qemu/hw/intc/arm_gicv3_kvm.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller using KVM in-kernel support
   3 *
   4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
   5 * Written by Pavel Fedin
   6 * Based on vGICv2 code by Peter Maydell
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation, either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qapi/error.h"
  24#include "hw/intc/arm_gicv3_common.h"
  25#include "hw/sysbus.h"
  26#include "qemu/error-report.h"
  27#include "sysemu/kvm.h"
  28#include "sysemu/sysemu.h"
  29#include "kvm_arm.h"
  30#include "gicv3_internal.h"
  31#include "vgic_common.h"
  32#include "migration/blocker.h"
  33
  34#ifdef DEBUG_GICV3_KVM
  35#define DPRINTF(fmt, ...) \
  36    do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
  37#else
  38#define DPRINTF(fmt, ...) \
  39    do { } while (0)
  40#endif
  41
  42#define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
  43#define KVM_ARM_GICV3(obj) \
  44     OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
  45#define KVM_ARM_GICV3_CLASS(klass) \
  46     OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
  47#define KVM_ARM_GICV3_GET_CLASS(obj) \
  48     OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
  49
  50#define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
  51                             (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
  52                              ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
  53                              ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
  54                              ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
  55                              ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
  56
  57#define ICC_PMR_EL1     \
  58    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
  59#define ICC_BPR0_EL1    \
  60    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
  61#define ICC_AP0R_EL1(n) \
  62    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
  63#define ICC_AP1R_EL1(n) \
  64    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
  65#define ICC_BPR1_EL1    \
  66    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
  67#define ICC_CTLR_EL1    \
  68    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
  69#define ICC_SRE_EL1 \
  70    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
  71#define ICC_IGRPEN0_EL1 \
  72    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
  73#define ICC_IGRPEN1_EL1 \
  74    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
  75
  76typedef struct KVMARMGICv3Class {
  77    ARMGICv3CommonClass parent_class;
  78    DeviceRealize parent_realize;
  79    void (*parent_reset)(DeviceState *dev);
  80} KVMARMGICv3Class;
  81
  82static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
  83{
  84    GICv3State *s = (GICv3State *)opaque;
  85
  86    kvm_arm_gic_set_irq(s->num_irq, irq, level);
  87}
  88
  89#define KVM_VGIC_ATTR(reg, typer) \
  90    ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
  91
  92static inline void kvm_gicd_access(GICv3State *s, int offset,
  93                                   uint32_t *val, bool write)
  94{
  95    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
  96                      KVM_VGIC_ATTR(offset, 0),
  97                      val, write, &error_abort);
  98}
  99
 100static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
 101                                   uint32_t *val, bool write)
 102{
 103    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
 104                      KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
 105                      val, write, &error_abort);
 106}
 107
 108static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
 109                                   uint64_t *val, bool write)
 110{
 111    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
 112                      KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
 113                      val, write, &error_abort);
 114}
 115
 116static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
 117                                             uint32_t *val, bool write)
 118{
 119    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
 120                      KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
 121                      (VGIC_LEVEL_INFO_LINE_LEVEL <<
 122                       KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
 123                      val, write, &error_abort);
 124}
 125
 126/* Loop through each distributor IRQ related register; since bits
 127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
 128 * is enabled, we skip those.
