    }
3193
3194    assert(core_slot);
3195    core_slot->cpu = NULL;
3196    object_unparent(OBJECT(dev));
3197}
3198
3199static
3200void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3201                               Error **errp)
3202{
3203    int index;
3204    sPAPRDRConnector *drc;
3205    CPUCore *cc = CPU_CORE(dev);
3206    int smt = kvmppc_smt_threads();
3207
3208    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3209        error_setg(errp, "Unable to find CPU core with core-id: %d",
3210                   cc->core_id);
3211        return;
3212    }
3213    if (index == 0) {
3214        error_setg(errp, "Boot CPU core may not be unplugged");
3215        return;
3216    }
3217
3218    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3219    g_assert(drc);
3220
3221    spapr_drc_detach(drc);
3222
3223    spapr_hotplug_req_remove_by_index(drc);
3224}
3225
3226static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3227                            Error **errp)
3228{
3229    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3230    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3231    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3232    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3233    CPUCore *cc = CPU_CORE(dev);
3234    CPUState *cs = CPU(core->threads);
3235    sPAPRDRConnector *drc;
3236    Error *local_err = NULL;
3237    int smt = kvmppc_smt_threads();
3238    CPUArchId *core_slot;
3239    int index;
3240    bool hotplugged = spapr_drc_hotplugged(dev);
3241
3242    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3243    if (!core_slot) {
3244        error_setg(errp, "Unable to find CPU core with core-id: %d",
3245                   cc->core_id);
3246        return;
3247    }
3248    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3249
3250    g_assert(drc || !mc->has_hotpluggable_cpus);
3251
3252    if (drc) {
3253        void *fdt;
3254        int fdt_offset;
3255
3256        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3257
3258        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3259        if (local_err) {
3260            g_free(fdt);
3261            error_propagate(errp, local_err);
3262            return;
3263        }
3264
3265        if (hotplugged) {
3266            /*
3267             * Send hotplug notification interrupt to the guest only
3268             * in case of hotplugged CPUs.
3269             */
3270            spapr_hotplug_req_add_by_index(drc);
3271        } else {
3272            spapr_drc_reset(drc);
3273        }
3274    }
3275
3276    core_slot->cpu = OBJECT(dev);
3277
3278    if (smc->pre_2_10_has_unused_icps) {
3279        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3280        size_t size = object_type_get_instance_size(scc->cpu_type);
3281        int i;
3282
3283        for (i = 0; i < cc->nr_threads; i++) {
3284            sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3285            void *obj = sc->threads + i * size;
3286
3287            cs = CPU(obj);
3288            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3289        }
3290    }
3291}
3292
3293static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3294                                Error **errp)
3295{
3296    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3297    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3298    Error *local_err = NULL;
3299    CPUCore *cc = CPU_CORE(dev);
3300    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3301    const char *type = object_get_typename(OBJECT(dev));
3302    CPUArchId *core_slot;
3303    int index;
3304
3305    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3306        error_setg(&local_err, "CPU hotplug not supported for this machine");
3307        goto out;
3308    }
3309
3310    if (strcmp(base_core_type, type)) {
3311        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3312        goto out;
3313    }
3314
3315    if (cc->core_id % smp_threads) {
3316        error_setg(&local_err, "invalid core id %d", cc->core_id);
3317        goto out;
3318    }
3319
3320    /*
3321     * In general we should have homogeneous threads-per-core, but old
3322     * (pre hotplug support) machine types allow the last core to have
3323     * reduced threads as a compatibility hack for when we allowed
3324     * total vcpus not a multiple of threads-per-core.
