qemu/target/i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include <sys/ioctl.h>
  18#include <sys/utsname.h>
  19
  20#include <linux/kvm.h>
  21#include <linux/kvm_para.h>
  22
  23#include "qemu-common.h"
  24#include "cpu.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/hw_accel.h"
  27#include "sysemu/kvm_int.h"
  28#include "kvm_i386.h"
  29#include "hyperv.h"
  30#include "hyperv-proto.h"
  31
  32#include "exec/gdbstub.h"
  33#include "qemu/host-utils.h"
  34#include "qemu/config-file.h"
  35#include "qemu/error-report.h"
  36#include "hw/i386/pc.h"
  37#include "hw/i386/apic.h"
  38#include "hw/i386/apic_internal.h"
  39#include "hw/i386/apic-msidef.h"
  40#include "hw/i386/intel_iommu.h"
  41#include "hw/i386/x86-iommu.h"
  42
  43#include "exec/ioport.h"
  44#include "hw/pci/pci.h"
  45#include "hw/pci/msi.h"
  46#include "hw/pci/msix.h"
  47#include "migration/blocker.h"
  48#include "exec/memattrs.h"
  49#include "trace.h"
  50
  51//#define DEBUG_KVM
  52
  53#ifdef DEBUG_KVM
  54#define DPRINTF(fmt, ...) \
  55    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  56#else
  57#define DPRINTF(fmt, ...) \
  58    do { } while (0)
  59#endif
  60
  61#define MSR_KVM_WALL_CLOCK  0x11
  62#define MSR_KVM_SYSTEM_TIME 0x12
  63
  64/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  65 * 255 kvm_msr_entry structs */
  66#define MSR_BUF_SIZE 4096
  67
  68const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  69    KVM_CAP_INFO(SET_TSS_ADDR),
  70    KVM_CAP_INFO(EXT_CPUID),
  71    KVM_CAP_INFO(MP_STATE),
  72    KVM_CAP_LAST_INFO
  73};
  74
  75static bool has_msr_star;
  76static bool has_msr_hsave_pa;
  77static bool has_msr_tsc_aux;
  78static bool has_msr_tsc_adjust;
  79static bool has_msr_tsc_deadline;
  80static bool has_msr_feature_control;
  81static bool has_msr_misc_enable;
  82static bool has_msr_smbase;
  83static bool has_msr_bndcfgs;
  84static int lm_capable_kernel;
  85static bool has_msr_hv_hypercall;
  86static bool has_msr_hv_crash;
  87static bool has_msr_hv_reset;
  88static bool has_msr_hv_vpindex;
  89static bool has_msr_hv_runtime;
  90static bool has_msr_hv_synic;
  91static bool has_msr_hv_stimer;
  92static bool has_msr_hv_frequencies;
  93static bool has_msr_xss;
  94
  95static bool has_msr_architectural_pmu;
  96static uint32_t num_architectural_pmu_counters;
  97
  98static int has_xsave;
  99static int has_xcrs;
 100static int has_pit_state2;
 101
 102static bool has_msr_mcg_ext_ctl;
 103
 104static struct kvm_cpuid2 *cpuid_cache;
 105
 106int kvm_has_pit_state2(void)
 107{
 108    return has_pit_state2;
 109}
 110
 111bool kvm_has_smm(void)
 112{
 113    return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 114}
 115
 116bool kvm_has_adjust_clock_stable(void)
 117{
 118    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 119
 120    return (ret == KVM_CLOCK_TSC_STABLE);
 121}
 122
 123bool kvm_allows_irq0_override(void)
 124{
 125    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 126}
 127
 128static bool kvm_x2apic_api_set_flags(uint64_t flags)
 129{
 130    KVMState *s = KVM_STATE(current_machine->accelerator);
 131
 132    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 133}
 134
 135#define MEMORIZE(fn, _result) \
 136    ({ \
 137        static bool _memorized; \
 138        \
 139        if (_memorized) { \
 140            return _result; \
 141        } \
 142        _memorized = true; \
 143        _result = fn; \
 144    })
 145
 146static bool has_x2apic_api;
 147
 148bool kvm_has_x2apic_api(void)
 149{
 150    return has_x2apic_api;
 151}
 152
 153bool kvm_enable_x2apic(void)
 154{
 155    return MEMORIZE(
 156             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 157                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 158             has_x2apic_api);
 159}
 160
 161static int kvm_get_tsc(CPUState *cs)
 162{
 163    X86CPU *cpu = X86_CPU(cs);
 164    CPUX86State *env = &cpu->env;
 165    struct {
 166        struct kvm_msrs info;
 167        struct kvm_msr_entry entries[1];
 168    } msr_data;
 169    int ret;
 170
 171    if (env->tsc_valid) {
 172        return 0;
 173    }
 174
 175    msr_data.info.nmsrs = 1;
 176    msr_data.entries[0].index = MSR_IA32_TSC;
 177    env->tsc_valid = !runstate_is_running();
 178
 179    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 180    if (ret < 0) {
 181        return ret;
 182    }
 183
 184    assert(ret == 1);
 185    env->tsc = msr_data.entries[0].data;
 186    return 0;
 187}
 188
 189static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 190{
 191    kvm_get_tsc(cpu);
 192}
 193
 194void kvm_synchronize_all_tsc(void)
 195{
 196    CPUState *cpu;
 197
 198    if (kvm_enabled()) {
 199        CPU_FOREACH(cpu) {
 200            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 201        }
 202    }
 203}
 204
 205static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 206{
 207    struct kvm_cpuid2 *cpuid;
 208    int r, size;
 209
 210    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 211    cpuid = g_malloc0(size);
 212    cpuid->nent = max;
 213    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 214    if (r == 0 && cpuid->nent >= max) {
 215        r = -E2BIG;
 216    }
 217    if (r < 0) {
 218        if (r == -E2BIG) {
 219            g_free(cpuid);
 220            return NULL;
 221        } else {
 222            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 223                    strerror(-r));
 224            exit(1);
 225        }
 226    }
 227    return cpuid;
 228}
 229
 230/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 231 * for all entries.
 232 */
 233static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 234{
 235    struct kvm_cpuid2 *cpuid;
 236    int max = 1;
 237
 238    if (cpuid_cache != NULL) {
 239        return cpuid_cache;
 240    }
 241    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 242        max *= 2;
 243    }
 244    cpuid_cache = cpuid;
 245    return cpuid;
 246}
 247
 248static const struct kvm_para_features {
 249    int cap;
 250    int feature;
 251} para_features[] = {
 252    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 253    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 254    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 255    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 256};
 257
 258static int get_para_features(KVMState *s)
 259{
 260    int i, features = 0;
 261
 262    for (i = 0; i < ARRAY_SIZE(para_features); i++) {
 263        if (kvm_check_extension(s, para_features[i].cap)) {
 264            features |= (1 << para_features[i].feature);
 265        }
 266    }
 267
 268    return features;
 269}
 270
 271static bool host_tsx_blacklisted(void)
 272{
 273    int family, model, stepping;\
 274    char vendor[CPUID_VENDOR_SZ + 1];
 275
 276    host_vendor_fms(vendor, &family, &model, &stepping);
 277
 278    /* Check if we are running on a Haswell host known to have broken TSX */
 279    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 280           (family == 6) &&
 281           ((model == 63 && stepping < 4) ||
 282            model == 60 || model == 69 || model == 70);
 283}
 284
 285/* Returns the value for a specific register on the cpuid entry
 286 */
 287static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 288{
 289    uint32_t ret = 0;
 290    switch (reg) {
 291    case R_EAX:
 292        ret = entry->eax;
 293        break;
 294    case R_EBX:
 295        ret = entry->ebx;
 296        break;
 297    case R_ECX:
 298        ret = entry->ecx;
 299        break;
 300    case R_EDX:
 301        ret = entry->edx;
 302        break;
 303    }
 304    return ret;
 305}
 306
 307/* Find matching entry for function/index on kvm_cpuid2 struct
 308 */
 309static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 310                                                 uint32_t function,
 311                                                 uint32_t index)
 312{
 313    int i;
 314    for (i = 0; i < cpuid->nent; ++i) {
 315        if (cpuid->entries[i].function == function &&
 316            cpuid->entries[i].index == index) {
 317            return &cpuid->entries[i];
 318        }
 319    }
 320    /* not found: */
 321    return NULL;
 322}
 323
 324uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 325                                      uint32_t index, int reg)
 326{
 327    struct kvm_cpuid2 *cpuid;
 328    uint32_t ret = 0;
 329    uint32_t cpuid_1_edx;
 330    bool found = false;
 331
 332    cpuid = get_supported_cpuid(s);
 333
 334    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 335    if (entry) {
 336        found = true;
 337        ret = cpuid_entry_get_reg(entry, reg);
 338    }
 339
 340    /* Fixups for the data returned by KVM, below */
 341
 342    if (function == 1 && reg == R_EDX) {
 343        /* KVM before 2.6.30 misreports the following features */
 344        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 345    } else if (function == 1 && reg == R_ECX) {
 346        /* We can set the hypervisor flag, even if KVM does not return it on
 347         * GET_SUPPORTED_CPUID
 348         */
 349        ret |= CPUID_EXT_HYPERVISOR;
 350        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 351         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 352         * and the irqchip is in the kernel.
 353         */
 354        if (kvm_irqchip_in_kernel() &&
 355                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 356            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 357        }
 358
 359        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 360         * without the in-kernel irqchip
 361         */
 362        if (!kvm_irqchip_in_kernel()) {
 363            ret &= ~CPUID_EXT_X2APIC;
 364        }
 365    } else if (function == 6 && reg == R_EAX) {
 366        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 367    } else if (function == 7 && index == 0 && reg == R_EBX) {
 368        if (host_tsx_blacklisted()) {
 369            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 370        }
 371    } else if (function == 0x80000001 && reg == R_EDX) {
 372        /* On Intel, kvm returns cpuid according to the Intel spec,
 373         * so add missing bits according to the AMD spec:
 374         */
 375        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 376        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 377    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 378        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 379         * be enabled without the in-kernel irqchip
 380         */
 381        if (!kvm_irqchip_in_kernel()) {
 382            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 383        }
 384    }
 385
 386    /* fallback for older kernels */
 387    if ((function == KVM_CPUID_FEATURES) && !found) {
 388        ret = get_para_features(s);
 389    }
 390
 391    return ret;
 392}
 393
 394typedef struct HWPoisonPage {
 395    ram_addr_t ram_addr;
 396    QLIST_ENTRY(HWPoisonPage) list;
 397} HWPoisonPage;
 398
 399static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 400    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 401
 402static void kvm_unpoison_all(void *param)
 403{
 404    HWPoisonPage *page, *next_page;
 405
 406    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 407        QLIST_REMOVE(page, list);
 408        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 409        g_free(page);
 410    }
 411}
 412
 413static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 414{
 415    HWPoisonPage *page;
 416
 417    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 418        if (page->ram_addr == ram_addr) {
 419            return;
 420        }
 421    }
 422    page = g_new(HWPoisonPage, 1);
 423    page->ram_addr = ram_addr;
 424    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 425}
 426
 427static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 428                                     int *max_banks)
 429{
 430    int r;
 431
 432    r = kvm_check_extension(s, KVM_CAP_MCE);
 433    if (r > 0) {
 434        *max_banks = r;
 435        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 436    }
 437    return -ENOSYS;
 438}
 439
 440static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 441{
 442    CPUState *cs = CPU(cpu);
 443    CPUX86State *env = &cpu->env;
 444    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 445                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 446    uint64_t mcg_status = MCG_STATUS_MCIP;
 447    int flags = 0;
 448
 449    if (code == BUS_MCEERR_AR) {
 450        status |= MCI_STATUS_AR | 0x134;
 451        mcg_status |= MCG_STATUS_EIPV;
 452    } else {
 453        status |= 0xc0;
 454        mcg_status |= MCG_STATUS_RIPV;
 455    }
 456
 457    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 458    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 459     * guest kernel back into env->mcg_ext_ctl.