 129 */
 130#define for_each_dist_irq_reg(_irq, _max, _field_width) \
 131    for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
 132
 133static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
 134{
 135    uint32_t reg, *field;
 136    int irq;
 137
 138    field = (uint32_t *)bmp;
 139    for_each_dist_irq_reg(irq, s->num_irq, 8) {
 140        kvm_gicd_access(s, offset, &reg, false);
 141        *field = reg;
 142        offset += 4;
 143        field++;
 144    }
 145}
 146
 147static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
 148{
 149    uint32_t reg, *field;
 150    int irq;
 151
 152    field = (uint32_t *)bmp;
 153    for_each_dist_irq_reg(irq, s->num_irq, 8) {
 154        reg = *field;
 155        kvm_gicd_access(s, offset, &reg, true);
 156        offset += 4;
 157        field++;
 158    }
 159}
 160
 161static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
 162                                      uint32_t *bmp)
 163{
 164    uint32_t reg;
 165    int irq;
 166
 167    for_each_dist_irq_reg(irq, s->num_irq, 2) {
 168        kvm_gicd_access(s, offset, &reg, false);
 169        reg = half_unshuffle32(reg >> 1);
 170        if (irq % 32 != 0) {
 171            reg = (reg << 16);
 172        }
 173        *gic_bmp_ptr32(bmp, irq) |=  reg;
 174        offset += 4;
 175    }
 176}
 177
 178static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
 179                                      uint32_t *bmp)
 180{
 181    uint32_t reg;
 182    int irq;
 183
 184    for_each_dist_irq_reg(irq, s->num_irq, 2) {
 185        reg = *gic_bmp_ptr32(bmp, irq);
 186        if (irq % 32 != 0) {
 187            reg = (reg & 0xffff0000) >> 16;
 188        } else {
 189            reg = reg & 0xffff;
 190        }
 191        reg = half_shuffle32(reg) << 1;
 192        kvm_gicd_access(s, offset, &reg, true);
 193        offset += 4;
 194    }
 195}
 196
 197static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
 198{
 199    uint32_t reg;
 200    int irq;
 201
 202    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 203        kvm_gic_line_level_access(s, irq, 0, &reg, false);
 204        *gic_bmp_ptr32(bmp, irq) = reg;
 205    }
 206}
 207
 208static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
 209{
 210    uint32_t reg;
 211    int irq;
 212
 213    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 214        reg = *gic_bmp_ptr32(bmp, irq);
 215        kvm_gic_line_level_access(s, irq, 0, &reg, true);
 216    }
 217}
 218
 219/* Read a bitmap register group from the kernel VGIC. */
 220static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
 221{
 222    uint32_t reg;
 223    int irq;
 224
 225    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 226        kvm_gicd_access(s, offset, &reg, false);
 227        *gic_bmp_ptr32(bmp, irq) = reg;
 228        offset += 4;
 229    }
 230}
 231
 232static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
 233                            uint32_t clroffset, uint32_t *bmp)
 234{
 235    uint32_t reg;
 236    int irq;
 237
 238    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 239        /* If this bitmap is a set/clear register pair, first write to the
 240         * clear-reg to clear all bits before using the set-reg to write
 241         * the 1 bits.
 242         */
 243        if (clroffset != 0) {
 244            reg = 0;
 245            kvm_gicd_access(s, clroffset, &reg, true);
 246        }
 247        reg = *gic_bmp_ptr32(bmp, irq);
 248        kvm_gicd_access(s, offset, &reg, true);
 249        offset += 4;
 250    }
 251}
 252
 253static void kvm_arm_gicv3_check(GICv3State *s)
 254{
 255    uint32_t reg;
 256    uint32_t num_irq;
 257
 258    /* Sanity checking s->num_irq */
 259    kvm_gicd_access(s, GICD_TYPER, &reg, false);
 260    num_irq = ((reg & 0x1f) + 1) * 32;
 261
 262    if (num_irq < s->num_irq) {
 263        error_report("Model requests %u IRQs, but kernel supports max %u",
 264                     s->num_irq, num_irq);
 265        abort();
 266    }
 267}
 268
 269static void kvm_arm_gicv3_put(GICv3State *s)
 270{
 271    uint32_t regl, regh, reg;
 272    uint64_t reg64, redist_typer;
 273    int ncpu, i;
 274
 275    kvm_arm_gicv3_check(s);
 276
 277    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
 278    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
 279    redist_typer = ((uint64_t)regh << 32) | regl;
 280
 281    reg = s->gicd_ctlr;
 282    kvm_gicd_access(s, GICD_CTLR, &reg, true);
 283
 284    if (redist_typer & GICR_TYPER_PLPIS) {
 285        /* Set base addresses before LPIs are enabled by GICR_CTLR write */
 286        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 287            GICv3CPUState *c = &s->cpu[ncpu];
 288
 289            reg64 = c->gicr_propbaser;
 290            regl = (uint32_t)reg64;
 291            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
 292            regh = (uint32_t)(reg64 >> 32);
 293            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
 294
 295            reg64 = c->gicr_pendbaser;
 296            if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 297                /* Setting PTZ is advised if LPIs are disabled, to reduce
 298                 * GIC initialization time.