3325     */
3326    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3327        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3328                   cc->nr_threads, smp_threads);
3329        goto out;
3330    }
3331
3332    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3333    if (!core_slot) {
3334        error_setg(&local_err, "core id %d out of range", cc->core_id);
3335        goto out;
3336    }
3337
3338    if (core_slot->cpu) {
3339        error_setg(&local_err, "core %d already populated", cc->core_id);
3340        goto out;
3341    }
3342
3343    numa_cpu_pre_plug(core_slot, dev, &local_err);
3344
3345out:
3346    error_propagate(errp, local_err);
3347}
3348
3349static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3350                                      DeviceState *dev, Error **errp)
3351{
3352    MachineState *ms = MACHINE(hotplug_dev);
3353    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3354
3355    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3356        int node;
3357
3358        if (!smc->dr_lmb_enabled) {
3359            error_setg(errp, "Memory hotplug not supported for this machine");
3360            return;
3361        }
3362        node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3363        if (*errp) {
3364            return;
3365        }
3366        if (node < 0 || node >= MAX_NODES) {
3367            error_setg(errp, "Invaild node %d", node);
3368            return;
3369        }
3370
3371        /*
3372         * Currently PowerPC kernel doesn't allow hot-adding memory to
3373         * memory-less node, but instead will silently add the memory
3374         * to the first node that has some memory. This causes two
3375         * unexpected behaviours for the user.
3376         *
3377         * - Memory gets hotplugged to a different node than what the user
3378         *   specified.
3379         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3380         *   to memory-less node, a reboot will set things accordingly
3381         *   and the previously hotplugged memory now ends in the right node.
3382         *   This appears as if some memory moved from one node to another.
3383         *
3384         * So until kernel starts supporting memory hotplug to memory-less
3385         * nodes, just prevent such attempts upfront in QEMU.
3386         */
3387        if (nb_numa_nodes && !numa_info[node].node_mem) {
3388            error_setg(errp, "Can't hotplug memory to memory-less node %d",
3389                       node);
3390            return;
3391        }
3392
3393        spapr_memory_plug(hotplug_dev, dev, node, errp);
3394    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3395        spapr_core_plug(hotplug_dev, dev, errp);
3396    }
3397}
3398
3399static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3400                                                DeviceState *dev, Error **errp)
3401{
3402    sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3403    MachineClass *mc = MACHINE_GET_CLASS(sms);
3404
3405    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3406        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3407            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3408        } else {
3409            /* NOTE: this means there is a window after guest reset, prior to
3410             * CAS negotiation, where unplug requests will fail due to the
3411             * capability not being detected yet. This is a bit different than
3412             * the case with PCI unplug, where the events will be queued and
3413             * eventually handled by the guest after boot
3414             */
3415            error_setg(errp, "Memory hot unplug not supported for this guest");
3416        }
3417    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3418        if (!mc->has_hotpluggable_cpus) {
3419            error_setg(errp, "CPU hot unplug not supported on this machine");
3420            return;
3421        }
3422        spapr_core_unplug_request(hotplug_dev, dev, errp);
3423    }
3424}
3425
3426static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3427                                          DeviceState *dev, Error **errp)
3428{
3429    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3430        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3431    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3432        spapr_core_pre_plug(hotplug_dev, dev, errp);
3433    }
3434}
3435
3436static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3437                                                 DeviceState *dev)
3438{
3439    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3440        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3441        return HOTPLUG_HANDLER(machine);
3442    }
3443    return NULL;
3444}
3445
3446static CpuInstanceProperties
3447spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3448{
3449    CPUArchId *core_slot;
3450    MachineClass *mc = MACHINE_GET_CLASS(machine);
3451
3452    /* make sure possible_cpu are intialized */
3453    mc->possible_cpu_arch_ids(machine);
3454    /* get CPU core slot containing thread that matches cpu_index */
3455    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3456    assert(core_slot);
3457    return core_slot->props;
3458}
3459
3460static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3461{
3462    return idx / smp_cores % nb_numa_nodes;
3463}
3464
3465static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3466{
3467    int i;
3468    int spapr_max_cores = max_cpus / smp_threads;
3469    MachineClass *mc = MACHINE_GET_CLASS(machine);
3470
3471    if (!mc->has_hotpluggable_cpus) {
3472        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3473    }
3474    if (machine->possible_cpus) {
3475        assert(machine->possible_cpus->len == spapr_max_cores);
3476        return machine->possible_cpus;
3477    }
3478
3479    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3480                             sizeof(CPUArchId) * spapr_max_cores);
3481    machine->possible_cpus->len = spapr_max_cores;
3482    for (i = 0; i < machine->possible_cpus->len; i++) {
3483        int core_id = i * smp_threads;
3484
3485        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3486        machine->possible_cpus->cpus[i].arch_id = core_id;
3487        machine->possible_cpus->cpus[i].props.has_core_id = true;
3488        machine->possible_cpus->cpus[i].props.core_id = core_id;
3489    }
3490    return machine->possible_cpus;
3491}
3492
3493static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3494                                uint64_t *buid, hwaddr *pio,
3495                                hwaddr *mmio32, hwaddr *mmio64,
3496                                unsigned n_dma, uint32_t *liobns, Error **errp)
3497{
3498    /*
3499     * New-style PHB window placement.
