qemu/hw/ppc/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "hw/hw.h"
  30#include "hw/sysbus.h"
  31#include "hw/pci/pci.h"
  32#include "hw/pci/msi.h"
  33#include "hw/pci/msix.h"
  34#include "hw/pci/pci_host.h"
  35#include "hw/ppc/spapr.h"
  36#include "hw/pci-host/spapr.h"
  37#include "exec/address-spaces.h"
  38#include "exec/ram_addr.h"
  39#include <libfdt.h>
  40#include "trace.h"
  41#include "qemu/error-report.h"
  42#include "qapi/qmp/qerror.h"
  43#include "hw/ppc/fdt.h"
  44#include "hw/pci/pci_bridge.h"
  45#include "hw/pci/pci_bus.h"
  46#include "hw/pci/pci_ids.h"
  47#include "hw/ppc/spapr_drc.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/kvm.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/numa.h"
  52
  53/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  54#define RTAS_QUERY_FN           0
  55#define RTAS_CHANGE_FN          1
  56#define RTAS_RESET_FN           2
  57#define RTAS_CHANGE_MSI_FN      3
  58#define RTAS_CHANGE_MSIX_FN     4
  59
  60/* Interrupt types to return on RTAS_CHANGE_* */
  61#define RTAS_TYPE_MSI           1
  62#define RTAS_TYPE_MSIX          2
  63
  64sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
  65{
  66    sPAPRPHBState *sphb;
  67
  68    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  69        if (sphb->buid != buid) {
  70            continue;
  71        }
  72        return sphb;
  73    }
  74
  75    return NULL;
  76}
  77
  78PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
  79                              uint32_t config_addr)
  80{
  81    sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
  82    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  83    int bus_num = (config_addr >> 16) & 0xFF;
  84    int devfn = (config_addr >> 8) & 0xFF;
  85
  86    if (!phb) {
  87        return NULL;
  88    }
  89
  90    return pci_find_device(phb->bus, bus_num, devfn);
  91}
  92
  93static uint32_t rtas_pci_cfgaddr(uint32_t arg)
  94{
  95    /* This handles the encoding of extended config space addresses */
  96    return ((arg >> 20) & 0xf00) | (arg & 0xff);
  97}
  98
  99static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 100                                   uint32_t addr, uint32_t size,
 101                                   target_ulong rets)
 102{
 103    PCIDevice *pci_dev;
 104    uint32_t val;
 105
 106    if ((size != 1) && (size != 2) && (size != 4)) {
 107        /* access must be 1, 2 or 4 bytes */
 108        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 109        return;
 110    }
 111
 112    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 113    addr = rtas_pci_cfgaddr(addr);
 114
 115    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 116        /* Access must be to a valid device, within bounds and
 117         * naturally aligned */
 118        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 119        return;
 120    }
 121
 122    val = pci_host_config_read_common(pci_dev, addr,
 123                                      pci_config_size(pci_dev), size);
 124
 125    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 126    rtas_st(rets, 1, val);
 127}
 128
 129static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 130                                     uint32_t token, uint32_t nargs,
 131                                     target_ulong args,
 132                                     uint32_t nret, target_ulong rets)
 133{
 134    uint64_t buid;
 135    uint32_t size, addr;
 136
 137    if ((nargs != 4) || (nret != 2)) {
 138        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 139        return;
 140    }
 141
 142    buid = rtas_ldq(args, 1);
 143    size = rtas_ld(args, 3);
 144    addr = rtas_ld(args, 0);
 145
 146    finish_read_pci_config(spapr, buid, addr, size, rets);
 147}
 148
 149static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 150                                 uint32_t token, uint32_t nargs,
 151                                 target_ulong args,
 152                                 uint32_t nret, target_ulong rets)
 153{
 154    uint32_t size, addr;
 155
 156    if ((nargs != 2) || (nret != 2)) {
 157        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 158        return;
 159    }
 160
 161    size = rtas_ld(args, 1);
 162    addr = rtas_ld(args, 0);
 163
 164    finish_read_pci_config(spapr, 0, addr, size, rets);
 165}
 166
 167static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 168                                    uint32_t addr, uint32_t size,
 169                                    uint32_t val, target_ulong rets)
 170{
 171    PCIDevice *pci_dev;
 172
 173    if ((size != 1) && (size != 2) && (size != 4)) {
 174        /* access must be 1, 2 or 4 bytes */
 175        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 176        return;
 177    }
 178
 179    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 180    addr = rtas_pci_cfgaddr(addr);
 181
 182    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 183        /* Access must be to a valid device, within bounds and
 184         * naturally aligned */
 185        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 186        return;
 187    }
 188
 189    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 190                                 val, size);
 191
 192    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 193}
 194
 195static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 196                                      uint32_t token, uint32_t nargs,
 197                                      target_ulong args,
 198                                      uint32_t nret, target_ulong rets)
 199{
 200    uint64_t buid;
 201    uint32_t val, size, addr;
 202
 203    if ((nargs != 5) || (nret != 1)) {
 204        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 205        return;
 206    }
 207
 208    buid = rtas_ldq(args, 1);
 209    val = rtas_ld(args, 4);
 210    size = rtas_ld(args, 3);
 211    addr = rtas_ld(args, 0);
 212
 213    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 214}
 215
 216static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 217                                  uint32_t token, uint32_t nargs,
 218                                  target_ulong args,
 219                                  uint32_t nret, target_ulong rets)
 220{
 221    uint32_t val, size, addr;
 222
 223    if ((nargs != 3) || (nret != 1)) {
 224        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 225        return;
 226    }
 227
 228
 229    val = rtas_ld(args, 2);
 230    size = rtas_ld(args, 1);
 231    addr = rtas_ld(args, 0);
 232
 233    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 234}
 235
 236/*
 237 * Set MSI/MSIX message data.
 238 * This is required for msi_notify()/msix_notify() which
 239 * will write at the addresses via spapr_msi_write().
 240 *
 241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
 242 * table will be reset.