 460     */
 461    cpu_synchronize_state(cs);
 462    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 463        mcg_status |= MCG_STATUS_LMCE;
 464        flags = 0;
 465    }
 466
 467    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 468                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 469}
 470
 471static void hardware_memory_error(void)
 472{
 473    fprintf(stderr, "Hardware memory error!\n");
 474    exit(1);
 475}
 476
 477void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 478{
 479    X86CPU *cpu = X86_CPU(c);
 480    CPUX86State *env = &cpu->env;
 481    ram_addr_t ram_addr;
 482    hwaddr paddr;
 483
 484    /* If we get an action required MCE, it has been injected by KVM
 485     * while the VM was running.  An action optional MCE instead should
 486     * be coming from the main thread, which qemu_init_sigbus identifies
 487     * as the "early kill" thread.
 488     */
 489    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 490
 491    if ((env->mcg_cap & MCG_SER_P) && addr) {
 492        ram_addr = qemu_ram_addr_from_host(addr);
 493        if (ram_addr != RAM_ADDR_INVALID &&
 494            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 495            kvm_hwpoison_page_add(ram_addr);
 496            kvm_mce_inject(cpu, paddr, code);
 497            return;
 498        }
 499
 500        fprintf(stderr, "Hardware memory error for memory used by "
 501                "QEMU itself instead of guest system!\n");
 502    }
 503
 504    if (code == BUS_MCEERR_AR) {
 505        hardware_memory_error();
 506    }
 507
 508    /* Hope we are lucky for AO MCE */
 509}
 510
 511static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 512{
 513    CPUX86State *env = &cpu->env;
 514
 515    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
 516        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 517        struct kvm_x86_mce mce;
 518
 519        env->exception_injected = -1;
 520
 521        /*
 522         * There must be at least one bank in use if an MCE is pending.
 523         * Find it and use its values for the event injection.
 524         */
 525        for (bank = 0; bank < bank_num; bank++) {
 526            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 527                break;
 528            }
 529        }
 530        assert(bank < bank_num);
 531
 532        mce.bank = bank;
 533        mce.status = env->mce_banks[bank * 4 + 1];
 534        mce.mcg_status = env->mcg_status;
 535        mce.addr = env->mce_banks[bank * 4 + 2];
 536        mce.misc = env->mce_banks[bank * 4 + 3];
 537
 538        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 539    }
 540    return 0;
 541}
 542
 543static void cpu_update_state(void *opaque, int running, RunState state)
 544{
 545    CPUX86State *env = opaque;
 546
 547    if (running) {
 548        env->tsc_valid = false;
 549    }
 550}
 551
 552unsigned long kvm_arch_vcpu_id(CPUState *cs)
 553{
 554    X86CPU *cpu = X86_CPU(cs);
 555    return cpu->apic_id;
 556}
 557
 558#ifndef KVM_CPUID_SIGNATURE_NEXT
 559#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 560#endif
 561
 562static bool hyperv_hypercall_available(X86CPU *cpu)
 563{
 564    return cpu->hyperv_vapic ||
 565           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
 566}
 567
 568static bool hyperv_enabled(X86CPU *cpu)
 569{
 570    CPUState *cs = CPU(cpu);
 571    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 572           (hyperv_hypercall_available(cpu) ||
 573            cpu->hyperv_time  ||
 574            cpu->hyperv_relaxed_timing ||
 575            cpu->hyperv_crash ||
 576            cpu->hyperv_reset ||
 577            cpu->hyperv_vpindex ||
 578            cpu->hyperv_runtime ||
 579            cpu->hyperv_synic ||
 580            cpu->hyperv_stimer);
 581}
 582
 583static int kvm_arch_set_tsc_khz(CPUState *cs)
 584{
 585    X86CPU *cpu = X86_CPU(cs);
 586    CPUX86State *env = &cpu->env;
 587    int r;
 588
 589    if (!env->tsc_khz) {
 590        return 0;
 591    }
 592
 593    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
 594        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 595        -ENOTSUP;
 596    if (r < 0) {
 597        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 598         * TSC frequency doesn't match the one we want.
 599         */
 600        int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 601                       kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 602                       -ENOTSUP;
 603        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 604            warn_report("TSC frequency mismatch between "
 605                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 606                        "and TSC scaling unavailable",
 607                        env->tsc_khz, cur_freq);
 608            return r;
 609        }
 610    }
 611
 612    return 0;
 613}
 614
 615static bool tsc_is_stable_and_known(CPUX86State *env)
 616{
 617    if (!env->tsc_khz) {
 618        return false;
 619    }
 620    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 621        || env->user_tsc_khz;
 622}
 623
 624static int hyperv_handle_properties(CPUState *cs)
 625{
 626    X86CPU *cpu = X86_CPU(cs);
 627    CPUX86State *env = &cpu->env;
 628
 629    if (cpu->hyperv_time &&
 630            kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
 631        cpu->hyperv_time = false;
 632    }
 633
 634    if (cpu->hyperv_relaxed_timing) {
 635        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 636    }
 637    if (cpu->hyperv_vapic) {
 638        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 639        env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
 640    }
 641    if (cpu->hyperv_time) {
 642        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 643        env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
 644        env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
 645
 646        if (has_msr_hv_frequencies && tsc_is_stable_and_known(env)) {
 647            env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
 648            env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
 649        }
 650    }
 651    if (cpu->hyperv_crash && has_msr_hv_crash) {
 652        env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
 653    }
 654    env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
 655    if (cpu->hyperv_reset && has_msr_hv_reset) {
 656        env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
 657    }
 658    if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
 659        env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
 660    }
 661    if (cpu->hyperv_runtime && has_msr_hv_runtime) {
 662        env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
 663    }
 664    if (cpu->hyperv_synic) {
 665        int sint;
 666
 667        if (!has_msr_hv_synic ||
 668            kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
 669            fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
 670            return -ENOSYS;
 671        }
 672
 673        env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
 674        env->msr_hv_synic_version = HV_SYNIC_VERSION;
 675        for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
 676            env->msr_hv_synic_sint[sint] = HV_SINT_MASKED;
 677        }
 678    }
 679    if (cpu->hyperv_stimer) {
 680        if (!has_msr_hv_stimer) {
 681            fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
 682            return -ENOSYS;
 683        }
 684        env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
 685    }
 686    return 0;
 687}
 688
 689static Error *invtsc_mig_blocker;
 690
 691#define KVM_MAX_CPUID_ENTRIES  100
 692
 693int kvm_arch_init_vcpu(CPUState *cs)
 694{
 695    struct {
 696        struct kvm_cpuid2 cpuid;
 697        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
 698    } QEMU_PACKED cpuid_data;
 699    X86CPU *cpu = X86_CPU(cs);
 700    CPUX86State *env = &cpu->env;
 701    uint32_t limit, i, j, cpuid_i;
 702    uint32_t unused;
 703    struct kvm_cpuid_entry2 *c;
 704    uint32_t signature[3];
 705    int kvm_base = KVM_CPUID_SIGNATURE;
 706    int r;
 707    Error *local_err = NULL;
 708
 709    memset(&cpuid_data, 0, sizeof(cpuid_data));
 710
 711    cpuid_i = 0;
 712
 713    r = kvm_arch_set_tsc_khz(cs);
 714    if (r < 0) {
 715        goto fail;
 716    }
 717
 718    /* vcpu's TSC frequency is either specified by user, or following
 719     * the value used by KVM if the former is not present. In the
 720     * latter case, we query it from KVM and record in env->tsc_khz,
 721     * so that vcpu's TSC frequency can be migrated later via this field.
 722     */
 723    if (!env->tsc_khz) {
 724        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 725            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 726            -ENOTSUP;
 727        if (r > 0) {
 728            env->tsc_khz = r;
 729        }
 730    }
 731
 732    /* Paravirtualization CPUIDs */
 733    if (hyperv_enabled(cpu)) {
 734        c = &cpuid_data.entries[cpuid_i++];
 735        c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
 736        if (!cpu->hyperv_vendor_id) {
 737            memcpy(signature, "Microsoft Hv", 12);
 738        } else {
 739            size_t len = strlen(cpu->hyperv_vendor_id);
 740
 741            if (len > 12) {
 742                error_report("hv-vendor-id truncated to 12 characters");
 743                len = 12;
 744            }
 745            memset(signature, 0, 12);
 746            memcpy(signature, cpu->hyperv_vendor_id, len);
 747        }
 748        c->eax = HV_CPUID_MIN;
 749        c->ebx = signature[0];
 750        c->ecx = signature[1];
 751        c->edx = signature[2];
 752
 753        c = &cpuid_data.entries[cpuid_i++];
 754        c->function = HV_CPUID_INTERFACE;
 755        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
 756        c->eax = signature[0];
 757        c->ebx = 0;
 758        c->ecx = 0;
 759        c->edx = 0;
 760
 761        c = &cpuid_data.entries[cpuid_i++];
 762        c->function = HV_CPUID_VERSION;
 763        c->eax = 0x00001bbc;
 764        c->ebx = 0x00060001;
 765
 766        c = &cpuid_data.entries[cpuid_i++];
 767        c->function = HV_CPUID_FEATURES;
 768        r = hyperv_handle_properties(cs);
 769        if (r) {
 770            return r;
 771        }
 772        c->eax = env->features[FEAT_HYPERV_EAX];
 773        c->ebx = env->features[FEAT_HYPERV_EBX];
 774        c->edx = env->features[FEAT_HYPERV_EDX];
 775
 776        c = &cpuid_data.entries[cpuid_i++];
 777        c->function = HV_CPUID_ENLIGHTMENT_INFO;
 778        if (cpu->hyperv_relaxed_timing) {
 779            c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
 780        }
 781        if (cpu->hyperv_vapic) {
 782            c->eax |= HV_APIC_ACCESS_RECOMMENDED;
 783        }
 784        c->ebx = cpu->hyperv_spinlock_attempts;
 785
 786        c = &cpuid_data.entries[cpuid_i++];
 787        c->function = HV_CPUID_IMPLEMENT_LIMITS;
 788
 789        c->eax = cpu->hv_max_vps;
 790        c->ebx = 0x40;
 791
 792        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
 793        has_msr_hv_hypercall = true;
 794    }
 795
 796    if (cpu->expose_kvm) {
 797        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
 798        c = &cpuid_data.entries[cpuid_i++];
 799        c->function = KVM_CPUID_SIGNATURE | kvm_base;
 800        c->eax = KVM_CPUID_FEATURES | kvm_base;
 801        c->ebx = signature[0];
 802        c->ecx = signature[1];
 803        c->edx = signature[2];
 804
 805        c = &cpuid_data.entries[cpuid_i++];
 806        c->function = KVM_CPUID_FEATURES | kvm_base;
 807        c->eax = env->features[FEAT_KVM];
 808    }
 809
 810    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
 811
 812    for (i = 0; i <= limit; i++) {
 813        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 814            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
 815            abort();
 816        }
 817        c = &cpuid_data.entries[cpuid_i++];
 818
 819        switch (i) {
 820        case 2: {
 821            /* Keep reading function 2 till all the input is received */
 822            int times;
 823
 824            c->function = i;
 825            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
 826                       KVM_CPUID_FLAG_STATE_READ_NEXT;
 827            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 828            times = c->eax & 0xff;
 829
 830            for (j = 1; j < times; ++j) {
 831                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 832                    fprintf(stderr, "cpuid_data is full, no space for "
 833                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
 834                    abort();
 835                }
 836                c = &cpuid_data.entries[cpuid_i++];
 837                c->function = i;
 838                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
 839                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 840            }
 841            break;
 842        }
 843        case 4:
 844        case 0xb:
 845        case 0xd:
 846            for (j = 0; ; j++) {
 847                if (i == 0xd && j == 64) {
 848                    break;
 849                }
 850                c->function = i;
 851                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 852                c->index = j;
 853                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
 854
 855                if (i == 4 && c->eax == 0) {
 856                    break;
 857                }
 858                if (i == 0xb && !(c->ecx & 0xff00)) {
 859                    break;
 860                }
 861                if (i == 0xd && c->eax == 0) {
 862                    continue;
 863                }
 864                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 865                    fprintf(stderr, "cpuid_data is full, no space for "
 866                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
 867                    abort();
 868                }
 869                c = &cpuid_data.entries[cpuid_i++];
 870            }
 871            break;
 872        default:
 873            c->function = i;
 874            c->flags = 0;
 875            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 876            break;
 877        }
 878    }
 879
 880    if (limit >= 0x0a) {
 881        uint32_t ver;
 882
 883        cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
 884        if ((ver & 0xff) > 0) {
 885            has_msr_architectural_pmu = true;
 886            num_architectural_pmu_counters = (ver & 0xff00) >> 8;
 887
 888            /* Shouldn't be more than 32, since that's the number of bits
 889             * available in EBX to tell us _which_ counters are available.
