qemu/hw/s390x/sclp.c
<<
>>
Prefs
   1/*
   2 * SCLP Support
   3 *
   4 * Copyright IBM, Corp. 2012
   5 *
   6 * Authors:
   7 *  Christian Borntraeger <borntraeger@de.ibm.com>
   8 *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
  11 * option) any later version.  See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include "cpu.h"
  18#include "exec/memory.h"
  19#include "sysemu/sysemu.h"
  20#include "exec/address-spaces.h"
  21#include "hw/boards.h"
  22#include "hw/s390x/sclp.h"
  23#include "hw/s390x/event-facility.h"
  24#include "hw/s390x/s390-pci-bus.h"
  25#include "hw/s390x/ipl.h"
  26
  27static inline SCLPDevice *get_sclp_device(void)
  28{
  29    static SCLPDevice *sclp;
  30
  31    if (!sclp) {
  32        sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
  33    }
  34    return sclp;
  35}
  36
  37static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int *count)
  38{
  39    MachineState *ms = MACHINE(qdev_get_machine());
  40    uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
  41    int i;
  42
  43    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
  44    for (i = 0, *count = 0; i < ms->possible_cpus->len; i++) {
  45        if (!ms->possible_cpus->cpus[i].cpu) {
  46            continue;
  47        }
  48        entry[*count].address = ms->possible_cpus->cpus[i].arch_id;
  49        entry[*count].type = 0;
  50        memcpy(entry[*count].features, features, sizeof(features));
  51        (*count)++;
  52    }
  53}
  54
  55/* Provide information about the configuration, CPUs and storage */
  56static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
  57{
  58    ReadInfo *read_info = (ReadInfo *) sccb;
  59    MachineState *machine = MACHINE(qdev_get_machine());
  60    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
  61    int cpu_count;
  62    int rnsize, rnmax;
  63    int slots = MIN(machine->ram_slots, s390_get_memslot_count());
  64    IplParameterBlock *ipib = s390_ipl_get_iplb();
  65
  66    /* CPU information */
  67    prepare_cpu_entries(sclp, read_info->entries, &cpu_count);
  68    read_info->entries_cpu = cpu_to_be16(cpu_count);
  69    read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
  70    read_info->highest_cpu = cpu_to_be16(max_cpus);
  71
  72    read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
  73
  74    /* Configuration Characteristic (Extension) */
  75    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
  76                         read_info->conf_char);
  77    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
  78                         read_info->conf_char_ext);
  79
  80    read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
  81                                        SCLP_HAS_IOA_RECONFIG);
  82
  83    /* Memory Hotplug is only supported for the ccw machine type */
  84    if (mhd) {
  85        mhd->standby_subregion_size = MEM_SECTION_SIZE;
  86        /* Deduct the memory slot already used for core */
  87        if (slots > 0) {
  88            while ((mhd->standby_subregion_size * (slots - 1)
  89                    < mhd->standby_mem_size)) {
  90                mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
  91            }
  92        }
  93        /*
  94         * Initialize mapping of guest standby memory sections indicating which
  95         * are and are not online. Assume all standby memory begins offline.