 243 */
 244static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
 245                             unsigned first_irq, unsigned req_num)
 246{
 247    unsigned i;
 248    MSIMessage msg = { .address = addr, .data = first_irq };
 249
 250    if (!msix) {
 251        msi_set_message(pdev, msg);
 252        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 253        return;
 254    }
 255
 256    for (i = 0; i < req_num; ++i) {
 257        msix_set_message(pdev, i, msg);
 258        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 259        if (addr) {
 260            ++msg.data;
 261        }
 262    }
 263}
 264
 265static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 266                                uint32_t token, uint32_t nargs,
 267                                target_ulong args, uint32_t nret,
 268                                target_ulong rets)
 269{
 270    uint32_t config_addr = rtas_ld(args, 0);
 271    uint64_t buid = rtas_ldq(args, 1);
 272    unsigned int func = rtas_ld(args, 3);
 273    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 274    unsigned int seq_num = rtas_ld(args, 5);
 275    unsigned int ret_intr_type;
 276    unsigned int irq, max_irqs = 0;
 277    sPAPRPHBState *phb = NULL;
 278    PCIDevice *pdev = NULL;
 279    spapr_pci_msi *msi;
 280    int *config_addr_key;
 281    Error *err = NULL;
 282
 283    switch (func) {
 284    case RTAS_CHANGE_MSI_FN:
 285    case RTAS_CHANGE_FN:
 286        ret_intr_type = RTAS_TYPE_MSI;
 287        break;
 288    case RTAS_CHANGE_MSIX_FN:
 289        ret_intr_type = RTAS_TYPE_MSIX;
 290        break;
 291    default:
 292        error_report("rtas_ibm_change_msi(%u) is not implemented", func);
 293        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 294        return;
 295    }
 296
 297    /* Fins sPAPRPHBState */
 298    phb = spapr_pci_find_phb(spapr, buid);
 299    if (phb) {
 300        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 301    }
 302    if (!phb || !pdev) {
 303        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 304        return;
 305    }
 306
 307    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 308
 309    /* Releasing MSIs */
 310    if (!req_num) {
 311        if (!msi) {
 312            trace_spapr_pci_msi("Releasing wrong config", config_addr);
 313            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 314            return;
 315        }
 316
 317        spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
 318        if (msi_present(pdev)) {
 319            spapr_msi_setmsg(pdev, 0, false, 0, 0);
 320        }
 321        if (msix_present(pdev)) {
 322            spapr_msi_setmsg(pdev, 0, true, 0, 0);
 323        }
 324        g_hash_table_remove(phb->msi, &config_addr);
 325
 326        trace_spapr_pci_msi("Released MSIs", config_addr);
 327        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 328        rtas_st(rets, 1, 0);
 329        return;
 330    }
 331
 332    /* Enabling MSI */
 333
 334    /* Check if the device supports as many IRQs as requested */
 335    if (ret_intr_type == RTAS_TYPE_MSI) {
 336        max_irqs = msi_nr_vectors_allocated(pdev);
 337    } else if (ret_intr_type == RTAS_TYPE_MSIX) {
 338        max_irqs = pdev->msix_entries_nr;
 339    }
 340    if (!max_irqs) {
 341        error_report("Requested interrupt type %d is not enabled for device %x",
 342                     ret_intr_type, config_addr);
 343        rtas_st(rets, 0, -1); /* Hardware error */
 344        return;
 345    }
 346    /* Correct the number if the guest asked for too many */
 347    if (req_num > max_irqs) {
 348        trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
 349        req_num = max_irqs;
 350        irq = 0; /* to avoid misleading trace */
 351        goto out;
 352    }
 353
 354    /* Allocate MSIs */
 355    irq = spapr_ics_alloc_block(spapr->ics, req_num, false,
 356                           ret_intr_type == RTAS_TYPE_MSI, &err);
 357    if (err) {
 358        error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 359                          config_addr);
 360        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 361        return;
 362    }
 363
 364    /* Release previous MSIs */
 365    if (msi) {
 366        spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
 367        g_hash_table_remove(phb->msi, &config_addr);
 368    }
 369
 370    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 371    spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
 372                     irq, req_num);
 373
 374    /* Add MSI device to cache */
 375    msi = g_new(spapr_pci_msi, 1);
 376    msi->first_irq = irq;
 377    msi->num = req_num;
 378    config_addr_key = g_new(int, 1);
 379    *config_addr_key = config_addr;
 380    g_hash_table_insert(phb->msi, config_addr_key, msi);
 381
 382out:
 383    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 384    rtas_st(rets, 1, req_num);
 385    rtas_st(rets, 2, ++seq_num);
 386    if (nret > 3) {
 387        rtas_st(rets, 3, ret_intr_type);
 388    }
 389
 390    trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
 391}
 392
 393static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
 394                                                   sPAPRMachineState *spapr,
 395                                                   uint32_t token,
 396                                                   uint32_t nargs,
 397                                                   target_ulong args,
 398                                                   uint32_t nret,
 399                                                   target_ulong rets)
 400{
 401    uint32_t config_addr = rtas_ld(args, 0);
 402    uint64_t buid = rtas_ldq(args, 1);
 403    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 404    sPAPRPHBState *phb = NULL;
 405    PCIDevice *pdev = NULL;
 406    spapr_pci_msi *msi;
 407
 408    /* Find sPAPRPHBState */
 409    phb = spapr_pci_find_phb(spapr, buid);
 410    if (phb) {
 411        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 412    }
 413    if (!phb || !pdev) {
 414        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 415        return;
 416    }
 417
 418    /* Find device descriptor and start IRQ */
 419    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 420    if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
 421        trace_spapr_pci_msi("Failed to return vector", config_addr);
 422        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 423        return;
 424    }
 425    intr_src_num = msi->first_irq + ioa_intr_num;
 426    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 427                                                           intr_src_num);
 428
 429    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 430    rtas_st(rets, 1, intr_src_num);
 431    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 432}
 433
 434static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
 435                                    sPAPRMachineState *spapr,
 436                                    uint32_t token, uint32_t nargs,
 437                                    target_ulong args, uint32_t nret,
 438                                    target_ulong rets)
 439{
 440    sPAPRPHBState *sphb;
 441    uint32_t addr, option;
 442    uint64_t buid;
 443    int ret;
 444
 445    if ((nargs != 4) || (nret != 1)) {
 446        goto param_error_exit;
 447    }
 448
 449    buid = rtas_ldq(args, 1);
 450    addr = rtas_ld(args, 0);
 451    option = rtas_ld(args, 3);
 452
 453    sphb = spapr_pci_find_phb(spapr, buid);
 454    if (!sphb) {
 455        goto param_error_exit;
 456    }
 457
 458    if (!spapr_phb_eeh_available(sphb)) {
 459        goto param_error_exit;
 460    }
 461
 462    ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
 463    rtas_st(rets, 0, ret);
 464    return;
 465
 466param_error_exit:
 467    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 468}
 469
 470static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
 471                                           sPAPRMachineState *spapr,
 472                                           uint32_t token, uint32_t nargs,
 473                                           target_ulong args, uint32_t nret,
 474                                           target_ulong rets)
 475{
 476    sPAPRPHBState *sphb;
 477    PCIDevice *pdev;
 478    uint32_t addr, option;
 479    uint64_t buid;
 480
 481    if ((nargs != 4) || (nret != 2)) {
 482        goto param_error_exit;
 483    }
 484
 485    buid = rtas_ldq(args, 1);
 486    sphb = spapr_pci_find_phb(spapr, buid);
 487    if (!sphb) {
 488        goto param_error_exit;
 489    }
 490
 491    if (!spapr_phb_eeh_available(sphb)) {
 492        goto param_error_exit;
 493    }
 494
 495    /*
 496     * We always have PE address of form "00BB0001". "BB"
 497     * represents the bus number of PE's primary bus.