 890             * Play it safe.
 891             */
 892            if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
 893                num_architectural_pmu_counters = MAX_GP_COUNTERS;
 894            }
 895        }
 896    }
 897
 898    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
 899
 900    for (i = 0x80000000; i <= limit; i++) {
 901        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 902            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
 903            abort();
 904        }
 905        c = &cpuid_data.entries[cpuid_i++];
 906
 907        c->function = i;
 908        c->flags = 0;
 909        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 910    }
 911
 912    /* Call Centaur's CPUID instructions they are supported. */
 913    if (env->cpuid_xlevel2 > 0) {
 914        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
 915
 916        for (i = 0xC0000000; i <= limit; i++) {
 917            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 918                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
 919                abort();
 920            }
 921            c = &cpuid_data.entries[cpuid_i++];
 922
 923            c->function = i;
 924            c->flags = 0;
 925            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 926        }
 927    }
 928
 929    cpuid_data.cpuid.nent = cpuid_i;
 930
 931    if (((env->cpuid_version >> 8)&0xF) >= 6
 932        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
 933           (CPUID_MCE | CPUID_MCA)
 934        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
 935        uint64_t mcg_cap, unsupported_caps;
 936        int banks;
 937        int ret;
 938
 939        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
 940        if (ret < 0) {
 941            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
 942            return ret;
 943        }
 944
 945        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
 946            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
 947                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
 948            return -ENOTSUP;
 949        }
 950
 951        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
 952        if (unsupported_caps) {
 953            if (unsupported_caps & MCG_LMCE_P) {
 954                error_report("kvm: LMCE not supported");
 955                return -ENOTSUP;
 956            }
 957            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
 958                        unsupported_caps);
 959        }
 960
 961        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
 962        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
 963        if (ret < 0) {
 964            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
 965            return ret;
 966        }
 967    }
 968
 969    qemu_add_vm_change_state_handler(cpu_update_state, env);
 970
 971    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
 972    if (c) {
 973        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
 974                                  !!(c->ecx & CPUID_EXT_SMX);
 975    }
 976
 977    if (env->mcg_cap & MCG_LMCE_P) {
 978        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
 979    }
 980
 981    if (!env->user_tsc_khz) {
 982        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
 983            invtsc_mig_blocker == NULL) {
 984            /* for migration */
 985            error_setg(&invtsc_mig_blocker,
 986                       "State blocked by non-migratable CPU device"
 987                       " (invtsc flag)");
 988            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
 989            if (local_err) {
 990                error_report_err(local_err);
 991                error_free(invtsc_mig_blocker);
 992                goto fail;
 993            }
 994            /* for savevm */
 995            vmstate_x86_cpu.unmigratable = 1;
 996        }
 997    }
 998
 999    if (cpu->vmware_cpuid_freq
1000        /* Guests depend on 0x40000000 to detect this feature, so only expose
1001         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1002        && cpu->expose_kvm
1003        && kvm_base == KVM_CPUID_SIGNATURE
1004        /* TSC clock must be stable and known for this feature. */
1005        && tsc_is_stable_and_known(env)) {
1006
1007        c = &cpuid_data.entries[cpuid_i++];
1008        c->function = KVM_CPUID_SIGNATURE | 0x10;
1009        c->eax = env->tsc_khz;
1010        /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1011         * APIC_BUS_CYCLE_NS */
1012        c->ebx = 1000000;
1013        c->ecx = c->edx = 0;
1014
1015        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1016        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1017    }
1018
1019    cpuid_data.cpuid.nent = cpuid_i;
1020
1021    cpuid_data.cpuid.padding = 0;
1022    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1023    if (r) {
1024        goto fail;
1025    }
1026
1027    if (has_xsave) {
1028        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1029    }
1030    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1031
1032    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1033        has_msr_tsc_aux = false;
1034    }
1035
1036    return 0;
1037
1038 fail:
1039    migrate_del_blocker(invtsc_mig_blocker);
1040    return r;
1041}
1042
1043void kvm_arch_reset_vcpu(X86CPU *cpu)
1044{
1045    CPUX86State *env = &cpu->env;
1046
1047    env->exception_injected = -1;
1048    env->interrupt_injected = -1;
1049    env->xcr0 = 1;
1050    if (kvm_irqchip_in_kernel()) {
1051        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1052                                          KVM_MP_STATE_UNINITIALIZED;
1053    } else {
1054        env->mp_state = KVM_MP_STATE_RUNNABLE;
1055    }
1056}
1057
1058void kvm_arch_do_init_vcpu(X86CPU *cpu)
1059{
1060    CPUX86State *env = &cpu->env;
1061
1062    /* APs get directly into wait-for-SIPI state.  */
1063    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1064        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1065    }
1066}
1067
1068static int kvm_get_supported_msrs(KVMState *s)
1069{
1070    static int kvm_supported_msrs;
1071    int ret = 0;
1072
1073    /* first time */
1074    if (kvm_supported_msrs == 0) {
1075        struct kvm_msr_list msr_list, *kvm_msr_list;
1076
1077        kvm_supported_msrs = -1;
1078
1079        /* Obtain MSR list from KVM.  These are the MSRs that we must
1080         * save/restore */
1081        msr_list.nmsrs = 0;
1082        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1083        if (ret < 0 && ret != -E2BIG) {
1084            return ret;
1085        }
1086        /* Old kernel modules had a bug and could write beyond the provided
1087           memory. Allocate at least a safe amount of 1K. */
1088        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1089                                              msr_list.nmsrs *
1090                                              sizeof(msr_list.indices[0])));
1091
1092        kvm_msr_list->nmsrs = msr_list.nmsrs;
1093        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1094        if (ret >= 0) {
1095            int i;
1096
1097            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1098                switch (kvm_msr_list->indices[i]) {
1099                case MSR_STAR:
1100                    has_msr_star = true;
1101                    break;
1102                case MSR_VM_HSAVE_PA:
1103                    has_msr_hsave_pa = true;
1104                    break;
1105                case MSR_TSC_AUX:
1106                    has_msr_tsc_aux = true;
1107                    break;
1108                case MSR_TSC_ADJUST:
1109                    has_msr_tsc_adjust = true;
1110                    break;
1111                case MSR_IA32_TSCDEADLINE:
1112                    has_msr_tsc_deadline = true;
1113                    break;
1114                case MSR_IA32_SMBASE:
1115                    has_msr_smbase = true;
1116                    break;
1117                case MSR_IA32_MISC_ENABLE:
1118                    has_msr_misc_enable = true;
1119                    break;
1120                case MSR_IA32_BNDCFGS:
1121                    has_msr_bndcfgs = true;
1122                    break;
1123                case MSR_IA32_XSS:
1124                    has_msr_xss = true;
1125                    break;;
1126                case HV_X64_MSR_CRASH_CTL:
1127                    has_msr_hv_crash = true;
1128                    break;
1129                case HV_X64_MSR_RESET:
1130                    has_msr_hv_reset = true;
1131                    break;
1132                case HV_X64_MSR_VP_INDEX:
1133                    has_msr_hv_vpindex = true;
1134                    break;
1135                case HV_X64_MSR_VP_RUNTIME:
1136                    has_msr_hv_runtime = true;
1137                    break;
1138                case HV_X64_MSR_SCONTROL:
1139                    has_msr_hv_synic = true;
1140                    break;
1141                case HV_X64_MSR_STIMER0_CONFIG:
1142                    has_msr_hv_stimer = true;
1143                    break;
1144                case HV_X64_MSR_TSC_FREQUENCY:
1145                    has_msr_hv_frequencies = true;
1146                    break;
1147                }
1148            }
1149        }
1150
1151        g_free(kvm_msr_list);
1152    }
1153
1154    return ret;
1155}
1156
1157static Notifier smram_machine_done;
1158static KVMMemoryListener smram_listener;
1159static AddressSpace smram_address_space;
1160static MemoryRegion smram_as_root;
1161static MemoryRegion smram_as_mem;
1162
1163static void register_smram_listener(Notifier *n, void *unused)
1164{
1165    MemoryRegion *smram =
1166        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1167
1168    /* Outer container... */
1169    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1170    memory_region_set_enabled(&smram_as_root, true);
1171
1172    /* ... with two regions inside: normal system memory with low
1173     * priority, and...
1174     */
1175    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1176                             get_system_memory(), 0, ~0ull);
1177    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1178    memory_region_set_enabled(&smram_as_mem, true);
1179
1180    if (smram) {
1181        /* ... SMRAM with higher priority */
1182        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1183        memory_region_set_enabled(smram, true);
1184    }
1185
1186    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1187    kvm_memory_listener_register(kvm_state, &smram_listener,
1188                                 &smram_address_space, 1);
1189}
1190
1191int kvm_arch_init(MachineState *ms, KVMState *s)
1192{
1193    uint64_t identity_base = 0xfffbc000;
1194    uint64_t shadow_mem;
1195    int ret;
1196    struct utsname utsname;
1197
1198#ifdef KVM_CAP_XSAVE
1199    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1200#endif
1201
1202#ifdef KVM_CAP_XCRS
1203    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1204#endif
1205
1206#ifdef KVM_CAP_PIT_STATE2
1207    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1208#endif
1209
1210    ret = kvm_get_supported_msrs(s);
1211    if (ret < 0) {
1212        return ret;
1213    }
1214
1215    uname(&utsname);
1216    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1217
1218    /*
1219     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1220     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
1221     * Since these must be part of guest physical memory, we need to allocate
1222     * them, both by setting their start addresses in the kernel and by
1223     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1224     *
1225     * Older KVM versions may not support setting the identity map base. In
1226     * that case we need to stick with the default, i.e. a 256K maximum BIOS
1227     * size.
