qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "hw/hw.h"
  33#include "qemu/log.h"
  34#include "hw/fw-path-provider.h"
  35#include "elf.h"
  36#include "net/net.h"
  37#include "sysemu/device_tree.h"
  38#include "sysemu/block-backend.h"
  39#include "sysemu/cpus.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_ppc.h"
  42#include "migration/misc.h"
  43#include "migration/global_state.h"
  44#include "migration/register.h"
  45#include "mmu-hash64.h"
  46#include "mmu-book3s-v3.h"
  47#include "cpu-models.h"
  48#include "qom/cpu.h"
  49
  50#include "hw/boards.h"
  51#include "hw/ppc/ppc.h"
  52#include "hw/loader.h"
  53
  54#include "hw/ppc/fdt.h"
  55#include "hw/ppc/spapr.h"
  56#include "hw/ppc/spapr_vio.h"
  57#include "hw/pci-host/spapr.h"
  58#include "hw/ppc/xics.h"
  59#include "hw/pci/msi.h"
  60
  61#include "hw/pci/pci.h"
  62#include "hw/scsi/scsi.h"
  63#include "hw/virtio/virtio-scsi.h"
  64#include "hw/virtio/vhost-scsi-common.h"
  65
  66#include "exec/address-spaces.h"
  67#include "hw/usb.h"
  68#include "qemu/config-file.h"
  69#include "qemu/error-report.h"
  70#include "trace.h"
  71#include "hw/nmi.h"
  72#include "hw/intc/intc.h"
  73
  74#include "hw/compat.h"
  75#include "qemu/cutils.h"
  76#include "hw/ppc/spapr_cpu_core.h"
  77#include "qmp-commands.h"
  78
  79#include <libfdt.h>
  80
  81/* SLOF memory layout:
  82 *
  83 * SLOF raw image loaded at 0, copies its romfs right below the flat
  84 * device-tree, then position SLOF itself 31M below that
  85 *
  86 * So we set FW_OVERHEAD to 40MB which should account for all of that
  87 * and more
  88 *
  89 * We load our kernel at 4M, leaving space for SLOF initial image
  90 */
  91#define FDT_MAX_SIZE            0x100000
  92#define RTAS_MAX_SIZE           0x10000
  93#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  94#define FW_MAX_SIZE             0x400000
  95#define FW_FILE_NAME            "slof.bin"
  96#define FW_OVERHEAD             0x2800000
  97#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  98
  99#define MIN_RMA_SLOF            128UL
 100
 101#define PHANDLE_XICP            0x00001111
 102
 103static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 104                                  const char *type_ics,
 105                                  int nr_irqs, Error **errp)
 106{
 107    Error *local_err = NULL;
 108    Object *obj;
 109
 110    obj = object_new(type_ics);
 111    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 112    object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 113                                   &error_abort);
 114    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 115    if (local_err) {
 116        goto error;
 117    }
 118    object_property_set_bool(obj, true, "realized", &local_err);
 119    if (local_err) {
 120        goto error;
 121    }
 122
 123    return ICS_SIMPLE(obj);
 124
 125error:
 126    error_propagate(errp, local_err);
 127    return NULL;
 128}
 129
 130static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 131{
 132    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 133     * and newer QEMUs don't even have them. In both cases, we don't want
 134     * to send anything on the wire.
 135     */
 136    return false;
 137}
 138
 139static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 140    .name = "icp/server",
 141    .version_id = 1,
 142    .minimum_version_id = 1,
 143    .needed = pre_2_10_vmstate_dummy_icp_needed,
 144    .fields = (VMStateField[]) {
 145        VMSTATE_UNUSED(4), /* uint32_t xirr */
 146        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 147        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 148        VMSTATE_END_OF_LIST()
 149    },
 150};
 151
 152static void pre_2_10_vmstate_register_dummy_icp(int i)
 153{
 154    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 155                     (void *)(uintptr_t) i);
 156}
 157
 158static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 159{
 160    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 161                       (void *)(uintptr_t) i);
 162}
 163
 164static inline int xics_max_server_number(void)
 165{
 166    return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
 167}
 168
 169static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 170{
 171    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 172    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 173
 174    if (kvm_enabled()) {
 175        if (machine_kernel_irqchip_allowed(machine) &&
 176            !xics_kvm_init(spapr, errp)) {
 177            spapr->icp_type = TYPE_KVM_ICP;
 178            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
 179        }
 180        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 181            error_prepend(errp, "kernel_irqchip requested but unavailable: ");
 182            return;
 183        }
 184    }
 185
 186    if (!spapr->ics) {
 187        xics_spapr_init(spapr);
 188        spapr->icp_type = TYPE_ICP;
 189        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
 190        if (!spapr->ics) {
 191            return;
 192        }
 193    }
 194
 195    if (smc->pre_2_10_has_unused_icps) {
 196        int i;
 197
 198        for (i = 0; i < xics_max_server_number(); i++) {
 199            /* Dummy entries get deregistered when real ICPState objects
 200             * are registered during CPU core hotplug.