3500     *
3501     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3502     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3503     * windows.
3504     *
3505     * Some guest kernels can't work with MMIO windows above 1<<46
3506     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3507     *
3508     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3509     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3510     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3511     * 1TiB 64-bit MMIO windows for each PHB.
3512     */
3513    const uint64_t base_buid = 0x800000020000000ULL;
3514#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3515                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3516    int i;
3517
3518    /* Sanity check natural alignments */
3519    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3520    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3521    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3522    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3523    /* Sanity check bounds */
3524    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3525                      SPAPR_PCI_MEM32_WIN_SIZE);
3526    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3527                      SPAPR_PCI_MEM64_WIN_SIZE);
3528
3529    if (index >= SPAPR_MAX_PHBS) {
3530        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3531                   SPAPR_MAX_PHBS - 1);
3532        return;
3533    }
3534
3535    *buid = base_buid + index;
3536    for (i = 0; i < n_dma; ++i) {
3537        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3538    }
3539
3540    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3541    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3542    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3543}
3544
3545static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3546{
3547    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3548
3549    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3550}
3551
3552static void spapr_ics_resend(XICSFabric *dev)
3553{
3554    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3555
3556    ics_resend(spapr->ics);
3557}
3558
3559static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3560{
3561    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3562
3563    return cpu ? ICP(cpu->intc) : NULL;
3564}
3565
3566static void spapr_pic_print_info(InterruptStatsProvider *obj,
3567                                 Monitor *mon)
3568{
3569    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3570    CPUState *cs;
3571
3572    CPU_FOREACH(cs) {
3573        PowerPCCPU *cpu = POWERPC_CPU(cs);
3574
3575        icp_pic_print_info(ICP(cpu->intc), mon);
3576    }
3577
3578    ics_pic_print_info(spapr->ics, mon);
3579}
3580
3581int spapr_vcpu_id(PowerPCCPU *cpu)
3582{
3583    CPUState *cs = CPU(cpu);
3584
3585    if (kvm_enabled()) {
3586        return kvm_arch_vcpu_id(cs);
3587    } else {
3588        return cs->cpu_index;
3589    }
3590}
3591
3592PowerPCCPU *spapr_find_cpu(int vcpu_id)
3593{
3594    CPUState *cs;
3595
3596    CPU_FOREACH(cs) {
3597        PowerPCCPU *cpu = POWERPC_CPU(cs);
3598
3599        if (spapr_vcpu_id(cpu) == vcpu_id) {
3600            return cpu;
3601        }
3602    }
3603
3604    return NULL;
3605}
3606
3607static void spapr_machine_class_init(ObjectClass *oc, void *data)
3608{
3609    MachineClass *mc = MACHINE_CLASS(oc);
3610    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3611    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3612    NMIClass *nc = NMI_CLASS(oc);
3613    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3614    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3615    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3616    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3617
3618    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3619
3620    /*
3621     * We set up the default / latest behaviour here.  The class_init
3622     * functions for the specific versioned machine types can override
3623     * these details for backwards compatibility
3624     */
3625    mc->init = ppc_spapr_init;
3626    mc->reset = ppc_spapr_reset;
3627    mc->block_default_type = IF_SCSI;
3628    mc->max_cpus = 1024;
3629    mc->no_parallel = 1;
3630    mc->default_boot_order = "";
3631    mc->default_ram_size = 512 * M_BYTE;
3632    mc->kvm_type = spapr_kvm_type;
3633    mc->has_dynamic_sysbus = true;
3634    mc->pci_allow_0_address = true;
3635    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3636    hc->pre_plug = spapr_machine_device_pre_plug;
3637    hc->plug = spapr_machine_device_plug;
3638    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3639    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3640    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3641    hc->unplug_request = spapr_machine_device_unplug_request;