1228     */
1229    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1230        /* Allows up to 16M BIOSes. */
1231        identity_base = 0xfeffc000;
1232
1233        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1234        if (ret < 0) {
1235            return ret;
1236        }
1237    }
1238
1239    /* Set TSS base one page after EPT identity map. */
1240    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1241    if (ret < 0) {
1242        return ret;
1243    }
1244
1245    /* Tell fw_cfg to notify the BIOS to reserve the range. */
1246    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1247    if (ret < 0) {
1248        fprintf(stderr, "e820_add_entry() table is full\n");
1249        return ret;
1250    }
1251    qemu_register_reset(kvm_unpoison_all, NULL);
1252
1253    shadow_mem = machine_kvm_shadow_mem(ms);
1254    if (shadow_mem != -1) {
1255        shadow_mem /= 4096;
1256        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1257        if (ret < 0) {
1258            return ret;
1259        }
1260    }
1261
1262    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1263        object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1264        pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1265        smram_machine_done.notify = register_smram_listener;
1266        qemu_add_machine_init_done_notifier(&smram_machine_done);
1267    }
1268    return 0;
1269}
1270
1271static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1272{
1273    lhs->selector = rhs->selector;
1274    lhs->base = rhs->base;
1275    lhs->limit = rhs->limit;
1276    lhs->type = 3;
1277    lhs->present = 1;
1278    lhs->dpl = 3;
1279    lhs->db = 0;
1280    lhs->s = 1;
1281    lhs->l = 0;
1282    lhs->g = 0;
1283    lhs->avl = 0;
1284    lhs->unusable = 0;
1285}
1286
1287static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1288{
1289    unsigned flags = rhs->flags;
1290    lhs->selector = rhs->selector;
1291    lhs->base = rhs->base;
1292    lhs->limit = rhs->limit;
1293    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1294    lhs->present = (flags & DESC_P_MASK) != 0;
1295    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1296    lhs->db = (flags >> DESC_B_SHIFT) & 1;
1297    lhs->s = (flags & DESC_S_MASK) != 0;
1298    lhs->l = (flags >> DESC_L_SHIFT) & 1;
1299    lhs->g = (flags & DESC_G_MASK) != 0;
1300    lhs->avl = (flags & DESC_AVL_MASK) != 0;
1301    lhs->unusable = !lhs->present;
1302    lhs->padding = 0;
1303}
1304
1305static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1306{
1307    lhs->selector = rhs->selector;
1308    lhs->base = rhs->base;
1309    lhs->limit = rhs->limit;
1310    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1311                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1312                 (rhs->dpl << DESC_DPL_SHIFT) |
1313                 (rhs->db << DESC_B_SHIFT) |
1314                 (rhs->s * DESC_S_MASK) |
1315                 (rhs->l << DESC_L_SHIFT) |
1316                 (rhs->g * DESC_G_MASK) |
1317                 (rhs->avl * DESC_AVL_MASK);
1318}
1319
1320static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1321{
1322    if (set) {
1323        *kvm_reg = *qemu_reg;
1324    } else {
1325        *qemu_reg = *kvm_reg;
1326    }
1327}
1328
1329static int kvm_getput_regs(X86CPU *cpu, int set)
1330{
1331    CPUX86State *env = &cpu->env;
1332    struct kvm_regs regs;
1333    int ret = 0;
1334
1335    if (!set) {
1336        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1337        if (ret < 0) {
1338            return ret;
1339        }
1340    }
1341
1342    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1343    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1344    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1345    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1346    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1347    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1348    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1349    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1350#ifdef TARGET_X86_64
1351    kvm_getput_reg(&regs.r8, &env->regs[8], set);
1352    kvm_getput_reg(&regs.r9, &env->regs[9], set);
1353    kvm_getput_reg(&regs.r10, &env->regs[10], set);
1354    kvm_getput_reg(&regs.r11, &env->regs[11], set);
1355    kvm_getput_reg(&regs.r12, &env->regs[12], set);
1356    kvm_getput_reg(&regs.r13, &env->regs[13], set);
1357    kvm_getput_reg(&regs.r14, &env->regs[14], set);
1358    kvm_getput_reg(&regs.r15, &env->regs[15], set);
1359#endif
1360
1361    kvm_getput_reg(&regs.rflags, &env->eflags, set);
1362    kvm_getput_reg(&regs.rip, &env->eip, set);
1363
1364    if (set) {
1365        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1366    }
1367
1368    return ret;
1369}
1370
1371static int kvm_put_fpu(X86CPU *cpu)
1372{
1373    CPUX86State *env = &cpu->env;
1374    struct kvm_fpu fpu;
1375    int i;
1376
1377    memset(&fpu, 0, sizeof fpu);
1378    fpu.fsw = env->fpus & ~(7 << 11);
1379    fpu.fsw |= (env->fpstt & 7) << 11;
1380    fpu.fcw = env->fpuc;
1381    fpu.last_opcode = env->fpop;
1382    fpu.last_ip = env->fpip;
1383    fpu.last_dp = env->fpdp;
1384    for (i = 0; i < 8; ++i) {
1385        fpu.ftwx |= (!env->fptags[i]) << i;
1386    }
1387    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1388    for (i = 0; i < CPU_NB_REGS; i++) {
1389        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1390        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1391    }
1392    fpu.mxcsr = env->mxcsr;
1393
1394    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1395}
1396
1397#define XSAVE_FCW_FSW     0
1398#define XSAVE_FTW_FOP     1
1399#define XSAVE_CWD_RIP     2
1400#define XSAVE_CWD_RDP     4
1401#define XSAVE_MXCSR       6
1402#define XSAVE_ST_SPACE    8
1403#define XSAVE_XMM_SPACE   40
1404#define XSAVE_XSTATE_BV   128
1405#define XSAVE_YMMH_SPACE  144
1406#define XSAVE_BNDREGS     240
1407#define XSAVE_BNDCSR      256
1408#define XSAVE_OPMASK      272
1409#define XSAVE_ZMM_Hi256   288
1410#define XSAVE_Hi16_ZMM    416
1411#define XSAVE_PKRU        672
1412
1413#define XSAVE_BYTE_OFFSET(word_offset) \
1414    ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1415
1416#define ASSERT_OFFSET(word_offset, field) \
1417    QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1418                      offsetof(X86XSaveArea, field))
1419
1420ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1421ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1422ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1423ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1424ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1425ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1426ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1427ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1428ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1429ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1430ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1431ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1432ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1433ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1434ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1435
1436static int kvm_put_xsave(X86CPU *cpu)
1437{
1438    CPUX86State *env = &cpu->env;
1439    X86XSaveArea *xsave = env->kvm_xsave_buf;
1440
1441    if (!has_xsave) {
1442        return kvm_put_fpu(cpu);
1443    }
1444    x86_cpu_xsave_all_areas(cpu, xsave);
1445
1446    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1447}
1448
1449static int kvm_put_xcrs(X86CPU *cpu)
1450{
1451    CPUX86State *env = &cpu->env;
1452    struct kvm_xcrs xcrs = {};
1453
1454    if (!has_xcrs) {
1455        return 0;
1456    }
1457
1458    xcrs.nr_xcrs = 1;
1459    xcrs.flags = 0;
1460    xcrs.xcrs[0].xcr = 0;
1461    xcrs.xcrs[0].value = env->xcr0;
1462    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1463}
1464
1465static int kvm_put_sregs(X86CPU *cpu)
1466{
1467    CPUX86State *env = &cpu->env;
1468    struct kvm_sregs sregs;
1469
1470    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1471    if (env->interrupt_injected >= 0) {
1472        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1473                (uint64_t)1 << (env->interrupt_injected % 64);
1474    }
1475
1476    if ((env->eflags & VM_MASK)) {
1477        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1478        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1479        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1480        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1481        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1482        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1483    } else {
1484        set_seg(&sregs.cs, &env->segs[R_CS]);
1485        set_seg(&sregs.ds, &env->segs[R_DS]);
1486        set_seg(&sregs.es, &env->segs[R_ES]);
1487        set_seg(&sregs.fs, &env->segs[R_FS]);
1488        set_seg(&sregs.gs, &env->segs[R_GS]);
1489        set_seg(&sregs.ss, &env->segs[R_SS]);
1490    }
1491
1492    set_seg(&sregs.tr, &env->tr);
1493    set_seg(&sregs.ldt, &env->ldt);
1494
1495    sregs.idt.limit = env->idt.limit;
1496    sregs.idt.base = env->idt.base;
1497    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1498    sregs.gdt.limit = env->gdt.limit;
1499    sregs.gdt.base = env->gdt.base;
1500    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1501
1502    sregs.cr0 = env->cr[0];
1503    sregs.cr2 = env->cr[2];
1504    sregs.cr3 = env->cr[3];
1505    sregs.cr4 = env->cr[4];
1506
1507    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1508    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1509
1510    sregs.efer = env->efer;
1511
1512    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1513}
1514
1515static void kvm_msr_buf_reset(X86CPU *cpu)
1516{
1517    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1518}
1519
1520static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1521{
1522    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1523    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1524    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1525
1526    assert((void *)(entry + 1) <= limit);
1527
1528    entry->index = index;
1529    entry->reserved = 0;
1530    entry->data = value;
1531    msrs->nmsrs++;
1532}
1533
1534static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1535{
1536    kvm_msr_buf_reset(cpu);
1537    kvm_msr_entry_add(cpu, index, value);
1538
1539    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1540}
1541
1542void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1543{
1544    int ret;
1545
1546    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1547    assert(ret == 1);
1548}
1549
1550static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1551{
1552    CPUX86State *env = &cpu->env;
1553    int ret;
1554
1555    if (!has_msr_tsc_deadline) {
1556        return 0;
1557    }
1558
1559    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1560    if (ret < 0) {
1561        return ret;
1562    }
1563
1564    assert(ret == 1);
1565    return 0;
1566}
1567
1568/*
1569 * Provide a separate write service for the feature control MSR in order to
1570 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1571 * before writing any other state because forcibly leaving nested mode
1572 * invalidates the VCPU state.
1573 */
1574static int kvm_put_msr_feature_control(X86CPU *cpu)
1575{
1576    int ret;
1577
1578    if (!has_msr_feature_control) {
1579        return 0;
1580    }
1581
1582    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1583                          cpu->env.msr_ia32_feature_control);
1584    if (ret < 0) {
1585        return ret;
1586    }
1587
1588    assert(ret == 1);
1589    return 0;
1590}
1591
1592static int kvm_put_msrs(X86CPU *cpu, int level)
1593{
1594    CPUX86State *env = &cpu->env;
1595    int i;
1596    int ret;
1597
1598    kvm_msr_buf_reset(cpu);
1599
1600    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1601    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1602    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1603    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1604    if (has_msr_star) {
1605        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1606    }
1607    if (has_msr_hsave_pa) {
1608        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1609    }
1610    if (has_msr_tsc_aux) {
1611        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1612    }
1613    if (has_msr_tsc_adjust) {
1614        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1615    }
1616    if (has_msr_misc_enable) {
1617        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1618                          env->msr_ia32_misc_enable);
1619    }
1620    if (has_msr_smbase) {
1621        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1622    }
1623    if (has_msr_bndcfgs) {
1624        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1625    }
1626    if (has_msr_xss) {
1627        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
1628    }
1629#ifdef TARGET_X86_64
1630    if (lm_capable_kernel) {
1631        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
1632        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
1633        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
1634        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
1635    }
1636#endif
1637    /*
1638     * The following MSRs have side effects on the guest or are too heavy
1639     * for normal writeback. Limit them to reset or full state updates.