 201             */
 202            pre_2_10_vmstate_register_dummy_icp(i);
 203        }
 204    }
 205}
 206
 207static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 208                                  int smt_threads)
 209{
 210    int i, ret = 0;
 211    uint32_t servers_prop[smt_threads];
 212    uint32_t gservers_prop[smt_threads * 2];
 213    int index = spapr_vcpu_id(cpu);
 214
 215    if (cpu->compat_pvr) {
 216        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 217        if (ret < 0) {
 218            return ret;
 219        }
 220    }
 221
 222    /* Build interrupt servers and gservers properties */
 223    for (i = 0; i < smt_threads; i++) {
 224        servers_prop[i] = cpu_to_be32(index + i);
 225        /* Hack, direct the group queues back to cpu 0 */
 226        gservers_prop[i*2] = cpu_to_be32(index + i);
 227        gservers_prop[i*2 + 1] = 0;
 228    }
 229    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 230                      servers_prop, sizeof(servers_prop));
 231    if (ret < 0) {
 232        return ret;
 233    }
 234    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 235                      gservers_prop, sizeof(gservers_prop));
 236
 237    return ret;
 238}
 239
 240static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 241{
 242    int index = spapr_vcpu_id(cpu);
 243    uint32_t associativity[] = {cpu_to_be32(0x5),
 244                                cpu_to_be32(0x0),
 245                                cpu_to_be32(0x0),
 246                                cpu_to_be32(0x0),
 247                                cpu_to_be32(cpu->node_id),
 248                                cpu_to_be32(index)};
 249
 250    /* Advertise NUMA via ibm,associativity */
 251    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 252                          sizeof(associativity));
 253}
 254
 255/* Populate the "ibm,pa-features" property */
 256static void spapr_populate_pa_features(sPAPRMachineState *spapr,
 257                                       PowerPCCPU *cpu,
 258                                       void *fdt, int offset,
 259                                       bool legacy_guest)
 260{
 261    CPUPPCState *env = &cpu->env;
 262    uint8_t pa_features_206[] = { 6, 0,
 263        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 264    uint8_t pa_features_207[] = { 24, 0,
 265        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 266        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 267        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 268        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 269    uint8_t pa_features_300[] = { 66, 0,
 270        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 271        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 272        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 273        /* 6: DS207 */
 274        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 275        /* 16: Vector */
 276        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 277        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 278        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 279        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 280        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 281        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 282        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 283        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 284        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 285        /* 42: PM, 44: PC RA, 46: SC vec'd */
 286        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 287        /* 48: SIMD, 50: QP BFP, 52: String */
 288        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 289        /* 54: DecFP, 56: DecI, 58: SHA */
 290        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 291        /* 60: NM atomic, 62: RNG */
 292        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 293    };
 294    uint8_t *pa_features = NULL;
 295    size_t pa_size;
 296
 297    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 298        pa_features = pa_features_206;
 299        pa_size = sizeof(pa_features_206);
 300    }
 301    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 302        pa_features = pa_features_207;
 303        pa_size = sizeof(pa_features_207);
 304    }
 305    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 306        pa_features = pa_features_300;
 307        pa_size = sizeof(pa_features_300);
 308    }
 309    if (!pa_features) {
 310        return;
 311    }
 312
 313    if (env->ci_large_pages) {
 314        /*
 315         * Note: we keep CI large pages off by default because a 64K capable
 316         * guest provisioned with large pages might otherwise try to map a qemu
 317         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 318         * even if that qemu runs on a 4k host.