  96         */
  97        if (mhd->standby_state_map == 0) {
  98            if (mhd->standby_mem_size % mhd->standby_subregion_size) {
  99                mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
 100                                             mhd->standby_subregion_size + 1) *
 101                                             (mhd->standby_subregion_size /
 102                                             MEM_SECTION_SIZE));
 103            } else {
 104                mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
 105                                                   MEM_SECTION_SIZE);
 106            }
 107        }
 108        mhd->padded_ram_size = ram_size + mhd->pad_size;
 109        mhd->rzm = 1 << mhd->increment_size;
 110
 111        read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
 112    }
 113    read_info->mha_pow = s390_get_mha_pow();
 114    read_info->hmfai = cpu_to_be32(s390_get_hmfai());
 115
 116    rnsize = 1 << (sclp->increment_size - 20);
 117    if (rnsize <= 128) {
 118        read_info->rnsize = rnsize;
 119    } else {
 120        read_info->rnsize = 0;
 121        read_info->rnsize2 = cpu_to_be32(rnsize);
 122    }
 123
 124    rnmax = machine->maxram_size >> sclp->increment_size;
 125    if (rnmax < 0x10000) {
 126        read_info->rnmax = cpu_to_be16(rnmax);
 127    } else {
 128        read_info->rnmax = cpu_to_be16(0);
 129        read_info->rnmax2 = cpu_to_be64(rnmax);
 130    }
 131
 132    if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
 133        memcpy(&read_info->loadparm, &ipib->loadparm,
 134               sizeof(read_info->loadparm));
 135    } else {
 136        s390_ipl_set_loadparm(read_info->loadparm);
 137    }
 138
 139    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 140}
 141
 142static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
 143{
 144    int i, assigned;
 145    int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
 146    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 147    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 148
 149    if (!mhd) {
 150        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 151        return;
 152    }
 153
 154    if ((ram_size >> mhd->increment_size) >= 0x10000) {
 155        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 156        return;
 157    }
 158
 159    /* Return information regarding core memory */
 160    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 161    assigned = ram_size >> mhd->increment_size;
 162    storage_info->assigned = cpu_to_be16(assigned);
 163
 164    for (i = 0; i < assigned; i++) {
 165        storage_info->entries[i] = cpu_to_be32(subincrement_id);
 166        subincrement_id += SCLP_INCREMENT_UNIT;
 167    }
 168    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 169}
 170
 171static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
 172{
 173    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 174    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 175
 176    if (!mhd) {
 177        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 178        return;
 179    }
 180
 181    if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
 182        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 183        return;
 184    }
 185
 186    /* Return information regarding standby memory */
 187    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 188    storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
 189                                         mhd->increment_size);
 190    storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
 191                                        mhd->increment_size);
 192    sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
 193}
 194
 195static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
 196                                   uint16_t element)
 197{
 198    int i, assigned, subincrement_id;
 199    AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
 200    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 201
 202    if (!mhd) {
 203        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 204        return;
 205    }
 206
 207    if (element != 1) {
 208        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 209        return;
 210    }
 211
 212    assigned = mhd->standby_mem_size >> mhd->increment_size;
 213    attach_info->assigned = cpu_to_be16(assigned);
 214    subincrement_id = ((ram_size >> mhd->increment_size) << 16)
 215                      + SCLP_STARTING_SUBINCREMENT_ID;
 216    for (i = 0; i < assigned; i++) {
 217        attach_info->entries[i] = cpu_to_be32(subincrement_id);
 218        subincrement_id += SCLP_INCREMENT_UNIT;
 219    }
 220    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 221}
 222
 223static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
 224{
 225    MemoryRegion *mr = NULL;
 226    uint64_t this_subregion_size;
 227    AssignStorage *assign_info = (AssignStorage *) sccb;
 228    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 229    ram_addr_t assign_addr;
 230    MemoryRegion *sysmem = get_system_memory();
 231
 232    if (!mhd) {
 233        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 234        return;
 235    }
 236    assign_addr = (assign_info->rn - 1) * mhd->rzm;
 237
 238    if ((assign_addr % MEM_SECTION_SIZE == 0) &&
 239        (assign_addr >= mhd->padded_ram_size)) {
 240        /* Re-use existing memory region if found */
 241        mr = memory_region_find(sysmem, assign_addr, 1).mr;