1640     */
1641    if (level >= KVM_PUT_RESET_STATE) {
1642        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
1643        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
1644        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1645        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
1646            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
1647        }
1648        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
1649            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
1650        }
1651        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
1652            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
1653        }
1654        if (has_msr_architectural_pmu) {
1655            /* Stop the counter.  */
1656            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1657            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
1658
1659            /* Set the counter values.  */
1660            for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1661                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
1662                                  env->msr_fixed_counters[i]);
1663            }
1664            for (i = 0; i < num_architectural_pmu_counters; i++) {
1665                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
1666                                  env->msr_gp_counters[i]);
1667                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
1668                                  env->msr_gp_evtsel[i]);
1669            }
1670            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
1671                              env->msr_global_status);
1672            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1673                              env->msr_global_ovf_ctrl);
1674
1675            /* Now start the PMU.  */
1676            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
1677                              env->msr_fixed_ctr_ctrl);
1678            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
1679                              env->msr_global_ctrl);
1680        }
1681        if (has_msr_hv_hypercall) {
1682            kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
1683                              env->msr_hv_guest_os_id);
1684            kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
1685                              env->msr_hv_hypercall);
1686        }
1687        if (cpu->hyperv_vapic) {
1688            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
1689                              env->msr_hv_vapic);
1690        }
1691        if (cpu->hyperv_time) {
1692            kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc);
1693        }
1694        if (has_msr_hv_crash) {
1695            int j;
1696
1697            for (j = 0; j < HV_CRASH_PARAMS; j++)
1698                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
1699                                  env->msr_hv_crash_params[j]);
1700
1701            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
1702        }
1703        if (has_msr_hv_runtime) {
1704            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
1705        }
1706        if (cpu->hyperv_synic) {
1707            int j;
1708
1709            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
1710                              env->msr_hv_synic_control);
1711            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION,
1712                              env->msr_hv_synic_version);
1713            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
1714                              env->msr_hv_synic_evt_page);
1715            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
1716                              env->msr_hv_synic_msg_page);
1717
1718            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1719                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
1720                                  env->msr_hv_synic_sint[j]);
1721            }
1722        }
1723        if (has_msr_hv_stimer) {
1724            int j;
1725
1726            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1727                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
1728                                env->msr_hv_stimer_config[j]);
1729            }
1730
1731            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1732                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
1733                                env->msr_hv_stimer_count[j]);
1734            }
1735        }
1736        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
1737            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
1738
1739            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
1740            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1741            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1742            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1743            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1744            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1745            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1746            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1747            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1748            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1749            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1750            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1751            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1752                /* The CPU GPs if we write to a bit above the physical limit of
1753                 * the host CPU (and KVM emulates that)
1754                 */
1755                uint64_t mask = env->mtrr_var[i].mask;
1756                mask &= phys_mask;
1757
1758                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
1759                                  env->mtrr_var[i].base);
1760                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
1761            }
1762        }
1763
1764        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1765         *       kvm_put_msr_feature_control. */
1766    }
1767    if (env->mcg_cap) {
1768        int i;
1769
1770        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
1771        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
1772        if (has_msr_mcg_ext_ctl) {
1773            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
1774        }
1775        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1776            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
1777        }
1778    }
1779
1780    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1781    if (ret < 0) {
1782        return ret;
1783    }
1784
1785    if (ret < cpu->kvm_msr_buf->nmsrs) {
1786        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
1787        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
1788                     (uint32_t)e->index, (uint64_t)e->data);
1789    }
1790
1791    assert(ret == cpu->kvm_msr_buf->nmsrs);
1792    return 0;
1793}
1794
1795
1796static int kvm_get_fpu(X86CPU *cpu)
1797{
1798    CPUX86State *env = &cpu->env;
1799    struct kvm_fpu fpu;
1800    int i, ret;
1801
1802    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1803    if (ret < 0) {
1804        return ret;
1805    }
1806
1807    env->fpstt = (fpu.fsw >> 11) & 7;
1808    env->fpus = fpu.fsw;
1809    env->fpuc = fpu.fcw;
1810    env->fpop = fpu.last_opcode;
1811    env->fpip = fpu.last_ip;
1812    env->fpdp = fpu.last_dp;
1813    for (i = 0; i < 8; ++i) {
1814        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1815    }
1816    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1817    for (i = 0; i < CPU_NB_REGS; i++) {
1818        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1819        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1820    }
1821    env->mxcsr = fpu.mxcsr;
1822
1823    return 0;
1824}
1825
1826static int kvm_get_xsave(X86CPU *cpu)
1827{
1828    CPUX86State *env = &cpu->env;
1829    X86XSaveArea *xsave = env->kvm_xsave_buf;
1830    int ret;
1831
1832    if (!has_xsave) {
1833        return kvm_get_fpu(cpu);
1834    }
1835
1836    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1837    if (ret < 0) {
1838        return ret;
1839    }
1840    x86_cpu_xrstor_all_areas(cpu, xsave);
1841
1842    return 0;
1843}
1844
1845static int kvm_get_xcrs(X86CPU *cpu)
1846{
1847    CPUX86State *env = &cpu->env;
1848    int i, ret;
1849    struct kvm_xcrs xcrs;
1850
1851    if (!has_xcrs) {
1852        return 0;
1853    }
1854
1855    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1856    if (ret < 0) {
1857        return ret;
1858    }
1859
1860    for (i = 0; i < xcrs.nr_xcrs; i++) {
1861        /* Only support xcr0 now */
1862        if (xcrs.xcrs[i].xcr == 0) {
1863            env->xcr0 = xcrs.xcrs[i].value;
1864            break;
1865        }
1866    }
1867    return 0;
1868}
1869
1870static int kvm_get_sregs(X86CPU *cpu)
1871{
1872    CPUX86State *env = &cpu->env;
1873    struct kvm_sregs sregs;
1874    uint32_t hflags;
1875    int bit, i, ret;
1876
1877    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1878    if (ret < 0) {
1879        return ret;
1880    }
1881
1882    /* There can only be one pending IRQ set in the bitmap at a time, so try
1883       to find it and save its number instead (-1 for none). */
1884    env->interrupt_injected = -1;
1885    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1886        if (sregs.interrupt_bitmap[i]) {
1887            bit = ctz64(sregs.interrupt_bitmap[i]);
1888            env->interrupt_injected = i * 64 + bit;
1889            break;
1890        }
1891    }
1892
1893    get_seg(&env->segs[R_CS], &sregs.cs);
1894    get_seg(&env->segs[R_DS], &sregs.ds);
1895    get_seg(&env->segs[R_ES], &sregs.es);
1896    get_seg(&env->segs[R_FS], &sregs.fs);
1897    get_seg(&env->segs[R_GS], &sregs.gs);
1898    get_seg(&env->segs[R_SS], &sregs.ss);
1899
1900    get_seg(&env->tr, &sregs.tr);
1901    get_seg(&env->ldt, &sregs.ldt);
1902
1903    env->idt.limit = sregs.idt.limit;
1904    env->idt.base = sregs.idt.base;
1905    env->gdt.limit = sregs.gdt.limit;
1906    env->gdt.base = sregs.gdt.base;
1907
1908    env->cr[0] = sregs.cr0;
1909    env->cr[2] = sregs.cr2;
1910    env->cr[3] = sregs.cr3;
1911    env->cr[4] = sregs.cr4;
1912
1913    env->efer = sregs.efer;
1914
1915    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1916
1917#define HFLAG_COPY_MASK \
1918    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1919       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1920       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1921       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1922
1923    hflags = env->hflags & HFLAG_COPY_MASK;
1924    hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1925    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1926    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1927                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1928    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1929
1930    if (env->cr[4] & CR4_OSFXSR_MASK) {
1931        hflags |= HF_OSFXSR_MASK;
1932    }
1933
1934    if (env->efer & MSR_EFER_LMA) {
1935        hflags |= HF_LMA_MASK;
1936    }
1937
1938    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1939        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1940    } else {
1941        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1942                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1943        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1944                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1945        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1946            !(hflags & HF_CS32_MASK)) {
1947            hflags |= HF_ADDSEG_MASK;
1948        } else {
1949            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1950                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1951        }
1952    }
1953    env->hflags = hflags;
1954
1955    return 0;
1956}
1957
1958static int kvm_get_msrs(X86CPU *cpu)
1959{
1960    CPUX86State *env = &cpu->env;
1961    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
1962    int ret, i;
1963    uint64_t mtrr_top_bits;
1964
1965    kvm_msr_buf_reset(cpu);
1966
1967    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
1968    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
1969    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
1970    kvm_msr_entry_add(cpu, MSR_PAT, 0);
1971    if (has_msr_star) {
1972        kvm_msr_entry_add(cpu, MSR_STAR, 0);
1973    }
1974    if (has_msr_hsave_pa) {
1975        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
1976    }
1977    if (has_msr_tsc_aux) {
1978        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
1979    }
1980    if (has_msr_tsc_adjust) {
1981        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
1982    }
1983    if (has_msr_tsc_deadline) {
1984        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
1985    }
1986    if (has_msr_misc_enable) {
1987        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
1988    }
1989    if (has_msr_smbase) {
1990        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
1991    }
1992    if (has_msr_feature_control) {
1993        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
1994    }
1995    if (has_msr_bndcfgs) {
1996        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
1997    }
1998    if (has_msr_xss) {
1999        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2000    }
2001
2002
2003    if (!env->tsc_valid) {
2004        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2005        env->tsc_valid = !runstate_is_running();
2006    }
2007
2008#ifdef TARGET_X86_64
2009    if (lm_capable_kernel) {
2010        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2011        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2012        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2013        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2014    }
2015#endif
2016    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2017    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2018    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2019        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2020    }
2021    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2022        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2023    }
2024    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2025        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2026    }
2027    if (has_msr_architectural_pmu) {
2028        kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2029        kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2030        kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2031        kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2032        for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
2033            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2034        }
2035        for (i = 0; i < num_architectural_pmu_counters; i++) {
2036            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2037            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2038        }
2039    }
2040
2041    if (env->mcg_cap) {
2042        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2043        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2044        if (has_msr_mcg_ext_ctl) {
2045            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2046        }
2047        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2048            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2049        }
2050    }
2051
2052    if (has_msr_hv_hypercall) {
2053        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2054        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2055    }
2056    if (cpu->hyperv_vapic) {
2057        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2058    }
2059    if (cpu->hyperv_time) {
2060        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2061    }
2062    if (has_msr_hv_crash) {
2063        int j;
2064
2065        for (j = 0; j < HV_CRASH_PARAMS; j++) {
2066            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2067        }
2068    }
2069    if (has_msr_hv_runtime) {
2070        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2071    }
2072    if (cpu->hyperv_synic) {
2073        uint32_t msr;
2074
2075        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2076        kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0);
2077        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2078        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2079        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2080            kvm_msr_entry_add(cpu, msr, 0);
2081        }
2082    }
2083    if (has_msr_hv_stimer) {
2084        uint32_t msr;
2085
2086        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2087             msr++) {
2088            kvm_msr_entry_add(cpu, msr, 0);
2089        }
2090    }
2091    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2092        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2093        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2094        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2095        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2096        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2097        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2098        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2099        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2100        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2101        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2102        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2103        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2104        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2105            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2106            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2107        }
2108    }
2109
2110    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2111    if (ret < 0) {
2112        return ret;
2113    }
2114
2115    if (ret < cpu->kvm_msr_buf->nmsrs) {
2116        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2117        error_report("error: failed to get MSR 0x%" PRIx32,
2118                     (uint32_t)e->index);
2119    }
2120
2121    assert(ret == cpu->kvm_msr_buf->nmsrs);
2122    /*
2123     * MTRR masks: Each mask consists of 5 parts
2124     * a  10..0: must be zero
2125     * b  11   : valid bit
2126     * c n-1.12: actual mask bits
2127     * d  51..n: reserved must be zero
2128     * e  63.52: reserved must be zero
2129     *
2130     * 'n' is the number of physical bits supported by the CPU and is
2131     * apparently always <= 52.   We know our 'n' but don't know what
2132     * the destinations 'n' is; it might be smaller, in which case
2133     * it masks (c) on loading. It might be larger, in which case
2134     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2135     * we're migrating to.