 319         * We dd this bit back here if we are confident this is not an issue
 320         */
 321        pa_features[3] |= 0x20;
 322    }
 323    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 324        pa_features[24] |= 0x80;    /* Transactional memory support */
 325    }
 326    if (legacy_guest && pa_size > 40) {
 327        /* Workaround for broken kernels that attempt (guest) radix
 328         * mode when they can't handle it, if they see the radix bit set
 329         * in pa-features. So hide it from them. */
 330        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 331    }
 332
 333    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 334}
 335
 336static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 337{
 338    int ret = 0, offset, cpus_offset;
 339    CPUState *cs;
 340    char cpu_model[32];
 341    int smt = kvmppc_smt_threads();
 342    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 343
 344    CPU_FOREACH(cs) {
 345        PowerPCCPU *cpu = POWERPC_CPU(cs);
 346        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 347        int index = spapr_vcpu_id(cpu);
 348        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 349
 350        if ((index % smt) != 0) {
 351            continue;
 352        }
 353
 354        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 355
 356        cpus_offset = fdt_path_offset(fdt, "/cpus");
 357        if (cpus_offset < 0) {
 358            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 359            if (cpus_offset < 0) {
 360                return cpus_offset;
 361            }
 362        }
 363        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 364        if (offset < 0) {
 365            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 366            if (offset < 0) {
 367                return offset;
 368            }
 369        }
 370
 371        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 372                          pft_size_prop, sizeof(pft_size_prop));
 373        if (ret < 0) {
 374            return ret;
 375        }
 376
 377        if (nb_numa_nodes > 1) {
 378            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 379            if (ret < 0) {
 380                return ret;
 381            }
 382        }
 383
 384        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 385        if (ret < 0) {
 386            return ret;
 387        }
 388
 389        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 390                                   spapr->cas_legacy_guest_workaround);
 391    }
 392    return ret;
 393}
 394
 395static hwaddr spapr_node0_size(MachineState *machine)
 396{
 397    if (nb_numa_nodes) {
 398        int i;
 399        for (i = 0; i < nb_numa_nodes; ++i) {
 400            if (numa_info[i].node_mem) {
 401                return MIN(pow2floor(numa_info[i].node_mem),
 402                           machine->ram_size);
 403            }
 404        }
 405    }
 406    return machine->ram_size;
 407}
 408
 409static void add_str(GString *s, const gchar *s1)
 410{
 411    g_string_append_len(s, s1, strlen(s1) + 1);
 412}
 413
 414static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 415                                       hwaddr size)
 416{
 417    uint32_t associativity[] = {
 418        cpu_to_be32(0x4), /* length */
 419        cpu_to_be32(0x0), cpu_to_be32(0x0),
 420        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 421    };
 422    char mem_name[32];
 423    uint64_t mem_reg_property[2];
 424    int off;
 425
 426    mem_reg_property[0] = cpu_to_be64(start);
 427    mem_reg_property[1] = cpu_to_be64(size);
 428
 429    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 430    off = fdt_add_subnode(fdt, 0, mem_name);
 431    _FDT(off);
 432    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 433    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 434                      sizeof(mem_reg_property))));
 435    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 436                      sizeof(associativity))));
 437    return off;
 438}
 439
 440static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 441{
 442    MachineState *machine = MACHINE(spapr);
 443    hwaddr mem_start, node_size;
 444    int i, nb_nodes = nb_numa_nodes;
 445    NodeInfo *nodes = numa_info;
 446    NodeInfo ramnode;
 447
 448    /* No NUMA nodes, assume there is just one node with whole RAM */
 449    if (!nb_numa_nodes) {
 450        nb_nodes = 1;
 451        ramnode.node_mem = machine->ram_size;
 452        nodes = &ramnode;
 453    }
 454
 455    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 456        if (!nodes[i].node_mem) {
 457            continue;
 458        }
 459        if (mem_start >= machine->ram_size) {
 460            node_size = 0;
 461        } else {
 462            node_size = nodes[i].node_mem;
 463            if (node_size > machine->ram_size - mem_start) {
 464                node_size = machine->ram_size - mem_start;
 465            }
 466        }
 467        if (!mem_start) {
 468            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 469            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 470            mem_start += spapr->rma_size;
 471            node_size -= spapr->rma_size;
 472        }
 473        for ( ; node_size; ) {
 474            hwaddr sizetmp = pow2floor(node_size);
 475
 476            /* mem_start != 0 here */
 477            if (ctzl(mem_start) < ctzl(sizetmp)) {
 478                sizetmp = 1ULL << ctzl(mem_start);
 479            }
 480
 481            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 482            node_size -= sizetmp;
 483            mem_start += sizetmp;
 484        }
 485    }
 486
 487    return 0;
 488}
 489
 490static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 491                                  sPAPRMachineState *spapr)
 492{
 493    PowerPCCPU *cpu = POWERPC_CPU(cs);
 494    CPUPPCState *env = &cpu->env;
 495    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 496    int index = spapr_vcpu_id(cpu);