 498     */
 499    option = rtas_ld(args, 3);
 500    switch (option) {
 501    case RTAS_GET_PE_ADDR:
 502        addr = rtas_ld(args, 0);
 503        pdev = spapr_pci_find_dev(spapr, buid, addr);
 504        if (!pdev) {
 505            goto param_error_exit;
 506        }
 507
 508        rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
 509        break;
 510    case RTAS_GET_PE_MODE:
 511        rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
 512        break;
 513    default:
 514        goto param_error_exit;
 515    }
 516
 517    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 518    return;
 519
 520param_error_exit:
 521    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 522}
 523
 524static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
 525                                            sPAPRMachineState *spapr,
 526                                            uint32_t token, uint32_t nargs,
 527                                            target_ulong args, uint32_t nret,
 528                                            target_ulong rets)
 529{
 530    sPAPRPHBState *sphb;
 531    uint64_t buid;
 532    int state, ret;
 533
 534    if ((nargs != 3) || (nret != 4 && nret != 5)) {
 535        goto param_error_exit;
 536    }
 537
 538    buid = rtas_ldq(args, 1);
 539    sphb = spapr_pci_find_phb(spapr, buid);
 540    if (!sphb) {
 541        goto param_error_exit;
 542    }
 543
 544    if (!spapr_phb_eeh_available(sphb)) {
 545        goto param_error_exit;
 546    }
 547
 548    ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
 549    rtas_st(rets, 0, ret);
 550    if (ret != RTAS_OUT_SUCCESS) {
 551        return;
 552    }
 553
 554    rtas_st(rets, 1, state);
 555    rtas_st(rets, 2, RTAS_EEH_SUPPORT);
 556    rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
 557    if (nret >= 5) {
 558        rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
 559    }
 560    return;
 561
 562param_error_exit:
 563    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 564}
 565
 566static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
 567                                    sPAPRMachineState *spapr,
 568                                    uint32_t token, uint32_t nargs,
 569                                    target_ulong args, uint32_t nret,
 570                                    target_ulong rets)
 571{
 572    sPAPRPHBState *sphb;
 573    uint32_t option;
 574    uint64_t buid;
 575    int ret;
 576
 577    if ((nargs != 4) || (nret != 1)) {
 578        goto param_error_exit;
 579    }
 580
 581    buid = rtas_ldq(args, 1);
 582    option = rtas_ld(args, 3);
 583    sphb = spapr_pci_find_phb(spapr, buid);
 584    if (!sphb) {
 585        goto param_error_exit;
 586    }
 587
 588    if (!spapr_phb_eeh_available(sphb)) {
 589        goto param_error_exit;
 590    }
 591
 592    ret = spapr_phb_vfio_eeh_reset(sphb, option);
 593    rtas_st(rets, 0, ret);
 594    return;
 595
 596param_error_exit:
 597    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 598}
 599
 600static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
 601                                  sPAPRMachineState *spapr,
 602                                  uint32_t token, uint32_t nargs,
 603                                  target_ulong args, uint32_t nret,
 604                                  target_ulong rets)
 605{
 606    sPAPRPHBState *sphb;
 607    uint64_t buid;
 608    int ret;
 609
 610    if ((nargs != 3) || (nret != 1)) {
 611        goto param_error_exit;
 612    }
 613
 614    buid = rtas_ldq(args, 1);
 615    sphb = spapr_pci_find_phb(spapr, buid);
 616    if (!sphb) {
 617        goto param_error_exit;
 618    }
 619
 620    if (!spapr_phb_eeh_available(sphb)) {
 621        goto param_error_exit;
 622    }
 623
 624    ret = spapr_phb_vfio_eeh_configure(sphb);
 625    rtas_st(rets, 0, ret);
 626    return;
 627
 628param_error_exit:
 629    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 630}
 631
 632/* To support it later */
 633static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
 634                                       sPAPRMachineState *spapr,
 635                                       uint32_t token, uint32_t nargs,
 636                                       target_ulong args, uint32_t nret,
 637                                       target_ulong rets)
 638{
 639    sPAPRPHBState *sphb;
 640    int option;
 641    uint64_t buid;
 642
 643    if ((nargs != 8) || (nret != 1)) {
 644        goto param_error_exit;
 645    }
 646
 647    buid = rtas_ldq(args, 1);
 648    sphb = spapr_pci_find_phb(spapr, buid);
 649    if (!sphb) {
 650        goto param_error_exit;
 651    }
 652
 653    if (!spapr_phb_eeh_available(sphb)) {
 654        goto param_error_exit;
 655    }
 656
 657    option = rtas_ld(args, 7);
 658    switch (option) {
 659    case RTAS_SLOT_TEMP_ERR_LOG:
 660    case RTAS_SLOT_PERM_ERR_LOG:
 661        break;
 662    default:
 663        goto param_error_exit;
 664    }
 665
 666    /* We don't have error log yet */
 667    rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
 668    return;
 669
 670param_error_exit:
 671    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 672}
 673
 674static int pci_spapr_swizzle(int slot, int pin)
 675{
 676    return (slot + pin) % PCI_NUM_PINS;
 677}
 678
 679static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 680{
 681    /*
 682     * Here we need to convert pci_dev + irq_num to some unique value
 683     * which is less than number of IRQs on the specific bus (4).  We
 684     * use standard PCI swizzling, that is (slot number + pin number)
 685     * % 4.
 686     */
 687    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 688}
 689
 690static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 691{
 692    /*
 693     * Here we use the number returned by pci_spapr_map_irq to find a
 694     * corresponding qemu_irq.
 695     */
 696    sPAPRPHBState *phb = opaque;
 697
 698    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 699    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 700}
 701
 702static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
 703{
 704    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
 705    PCIINTxRoute route;
 706
 707    route.mode = PCI_INTX_ENABLED;
 708    route.irq = sphb->lsi_table[pin].irq;
 709
 710    return route;
 711}
 712
 713/*
 714 * MSI/MSIX memory region implementation.
 715 * The handler handles both MSI and MSIX.
 716 * The vector number is encoded in least bits in data.
 717 */
 718static void spapr_msi_write(void *opaque, hwaddr addr,
 719                            uint64_t data, unsigned size)
 720{
 721    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 722    uint32_t irq = data;
 723
 724    trace_spapr_pci_msi_write(addr, data, irq);
 725
 726    qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq));
 727}
 728
 729static const MemoryRegionOps spapr_msi_ops = {
 730    /* There is no .read as the read result is undefined by PCI spec */
 731    .read = NULL,
 732    .write = spapr_msi_write,
 733    .endianness = DEVICE_LITTLE_ENDIAN
 734};
 735
 736/*
 737 * PHB PCI device
 738 */
 739static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
 740{
 741    sPAPRPHBState *phb = opaque;
 742
 743    return &phb->iommu_as;
 744}
 745
 746static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
 747{
 748    char *path = NULL, *buf = NULL, *host = NULL;
 749
 750    /* Get the PCI VFIO host id */
 751    host = object_property_get_str(OBJECT(pdev), "host", NULL);
 752    if (!host) {
 753        goto err_out;
 754    }
 755
 756    /* Construct the path of the file that will give us the DT location */
 757    path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
 758    g_free(host);
 759    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 760        goto err_out;
 761    }
 762    g_free(path);
 763
 764    /* Construct and read from host device tree the loc-code */
 765    path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
 766    g_free(buf);
 767    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 768        goto err_out;
 769    }
 770    return buf;
 771
 772err_out:
 773    g_free(path);
 774    return NULL;
 775}
 776
 777static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
 778{
 779    char *buf;
 780    const char *devtype = "qemu";
 781    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
 782
 783    if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
 784        buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
 785        if (buf) {
 786            return buf;
 787        }
 788        devtype = "vfio";
 789    }
 790    /*
 791     * For emulated devices and VFIO-failure case, make up
 792     * the loc-code.
 793     */
 794    buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
 795                          devtype, pdev->name, sphb->index, busnr,
 796                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 797    return buf;
 798}
 799
 800/* Macros to operate with address in OF binding to PCI */
 801#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 802#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 803#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 804#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 805#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 806#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 807#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 808#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 809#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 810
 811/* for 'reg'/'assigned-addresses' OF properties */
 812#define RESOURCE_CELLS_SIZE 2
 813#define RESOURCE_CELLS_ADDRESS 3
 814
 815typedef struct ResourceFields {
 816    uint32_t phys_hi;
 817    uint32_t phys_mid;
 818    uint32_t phys_lo;
 819    uint32_t size_hi;
 820    uint32_t size_lo;
 821} QEMU_PACKED ResourceFields;
 822
 823typedef struct ResourceProps {
 824    ResourceFields reg[8];
 825    ResourceFields assigned[7];
 826    uint32_t reg_len;
 827    uint32_t assigned_len;
 828} ResourceProps;
 829
 830/* fill in the 'reg'/'assigned-resources' OF properties for
 831 * a PCI device. 'reg' describes resource requirements for a
 832 * device's IO/MEM regions, 'assigned-addresses' describes the
 833 * actual resource assignments.