2136     */
2137
2138    if (cpu->fill_mtrr_mask) {
2139        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2140        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2141        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2142    } else {
2143        mtrr_top_bits = 0;
2144    }
2145
2146    for (i = 0; i < ret; i++) {
2147        uint32_t index = msrs[i].index;
2148        switch (index) {
2149        case MSR_IA32_SYSENTER_CS:
2150            env->sysenter_cs = msrs[i].data;
2151            break;
2152        case MSR_IA32_SYSENTER_ESP:
2153            env->sysenter_esp = msrs[i].data;
2154            break;
2155        case MSR_IA32_SYSENTER_EIP:
2156            env->sysenter_eip = msrs[i].data;
2157            break;
2158        case MSR_PAT:
2159            env->pat = msrs[i].data;
2160            break;
2161        case MSR_STAR:
2162            env->star = msrs[i].data;
2163            break;
2164#ifdef TARGET_X86_64
2165        case MSR_CSTAR:
2166            env->cstar = msrs[i].data;
2167            break;
2168        case MSR_KERNELGSBASE:
2169            env->kernelgsbase = msrs[i].data;
2170            break;
2171        case MSR_FMASK:
2172            env->fmask = msrs[i].data;
2173            break;
2174        case MSR_LSTAR:
2175            env->lstar = msrs[i].data;
2176            break;
2177#endif
2178        case MSR_IA32_TSC:
2179            env->tsc = msrs[i].data;
2180            break;
2181        case MSR_TSC_AUX:
2182            env->tsc_aux = msrs[i].data;
2183            break;
2184        case MSR_TSC_ADJUST:
2185            env->tsc_adjust = msrs[i].data;
2186            break;
2187        case MSR_IA32_TSCDEADLINE:
2188            env->tsc_deadline = msrs[i].data;
2189            break;
2190        case MSR_VM_HSAVE_PA:
2191            env->vm_hsave = msrs[i].data;
2192            break;
2193        case MSR_KVM_SYSTEM_TIME:
2194            env->system_time_msr = msrs[i].data;
2195            break;
2196        case MSR_KVM_WALL_CLOCK:
2197            env->wall_clock_msr = msrs[i].data;
2198            break;
2199        case MSR_MCG_STATUS:
2200            env->mcg_status = msrs[i].data;
2201            break;
2202        case MSR_MCG_CTL:
2203            env->mcg_ctl = msrs[i].data;
2204            break;
2205        case MSR_MCG_EXT_CTL:
2206            env->mcg_ext_ctl = msrs[i].data;
2207            break;
2208        case MSR_IA32_MISC_ENABLE:
2209            env->msr_ia32_misc_enable = msrs[i].data;
2210            break;
2211        case MSR_IA32_SMBASE:
2212            env->smbase = msrs[i].data;
2213            break;
2214        case MSR_IA32_FEATURE_CONTROL:
2215            env->msr_ia32_feature_control = msrs[i].data;
2216            break;
2217        case MSR_IA32_BNDCFGS:
2218            env->msr_bndcfgs = msrs[i].data;
2219            break;
2220        case MSR_IA32_XSS:
2221            env->xss = msrs[i].data;
2222            break;
2223        default:
2224            if (msrs[i].index >= MSR_MC0_CTL &&
2225                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2226                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2227            }
2228            break;
2229        case MSR_KVM_ASYNC_PF_EN:
2230            env->async_pf_en_msr = msrs[i].data;
2231            break;
2232        case MSR_KVM_PV_EOI_EN:
2233            env->pv_eoi_en_msr = msrs[i].data;
2234            break;
2235        case MSR_KVM_STEAL_TIME:
2236            env->steal_time_msr = msrs[i].data;
2237            break;
2238        case MSR_CORE_PERF_FIXED_CTR_CTRL:
2239            env->msr_fixed_ctr_ctrl = msrs[i].data;
2240            break;
2241        case MSR_CORE_PERF_GLOBAL_CTRL:
2242            env->msr_global_ctrl = msrs[i].data;
2243            break;
2244        case MSR_CORE_PERF_GLOBAL_STATUS:
2245            env->msr_global_status = msrs[i].data;
2246            break;
2247        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2248            env->msr_global_ovf_ctrl = msrs[i].data;
2249            break;
2250        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2251            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2252            break;
2253        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2254            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2255            break;
2256        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2257            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2258            break;
2259        case HV_X64_MSR_HYPERCALL:
2260            env->msr_hv_hypercall = msrs[i].data;
2261            break;
2262        case HV_X64_MSR_GUEST_OS_ID:
2263            env->msr_hv_guest_os_id = msrs[i].data;
2264            break;
2265        case HV_X64_MSR_APIC_ASSIST_PAGE:
2266            env->msr_hv_vapic = msrs[i].data;
2267            break;
2268        case HV_X64_MSR_REFERENCE_TSC:
2269            env->msr_hv_tsc = msrs[i].data;
2270            break;
2271        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2272            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2273            break;
2274        case HV_X64_MSR_VP_RUNTIME:
2275            env->msr_hv_runtime = msrs[i].data;
2276            break;
2277        case HV_X64_MSR_SCONTROL:
2278            env->msr_hv_synic_control = msrs[i].data;
2279            break;
2280        case HV_X64_MSR_SVERSION:
2281            env->msr_hv_synic_version = msrs[i].data;
2282            break;
2283        case HV_X64_MSR_SIEFP:
2284            env->msr_hv_synic_evt_page = msrs[i].data;
2285            break;
2286        case HV_X64_MSR_SIMP:
2287            env->msr_hv_synic_msg_page = msrs[i].data;
2288            break;
2289        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2290            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2291            break;
2292        case HV_X64_MSR_STIMER0_CONFIG:
2293        case HV_X64_MSR_STIMER1_CONFIG:
2294        case HV_X64_MSR_STIMER2_CONFIG:
2295        case HV_X64_MSR_STIMER3_CONFIG:
2296            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2297                                msrs[i].data;
2298            break;
2299        case HV_X64_MSR_STIMER0_COUNT:
2300        case HV_X64_MSR_STIMER1_COUNT:
2301        case HV_X64_MSR_STIMER2_COUNT:
2302        case HV_X64_MSR_STIMER3_COUNT:
2303            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2304                                msrs[i].data;
2305            break;
2306        case MSR_MTRRdefType:
2307            env->mtrr_deftype = msrs[i].data;
2308            break;
2309        case MSR_MTRRfix64K_00000:
2310            env->mtrr_fixed[0] = msrs[i].data;
2311            break;
2312        case MSR_MTRRfix16K_80000:
2313            env->mtrr_fixed[1] = msrs[i].data;
2314            break;
2315        case MSR_MTRRfix16K_A0000:
2316            env->mtrr_fixed[2] = msrs[i].data;
2317            break;
2318        case MSR_MTRRfix4K_C0000:
2319            env->mtrr_fixed[3] = msrs[i].data;
2320            break;
2321        case MSR_MTRRfix4K_C8000:
2322            env->mtrr_fixed[4] = msrs[i].data;
2323            break;
2324        case MSR_MTRRfix4K_D0000:
2325            env->mtrr_fixed[5] = msrs[i].data;
2326            break;
2327        case MSR_MTRRfix4K_D8000:
2328            env->mtrr_fixed[6] = msrs[i].data;
2329            break;
2330        case MSR_MTRRfix4K_E0000:
2331            env->mtrr_fixed[7] = msrs[i].data;
2332            break;
2333        case MSR_MTRRfix4K_E8000:
2334            env->mtrr_fixed[8] = msrs[i].data;
2335            break;
2336        case MSR_MTRRfix4K_F0000:
2337            env->mtrr_fixed[9] = msrs[i].data;
2338            break;
2339        case MSR_MTRRfix4K_F8000:
2340            env->mtrr_fixed[10] = msrs[i].data;
2341            break;
2342        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2343            if (index & 1) {
2344                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2345                                                               mtrr_top_bits;
2346            } else {
2347                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2348            }
2349            break;
2350        }
2351    }
2352
2353    return 0;
2354}
2355
2356static int kvm_put_mp_state(X86CPU *cpu)
2357{
2358    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2359
2360    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2361}
2362
2363static int kvm_get_mp_state(X86CPU *cpu)
2364{
2365    CPUState *cs = CPU(cpu);
2366    CPUX86State *env = &cpu->env;
2367    struct kvm_mp_state mp_state;
2368    int ret;
2369
2370    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2371    if (ret < 0) {
2372        return ret;
2373    }
2374    env->mp_state = mp_state.mp_state;
2375    if (kvm_irqchip_in_kernel()) {
2376        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2377    }
2378    return 0;
2379}
2380
2381static int kvm_get_apic(X86CPU *cpu)
2382{
2383    DeviceState *apic = cpu->apic_state;
2384    struct kvm_lapic_state kapic;
2385    int ret;
2386
2387    if (apic && kvm_irqchip_in_kernel()) {
2388        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2389        if (ret < 0) {
2390            return ret;
2391        }
2392
2393        kvm_get_apic_state(apic, &kapic);
2394    }
2395    return 0;
2396}
2397
2398static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2399{
2400    CPUState *cs = CPU(cpu);
2401    CPUX86State *env = &cpu->env;
2402    struct kvm_vcpu_events events = {};
2403
2404    if (!kvm_has_vcpu_events()) {
2405        return 0;
2406    }
2407
2408    events.exception.injected = (env->exception_injected >= 0);
2409    events.exception.nr = env->exception_injected;
2410    events.exception.has_error_code = env->has_error_code;
2411    events.exception.error_code = env->error_code;
2412    events.exception.pad = 0;
2413
2414    events.interrupt.injected = (env->interrupt_injected >= 0);
2415    events.interrupt.nr = env->interrupt_injected;
2416    events.interrupt.soft = env->soft_interrupt;
2417
2418    events.nmi.injected = env->nmi_injected;
2419    events.nmi.pending = env->nmi_pending;
2420    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2421    events.nmi.pad = 0;
2422
2423    events.sipi_vector = env->sipi_vector;
2424    events.flags = 0;
2425
2426    if (has_msr_smbase) {
2427        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2428        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2429        if (kvm_irqchip_in_kernel()) {
2430            /* As soon as these are moved to the kernel, remove them
2431             * from cs->interrupt_request.
2432             */
2433            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2434            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2435            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2436        } else {
2437            /* Keep these in cs->interrupt_request.  */
2438            events.smi.pending = 0;
2439            events.smi.latched_init = 0;
2440        }
2441        /* Stop SMI delivery on old machine types to avoid a reboot
2442         * on an inward migration of an old VM.
2443         */
2444        if (!cpu->kvm_no_smi_migration) {
2445            events.flags |= KVM_VCPUEVENT_VALID_SMM;
2446        }
2447    }
2448
2449    if (level >= KVM_PUT_RESET_STATE) {
2450        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2451        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2452            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2453        }
2454    }
2455
2456    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2457}
2458
2459static int kvm_get_vcpu_events(X86CPU *cpu)
2460{
2461    CPUX86State *env = &cpu->env;
2462    struct kvm_vcpu_events events;
2463    int ret;
2464
2465    if (!kvm_has_vcpu_events()) {
2466        return 0;
2467    }
2468
2469    memset(&events, 0, sizeof(events));
2470    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2471    if (ret < 0) {
2472       return ret;
2473    }
2474    env->exception_injected =
2475       events.exception.injected ? events.exception.nr : -1;
2476    env->has_error_code = events.exception.has_error_code;
2477    env->error_code = events.exception.error_code;
2478
2479    env->interrupt_injected =
2480        events.interrupt.injected ? events.interrupt.nr : -1;
2481    env->soft_interrupt = events.interrupt.soft;
2482
2483    env->nmi_injected = events.nmi.injected;
2484    env->nmi_pending = events.nmi.pending;
2485    if (events.nmi.masked) {
2486        env->hflags2 |= HF2_NMI_MASK;
2487    } else {
2488        env->hflags2 &= ~HF2_NMI_MASK;
2489    }
2490
2491    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2492        if (events.smi.smm) {
2493            env->hflags |= HF_SMM_MASK;
2494        } else {
2495            env->hflags &= ~HF_SMM_MASK;
2496        }
2497        if (events.smi.pending) {
2498            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2499        } else {
2500            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2501        }
2502        if (events.smi.smm_inside_nmi) {
2503            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2504        } else {
2505            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2506        }
2507        if (events.smi.latched_init) {
2508            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2509        } else {
2510            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2511        }
2512    }
2513
2514    env->sipi_vector = events.sipi_vector;
2515
2516    return 0;
2517}
2518
2519static int kvm_guest_debug_workarounds(X86CPU *cpu)
2520{
2521    CPUState *cs = CPU(cpu);
2522    CPUX86State *env = &cpu->env;
2523    int ret = 0;
2524    unsigned long reinject_trap = 0;
2525
2526    if (!kvm_has_vcpu_events()) {
2527        if (env->exception_injected == 1) {
2528            reinject_trap = KVM_GUESTDBG_INJECT_DB;
2529        } else if (env->exception_injected == 3) {
2530            reinject_trap = KVM_GUESTDBG_INJECT_BP;
2531        }
2532        env->exception_injected = -1;
2533    }
2534
2535    /*
2536     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2537     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2538     * by updating the debug state once again if single-stepping is on.
2539     * Another reason to call kvm_update_guest_debug here is a pending debug
2540     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2541     * reinject them via SET_GUEST_DEBUG.
2542     */
2543    if (reinject_trap ||
2544        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2545        ret = kvm_update_guest_debug(cs, reinject_trap);
2546    }
2547    return ret;
2548}
2549
2550static int kvm_put_debugregs(X86CPU *cpu)
2551{
2552    CPUX86State *env = &cpu->env;
2553    struct kvm_debugregs dbgregs;
2554    int i;
2555
2556    if (!kvm_has_debugregs()) {
2557        return 0;
2558    }
2559
2560    for (i = 0; i < 4; i++) {
2561        dbgregs.db[i] = env->dr[i];
2562    }
2563    dbgregs.dr6 = env->dr[6];
2564    dbgregs.dr7 = env->dr[7];
2565    dbgregs.flags = 0;
2566
2567    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2568}
2569
2570static int kvm_get_debugregs(X86CPU *cpu)
2571{
2572    CPUX86State *env = &cpu->env;
2573    struct kvm_debugregs dbgregs;
2574    int i, ret;
2575
2576    if (!kvm_has_debugregs()) {
2577        return 0;
2578    }
2579
2580    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2581    if (ret < 0) {
2582        return ret;
2583    }
2584    for (i = 0; i < 4; i++) {
2585        env->dr[i] = dbgregs.db[i];
2586    }
2587    env->dr[4] = env->dr[6] = dbgregs.dr6;
2588    env->dr[5] = env->dr[7] = dbgregs.dr7;
2589
2590    return 0;
2591}
2592
2593int kvm_arch_put_registers(CPUState *cpu, int level)
2594{
2595    X86CPU *x86_cpu = X86_CPU(cpu);
2596    int ret;
2597
2598    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2599
2600    if (level >= KVM_PUT_RESET_STATE) {
2601        ret = kvm_put_msr_feature_control(x86_cpu);
2602        if (ret < 0) {
2603            return ret;
2604        }
2605    }
2606
2607    if (level == KVM_PUT_FULL_STATE) {
2608        /* We don't check for kvm_arch_set_tsc_khz() errors here,
2609         * because TSC frequency mismatch shouldn't abort migration,
2610         * unless the user explicitly asked for a more strict TSC
2611         * setting (e.g. using an explicit "tsc-freq" option).