 299                 */
 300                reg64 |= GICR_PENDBASER_PTZ;
 301            }
 302            regl = (uint32_t)reg64;
 303            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
 304            regh = (uint32_t)(reg64 >> 32);
 305            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
 306        }
 307    }
 308
 309    /* Redistributor state (one per CPU) */
 310
 311    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 312        GICv3CPUState *c = &s->cpu[ncpu];
 313
 314        reg = c->gicr_ctlr;
 315        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
 316
 317        reg = c->gicr_statusr[GICV3_NS];
 318        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
 319
 320        reg = c->gicr_waker;
 321        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
 322
 323        reg = c->gicr_igroupr0;
 324        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
 325
 326        reg = ~0;
 327        kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
 328        reg = c->gicr_ienabler0;
 329        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
 330
 331        /* Restore config before pending so we treat level/edge correctly */
 332        reg = half_shuffle32(c->edge_trigger >> 16) << 1;
 333        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
 334
 335        reg = c->level;
 336        kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
 337
 338        reg = ~0;
 339        kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
 340        reg = c->gicr_ipendr0;
 341        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
 342
 343        reg = ~0;
 344        kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
 345        reg = c->gicr_iactiver0;
 346        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
 347
 348        for (i = 0; i < GIC_INTERNAL; i += 4) {
 349            reg = c->gicr_ipriorityr[i] |
 350                (c->gicr_ipriorityr[i + 1] << 8) |
 351                (c->gicr_ipriorityr[i + 2] << 16) |
 352                (c->gicr_ipriorityr[i + 3] << 24);
 353            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
 354        }
 355    }
 356
 357    /* Distributor state (shared between all CPUs */
 358    reg = s->gicd_statusr[GICV3_NS];
 359    kvm_gicd_access(s, GICD_STATUSR, &reg, true);
 360
 361    /* s->enable bitmap -> GICD_ISENABLERn */
 362    kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
 363
 364    /* s->group bitmap -> GICD_IGROUPRn */
 365    kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
 366
 367    /* Restore targets before pending to ensure the pending state is set on
 368     * the appropriate CPU interfaces in the kernel
 369     */
 370
 371    /* s->gicd_irouter[irq] -> GICD_IROUTERn
 372     * We can't use kvm_dist_put() here because the registers are 64-bit
 373     */
 374    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
 375        uint32_t offset;
 376
 377        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
 378        reg = (uint32_t)s->gicd_irouter[i];
 379        kvm_gicd_access(s, offset, &reg, true);
 380
 381        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
 382        reg = (uint32_t)(s->gicd_irouter[i] >> 32);
 383        kvm_gicd_access(s, offset, &reg, true);
 384    }
 385
 386    /* s->trigger bitmap -> GICD_ICFGRn
 387     * (restore configuration registers before pending IRQs so we treat
 388     * level/edge correctly)
 389     */
 390    kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
 391
 392    /* s->level bitmap ->  line_level */
 393    kvm_gic_put_line_level_bmp(s, s->level);
 394
 395    /* s->pending bitmap -> GICD_ISPENDRn */
 396    kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
 397
 398    /* s->active bitmap -> GICD_ISACTIVERn */
 399    kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
 400
 401    /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
 402    kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
 403
 404    /* CPU Interface state (one per CPU) */
 405
 406    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 407        GICv3CPUState *c = &s->cpu[ncpu];
 408        int num_pri_bits;
 409
 410        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
 411        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
 412                        &c->icc_ctlr_el1[GICV3_NS], true);
 413        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
 414                        &c->icc_igrpen[GICV3_G0], true);
 415        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
 416                        &c->icc_igrpen[GICV3_G1NS], true);
 417        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
 418        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
 419        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
 420
 421        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
 422                        ICC_CTLR_EL1_PRIBITS_MASK) >>
 423                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
 424
 425        switch (num_pri_bits) {
 426        case 7:
 427            reg64 = c->icc_apr[GICV3_G0][3];
 428            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
 429            reg64 = c->icc_apr[GICV3_G0][2];
 430            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
 431        case 6:
 432            reg64 = c->icc_apr[GICV3_G0][1];
 433            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
 434        default:
 435            reg64 = c->icc_apr[GICV3_G0][0];
 436            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
 437        }
 438
 439        switch (num_pri_bits) {
 440        case 7:
 441            reg64 = c->icc_apr[GICV3_G1NS][3];
 442            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
 443            reg64 = c->icc_apr[GICV3_G1NS][2];
 444            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
 445        case 6:
 446            reg64 = c->icc_apr[GICV3_G1NS][1];
 447            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
 448        default:
 449            reg64 = c->icc_apr[GICV3_G1NS][0];
 450            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
 451        }
 452    }
 453}
 454
 455static void kvm_arm_gicv3_get(GICv3State *s)
 456{
 457    uint32_t regl, regh, reg;
 458    uint64_t reg64, redist_typer;
 459    int ncpu, i;
 460
 461    kvm_arm_gicv3_check(s);
 462
 463    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
 464    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
 465    redist_typer = ((uint64_t)regh << 32) | regl;
 466
 467    kvm_gicd_access(s, GICD_CTLR, &reg, false);
 468    s->gicd_ctlr = reg;
 469
 470    /* Redistributor state (one per CPU) */
 471
 472    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 473        GICv3CPUState *c = &s->cpu[ncpu];
 474
 475        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
 476        c->gicr_ctlr = reg;
 477
 478        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
 479        c->gicr_statusr[GICV3_NS] = reg;
 480
 481        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
 482        c->gicr_waker = reg;
 483
 484        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
 485        c->gicr_igroupr0 = reg;
 486        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
 487        c->gicr_ienabler0 = reg;
 488        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
 489        c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
 490        kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
 491        c->level = reg;
 492        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
 493        c->gicr_ipendr0 = reg;
 494        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
 495        c->gicr_iactiver0 = reg;
 496
 497        for (i = 0; i < GIC_INTERNAL; i += 4) {
 498            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
 499            c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
 500            c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
 501            c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
 502            c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
 503        }
 504    }
 505
 506    if (redist_typer & GICR_TYPER_PLPIS) {
 507        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 508            GICv3CPUState *c = &s->cpu[ncpu];
 509
 510            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
 511            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
 512            c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
 513
 514            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
 515            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
 516            c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
 517        }
 518    }
 519
 520    /* Distributor state (shared between all CPUs */
 521
 522    kvm_gicd_access(s, GICD_STATUSR, &reg, false);
 523    s->gicd_statusr[GICV3_NS] = reg;
 524
 525    /* GICD_IGROUPRn -> s->group bitmap */
 526    kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
 527
 528    /* GICD_ISENABLERn -> s->enabled bitmap */
 529    kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
 530
 531    /* Line level of irq */
 532    kvm_gic_get_line_level_bmp(s, s->level);
 533    /* GICD_ISPENDRn -> s->pending bitmap */
 534    kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
 535
 536    /* GICD_ISACTIVERn -> s->active bitmap */
 537    kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
 538
 539    /* GICD_ICFGRn -> s->trigger bitmap */
 540    kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
 541
 542    /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
 543    kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
 544
 545    /* GICD_IROUTERn -> s->gicd_irouter[irq] */
 546    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
 547        uint32_t offset;
 548
 549        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
 550        kvm_gicd_access(s, offset, &regl, false);
 551        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
 552        kvm_gicd_access(s, offset, &regh, false);