3642
3643    smc->dr_lmb_enabled = true;
3644    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3645    mc->has_hotpluggable_cpus = true;
3646    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3647    fwc->get_dev_path = spapr_get_fw_dev_path;
3648    nc->nmi_monitor_handler = spapr_nmi;
3649    smc->phb_placement = spapr_phb_placement;
3650    vhc->hypercall = emulate_spapr_hypercall;
3651    vhc->hpt_mask = spapr_hpt_mask;
3652    vhc->map_hptes = spapr_map_hptes;
3653    vhc->unmap_hptes = spapr_unmap_hptes;
3654    vhc->store_hpte = spapr_store_hpte;
3655    vhc->get_patbe = spapr_get_patbe;
3656    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3657    xic->ics_get = spapr_ics_get;
3658    xic->ics_resend = spapr_ics_resend;
3659    xic->icp_get = spapr_icp_get;
3660    ispc->print_info = spapr_pic_print_info;
3661    /* Force NUMA node memory size to be a multiple of
3662     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3663     * in which LMBs are represented and hot-added
3664     */
3665    mc->numa_mem_align_shift = 28;
3666}
3667
3668static const TypeInfo spapr_machine_info = {
3669    .name          = TYPE_SPAPR_MACHINE,
3670    .parent        = TYPE_MACHINE,
3671    .abstract      = true,
3672    .instance_size = sizeof(sPAPRMachineState),
3673    .instance_init = spapr_machine_initfn,
3674    .instance_finalize = spapr_machine_finalizefn,
3675    .class_size    = sizeof(sPAPRMachineClass),
3676    .class_init    = spapr_machine_class_init,
3677    .interfaces = (InterfaceInfo[]) {
3678        { TYPE_FW_PATH_PROVIDER },
3679        { TYPE_NMI },
3680        { TYPE_HOTPLUG_HANDLER },
3681        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3682        { TYPE_XICS_FABRIC },
3683        { TYPE_INTERRUPT_STATS_PROVIDER },
3684        { }
3685    },
3686};
3687
3688#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3689    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3690                                                    void *data)      \
3691    {                                                                \
3692        MachineClass *mc = MACHINE_CLASS(oc);                        \
3693        spapr_machine_##suffix##_class_options(mc);                  \
3694        if (latest) {                                                \
3695            mc->alias = "pseries";                                   \
3696            mc->is_default = 1;                                      \
3697        }                                                            \
3698    }                                                                \
3699    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3700    {                                                                \
3701        MachineState *machine = MACHINE(obj);                        \
3702        spapr_machine_##suffix##_instance_options(machine);          \
3703    }                                                                \
3704    static const TypeInfo spapr_machine_##suffix##_info = {          \
3705        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3706        .parent = TYPE_SPAPR_MACHINE,                                \
3707        .class_init = spapr_machine_##suffix##_class_init,           \
3708        .instance_init = spapr_machine_##suffix##_instance_init,     \
3709    };                                                               \
3710    static void spapr_machine_register_##suffix(void)                \
3711    {                                                                \
3712        type_register(&spapr_machine_##suffix##_info);               \
3713    }                                                                \
3714    type_init(spapr_machine_register_##suffix)
3715
3716/*
3717 * pseries-2.11
3718 */
3719static void spapr_machine_2_11_instance_options(MachineState *machine)
3720{
3721}
3722
3723static void spapr_machine_2_11_class_options(MachineClass *mc)
3724{
3725    /* Defaults for the latest behaviour inherited from the base class */
3726}
3727
3728DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3729
3730/*
3731 * pseries-2.10
3732 */
3733#define SPAPR_COMPAT_2_10                                              \
3734    HW_COMPAT_2_10                                                     \
3735
3736static void spapr_machine_2_10_instance_options(MachineState *machine)
3737{
3738}
3739
3740static void spapr_machine_2_10_class_options(MachineClass *mc)
3741{
3742    spapr_machine_2_11_class_options(mc);
3743    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3744}
3745
3746DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3747
3748/*
3749 * pseries-2.9
3750 */
3751#define SPAPR_COMPAT_2_9                                               \
3752    HW_COMPAT_2_9                                                      \
3753    {                                                                  \