2612         */
2613        kvm_arch_set_tsc_khz(cpu);
2614    }
2615
2616    ret = kvm_getput_regs(x86_cpu, 1);
2617    if (ret < 0) {
2618        return ret;
2619    }
2620    ret = kvm_put_xsave(x86_cpu);
2621    if (ret < 0) {
2622        return ret;
2623    }
2624    ret = kvm_put_xcrs(x86_cpu);
2625    if (ret < 0) {
2626        return ret;
2627    }
2628    ret = kvm_put_sregs(x86_cpu);
2629    if (ret < 0) {
2630        return ret;
2631    }
2632    /* must be before kvm_put_msrs */
2633    ret = kvm_inject_mce_oldstyle(x86_cpu);
2634    if (ret < 0) {
2635        return ret;
2636    }
2637    ret = kvm_put_msrs(x86_cpu, level);
2638    if (ret < 0) {
2639        return ret;
2640    }
2641    ret = kvm_put_vcpu_events(x86_cpu, level);
2642    if (ret < 0) {
2643        return ret;
2644    }
2645    if (level >= KVM_PUT_RESET_STATE) {
2646        ret = kvm_put_mp_state(x86_cpu);
2647        if (ret < 0) {
2648            return ret;
2649        }
2650    }
2651
2652    ret = kvm_put_tscdeadline_msr(x86_cpu);
2653    if (ret < 0) {
2654        return ret;
2655    }
2656    ret = kvm_put_debugregs(x86_cpu);
2657    if (ret < 0) {
2658        return ret;
2659    }
2660    /* must be last */
2661    ret = kvm_guest_debug_workarounds(x86_cpu);
2662    if (ret < 0) {
2663        return ret;
2664    }
2665    return 0;
2666}
2667
2668int kvm_arch_get_registers(CPUState *cs)
2669{
2670    X86CPU *cpu = X86_CPU(cs);
2671    int ret;
2672
2673    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2674
2675    ret = kvm_get_vcpu_events(cpu);
2676    if (ret < 0) {
2677        goto out;
2678    }
2679    /*
2680     * KVM_GET_MPSTATE can modify CS and RIP, call it before
2681     * KVM_GET_REGS and KVM_GET_SREGS.
2682     */
2683    ret = kvm_get_mp_state(cpu);
2684    if (ret < 0) {
2685        goto out;
2686    }
2687    ret = kvm_getput_regs(cpu, 0);
2688    if (ret < 0) {
2689        goto out;
2690    }
2691    ret = kvm_get_xsave(cpu);
2692    if (ret < 0) {
2693        goto out;
2694    }
2695    ret = kvm_get_xcrs(cpu);
2696    if (ret < 0) {
2697        goto out;
2698    }
2699    ret = kvm_get_sregs(cpu);
2700    if (ret < 0) {
2701        goto out;
2702    }
2703    ret = kvm_get_msrs(cpu);
2704    if (ret < 0) {
2705        goto out;
2706    }
2707    ret = kvm_get_apic(cpu);
2708    if (ret < 0) {
2709        goto out;
2710    }
2711    ret = kvm_get_debugregs(cpu);
2712    if (ret < 0) {
2713        goto out;
2714    }
2715    ret = 0;
2716 out:
2717    cpu_sync_bndcs_hflags(&cpu->env);
2718    return ret;
2719}
2720
2721void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2722{
2723    X86CPU *x86_cpu = X86_CPU(cpu);
2724    CPUX86State *env = &x86_cpu->env;
2725    int ret;
2726
2727    /* Inject NMI */
2728    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2729        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2730            qemu_mutex_lock_iothread();
2731            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2732            qemu_mutex_unlock_iothread();
2733            DPRINTF("injected NMI\n");
2734            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2735            if (ret < 0) {
2736                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2737                        strerror(-ret));
2738            }
2739        }
2740        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2741            qemu_mutex_lock_iothread();
2742            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2743            qemu_mutex_unlock_iothread();
2744            DPRINTF("injected SMI\n");
2745            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2746            if (ret < 0) {
2747                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2748                        strerror(-ret));
2749            }
2750        }
2751    }
2752
2753    if (!kvm_pic_in_kernel()) {
2754        qemu_mutex_lock_iothread();
2755    }
2756
2757    /* Force the VCPU out of its inner loop to process any INIT requests
2758     * or (for userspace APIC, but it is cheap to combine the checks here)
2759     * pending TPR access reports.
2760     */
2761    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2762        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2763            !(env->hflags & HF_SMM_MASK)) {
2764            cpu->exit_request = 1;
2765        }
2766        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2767            cpu->exit_request = 1;
2768        }
2769    }
2770
2771    if (!kvm_pic_in_kernel()) {
2772        /* Try to inject an interrupt if the guest can accept it */
2773        if (run->ready_for_interrupt_injection &&
2774            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2775            (env->eflags & IF_MASK)) {
2776            int irq;
2777
2778            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2779            irq = cpu_get_pic_interrupt(env);
2780            if (irq >= 0) {
2781                struct kvm_interrupt intr;
2782
2783                intr.irq = irq;
2784                DPRINTF("injected interrupt %d\n", irq);
2785                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2786                if (ret < 0) {
2787                    fprintf(stderr,
2788                            "KVM: injection failed, interrupt lost (%s)\n",
2789                            strerror(-ret));
2790                }
2791            }
2792        }
2793
2794        /* If we have an interrupt but the guest is not ready to receive an
2795         * interrupt, request an interrupt window exit.  This will
2796         * cause a return to userspace as soon as the guest is ready to
2797         * receive interrupts. */
2798        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2799            run->request_interrupt_window = 1;
2800        } else {
2801            run->request_interrupt_window = 0;
2802        }
2803
2804        DPRINTF("setting tpr\n");
2805        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2806
2807        qemu_mutex_unlock_iothread();
2808    }
2809}
2810
2811MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2812{
2813    X86CPU *x86_cpu = X86_CPU(cpu);
2814    CPUX86State *env = &x86_cpu->env;
2815
2816    if (run->flags & KVM_RUN_X86_SMM) {
2817        env->hflags |= HF_SMM_MASK;
2818    } else {
2819        env->hflags &= ~HF_SMM_MASK;
2820    }
2821    if (run->if_flag) {
2822        env->eflags |= IF_MASK;
2823    } else {
2824        env->eflags &= ~IF_MASK;
2825    }
2826
2827    /* We need to protect the apic state against concurrent accesses from
2828     * different threads in case the userspace irqchip is used. */
2829    if (!kvm_irqchip_in_kernel()) {
2830        qemu_mutex_lock_iothread();
2831    }
2832    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2833    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2834    if (!kvm_irqchip_in_kernel()) {
2835        qemu_mutex_unlock_iothread();
2836    }
2837    return cpu_get_mem_attrs(env);
2838}
2839
2840int kvm_arch_process_async_events(CPUState *cs)
2841{
2842    X86CPU *cpu = X86_CPU(cs);
2843    CPUX86State *env = &cpu->env;
2844
2845    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2846        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2847        assert(env->mcg_cap);
2848
2849        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2850
2851        kvm_cpu_synchronize_state(cs);
2852
2853        if (env->exception_injected == EXCP08_DBLE) {
2854            /* this means triple fault */
2855            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2856            cs->exit_request = 1;
2857            return 0;
2858        }
2859        env->exception_injected = EXCP12_MCHK;
2860        env->has_error_code = 0;
2861
2862        cs->halted = 0;
2863        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2864            env->mp_state = KVM_MP_STATE_RUNNABLE;
2865        }
2866    }
2867
2868    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2869        !(env->hflags & HF_SMM_MASK)) {
2870        kvm_cpu_synchronize_state(cs);
2871        do_cpu_init(cpu);
2872    }
2873
2874    if (kvm_irqchip_in_kernel()) {
2875        return 0;
2876    }
2877
2878    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2879        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2880        apic_poll_irq(cpu->apic_state);
2881    }
2882    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2883         (env->eflags & IF_MASK)) ||
2884        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2885        cs->halted = 0;
2886    }
2887    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2888        kvm_cpu_synchronize_state(cs);
2889        do_cpu_sipi(cpu);
2890    }
2891    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2892        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2893        kvm_cpu_synchronize_state(cs);
2894        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2895                                      env->tpr_access_type);
2896    }
2897
2898    return cs->halted;
2899}
2900
2901static int kvm_handle_halt(X86CPU *cpu)
2902{
2903    CPUState *cs = CPU(cpu);
2904    CPUX86State *env = &cpu->env;
2905
2906    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2907          (env->eflags & IF_MASK)) &&
2908        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2909        cs->halted = 1;
2910        return EXCP_HLT;
2911    }
2912
2913    return 0;
2914}
2915
2916static int kvm_handle_tpr_access(X86CPU *cpu)
2917{
2918    CPUState *cs = CPU(cpu);
2919    struct kvm_run *run = cs->kvm_run;
2920
2921    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2922                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
2923                                                           : TPR_ACCESS_READ);
2924    return 1;
2925}
2926
2927int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2928{
2929    static const uint8_t int3 = 0xcc;
2930
2931    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2932        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2933        return -EINVAL;
2934    }
2935    return 0;
2936}
2937
2938int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2939{
2940    uint8_t int3;
2941
2942    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2943        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2944        return -EINVAL;
2945    }
2946    return 0;
2947}
2948
2949static struct {
2950    target_ulong addr;
2951    int len;
2952    int type;
2953} hw_breakpoint[4];
2954
2955static int nb_hw_breakpoint;
2956
2957static int find_hw_breakpoint(target_ulong addr, int len, int type)
2958{
2959    int n;
2960
2961    for (n = 0; n < nb_hw_breakpoint; n++) {
2962        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2963            (hw_breakpoint[n].len == len || len == -1)) {
2964            return n;
2965        }
2966    }
2967    return -1;
2968}
2969
2970int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2971                                  target_ulong len, int type)
2972{
2973    switch (type) {
2974    case GDB_BREAKPOINT_HW:
2975        len = 1;
2976        break;
2977    case GDB_WATCHPOINT_WRITE:
2978    case GDB_WATCHPOINT_ACCESS:
2979        switch (len) {
2980        case 1:
2981            break;
2982        case 2:
2983        case 4:
2984        case 8:
2985            if (addr & (len - 1)) {
2986                return -EINVAL;
2987            }
2988            break;
2989        default:
2990            return -EINVAL;
2991        }
2992        break;
2993    default:
2994        return -ENOSYS;
2995    }
2996
2997    if (nb_hw_breakpoint == 4) {
2998        return -ENOBUFS;
2999    }
3000    if (find_hw_breakpoint(addr, len, type) >= 0) {
3001        return -EEXIST;
3002    }
3003    hw_breakpoint[nb_hw_breakpoint].addr = addr;
3004    hw_breakpoint[nb_hw_breakpoint].len = len;
3005    hw_breakpoint[nb_hw_breakpoint].type = type;
3006    nb_hw_breakpoint++;
3007
3008    return 0;
3009}
3010
3011int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3012                                  target_ulong len, int type)
3013{
3014    int n;
3015
3016    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3017    if (n < 0) {
3018        return -ENOENT;
3019    }
3020    nb_hw_breakpoint--;
3021    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3022
3023    return 0;
3024}
3025
3026void kvm_arch_remove_all_hw_breakpoints(void)
3027{
3028    nb_hw_breakpoint = 0;
3029}
3030
3031static CPUWatchpoint hw_watchpoint;
3032
3033static int kvm_handle_debug(X86CPU *cpu,
3034                            struct kvm_debug_exit_arch *arch_info)
3035{
3036    CPUState *cs = CPU(cpu);
3037    CPUX86State *env = &cpu->env;
3038    int ret = 0;
3039    int n;
3040
3041    if (arch_info->exception == 1) {
3042        if (arch_info->dr6 & (1 << 14)) {
3043            if (cs->singlestep_enabled) {
3044                ret = EXCP_DEBUG;
3045            }
3046        } else {
3047            for (n = 0; n < 4; n++) {
3048                if (arch_info->dr6 & (1 << n)) {
3049                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3050                    case 0x0:
3051                        ret = EXCP_DEBUG;
3052                        break;
3053                    case 0x1:
3054                        ret = EXCP_DEBUG;
3055                        cs->watchpoint_hit = &hw_watchpoint;
3056                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3057                        hw_watchpoint.flags = BP_MEM_WRITE;
3058                        break;
3059                    case 0x3:
3060                        ret = EXCP_DEBUG;
3061                        cs->watchpoint_hit = &hw_watchpoint;
3062                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3063                        hw_watchpoint.flags = BP_MEM_ACCESS;
3064                        break;
3065                    }
3066                }
3067            }
3068        }
3069    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3070        ret = EXCP_DEBUG;
3071    }
3072    if (ret == 0) {
3073        cpu_synchronize_state(cs);
3074        assert(env->exception_injected == -1);
3075
3076        /* pass to guest */
3077        env->exception_injected = arch_info->exception;
3078        env->has_error_code = 0;
3079    }
3080
3081    return ret;
3082}
3083
3084void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3085{
3086    const uint8_t type_code[] = {
3087        [GDB_BREAKPOINT_HW] = 0x0,
3088        [GDB_WATCHPOINT_WRITE] = 0x1,
3089        [GDB_WATCHPOINT_ACCESS] = 0x3
3090    };
3091    const uint8_t len_code[] = {
3092        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3093    };
3094    int n;
3095
3096    if (kvm_sw_breakpoints_active(cpu)) {
3097        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3098    }
3099    if (nb_hw_breakpoint > 0) {
3100        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3101        dbg->arch.debugreg[7] = 0x0600;
3102        for (n = 0; n < nb_hw_breakpoint; n++) {
3103            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3104            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3105                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3106                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3107        }
3108    }
3109}
3110
3111static bool host_supports_vmx(void)
3112{
3113    uint32_t ecx, unused;
3114
3115    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3116    return ecx & CPUID_EXT_VMX;
3117}
3118
3119#define VMX_INVALID_GUEST_STATE 0x80000021
3120
3121int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3122{
3123    X86CPU *cpu = X86_CPU(cs);
3124    uint64_t code;
3125    int ret;
3126
3127    switch (run->exit_reason) {
3128    case KVM_EXIT_HLT:
3129        DPRINTF("handle_hlt\n");
3130        qemu_mutex_lock_iothread();
3131        ret = kvm_handle_halt(cpu);
3132        qemu_mutex_unlock_iothread();
3133        break;
3134    case KVM_EXIT_SET_TPR:
3135        ret = 0;
3136        break;
3137    case KVM_EXIT_TPR_ACCESS:
3138        qemu_mutex_lock_iothread();
3139        ret = kvm_handle_tpr_access(cpu);
3140        qemu_mutex_unlock_iothread();
3141        break;
3142    case KVM_EXIT_FAIL_ENTRY:
3143        code = run->fail_entry.hardware_entry_failure_reason;
3144        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3145                code);
3146        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3147            fprintf(stderr,
3148                    "\nIf you're running a guest on an Intel machine without "
3149                        "unrestricted mode\n"
3150                    "support, the failure can be most likely due to the guest "
3151                        "entering an invalid\n"
3152                    "state for Intel VT. For example, the guest maybe running "
3153                        "in big real mode\n"
3154                    "which is not supported on less recent Intel processors."