 834 *
 835 * the properties are arrays of ('phys-addr', 'size') pairs describing
 836 * the addressable regions of the PCI device, where 'phys-addr' is a
 837 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
 838 * (phys.hi, phys.mid, phys.lo), and 'size' is a
 839 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
 840 *
 841 * phys.hi = 0xYYXXXXZZ, where:
 842 *   0xYY = npt000ss
 843 *          |||   |
 844 *          |||   +-- space code
 845 *          |||               |
 846 *          |||               +  00 if configuration space
 847 *          |||               +  01 if IO region,
 848 *          |||               +  10 if 32-bit MEM region
 849 *          |||               +  11 if 64-bit MEM region
 850 *          |||
 851 *          ||+------ for non-relocatable IO: 1 if aliased
 852 *          ||        for relocatable IO: 1 if below 64KB
 853 *          ||        for MEM: 1 if below 1MB
 854 *          |+------- 1 if region is prefetchable
 855 *          +-------- 1 if region is non-relocatable
 856 *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
 857 *            bits respectively
 858 *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
 859 *          to the region
 860 *
 861 * phys.mid and phys.lo correspond respectively to the hi/lo portions
 862 * of the actual address of the region.
 863 *
 864 * how the phys-addr/size values are used differ slightly between
 865 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
 866 * an additional description for the config space region of the
 867 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
 868 * to describe the region as relocatable, with an address-mapping
 869 * that corresponds directly to the PHB's address space for the
 870 * resource. 'assigned-addresses' always has n=1 set with an absolute
 871 * address assigned for the resource. in general, 'assigned-addresses'
 872 * won't be populated, since addresses for PCI devices are generally
 873 * unmapped initially and left to the guest to assign.
 874 *
 875 * note also that addresses defined in these properties are, at least
 876 * for PAPR guests, relative to the PHBs IO/MEM windows, and
 877 * correspond directly to the addresses in the BARs.
 878 *
 879 * in accordance with PCI Bus Binding to Open Firmware,
 880 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
 881 * Appendix C.
 882 */
 883static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
 884{
 885    int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
 886    uint32_t dev_id = (b_bbbbbbbb(bus_num) |
 887                       b_ddddd(PCI_SLOT(d->devfn)) |
 888                       b_fff(PCI_FUNC(d->devfn)));
 889    ResourceFields *reg, *assigned;
 890    int i, reg_idx = 0, assigned_idx = 0;
 891
 892    /* config space region */
 893    reg = &rp->reg[reg_idx++];
 894    reg->phys_hi = cpu_to_be32(dev_id);
 895    reg->phys_mid = 0;
 896    reg->phys_lo = 0;
 897    reg->size_hi = 0;
 898    reg->size_lo = 0;
 899
 900    for (i = 0; i < PCI_NUM_REGIONS; i++) {
 901        if (!d->io_regions[i].size) {
 902            continue;
 903        }
 904
 905        reg = &rp->reg[reg_idx++];
 906
 907        reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
 908        if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
 909            reg->phys_hi |= cpu_to_be32(b_ss(1));
 910        } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
 911            reg->phys_hi |= cpu_to_be32(b_ss(3));
 912        } else {
 913            reg->phys_hi |= cpu_to_be32(b_ss(2));
 914        }
 915        reg->phys_mid = 0;
 916        reg->phys_lo = 0;
 917        reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
 918        reg->size_lo = cpu_to_be32(d->io_regions[i].size);
 919
 920        if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
 921            continue;
 922        }
 923
 924        assigned = &rp->assigned[assigned_idx++];
 925        assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
 926        assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
 927        assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
 928        assigned->size_hi = reg->size_hi;
 929        assigned->size_lo = reg->size_lo;
 930    }
 931
 932    rp->reg_len = reg_idx * sizeof(ResourceFields);
 933    rp->assigned_len = assigned_idx * sizeof(ResourceFields);
 934}
 935
 936typedef struct PCIClass PCIClass;
 937typedef struct PCISubClass PCISubClass;
 938typedef struct PCIIFace PCIIFace;
 939
 940struct PCIIFace {
 941    int iface;
 942    const char *name;
 943};
 944
 945struct PCISubClass {
 946    int subclass;
 947    const char *name;
 948    const PCIIFace *iface;
 949};
 950
 951struct PCIClass {
 952    const char *name;
 953    const PCISubClass *subc;
 954};
 955
 956static const PCISubClass undef_subclass[] = {
 957    { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
 958    { 0xFF, NULL, NULL },
 959};
 960
 961static const PCISubClass mass_subclass[] = {
 962    { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
 963    { PCI_CLASS_STORAGE_IDE, "ide", NULL },
 964    { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
 965    { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
 966    { PCI_CLASS_STORAGE_RAID, "raid", NULL },
 967    { PCI_CLASS_STORAGE_ATA, "ata", NULL },
 968    { PCI_CLASS_STORAGE_SATA, "sata", NULL },
 969    { PCI_CLASS_STORAGE_SAS, "sas", NULL },
 970    { 0xFF, NULL, NULL },
 971};
 972
 973static const PCISubClass net_subclass[] = {
 974    { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
 975    { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
 976    { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
 977    { PCI_CLASS_NETWORK_ATM, "atm", NULL },
 978    { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
 979    { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
 980    { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
 981    { 0xFF, NULL, NULL },
 982};
 983
 984static const PCISubClass displ_subclass[] = {
 985    { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
 986    { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
 987    { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
 988    { 0xFF, NULL, NULL },
 989};
 990
 991static const PCISubClass media_subclass[] = {
 992    { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
 993    { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
 994    { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
 995    { 0xFF, NULL, NULL },
 996};
 997
 998static const PCISubClass mem_subclass[] = {
 999    { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1000    { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1001    { 0xFF, NULL, NULL },
1002};
1003
1004static const PCISubClass bridg_subclass[] = {
1005    { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1006    { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1007    { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1008    { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1009    { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1010    { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1011    { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1012    { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1013    { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1014    { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1015    { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1016    { 0xFF, NULL, NULL },
1017};
1018
1019static const PCISubClass comm_subclass[] = {
1020    { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1021    { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1022    { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1023    { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1024    { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1025    { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1026    { 0xFF, NULL, NULL, },
1027};
1028
1029static const PCIIFace pic_iface[] = {
1030    { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1031    { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1032    { 0xFF, NULL },
1033};
1034
1035static const PCISubClass sys_subclass[] = {
1036    { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1037    { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1038    { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1039    { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1040    { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1041    { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1042    { 0xFF, NULL, NULL },
1043};
1044
1045static const PCISubClass inp_subclass[] = {
1046    { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1047    { PCI_CLASS_INPUT_PEN, "pen", NULL },
1048    { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1049    { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1050    { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1051    { 0xFF, NULL, NULL },
1052};
1053
1054static const PCISubClass dock_subclass[] = {
1055    { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1056    { 0xFF, NULL, NULL },
1057};
1058
1059static const PCISubClass cpu_subclass[] = {
1060    { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1061    { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1062    { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1063    { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1064    { 0xFF, NULL, NULL },
1065};
1066
1067static const PCIIFace usb_iface[] = {
1068    { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1069    { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1070    { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1071    { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1072    { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1073    { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1074    { 0xFF, NULL },
1075};
1076
1077static const PCISubClass ser_subclass[] = {
1078    { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1079    { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1080    { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1081    { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1082    { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1083    { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1084    { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1085    { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1086    { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1087    { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1088    { 0xFF, NULL, NULL },
1089};
1090
1091static const PCISubClass wrl_subclass[] = {
1092    { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1093    { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1094    { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1095    { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1096    { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1097    { 0xFF, NULL, NULL },
1098};
1099
1100static const PCISubClass sat_subclass[] = {
1101    { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1102    { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1103    { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1104    { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1105    { 0xFF, NULL, NULL },
1106};
1107
1108static const PCISubClass crypt_subclass[] = {
1109    { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1110    { PCI_CLASS_CRYPT_ENTERTAINMENT,