3754        .driver = TYPE_POWERPC_CPU,                                    \
3755        .property = "pre-2.10-migration",                              \
3756        .value    = "on",                                              \
3757    },                                                                 \
3758
3759static void spapr_machine_2_9_instance_options(MachineState *machine)
3760{
3761    spapr_machine_2_10_instance_options(machine);
3762}
3763
3764static void spapr_machine_2_9_class_options(MachineClass *mc)
3765{
3766    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3767
3768    spapr_machine_2_10_class_options(mc);
3769    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3770    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3771    smc->pre_2_10_has_unused_icps = true;
3772    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3773}
3774
3775DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3776
3777/*
3778 * pseries-2.8
3779 */
3780#define SPAPR_COMPAT_2_8                                        \
3781    HW_COMPAT_2_8                                               \
3782    {                                                           \
3783        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3784        .property = "pcie-extended-configuration-space",        \
3785        .value    = "off",                                      \
3786    },
3787
3788static void spapr_machine_2_8_instance_options(MachineState *machine)
3789{
3790    spapr_machine_2_9_instance_options(machine);
3791}
3792
3793static void spapr_machine_2_8_class_options(MachineClass *mc)
3794{
3795    spapr_machine_2_9_class_options(mc);
3796    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3797    mc->numa_mem_align_shift = 23;
3798}
3799
3800DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3801
3802/*
3803 * pseries-2.7
3804 */
3805#define SPAPR_COMPAT_2_7                            \
3806    HW_COMPAT_2_7                                   \
3807    {                                               \
3808        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3809        .property = "mem_win_size",                 \
3810        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3811    },                                              \
3812    {                                               \
3813        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3814        .property = "mem64_win_size",               \
3815        .value    = "0",                            \
3816    },                                              \
3817    {                                               \
3818        .driver = TYPE_POWERPC_CPU,                 \
3819        .property = "pre-2.8-migration",            \
3820        .value    = "on",                           \
3821    },                                              \
3822    {                                               \
3823        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3824        .property = "pre-2.8-migration",            \
3825        .value    = "on",                           \
3826    },
3827
3828static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3829                              uint64_t *buid, hwaddr *pio,
3830                              hwaddr *mmio32, hwaddr *mmio64,
3831                              unsigned n_dma, uint32_t *liobns, Error **errp)
3832{
3833    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3834    const uint64_t base_buid = 0x800000020000000ULL;
3835    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3836    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3837    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3838    const uint32_t max_index = 255;
3839    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3840
3841    uint64_t ram_top = MACHINE(spapr)->ram_size;
3842    hwaddr phb0_base, phb_base;
3843    int i;
3844
3845    /* Do we have hotpluggable memory? */
3846    if (MACHINE(spapr)->maxram_size > ram_top) {
3847        /* Can't just use maxram_size, because there may be an
3848         * alignment gap between normal and hotpluggable memory
3849         * regions */
3850        ram_top = spapr->hotplug_memory.base +
3851            memory_region_size(&spapr->hotplug_memory.mr);
3852    }
3853
3854    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3855
3856    if (index > max_index) {
3857        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3858                   max_index);
3859        return;
3860    }
3861
3862    *buid = base_buid + index;
3863    for (i = 0; i < n_dma; ++i) {
3864        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3865    }
3866
3867    phb_base = phb0_base + index * phb_spacing;
3868    *pio = phb_base + pio_offset;
3869    *mmio32 = phb_base + mmio_offset;
3870    /*
3871     * We don't set the 64-bit MMIO window, relying on the PHB's