3155                        "\n\n");
3156        }
3157        ret = -1;
3158        break;
3159    case KVM_EXIT_EXCEPTION:
3160        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3161                run->ex.exception, run->ex.error_code);
3162        ret = -1;
3163        break;
3164    case KVM_EXIT_DEBUG:
3165        DPRINTF("kvm_exit_debug\n");
3166        qemu_mutex_lock_iothread();
3167        ret = kvm_handle_debug(cpu, &run->debug.arch);
3168        qemu_mutex_unlock_iothread();
3169        break;
3170    case KVM_EXIT_HYPERV:
3171        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3172        break;
3173    case KVM_EXIT_IOAPIC_EOI:
3174        ioapic_eoi_broadcast(run->eoi.vector);
3175        ret = 0;
3176        break;
3177    default:
3178        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3179        ret = -1;
3180        break;
3181    }
3182
3183    return ret;
3184}
3185
3186bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3187{
3188    X86CPU *cpu = X86_CPU(cs);
3189    CPUX86State *env = &cpu->env;
3190
3191    kvm_cpu_synchronize_state(cs);
3192    return !(env->cr[0] & CR0_PE_MASK) ||
3193           ((env->segs[R_CS].selector  & 3) != 3);
3194}
3195
3196void kvm_arch_init_irq_routing(KVMState *s)
3197{
3198    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3199        /* If kernel can't do irq routing, interrupt source
3200         * override 0->2 cannot be set up as required by HPET.
3201         * So we have to disable it.
3202         */
3203        no_hpet = 1;
3204    }
3205    /* We know at this point that we're using the in-kernel
3206     * irqchip, so we can use irqfds, and on x86 we know
3207     * we can use msi via irqfd and GSI routing.
3208     */
3209    kvm_msi_via_irqfd_allowed = true;
3210    kvm_gsi_routing_allowed = true;
3211
3212    if (kvm_irqchip_is_split()) {
3213        int i;
3214
3215        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3216           MSI routes for signaling interrupts to the local apics. */
3217        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3218            if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3219                error_report("Could not enable split IRQ mode.");
3220                exit(1);
3221            }
3222        }
3223    }
3224}
3225
3226int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3227{
3228    int ret;
3229    if (machine_kernel_irqchip_split(ms)) {
3230        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3231        if (ret) {
3232            error_report("Could not enable split irqchip mode: %s",
3233                         strerror(-ret));
3234            exit(1);
3235        } else {
3236            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3237            kvm_split_irqchip = true;
3238            return 1;
3239        }
3240    } else {
3241        return 0;
3242    }
3243}
3244
3245/* Classic KVM device assignment interface. Will remain x86 only. */
3246int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3247                          uint32_t flags, uint32_t *dev_id)
3248{
3249    struct kvm_assigned_pci_dev dev_data = {
3250        .segnr = dev_addr->domain,
3251        .busnr = dev_addr->bus,
3252        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3253        .flags = flags,
3254    };
3255    int ret;
3256
3257    dev_data.assigned_dev_id =
3258        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3259
3260    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3261    if (ret < 0) {
3262        return ret;
3263    }
3264
3265    *dev_id = dev_data.assigned_dev_id;
3266
3267    return 0;
3268}
3269
3270int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3271{
3272    struct kvm_assigned_pci_dev dev_data = {
3273        .assigned_dev_id = dev_id,
3274    };
3275
3276    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3277}
3278
3279static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3280                                   uint32_t irq_type, uint32_t guest_irq)
3281{
3282    struct kvm_assigned_irq assigned_irq = {
3283        .assigned_dev_id = dev_id,
3284        .guest_irq = guest_irq,
3285        .flags = irq_type,
3286    };
3287
3288    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3289        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3290    } else {
3291        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3292    }
3293}
3294
3295int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3296                           uint32_t guest_irq)
3297{
3298    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3299        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3300
3301    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3302}
3303
3304int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3305{
3306    struct kvm_assigned_pci_dev dev_data = {
3307        .assigned_dev_id = dev_id,
3308        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3309    };
3310
3311    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3312}
3313
3314static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3315                                     uint32_t type)
3316{
3317    struct kvm_assigned_irq assigned_irq = {
3318        .assigned_dev_id = dev_id,
3319        .flags = type,
3320    };
3321
3322    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3323}
3324
3325int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3326{
3327    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3328        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3329}
3330
3331int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3332{
3333    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3334                                              KVM_DEV_IRQ_GUEST_MSI, virq);
3335}
3336
3337int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3338{
3339    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3340                                                KVM_DEV_IRQ_HOST_MSI);
3341}
3342
3343bool kvm_device_msix_supported(KVMState *s)
3344{
3345    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3346     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3347    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3348}
3349
3350int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3351                                 uint32_t nr_vectors)
3352{
3353    struct kvm_assigned_msix_nr msix_nr = {
3354        .assigned_dev_id = dev_id,
3355        .entry_nr = nr_vectors,
3356    };
3357
3358    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3359}
3360
3361int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3362                               int virq)
3363{
3364    struct kvm_assigned_msix_entry msix_entry = {
3365        .assigned_dev_id = dev_id,
3366        .gsi = virq,
3367        .entry = vector,
3368    };
3369
3370    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3371}
3372
3373int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3374{
3375    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3376                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
3377}
3378
3379int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3380{
3381    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3382                                                KVM_DEV_IRQ_HOST_MSIX);
3383}
3384
3385int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3386                             uint64_t address, uint32_t data, PCIDevice *dev)
3387{
3388    X86IOMMUState *iommu = x86_iommu_get_default();
3389
3390    if (iommu) {
3391        int ret;
3392        MSIMessage src, dst;
3393        X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3394
3395        src.address = route->u.msi.address_hi;
3396        src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3397        src.address |= route->u.msi.address_lo;
3398        src.data = route->u.msi.data;
3399
3400        ret = class->int_remap(iommu, &src, &dst, dev ? \
3401                               pci_requester_id(dev) : \
3402                               X86_IOMMU_SID_INVALID);
3403        if (ret) {
3404            trace_kvm_x86_fixup_msi_error(route->gsi);
3405            return 1;
3406        }
3407
3408        route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3409        route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3410        route->u.msi.data = dst.data;
3411    }
3412
3413    return 0;
3414}
3415
3416typedef struct MSIRouteEntry MSIRouteEntry;
3417
3418struct MSIRouteEntry {
3419    PCIDevice *dev;             /* Device pointer */
3420    int vector;                 /* MSI/MSIX vector index */
3421    int virq;                   /* Virtual IRQ index */
3422    QLIST_ENTRY(MSIRouteEntry) list;
3423};
3424
3425/* List of used GSI routes */
3426static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3427    QLIST_HEAD_INITIALIZER(msi_route_list);
3428
3429static void kvm_update_msi_routes_all(void *private, bool global,
3430                                      uint32_t index, uint32_t mask)
3431{
3432    int cnt = 0;
3433    MSIRouteEntry *entry;
3434    MSIMessage msg;
3435    PCIDevice *dev;
3436
3437    /* TODO: explicit route update */
3438    QLIST_FOREACH(entry, &msi_route_list, list) {
3439        cnt++;
3440        dev = entry->dev;
3441        if (!msix_enabled(dev) && !msi_enabled(dev)) {
3442            continue;
3443        }
3444        msg = pci_get_msi_message(dev, entry->vector);
3445        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3446    }
3447    kvm_irqchip_commit_routes(kvm_state);
3448    trace_kvm_x86_update_msi_routes(cnt);
3449}
3450
3451int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3452                                int vector, PCIDevice *dev)
3453{
3454    static bool notify_list_inited = false;
3455    MSIRouteEntry *entry;
3456
3457    if (!dev) {
3458        /* These are (possibly) IOAPIC routes only used for split
3459         * kernel irqchip mode, while what we are housekeeping are
3460         * PCI devices only. */
3461        return 0;
3462    }
3463
3464    entry = g_new0(MSIRouteEntry, 1);
3465    entry->dev = dev;
3466    entry->vector = vector;
3467    entry->virq = route->gsi;
3468    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3469
3470    trace_kvm_x86_add_msi_route(route->gsi);
3471
3472    if (!notify_list_inited) {
3473        /* For the first time we do add route, add ourselves into
3474         * IOMMU's IEC notify list if needed. */
3475        X86IOMMUState *iommu = x86_iommu_get_default();
3476        if (iommu) {
3477            x86_iommu_iec_register_notifier(iommu,
3478                                            kvm_update_msi_routes_all,
3479                                            NULL);
3480        }
3481        notify_list_inited = true;
3482    }
3483    return 0;
3484}
3485
3486int kvm_arch_release_virq_post(int virq)
3487{
3488    MSIRouteEntry *entry, *next;
3489    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3490        if (entry->virq == virq) {
3491            trace_kvm_x86_remove_msi_route(virq);
3492            QLIST_REMOVE(entry, list);
3493            break;
3494        }
3495    }
3496    return 0;
3497}
3498
3499int kvm_arch_msi_data_to_gsi(uint32_t data)
3500{
3501    abort();
3502}
3503