1111      "entertainment-encryption", NULL },
1112    { 0xFF, NULL, NULL },
1113};
1114
1115static const PCISubClass spc_subclass[] = {
1116    { PCI_CLASS_SP_DPIO, "dpio", NULL },
1117    { PCI_CLASS_SP_PERF, "counter", NULL },
1118    { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1119    { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1120    { 0xFF, NULL, NULL },
1121};
1122
1123static const PCIClass pci_classes[] = {
1124    { "legacy-device", undef_subclass },
1125    { "mass-storage",  mass_subclass },
1126    { "network", net_subclass },
1127    { "display", displ_subclass, },
1128    { "multimedia-device", media_subclass },
1129    { "memory-controller", mem_subclass },
1130    { "unknown-bridge", bridg_subclass },
1131    { "communication-controller", comm_subclass},
1132    { "system-peripheral", sys_subclass },
1133    { "input-controller", inp_subclass },
1134    { "docking-station", dock_subclass },
1135    { "cpu", cpu_subclass },
1136    { "serial-bus", ser_subclass },
1137    { "wireless-controller", wrl_subclass },
1138    { "intelligent-io", NULL },
1139    { "satellite-device", sat_subclass },
1140    { "encryption", crypt_subclass },
1141    { "data-processing-controller", spc_subclass },
1142};
1143
1144static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1145                                        uint8_t iface)
1146{
1147    const PCIClass *pclass;
1148    const PCISubClass *psubclass;
1149    const PCIIFace *piface;
1150    const char *name;
1151
1152    if (class >= ARRAY_SIZE(pci_classes)) {
1153        return "pci";
1154    }
1155
1156    pclass = pci_classes + class;
1157    name = pclass->name;
1158
1159    if (pclass->subc == NULL) {
1160        return name;
1161    }
1162
1163    psubclass = pclass->subc;
1164    while ((psubclass->subclass & 0xff) != 0xff) {
1165        if ((psubclass->subclass & 0xff) == subclass) {
1166            name = psubclass->name;
1167            break;
1168        }
1169        psubclass++;
1170    }
1171
1172    piface = psubclass->iface;
1173    if (piface == NULL) {
1174        return name;
1175    }
1176    while ((piface->iface & 0xff) != 0xff) {
1177        if ((piface->iface & 0xff) == iface) {
1178            name = piface->name;
1179            break;
1180        }
1181        piface++;
1182    }
1183
1184    return name;
1185}
1186
1187static gchar *pci_get_node_name(PCIDevice *dev)
1188{
1189    int slot = PCI_SLOT(dev->devfn);
1190    int func = PCI_FUNC(dev->devfn);
1191    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1192    const char *name;
1193
1194    name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1195                                ccode & 0xff);
1196
1197    if (func != 0) {
1198        return g_strdup_printf("%s@%x,%x", name, slot, func);
1199    } else {
1200        return g_strdup_printf("%s@%x", name, slot);
1201    }
1202}
1203
1204static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1205                                            PCIDevice *pdev);
1206
1207static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1208                                       sPAPRPHBState *sphb)
1209{
1210    ResourceProps rp;
1211    bool is_bridge = false;
1212    int pci_status;
1213    char *buf = NULL;
1214    uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1215    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1216    uint32_t max_msi, max_msix;
1217
1218    if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1219        PCI_HEADER_TYPE_BRIDGE) {
1220        is_bridge = true;
1221    }
1222
1223    /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1224    _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1225                          pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1226    _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1227                          pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1228    _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1229                          pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1230    _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1231    if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1232        _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1233                 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1234    }
1235
1236    if (!is_bridge) {
1237        _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1238            pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1239        _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1240            pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1241    }
1242
1243    if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1244        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1245                 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1246    }
1247
1248    if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1249        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1250                 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1251    }
1252
1253    _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1254        pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1255
1256    /* the following fdt cells are masked off the pci status register */
1257    pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1258    _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1259                          PCI_STATUS_DEVSEL_MASK & pci_status));
1260
1261    if (pci_status & PCI_STATUS_FAST_BACK) {
1262        _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1263    }
1264    if (pci_status & PCI_STATUS_66MHZ) {
1265        _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1266    }
1267    if (pci_status & PCI_STATUS_UDF) {
1268        _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1269    }
1270
1271    _FDT(fdt_setprop_string(fdt, offset, "name",
1272                            pci_find_device_name((ccode >> 16) & 0xff,
1273                                                 (ccode >> 8) & 0xff,
1274                                                 ccode & 0xff)));
1275
1276    buf = spapr_phb_get_loc_code(sphb, dev);
1277    _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1278    g_free(buf);
1279
1280    if (drc_index) {
1281        _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1282    }
1283
1284    _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1285                          RESOURCE_CELLS_ADDRESS));
1286    _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1287                          RESOURCE_CELLS_SIZE));
1288
1289    max_msi = msi_nr_vectors_allocated(dev);
1290    if (max_msi) {
1291        _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1292    }
1293    max_msix = dev->msix_entries_nr;
1294    if (max_msix) {
1295        _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1296    }
1297
1298    populate_resource_props(dev, &rp);
1299    _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1300    _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1301                     (uint8_t *)rp.assigned, rp.assigned_len));
1302
1303    if (sphb->pcie_ecs && pci_is_express(dev)) {
1304        _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1305    }
1306}
1307
1308/* create OF node for pci device and required OF DT properties */
1309static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1310                                     void *fdt, int node_offset)
1311{
1312    int offset;
1313    gchar *nodename;
1314
1315    nodename = pci_get_node_name(dev);
1316    _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1317    g_free(nodename);
1318
1319    spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1320
1321    return offset;
1322}
1323
1324/* Callback to be called during DRC release. */
1325void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1326{
1327    /* some version guests do not wait for completion of a device
1328     * cleanup (generally done asynchronously by the kernel) before
1329     * signaling to QEMU that the device is safe, but instead sleep
1330     * for some 'safe' period of time. unfortunately on a busy host
1331     * this sleep isn't guaranteed to be long enough, resulting in
1332     * bad things like IRQ lines being left asserted during final
1333     * device removal. to deal with this we call reset just prior
1334     * to finalizing the device, which will put the device back into
1335     * an 'idle' state, as the device cleanup code expects.
1336     */
1337    pci_device_reset(PCI_DEVICE(dev));
1338    object_unparent(OBJECT(dev));
1339}
1340
1341static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1342                                                    uint32_t busnr,
1343                                                    int32_t devfn)
1344{
1345    return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1346                           (phb->index << 16) | (busnr << 8) | devfn);
1347}
1348
1349static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1350                                               PCIDevice *pdev)
1351{
1352    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1353    return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1354}
1355
1356static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1357                                            PCIDevice *pdev)
1358{
1359    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1360
1361    if (!drc) {
1362        return 0;
1363    }
1364
1365    return spapr_drc_index(drc);
1366}
1367
1368static void spapr_pci_plug(HotplugHandler *plug_handler,
1369                           DeviceState *plugged_dev, Error **errp)
1370{
1371    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1372    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1373    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1374    Error *local_err = NULL;
1375    PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1376    uint32_t slotnr = PCI_SLOT(pdev->devfn);
1377    void *fdt = NULL;
1378    int fdt_start_offset, fdt_size;
1379
1380    /* if DR is disabled we don't need to do anything in the case of
1381     * hotplug or coldplug callbacks
1382     */
1383    if (!phb->dr_enabled) {
1384        /* if this is a hotplug operation initiated by the user
1385         * we need to let them know it's not enabled
1386         */
1387        if (plugged_dev->hotplugged) {
1388            error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1389                       object_get_typename(OBJECT(phb)));
1390        }
1391        goto out;
1392    }
1393
1394    g_assert(drc);
1395
1396    /* Following the QEMU convention used for PCIe multifunction
1397     * hotplug, we do not allow functions to be hotplugged to a
1398     * slot that already has function 0 present
1399     */
1400    if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1401        PCI_FUNC(pdev->devfn) != 0) {
1402        error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1403                   " additional functions can no longer be exposed to guest.",
1404                   slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1405        goto out;
1406    }
1407
1408    fdt = create_device_tree(&fdt_size);
1409    fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1410
1411    spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1412    if (local_err) {
1413        goto out;
1414    }
1415
1416    /* If this is function 0, signal hotplug for all the device functions.