3872     * fallback behaviour of automatically splitting a large "32-bit"
3873     * window into contiguous 32-bit and 64-bit windows
3874     */
3875}
3876
3877static void spapr_machine_2_7_instance_options(MachineState *machine)
3878{
3879    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3880
3881    spapr_machine_2_8_instance_options(machine);
3882    spapr->use_hotplug_event_source = false;
3883}
3884
3885static void spapr_machine_2_7_class_options(MachineClass *mc)
3886{
3887    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3888
3889    spapr_machine_2_8_class_options(mc);
3890    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
3891    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3892    smc->phb_placement = phb_placement_2_7;
3893}
3894
3895DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3896
3897/*
3898 * pseries-2.6
3899 */
3900#define SPAPR_COMPAT_2_6 \
3901    HW_COMPAT_2_6 \
3902    { \
3903        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3904        .property = "ddw",\
3905        .value    = stringify(off),\
3906    },
3907
3908static void spapr_machine_2_6_instance_options(MachineState *machine)
3909{
3910    spapr_machine_2_7_instance_options(machine);
3911}
3912
3913static void spapr_machine_2_6_class_options(MachineClass *mc)
3914{
3915    spapr_machine_2_7_class_options(mc);
3916    mc->has_hotpluggable_cpus = false;
3917    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3918}
3919
3920DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3921
3922/*
3923 * pseries-2.5
3924 */
3925#define SPAPR_COMPAT_2_5 \
3926    HW_COMPAT_2_5 \
3927    { \
3928        .driver   = "spapr-vlan", \
3929        .property = "use-rx-buffer-pools", \
3930        .value    = "off", \
3931    },
3932
3933static void spapr_machine_2_5_instance_options(MachineState *machine)
3934{
3935    spapr_machine_2_6_instance_options(machine);
3936}
3937
3938static void spapr_machine_2_5_class_options(MachineClass *mc)
3939{
3940    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3941
3942    spapr_machine_2_6_class_options(mc);
3943    smc->use_ohci_by_default = true;
3944    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3945}
3946
3947DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3948
3949/*
3950 * pseries-2.4
3951 */
3952#define SPAPR_COMPAT_2_4 \
3953        HW_COMPAT_2_4
3954
3955static void spapr_machine_2_4_instance_options(MachineState *machine)
3956{
3957    spapr_machine_2_5_instance_options(machine);
3958}
3959
3960static void spapr_machine_2_4_class_options(MachineClass *mc)
3961{
3962    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3963
3964    spapr_machine_2_5_class_options(mc);
3965    smc->dr_lmb_enabled = false;
3966    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3967}
3968
3969DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3970
3971/*
3972 * pseries-2.3
3973 */
3974#define SPAPR_COMPAT_2_3 \
3975        HW_COMPAT_2_3 \
3976        {\
3977            .driver   = "spapr-pci-host-bridge",\
3978            .property = "dynamic-reconfiguration",\
3979            .value    = "off",\
3980        },
3981
3982static void spapr_machine_2_3_instance_options(MachineState *machine)
3983{
3984    spapr_machine_2_4_instance_options(machine);
3985}
3986
3987static void spapr_machine_2_3_class_options(MachineClass *mc)
3988{
3989    spapr_machine_2_4_class_options(mc);
3990    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3991}
3992DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3993
3994/*
3995 * pseries-2.2
3996 */
3997
3998#define SPAPR_COMPAT_2_2 \
3999        HW_COMPAT_2_2 \
4000        {\
4001            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4002            .property = "mem_win_size",\
4003            .value    = "0x20000000",\
4004        },
4005
4006static void spapr_machine_2_2_instance_options(MachineState *machine)
4007{
4008    spapr_machine_2_3_instance_options(machine);
4009    machine->suppress_vmdesc = true;
4010}
4011
4012static void spapr_machine_2_2_class_options(MachineClass *mc)
4013{
4014    spapr_machine_2_3_class_options(mc);
4015    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4016}
4017DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4018
4019/*
4020 * pseries-2.1
4021 */
4022#define SPAPR_COMPAT_2_1 \
4023        HW_COMPAT_2_1
4024
4025static void spapr_machine_2_1_instance_options(MachineState *machine)
4026{
4027    spapr_machine_2_2_instance_options(machine);
4028}
4029
4030static void spapr_machine_2_1_class_options(MachineClass *mc)
4031{
4032    spapr_machine_2_2_class_options(mc);
4033    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4034}
4035DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4036
4037static void spapr_machine_register_types(void)
4038{
4039    type_register_static(&spapr_machine_info);
4040}
4041
4042type_init(spapr_machine_register_types)
4043