 497    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 498                       0xffffffff, 0xffffffff};
 499    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 500        : SPAPR_TIMEBASE_FREQ;
 501    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 502    uint32_t page_sizes_prop[64];
 503    size_t page_sizes_prop_size;
 504    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 505    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 506    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 507    sPAPRDRConnector *drc;
 508    int drc_index;
 509    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 510    int i;
 511
 512    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 513    if (drc) {
 514        drc_index = spapr_drc_index(drc);
 515        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 516    }
 517
 518    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 519    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 520
 521    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 522    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 523                           env->dcache_line_size)));
 524    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 525                           env->dcache_line_size)));
 526    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 527                           env->icache_line_size)));
 528    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 529                           env->icache_line_size)));
 530
 531    if (pcc->l1_dcache_size) {
 532        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 533                               pcc->l1_dcache_size)));
 534    } else {
 535        warn_report("Unknown L1 dcache size for cpu");
 536    }
 537    if (pcc->l1_icache_size) {
 538        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 539                               pcc->l1_icache_size)));
 540    } else {
 541        warn_report("Unknown L1 icache size for cpu");
 542    }
 543
 544    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 545    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 546    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 547    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 548    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 549    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 550
 551    if (env->spr_cb[SPR_PURR].oea_read) {
 552        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 553    }
 554
 555    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 556        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 557                          segs, sizeof(segs))));
 558    }
 559
 560    /* Advertise VSX (vector extensions) if available
 561     *   1               == VMX / Altivec available
 562     *   2               == VSX available
 563     *
 564     * Only CPUs for which we create core types in spapr_cpu_core.c
 565     * are possible, and all of those have VMX */
 566    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 567        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 568    } else {
 569        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 570    }
 571
 572    /* Advertise DFP (Decimal Floating Point) if available
 573     *   0 / no property == no DFP
 574     *   1               == DFP available */
 575    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 576        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 577    }
 578
 579    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 580                                                  sizeof(page_sizes_prop));
 581    if (page_sizes_prop_size) {
 582        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 583                          page_sizes_prop, page_sizes_prop_size)));
 584    }
 585
 586    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 587
 588    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 589                           cs->cpu_index / vcpus_per_socket)));
 590
 591    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 592                      pft_size_prop, sizeof(pft_size_prop))));
 593
 594    if (nb_numa_nodes > 1) {
 595        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 596    }
 597
 598    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 599
 600    if (pcc->radix_page_info) {
 601        for (i = 0; i < pcc->radix_page_info->count; i++) {
 602            radix_AP_encodings[i] =
 603                cpu_to_be32(pcc->radix_page_info->entries[i]);
 604        }
 605        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 606                          radix_AP_encodings,
 607                          pcc->radix_page_info->count *
 608                          sizeof(radix_AP_encodings[0]))));
 609    }
 610}
 611
 612static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 613{
 614    CPUState *cs;
 615    int cpus_offset;
 616    char *nodename;
 617    int smt = kvmppc_smt_threads();
 618
 619    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 620    _FDT(cpus_offset);
 621    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 622    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 623
 624    /*
 625     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 626     * created by fdt_add_subnode() end up in the right order in FDT
 627     * for the guest kernel the enumerate the CPUs correctly.
 628     */
 629    CPU_FOREACH_REVERSE(cs) {
 630        PowerPCCPU *cpu = POWERPC_CPU(cs);
 631        int index = spapr_vcpu_id(cpu);
 632        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 633        int offset;
 634
 635        if ((index % smt) != 0) {
 636            continue;
 637        }
 638
 639        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 640        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 641        g_free(nodename);
 642        _FDT(offset);
 643        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 644    }
 645
 646}
 647
 648/*
 649 * Adds ibm,dynamic-reconfiguration-memory node.
 650 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 651 * of this device tree node.