 242        memory_region_unref(mr);
 243        if (!mr) {
 244
 245            MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
 246
 247            /* offset to align to standby_subregion_size for allocation */
 248            ram_addr_t offset = assign_addr -
 249                                (assign_addr - mhd->padded_ram_size)
 250                                % mhd->standby_subregion_size;
 251
 252            /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
 253            char id[16];
 254            snprintf(id, 16, "standby.ram%d",
 255                     (int)((offset - mhd->padded_ram_size) /
 256                     mhd->standby_subregion_size) + 1);
 257
 258            /* Allocate a subregion of the calculated standby_subregion_size */
 259            if (offset + mhd->standby_subregion_size >
 260                mhd->padded_ram_size + mhd->standby_mem_size) {
 261                this_subregion_size = mhd->padded_ram_size +
 262                  mhd->standby_mem_size - offset;
 263            } else {
 264                this_subregion_size = mhd->standby_subregion_size;
 265            }
 266
 267            memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
 268                                   &error_fatal);
 269            /* This is a hack to make memory hotunplug work again. Once we have
 270             * subdevices, we have to unparent them when unassigning memory,
 271             * instead of doing it via the ref count of the MemoryRegion. */
 272            object_ref(OBJECT(standby_ram));
 273            object_unparent(OBJECT(standby_ram));
 274            memory_region_add_subregion(sysmem, offset, standby_ram);
 275        }
 276        /* The specified subregion is no longer in standby */
 277        mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
 278                               / MEM_SECTION_SIZE] = 1;
 279    }
 280    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 281}
 282
 283static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
 284{
 285    MemoryRegion *mr = NULL;
 286    AssignStorage *assign_info = (AssignStorage *) sccb;
 287    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 288    ram_addr_t unassign_addr;
 289    MemoryRegion *sysmem = get_system_memory();
 290
 291    if (!mhd) {
 292        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 293        return;
 294    }
 295    unassign_addr = (assign_info->rn - 1) * mhd->rzm;
 296
 297    /* if the addr is a multiple of 256 MB */
 298    if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
 299        (unassign_addr >= mhd->padded_ram_size)) {
 300        mhd->standby_state_map[(unassign_addr -
 301                           mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
 302
 303        /* find the specified memory region and destroy it */
 304        mr = memory_region_find(sysmem, unassign_addr, 1).mr;
 305        memory_region_unref(mr);
 306        if (mr) {
 307            int i;
 308            int is_removable = 1;
 309            ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
 310                                     (unassign_addr - mhd->padded_ram_size)
 311                                     % mhd->standby_subregion_size);
 312            /* Mark all affected subregions as 'standby' once again */
 313            for (i = 0;
 314                 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
 315                 i++) {
 316
 317                if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
 318                    is_removable = 0;
 319                    break;
 320                }
 321            }
 322            if (is_removable) {
 323                memory_region_del_subregion(sysmem, mr);
 324                object_unref(OBJECT(mr));
 325            }
 326        }
 327    }
 328    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 329}
 330
 331/* Provide information about the CPU */
 332static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
 333{
 334    ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
 335    int cpu_count;
 336
 337    prepare_cpu_entries(sclp, cpu_info->entries, &cpu_count);
 338    cpu_info->nr_configured = cpu_to_be16(cpu_count);
 339    cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
 340    cpu_info->nr_standby = cpu_to_be16(0);
 341
 342    /* The standby offset is 16-byte for each CPU */
 343    cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
 344        + cpu_info->nr_configured*sizeof(CPUEntry));
 345
 346
 347    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 348}
 349
 350static void sclp_configure_io_adapter(SCLPDevice *sclp, SCCB *sccb,
 351                                      bool configure)
 352{
 353    int rc;
 354
 355    if (be16_to_cpu(sccb->h.length) < 16) {
 356        rc = SCLP_RC_INSUFFICIENT_SCCB_LENGTH;
 357        goto out_err;
 358    }
 359
 360    switch (((IoaCfgSccb *)sccb)->atype) {
 361    case SCLP_RECONFIG_PCI_ATYPE:
 362        if (s390_has_feat(S390_FEAT_ZPCI)) {
 363            if (configure) {
 364                s390_pci_sclp_configure(sccb);
 365            } else {
 366                s390_pci_sclp_deconfigure(sccb);
 367            }
 368            return;
 369        }
 370        /* fallthrough */
 371    default:
 372        rc = SCLP_RC_ADAPTER_TYPE_NOT_RECOGNIZED;
 373    }
 374
 375 out_err:
 376    sccb->h.response_code = cpu_to_be16(rc);
 377}
 378
 379static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