1417     * Otherwise defer sending the hotplug event.
1418     */
1419    if (!spapr_drc_hotplugged(plugged_dev)) {
1420        spapr_drc_reset(drc);
1421    } else if (PCI_FUNC(pdev->devfn) == 0) {
1422        int i;
1423
1424        for (i = 0; i < 8; i++) {
1425            sPAPRDRConnector *func_drc;
1426            sPAPRDRConnectorClass *func_drck;
1427            sPAPRDREntitySense state;
1428
1429            func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1430                                                  PCI_DEVFN(slotnr, i));
1431            func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1432            state = func_drck->dr_entity_sense(func_drc);
1433
1434            if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1435                spapr_hotplug_req_add_by_index(func_drc);
1436            }
1437        }
1438    }
1439
1440out:
1441    if (local_err) {
1442        error_propagate(errp, local_err);
1443        g_free(fdt);
1444    }
1445}
1446
1447static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1448                                     DeviceState *plugged_dev, Error **errp)
1449{
1450    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1451    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1452    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1453
1454    if (!phb->dr_enabled) {
1455        error_setg(errp, QERR_BUS_NO_HOTPLUG,
1456                   object_get_typename(OBJECT(phb)));
1457        return;
1458    }
1459
1460    g_assert(drc);
1461    g_assert(drc->dev == plugged_dev);
1462
1463    if (!spapr_drc_unplug_requested(drc)) {
1464        PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1465        uint32_t slotnr = PCI_SLOT(pdev->devfn);
1466        sPAPRDRConnector *func_drc;
1467        sPAPRDRConnectorClass *func_drck;
1468        sPAPRDREntitySense state;
1469        int i;
1470
1471        /* ensure any other present functions are pending unplug */
1472        if (PCI_FUNC(pdev->devfn) == 0) {
1473            for (i = 1; i < 8; i++) {
1474                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1475                                                      PCI_DEVFN(slotnr, i));
1476                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1477                state = func_drck->dr_entity_sense(func_drc);
1478                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1479                    && !spapr_drc_unplug_requested(func_drc)) {
1480                    error_setg(errp,
1481                               "PCI: slot %d, function %d still present. "
1482                               "Must unplug all non-0 functions first.",
1483                               slotnr, i);
1484                    return;
1485                }
1486            }
1487        }
1488
1489        spapr_drc_detach(drc);
1490
1491        /* if this isn't func 0, defer unplug event. otherwise signal removal
1492         * for all present functions
1493         */
1494        if (PCI_FUNC(pdev->devfn) == 0) {
1495            for (i = 7; i >= 0; i--) {
1496                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1497                                                      PCI_DEVFN(slotnr, i));
1498                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1499                state = func_drck->dr_entity_sense(func_drc);
1500                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1501                    spapr_hotplug_req_remove_by_index(func_drc);
1502                }
1503            }
1504        }
1505    }
1506}
1507
1508static void spapr_phb_realize(DeviceState *dev, Error **errp)
1509{
1510    /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1511     * tries to add a sPAPR PHB to a non-pseries machine.
1512     */
1513    sPAPRMachineState *spapr =
1514        (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1515                                                  TYPE_SPAPR_MACHINE);
1516    SysBusDevice *s = SYS_BUS_DEVICE(dev);
1517    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1518    PCIHostState *phb = PCI_HOST_BRIDGE(s);
1519    char *namebuf;
1520    int i;
1521    PCIBus *bus;
1522    uint64_t msi_window_size = 4096;
1523    sPAPRTCETable *tcet;
1524    const unsigned windows_supported =
1525        sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1526
1527    if (!spapr) {
1528        error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1529        return;
1530    }
1531
1532    if (sphb->index != (uint32_t)-1) {
1533        sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1534        Error *local_err = NULL;
1535
1536        smc->phb_placement(spapr, sphb->index,
1537                           &sphb->buid, &sphb->io_win_addr,
1538                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
1539                           windows_supported, sphb->dma_liobn, &local_err);
1540        if (local_err) {
1541            error_propagate(errp, local_err);
1542            return;
1543        }
1544    } else {
1545        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1546        return;
1547    }
1548
1549    if (sphb->mem64_win_size != 0) {
1550        if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1551            error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1552                       " (max 2 GiB)", sphb->mem_win_size);
1553            return;
1554        }
1555
1556        /* 64-bit window defaults to identity mapping */
1557        sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1558    } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1559        /*
1560         * For compatibility with old configuration, if no 64-bit MMIO
1561         * window is specified, but the ordinary (32-bit) memory
1562         * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1563         * window, with a 64-bit MMIO window following on immediately
1564         * afterwards
1565         */
1566        sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1567        sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1568        sphb->mem64_win_pciaddr =
1569            SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1570        sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1571    }
1572
1573    if (spapr_pci_find_phb(spapr, sphb->buid)) {
1574        error_setg(errp, "PCI host bridges must have unique BUIDs");
1575        return;
1576    }
1577
1578    if (sphb->numa_node != -1 &&
1579        (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1580        error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1581        return;
1582    }
1583
1584    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1585
1586    /* Initialize memory regions */
1587    namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1588    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1589    g_free(namebuf);
1590
1591    namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1592    memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1593                             namebuf, &sphb->memspace,
1594                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1595    g_free(namebuf);
1596    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1597                                &sphb->mem32window);
1598
1599    if (sphb->mem64_win_size != 0) {
1600        namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1601        memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1602                                 namebuf, &sphb->memspace,
1603                                 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1604        g_free(namebuf);
1605
1606        memory_region_add_subregion(get_system_memory(),
1607                                    sphb->mem64_win_addr,
1608                                    &sphb->mem64window);
1609    }
1610
1611    /* Initialize IO regions */
1612    namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1613    memory_region_init(&sphb->iospace, OBJECT(sphb),
1614                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
1615    g_free(namebuf);
1616
1617    namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1618    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1619                             &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1620    g_free(namebuf);
1621    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1622                                &sphb->iowindow);
1623
1624    bus = pci_register_bus(dev, NULL,
1625                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1626                           &sphb->memspace, &sphb->iospace,
1627                           PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1628    phb->bus = bus;
1629    qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1630
1631    /*
1632     * Initialize PHB address space.
1633     * By default there will be at least one subregion for default
1634     * 32bit DMA window.
1635     * Later the guest might want to create another DMA window
1636     * which will become another memory subregion.
1637     */
1638    namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1639    memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1640                       namebuf, UINT64_MAX);
1641    g_free(namebuf);
1642    address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1643                       sphb->dtbusname);
1644
1645    /*
1646     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1647     * we need to allocate some memory to catch those writes coming
1648     * from msi_notify()/msix_notify().
1649     * As MSIMessage:addr is going to be the same and MSIMessage:data
1650     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1651     * be used.
1652     *
1653     * For KVM we want to ensure that this memory is a full page so that
1654     * our memory slot is of page size granularity.