 553        s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
 554    }
 555
 556    /*****************************************************************
 557     * CPU Interface(s) State
 558     */
 559
 560    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 561        GICv3CPUState *c = &s->cpu[ncpu];
 562        int num_pri_bits;
 563
 564        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
 565        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
 566                        &c->icc_ctlr_el1[GICV3_NS], false);
 567        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
 568                        &c->icc_igrpen[GICV3_G0], false);
 569        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
 570                        &c->icc_igrpen[GICV3_G1NS], false);
 571        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
 572        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
 573        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
 574        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
 575                        ICC_CTLR_EL1_PRIBITS_MASK) >>
 576                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
 577
 578        switch (num_pri_bits) {
 579        case 7:
 580            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
 581            c->icc_apr[GICV3_G0][3] = reg64;
 582            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
 583            c->icc_apr[GICV3_G0][2] = reg64;
 584        case 6:
 585            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
 586            c->icc_apr[GICV3_G0][1] = reg64;
 587        default:
 588            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
 589            c->icc_apr[GICV3_G0][0] = reg64;
 590        }
 591
 592        switch (num_pri_bits) {
 593        case 7:
 594            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
 595            c->icc_apr[GICV3_G1NS][3] = reg64;
 596            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
 597            c->icc_apr[GICV3_G1NS][2] = reg64;
 598        case 6:
 599            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
 600            c->icc_apr[GICV3_G1NS][1] = reg64;
 601        default:
 602            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
 603            c->icc_apr[GICV3_G1NS][0] = reg64;
 604        }
 605    }
 606}
 607
 608static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 609{
 610    ARMCPU *cpu;
 611    GICv3State *s;
 612    GICv3CPUState *c;
 613
 614    c = (GICv3CPUState *)env->gicv3state;
 615    s = c->gic;
 616    cpu = ARM_CPU(c->cpu);
 617
 618    c->icc_pmr_el1 = 0;
 619    c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
 620    c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
 621    c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
 622
 623    c->icc_sre_el1 = 0x7;
 624    memset(c->icc_apr, 0, sizeof(c->icc_apr));
 625    memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
 626
 627    if (s->migration_blocker) {
 628        return;
 629    }
 630
 631    /* Initialize to actual HW supported configuration */
 632    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
 633                      KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
 634                      &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
 635
 636    c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
 637}
 638
 639static void kvm_arm_gicv3_reset(DeviceState *dev)
 640{
 641    GICv3State *s = ARM_GICV3_COMMON(dev);
 642    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
 643
 644    DPRINTF("Reset\n");
 645
 646    kgc->parent_reset(dev);
 647
 648    if (s->migration_blocker) {
 649        DPRINTF("Cannot put kernel gic state, no kernel interface\n");
 650        return;
 651    }
 652
 653    kvm_arm_gicv3_put(s);
 654}
 655
 656/*
 657 * CPU interface registers of GIC needs to be reset on CPU reset.
 658 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
 659 * below ARMCPRegInfo. As we reset the whole cpu interface under single
 660 * register reset, we define only one register of CPU interface instead
 661 * of defining all the registers.
 662 */
 663static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
 664    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
 665      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
 666      /*
 667       * If ARM_CP_NOP is used, resetfn is not called,
 668       * So ARM_CP_NO_RAW is appropriate type.
 669       */
 670      .type = ARM_CP_NO_RAW,
 671      .access = PL1_RW,
 672      .readfn = arm_cp_read_zero,
 673      .writefn = arm_cp_write_ignore,
 674      /*
 675       * We hang the whole cpu interface reset routine off here
 676       * rather than parcelling it out into one little function
 677       * per register
 678       */
 679      .resetfn = arm_gicv3_icc_reset,
 680    },
 681    REGINFO_SENTINEL
 682};
 683
 684/**
 685 * vm_change_state_handler - VM change state callback aiming at flushing
 686 * RDIST pending tables into guest RAM
 687 *
 688 * The tables get flushed to guest RAM whenever the VM gets stopped.