 380{
 381    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 382    SCLPEventFacility *ef = sclp->event_facility;
 383    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 384
 385    switch (code & SCLP_CMD_CODE_MASK) {
 386    case SCLP_CMDW_READ_SCP_INFO:
 387    case SCLP_CMDW_READ_SCP_INFO_FORCED:
 388        sclp_c->read_SCP_info(sclp, sccb);
 389        break;
 390    case SCLP_CMDW_READ_CPU_INFO:
 391        sclp_c->read_cpu_info(sclp, sccb);
 392        break;
 393    case SCLP_READ_STORAGE_ELEMENT_INFO:
 394        if (code & 0xff00) {
 395            sclp_c->read_storage_element1_info(sclp, sccb);
 396        } else {
 397            sclp_c->read_storage_element0_info(sclp, sccb);
 398        }
 399        break;
 400    case SCLP_ATTACH_STORAGE_ELEMENT:
 401        sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
 402        break;
 403    case SCLP_ASSIGN_STORAGE:
 404        sclp_c->assign_storage(sclp, sccb);
 405        break;
 406    case SCLP_UNASSIGN_STORAGE:
 407        sclp_c->unassign_storage(sclp, sccb);
 408        break;
 409    case SCLP_CMDW_CONFIGURE_IOA:
 410        sclp_configure_io_adapter(sclp, sccb, true);
 411        break;
 412    case SCLP_CMDW_DECONFIGURE_IOA:
 413        sclp_configure_io_adapter(sclp, sccb, false);
 414        break;
 415    default:
 416        efc->command_handler(ef, sccb, code);
 417        break;
 418    }
 419}
 420
 421int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
 422{
 423    SCLPDevice *sclp = get_sclp_device();
 424    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 425    int r = 0;
 426    SCCB work_sccb;
 427
 428    hwaddr sccb_len = sizeof(SCCB);
 429
 430    /* first some basic checks on program checks */
 431    if (env->psw.mask & PSW_MASK_PSTATE) {
 432        r = -PGM_PRIVILEGED;
 433        goto out;
 434    }
 435    if (cpu_physical_memory_is_io(sccb)) {
 436        r = -PGM_ADDRESSING;
 437        goto out;
 438    }
 439    if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
 440        || (sccb & ~0x7ffffff8UL) != 0) {
 441        r = -PGM_SPECIFICATION;
 442        goto out;
 443    }
 444
 445    /*
 446     * we want to work on a private copy of the sccb, to prevent guests
 447     * from playing dirty tricks by modifying the memory content after
 448     * the host has checked the values
 449     */
 450    cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
 451
 452    /* Valid sccb sizes */
 453    if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
 454        be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
 455        r = -PGM_SPECIFICATION;
 456        goto out;
 457    }
 458
 459    sclp_c->execute(sclp, &work_sccb, code);
 460
 461    cpu_physical_memory_write(sccb, &work_sccb,
 462                              be16_to_cpu(work_sccb.h.length));
 463
 464    sclp_c->service_interrupt(sclp, sccb);
 465
 466out:
 467    return r;
 468}
 469
 470static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
 471{
 472    SCLPEventFacility *ef = sclp->event_facility;
 473    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 474
 475    uint32_t param = sccb & ~3;
 476
 477    /* Indicate whether an event is still pending */
 478    param |= efc->event_pending(ef) ? 1 : 0;
 479
 480    if (!param) {
 481        /* No need to send an interrupt, there's nothing to be notified about */
 482        return;
 483    }
 484    s390_sclp_extint(param);
 485}
 486
 487void sclp_service_interrupt(uint32_t sccb)
 488{
 489    SCLPDevice *sclp = get_sclp_device();
 490    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 491
 492    sclp_c->service_interrupt(sclp, sccb);
 493}
 494
 495/* qemu object creation and initialization functions */
 496
 497void s390_sclp_init(void)
 498{
 499    Object *new = object_new(TYPE_SCLP);
 500
 501    object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
 502                              NULL);
 503    object_unref(OBJECT(new));
 504    qdev_init_nofail(DEVICE(new));
 505}
 506
 507static void sclp_realize(DeviceState *dev, Error **errp)
 508{
 509    MachineState *machine = MACHINE(qdev_get_machine());
 510    SCLPDevice *sclp = SCLP(dev);
 511    Error *err = NULL;
 512    uint64_t hw_limit;
 513    int ret;
 514
 515    object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
 516                             &err);
 517    if (err) {
 518        goto out;
 519    }
 520    /*
 521     * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
 522     * as we can't find a fitting bus via the qom tree, we have to add the
 523     * event facility to the sysbus, so e.g. a sclp console can be created.
 524     */
 525    qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
 526
 527    ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
 528    if (ret == -E2BIG) {
 529        error_setg(&err, "host supports a maximum of %" PRIu64 " GB",
 530                   hw_limit >> 30);
 531    } else if (ret) {
 532        error_setg(&err, "setting the guest size failed");
 533    }
 534
 535out:
 536    error_propagate(errp, err);
 537}
 538
 539static void sclp_memory_init(SCLPDevice *sclp)
 540{
 541    MachineState *machine = MACHINE(qdev_get_machine());
 542    ram_addr_t initial_mem = machine->ram_size;
 543    ram_addr_t max_mem = machine->maxram_size;
 544    ram_addr_t standby_mem = max_mem - initial_mem;
 545    ram_addr_t pad_mem = 0;
 546    int increment_size = 20;
 547
 548    /* The storage increment size is a multiple of 1M and is a power of 2.