1655     */
1656#ifdef CONFIG_KVM
1657    if (kvm_enabled()) {
1658        msi_window_size = getpagesize();
1659    }
1660#endif
1661
1662    memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1663                          "msi", msi_window_size);
1664    memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1665                                &sphb->msiwindow);
1666
1667    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1668
1669    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1670
1671    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1672
1673    /* Initialize the LSI table */
1674    for (i = 0; i < PCI_NUM_PINS; i++) {
1675        uint32_t irq;
1676        Error *local_err = NULL;
1677
1678        irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err);
1679        if (local_err) {
1680            error_propagate(errp, local_err);
1681            error_prepend(errp, "can't allocate LSIs: ");
1682            return;
1683        }
1684
1685        sphb->lsi_table[i].irq = irq;
1686    }
1687
1688    /* allocate connectors for child PCI devices */
1689    if (sphb->dr_enabled) {
1690        for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1691            spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1692                                   (sphb->index << 16) | i);
1693        }
1694    }
1695
1696    /* DMA setup */
1697    if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
1698        && kvm_enabled()) {
1699        error_report("System page size 0x%lx is not enabled in page_size_mask "
1700                     "(0x%"PRIx64"). Performance may be slow",
1701                     qemu_getrampagesize(), sphb->page_size_mask);
1702    }
1703
1704    for (i = 0; i < windows_supported; ++i) {
1705        tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1706        if (!tcet) {
1707            error_setg(errp, "Creating window#%d failed for %s",
1708                       i, sphb->dtbusname);
1709            return;
1710        }
1711        memory_region_add_subregion(&sphb->iommu_root, 0,
1712                                    spapr_tce_get_iommu(tcet));
1713    }
1714
1715    sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1716}
1717
1718static int spapr_phb_children_reset(Object *child, void *opaque)
1719{
1720    DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1721
1722    if (dev) {
1723        device_reset(dev);
1724    }
1725
1726    return 0;
1727}
1728
1729void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1730{
1731    int i;
1732    sPAPRTCETable *tcet;
1733
1734    for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1735        tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1736
1737        if (tcet && tcet->nb_table) {
1738            spapr_tce_table_disable(tcet);
1739        }
1740    }
1741
1742    /* Register default 32bit DMA window */
1743    tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1744    spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1745                           sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1746}
1747
1748static void spapr_phb_reset(DeviceState *qdev)
1749{
1750    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1751
1752    spapr_phb_dma_reset(sphb);
1753
1754    /* Reset the IOMMU state */
1755    object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1756
1757    if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1758        spapr_phb_vfio_reset(qdev);
1759    }
1760}
1761
1762static Property spapr_phb_properties[] = {
1763    DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1764    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1765                       SPAPR_PCI_MEM32_WIN_SIZE),
1766    DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1767                       SPAPR_PCI_MEM64_WIN_SIZE),
1768    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1769                       SPAPR_PCI_IO_WIN_SIZE),
1770    DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1771                     true),
1772    /* Default DMA window is 0..1GB */
1773    DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1774    DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1775    DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1776                       0x800000000000000ULL),
1777    DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1778    DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1779                       (1ULL << 12) | (1ULL << 16)),
1780    DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1781    DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1782                     pre_2_8_migration, false),
1783    DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1784                     pcie_ecs, true),
1785    DEFINE_PROP_END_OF_LIST(),
1786};
1787
1788static const VMStateDescription vmstate_spapr_pci_lsi = {
1789    .name = "spapr_pci/lsi",
1790    .version_id = 1,
1791    .minimum_version_id = 1,
1792    .fields = (VMStateField[]) {
1793        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1794
1795        VMSTATE_END_OF_LIST()
1796    },
1797};
1798
1799static const VMStateDescription vmstate_spapr_pci_msi = {
1800    .name = "spapr_pci/msi",
1801    .version_id = 1,
1802    .minimum_version_id = 1,
1803    .fields = (VMStateField []) {
1804        VMSTATE_UINT32(key, spapr_pci_msi_mig),
1805        VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1806        VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1807        VMSTATE_END_OF_LIST()
1808    },
1809};
1810
1811static int spapr_pci_pre_save(void *opaque)
1812{
1813    sPAPRPHBState *sphb = opaque;
1814    GHashTableIter iter;
1815    gpointer key, value;
1816    int i;
1817
1818    if (sphb->pre_2_8_migration) {
1819        sphb->mig_liobn = sphb->dma_liobn[0];
1820        sphb->mig_mem_win_addr = sphb->mem_win_addr;
1821        sphb->mig_mem_win_size = sphb->mem_win_size;
1822        sphb->mig_io_win_addr = sphb->io_win_addr;
1823        sphb->mig_io_win_size = sphb->io_win_size;
1824
1825        if ((sphb->mem64_win_size != 0)
1826            && (sphb->mem64_win_addr
1827                == (sphb->mem_win_addr + sphb->mem_win_size))) {
1828            sphb->mig_mem_win_size += sphb->mem64_win_size;
1829        }
1830    }
1831
1832    g_free(sphb->msi_devs);
1833    sphb->msi_devs = NULL;
1834    sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1835    if (!sphb->msi_devs_num) {
1836        return 0;
1837    }
1838    sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1839
1840    g_hash_table_iter_init(&iter, sphb->msi);
1841    for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1842        sphb->msi_devs[i].key = *(uint32_t *) key;
1843        sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1844    }
1845
1846    return 0;
1847}
1848
1849static int spapr_pci_post_load(void *opaque, int version_id)
1850{
1851    sPAPRPHBState *sphb = opaque;
1852    gpointer key, value;
1853    int i;
1854
1855    for (i = 0; i < sphb->msi_devs_num; ++i) {
1856        key = g_memdup(&sphb->msi_devs[i].key,
1857                       sizeof(sphb->msi_devs[i].key));
1858        value = g_memdup(&sphb->msi_devs[i].value,
1859                         sizeof(sphb->msi_devs[i].value));
1860        g_hash_table_insert(sphb->msi, key, value);
1861    }
1862    g_free(sphb->msi_devs);
1863    sphb->msi_devs = NULL;
1864    sphb->msi_devs_num = 0;
1865
1866    return 0;
1867}
1868
1869static bool pre_2_8_migration(void *opaque, int version_id)
1870{
1871    sPAPRPHBState *sphb = opaque;
1872
1873    return sphb->pre_2_8_migration;
1874}
1875
1876static const VMStateDescription vmstate_spapr_pci = {
1877    .name = "spapr_pci",
1878    .version_id = 2,
1879    .minimum_version_id = 2,
1880    .pre_save = spapr_pci_pre_save,
1881    .post_load = spapr_pci_post_load,
1882    .fields = (VMStateField[]) {
1883        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1884        VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1885        VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1886        VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1887        VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1888        VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1889        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1890                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1891        VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1892        VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1893                                    vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1894        VMSTATE_END_OF_LIST()
1895    },
1896};
1897
1898static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1899                                           PCIBus *rootbus)
1900{
1901    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1902
1903    return sphb->dtbusname;
1904}
1905
1906static void spapr_phb_class_init(ObjectClass *klass, void *data)
1907{
1908    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1909    DeviceClass *dc = DEVICE_CLASS(klass);
1910    HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1911
1912    hc->root_bus_path = spapr_phb_root_bus_path;
1913    dc->realize = spapr_phb_realize;
1914    dc->props = spapr_phb_properties;
1915    dc->reset = spapr_phb_reset;
1916    dc->vmsd = &vmstate_spapr_pci;
1917    /* Supported by TYPE_SPAPR_MACHINE */
1918    dc->user_creatable = true;
1919    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1920    hp->plug = spapr_pci_plug;
1921    hp->unplug_request = spapr_pci_unplug_request;
1922}
1923
1924static const TypeInfo spapr_phb_info = {
1925    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1926    .parent        = TYPE_PCI_HOST_BRIDGE,
1927    .instance_size = sizeof(sPAPRPHBState),
1928    .class_init    = spapr_phb_class_init,
1929    .interfaces    = (InterfaceInfo[]) {
1930        { TYPE_HOTPLUG_HANDLER },
1931        { }
1932    }
1933};
1934
1935PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1936{
1937    DeviceState *dev;
1938
1939    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1940    qdev_prop_set_uint32(dev, "index", index);
1941    qdev_init_nofail(dev);
1942
1943    return PCI_HOST_BRIDGE(dev);
1944}
1945
1946typedef struct sPAPRFDT {
1947    void *fdt;
1948    int node_off;
1949    sPAPRPHBState *sphb;
1950} sPAPRFDT;
1951
1952static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1953                                          void *opaque)
1954{
1955    PCIBus *sec_bus;
1956    sPAPRFDT *p = opaque;
1957    int offset;
1958    sPAPRFDT s_fdt;
1959