 689 */
 690static void vm_change_state_handler(void *opaque, int running,
 691                                    RunState state)
 692{
 693    GICv3State *s = (GICv3State *)opaque;
 694    Error *err = NULL;
 695    int ret;
 696
 697    if (running) {
 698        return;
 699    }
 700
 701    ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 702                           KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
 703                           NULL, true, &err);
 704    if (err) {
 705        error_report_err(err);
 706    }
 707    if (ret < 0 && ret != -EFAULT) {
 708        abort();
 709    }
 710}
 711
 712
 713static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
 714{
 715    GICv3State *s = KVM_ARM_GICV3(dev);
 716    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
 717    Error *local_err = NULL;
 718    int i;
 719
 720    DPRINTF("kvm_arm_gicv3_realize\n");
 721
 722    kgc->parent_realize(dev, &local_err);
 723    if (local_err) {
 724        error_propagate(errp, local_err);
 725        return;
 726    }
 727
 728    if (s->security_extn) {
 729        error_setg(errp, "the in-kernel VGICv3 does not implement the "
 730                   "security extensions");
 731        return;
 732    }
 733
 734    gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
 735
 736    for (i = 0; i < s->num_cpu; i++) {
 737        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
 738
 739        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
 740    }
 741
 742    /* Try to create the device via the device control API */
 743    s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
 744    if (s->dev_fd < 0) {
 745        error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
 746        return;
 747    }
 748
 749    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
 750                      0, &s->num_irq, true, &error_abort);
 751
 752    /* Tell the kernel to complete VGIC initialization now */
 753    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 754                      KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
 755
 756    kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
 757                            KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
 758    kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
 759                            KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
 760
 761    if (kvm_has_gsi_routing()) {
 762        /* set up irq routing */
 763        kvm_init_irq_routing(kvm_state);
 764        for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
 765            kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
 766        }
 767
 768        kvm_gsi_routing_allowed = true;
 769
 770        kvm_irqchip_commit_routes(kvm_state);
 771    }
 772
 773    if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
 774                               GICD_CTLR)) {
 775        error_setg(&s->migration_blocker, "This operating system kernel does "
 776                                          "not support vGICv3 migration");
 777        migrate_add_blocker(s->migration_blocker, &local_err);
 778        if (local_err) {
 779            error_propagate(errp, local_err);
 780            error_free(s->migration_blocker);
 781            return;
 782        }
 783    }
 784    if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 785                              KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
 786        qemu_add_vm_change_state_handler(vm_change_state_handler, s);
 787    }
 788}
 789
 790static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
 791{
 792    DeviceClass *dc = DEVICE_CLASS(klass);
 793    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
 794    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
 795
 796    agcc->pre_save = kvm_arm_gicv3_get;
 797    agcc->post_load = kvm_arm_gicv3_put;
 798    kgc->parent_realize = dc->realize;
 799    kgc->parent_reset = dc->reset;
 800    dc->realize = kvm_arm_gicv3_realize;
 801    dc->reset = kvm_arm_gicv3_reset;
 802}
 803
 804static const TypeInfo kvm_arm_gicv3_info = {
 805    .name = TYPE_KVM_ARM_GICV3,
 806    .parent = TYPE_ARM_GICV3_COMMON,
 807    .instance_size = sizeof(GICv3State),
 808    .class_init = kvm_arm_gicv3_class_init,
 809    .class_size = sizeof(KVMARMGICv3Class),
 810};
 811
 812static void kvm_arm_gicv3_register_types(void)
 813{
 814    type_register_static(&kvm_arm_gicv3_info);
 815}
 816
 817type_init(kvm_arm_gicv3_register_types)
 818