 549     * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
 550     * The variable 'increment_size' is an exponent of 2 that can be
 551     * used to calculate the size (in bytes) of an increment. */
 552    while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 553        increment_size++;
 554    }
 555    if (machine->ram_slots) {
 556        while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 557            increment_size++;
 558        }
 559    }
 560    sclp->increment_size = increment_size;
 561
 562    /* The core and standby memory areas need to be aligned with
 563     * the increment size.  In effect, this can cause the
 564     * user-specified memory size to be rounded down to align
 565     * with the nearest increment boundary. */
 566    initial_mem = initial_mem >> increment_size << increment_size;
 567    standby_mem = standby_mem >> increment_size << increment_size;
 568
 569    /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
 570       calculate the pad size necessary to force this boundary. */
 571    if (machine->ram_slots && standby_mem) {
 572        sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
 573
 574        if (initial_mem % MEM_SECTION_SIZE) {
 575            pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
 576        }
 577        mhd->increment_size = increment_size;
 578        mhd->pad_size = pad_mem;
 579        mhd->standby_mem_size = standby_mem;
 580    }
 581    machine->ram_size = initial_mem;
 582    machine->maxram_size = initial_mem + pad_mem + standby_mem;
 583    /* let's propagate the changed ram size into the global variable. */
 584    ram_size = initial_mem;
 585}
 586
 587static void sclp_init(Object *obj)
 588{
 589    SCLPDevice *sclp = SCLP(obj);
 590    Object *new;
 591
 592    new = object_new(TYPE_SCLP_EVENT_FACILITY);
 593    object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
 594    object_unref(new);
 595    sclp->event_facility = EVENT_FACILITY(new);
 596
 597    sclp_memory_init(sclp);
 598}
 599
 600static void sclp_class_init(ObjectClass *oc, void *data)
 601{
 602    SCLPDeviceClass *sc = SCLP_CLASS(oc);
 603    DeviceClass *dc = DEVICE_CLASS(oc);
 604
 605    dc->desc = "SCLP (Service-Call Logical Processor)";
 606    dc->realize = sclp_realize;
 607    dc->hotpluggable = false;
 608    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 609    /*
 610     * Reason: Creates TYPE_SCLP_EVENT_FACILITY in sclp_init
 611     * which is a non-pluggable sysbus device
 612     */
 613    dc->user_creatable = false;
 614
 615    sc->read_SCP_info = read_SCP_info;
 616    sc->read_storage_element0_info = read_storage_element0_info;
 617    sc->read_storage_element1_info = read_storage_element1_info;
 618    sc->attach_storage_element = attach_storage_element;
 619    sc->assign_storage = assign_storage;
 620    sc->unassign_storage = unassign_storage;
 621    sc->read_cpu_info = sclp_read_cpu_info;
 622    sc->execute = sclp_execute;
 623    sc->service_interrupt = service_interrupt;
 624}
 625
 626static TypeInfo sclp_info = {
 627    .name = TYPE_SCLP,
 628    .parent = TYPE_DEVICE,
 629    .instance_init = sclp_init,
 630    .instance_size = sizeof(SCLPDevice),
 631    .class_init = sclp_class_init,
 632    .class_size = sizeof(SCLPDeviceClass),
 633};
 634
 635sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
 636{
 637    DeviceState *dev;
 638    dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
 639    object_property_add_child(qdev_get_machine(),
 640                              TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 641                              OBJECT(dev), NULL);
 642    qdev_init_nofail(dev);
 643    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 644                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 645}
 646
 647sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
 648{
 649    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 650                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 651}
 652
 653static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
 654                                               void *data)
 655{
 656    DeviceClass *dc = DEVICE_CLASS(klass);
 657
 658    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 659}
 660
 661static TypeInfo sclp_memory_hotplug_dev_info = {
 662    .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 663    .parent = TYPE_SYS_BUS_DEVICE,
 664    .instance_size = sizeof(sclpMemoryHotplugDev),
 665    .class_init = sclp_memory_hotplug_dev_class_init,
 666};
 667
 668static void register_types(void)
 669{
 670    type_register_static(&sclp_memory_hotplug_dev_info);
 671    type_register_static(&sclp_info);
 672}
 673type_init(register_types);
 674