1960    offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1961    if (!offset) {
1962        error_report("Failed to create pci child device tree node");
1963        return;
1964    }
1965
1966    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1967         PCI_HEADER_TYPE_BRIDGE)) {
1968        return;
1969    }
1970
1971    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1972    if (!sec_bus) {
1973        return;
1974    }
1975
1976    s_fdt.fdt = p->fdt;
1977    s_fdt.node_off = offset;
1978    s_fdt.sphb = p->sphb;
1979    pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
1980                                spapr_populate_pci_devices_dt,
1981                                &s_fdt);
1982}
1983
1984static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1985                                           void *opaque)
1986{
1987    unsigned int *bus_no = opaque;
1988    unsigned int primary = *bus_no;
1989    unsigned int subordinate = 0xff;
1990    PCIBus *sec_bus = NULL;
1991
1992    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1993         PCI_HEADER_TYPE_BRIDGE)) {
1994        return;
1995    }
1996
1997    (*bus_no)++;
1998    pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1999    pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2000    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2001
2002    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2003    if (!sec_bus) {
2004        return;
2005    }
2006
2007    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2008    pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2009                        spapr_phb_pci_enumerate_bridge, bus_no);
2010    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2011}
2012
2013static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2014{
2015    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2016    unsigned int bus_no = 0;
2017
2018    pci_for_each_device(bus, pci_bus_num(bus),
2019                        spapr_phb_pci_enumerate_bridge,
2020                        &bus_no);
2021
2022}
2023
2024int spapr_populate_pci_dt(sPAPRPHBState *phb,
2025                          uint32_t xics_phandle,
2026                          void *fdt)
2027{
2028    int bus_off, i, j, ret;
2029    gchar *nodename;
2030    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2031    struct {
2032        uint32_t hi;
2033        uint64_t child;
2034        uint64_t parent;
2035        uint64_t size;
2036    } QEMU_PACKED ranges[] = {
2037        {
2038            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2039            cpu_to_be64(phb->io_win_addr),
2040            cpu_to_be64(memory_region_size(&phb->iospace)),
2041        },
2042        {
2043            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2044            cpu_to_be64(phb->mem_win_addr),
2045            cpu_to_be64(phb->mem_win_size),
2046        },
2047        {
2048            cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2049            cpu_to_be64(phb->mem64_win_addr),
2050            cpu_to_be64(phb->mem64_win_size),
2051        },
2052    };
2053    const unsigned sizeof_ranges =
2054        (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2055    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2056    uint32_t interrupt_map_mask[] = {
2057        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2058    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2059    uint32_t ddw_applicable[] = {
2060        cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2061        cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2062        cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2063    };
2064    uint32_t ddw_extensions[] = {
2065        cpu_to_be32(1),
2066        cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2067    };
2068    uint32_t associativity[] = {cpu_to_be32(0x4),
2069                                cpu_to_be32(0x0),
2070                                cpu_to_be32(0x0),
2071                                cpu_to_be32(0x0),
2072                                cpu_to_be32(phb->numa_node)};
2073    sPAPRTCETable *tcet;
2074    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2075    sPAPRFDT s_fdt;
2076
2077    /* Start populating the FDT */
2078    nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2079    _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2080    g_free(nodename);
2081
2082    /* Write PHB properties */
2083    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2084    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2085    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2086    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2087    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2088    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2089    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2090    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2091    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2092    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2093    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2094
2095    /* Dynamic DMA window */
2096    if (phb->ddw_enabled) {
2097        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2098                         sizeof(ddw_applicable)));
2099        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2100                         &ddw_extensions, sizeof(ddw_extensions)));
2101    }
2102
2103    /* Advertise NUMA via ibm,associativity */
2104    if (phb->numa_node != -1) {
2105        _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2106                         sizeof(associativity)));
2107    }
2108
2109    /* Build the interrupt-map, this must matches what is done
2110     * in pci_spapr_map_irq
2111     */
2112    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2113                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
2114    for (i = 0; i < PCI_SLOT_MAX; i++) {
2115        for (j = 0; j < PCI_NUM_PINS; j++) {
2116            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2117            int lsi_num = pci_spapr_swizzle(i, j);
2118
2119            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2120            irqmap[1] = 0;
2121            irqmap[2] = 0;
2122            irqmap[3] = cpu_to_be32(j+1);
2123            irqmap[4] = cpu_to_be32(xics_phandle);
2124            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
2125            irqmap[6] = cpu_to_be32(0x8);
2126        }
2127    }
2128    /* Write interrupt map */
2129    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2130                     sizeof(interrupt_map)));
2131
2132    tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2133    if (!tcet) {
2134        return -1;
2135    }
2136    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2137                 tcet->liobn, tcet->bus_offset,
2138                 tcet->nb_table << tcet->page_shift);
2139
2140    /* Walk the bridges and program the bus numbers*/
2141    spapr_phb_pci_enumerate(phb);
2142    _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2143
2144    /* Populate tree nodes with PCI devices attached */
2145    s_fdt.fdt = fdt;
2146    s_fdt.node_off = bus_off;
2147    s_fdt.sphb = phb;
2148    pci_for_each_device_reverse(bus, pci_bus_num(bus),
2149                                spapr_populate_pci_devices_dt,
2150                                &s_fdt);
2151
2152    ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2153                                SPAPR_DR_CONNECTOR_TYPE_PCI);
2154    if (ret) {
2155        return ret;
2156    }
2157
2158    return 0;
2159}
2160
2161void spapr_pci_rtas_init(void)
2162{
2163    spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2164                        rtas_read_pci_config);
2165    spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2166                        rtas_write_pci_config);
2167    spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2168                        rtas_ibm_read_pci_config);
2169    spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2170                        rtas_ibm_write_pci_config);
2171    if (msi_nonbroken) {
2172        spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2173                            "ibm,query-interrupt-source-number",
2174                            rtas_ibm_query_interrupt_source_number);
2175        spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2176                            rtas_ibm_change_msi);
2177    }
2178
2179    spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2180                        "ibm,set-eeh-option",
2181                        rtas_ibm_set_eeh_option);
2182    spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2183                        "ibm,get-config-addr-info2",
2184                        rtas_ibm_get_config_addr_info2);
2185    spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2186                        "ibm,read-slot-reset-state2",
2187                        rtas_ibm_read_slot_reset_state2);
2188    spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2189                        "ibm,set-slot-reset",
2190                        rtas_ibm_set_slot_reset);
2191    spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2192                        "ibm,configure-pe",
2193                        rtas_ibm_configure_pe);
2194    spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2195                        "ibm,slot-error-detail",
2196                        rtas_ibm_slot_error_detail);
2197}
2198
2199static void spapr_pci_register_types(void)
2200{
2201    type_register_static(&spapr_phb_info);
2202}
2203
2204type_init(spapr_pci_register_types)
2205
2206static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2207{
2208    bool be = *(bool *)opaque;
2209
2210    if (object_dynamic_cast(OBJECT(dev), "VGA")
2211        || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2212        object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2213                                 &error_abort);
2214    }
2215    return 0;
2216}
2217
2218void spapr_pci_switch_vga(bool big_endian)
2219{
2220    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2221    sPAPRPHBState *sphb;
2222
2223    /*
2224     * For backward compatibility with existing guests, we switch
2225     * the endianness of the VGA controller when changing the guest
2226     * interrupt mode
2227     */
2228    QLIST_FOREACH(sphb, &spapr->phbs, list) {
2229        BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2230        qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2231                           &big_endian);
2232    }
2233}
2234