 652 */
 653static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 654{
 655    MachineState *machine = MACHINE(spapr);
 656    int ret, i, offset;
 657    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 658    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 659    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 660    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 661                       memory_region_size(&spapr->hotplug_memory.mr)) /
 662                       lmb_size;
 663    uint32_t *int_buf, *cur_index, buf_len;
 664    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 665
 666    /*
 667     * Don't create the node if there is no hotpluggable memory
 668     */
 669    if (machine->ram_size == machine->maxram_size) {
 670        return 0;
 671    }
 672
 673    /*
 674     * Allocate enough buffer size to fit in ibm,dynamic-memory
 675     * or ibm,associativity-lookup-arrays
 676     */
 677    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 678              * sizeof(uint32_t);
 679    cur_index = int_buf = g_malloc0(buf_len);
 680
 681    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 682
 683    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 684                    sizeof(prop_lmb_size));
 685    if (ret < 0) {
 686        goto out;
 687    }
 688
 689    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 690    if (ret < 0) {
 691        goto out;
 692    }
 693
 694    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 695    if (ret < 0) {
 696        goto out;
 697    }
 698
 699    /* ibm,dynamic-memory */
 700    int_buf[0] = cpu_to_be32(nr_lmbs);
 701    cur_index++;
 702    for (i = 0; i < nr_lmbs; i++) {
 703        uint64_t addr = i * lmb_size;
 704        uint32_t *dynamic_memory = cur_index;
 705
 706        if (i >= hotplug_lmb_start) {
 707            sPAPRDRConnector *drc;
 708
 709            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 710            g_assert(drc);
 711
 712            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 713            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 714            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 715            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 716            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 717            if (memory_region_present(get_system_memory(), addr)) {
 718                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 719            } else {
 720                dynamic_memory[5] = cpu_to_be32(0);
 721            }
 722        } else {
 723            /*
 724             * LMB information for RMA, boot time RAM and gap b/n RAM and
 725             * hotplug memory region -- all these are marked as reserved
 726             * and as having no valid DRC.
 727             */
 728            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 729            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 730            dynamic_memory[2] = cpu_to_be32(0);
 731            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 732            dynamic_memory[4] = cpu_to_be32(-1);
 733            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 734                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 735        }
 736
 737        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 738    }
 739    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 740    if (ret < 0) {
 741        goto out;
 742    }
 743
 744    /* ibm,associativity-lookup-arrays */
 745    cur_index = int_buf;
 746    int_buf[0] = cpu_to_be32(nr_nodes);
 747    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 748    cur_index += 2;
 749    for (i = 0; i < nr_nodes; i++) {
 750        uint32_t associativity[] = {
 751            cpu_to_be32(0x0),
 752            cpu_to_be32(0x0),
 753            cpu_to_be32(0x0),
 754            cpu_to_be32(i)
 755        };
 756        memcpy(cur_index, associativity, sizeof(associativity));
 757        cur_index += 4;
 758    }
 759    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 760            (cur_index - int_buf) * sizeof(uint32_t));
 761out:
 762    g_free(int_buf);
 763    return ret;
 764}
 765
 766static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 767                                sPAPROptionVector *ov5_updates)
 768{
 769    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 770    int ret = 0, offset;
 771
 772    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 773    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 774        g_assert(smc->dr_lmb_enabled);
 775        ret = spapr_populate_drconf_memory(spapr, fdt);
 776        if (ret) {
 777            goto out;
 778        }
 779    }
 780
 781    offset = fdt_path_offset(fdt, "/chosen");
 782    if (offset < 0) {
 783        offset = fdt_add_subnode(fdt, 0, "chosen");
 784        if (offset < 0) {
 785            return offset;
 786        }
 787    }
 788    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 789                                 "ibm,architecture-vec-5");
 790
 791out:
 792    return ret;
 793}
 794
 795static bool spapr_hotplugged_dev_before_cas(void)
 796{
 797    Object *drc_container, *obj;
 798    ObjectProperty *prop;
 799    ObjectPropertyIterator iter;
 800
 801    drc_container = container_get(object_get_root(), "/dr-connector");
 802    object_property_iter_init(&iter, drc_container);
 803    while ((prop = object_property_iter_next(&iter))) {
 804        if (!strstart(prop->type, "link<", NULL)) {
 805            continue;
 806        }
 807        obj = object_property_get_link(drc_container, prop->name, NULL);
 808        if (spapr_drc_needed(obj)) {
 809            return true;
 810        }
 811    }
 812    return false;
 813}
 814
 815int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 816                                 target_ulong addr, target_ulong size,
 817                                 sPAPROptionVector *ov5_updates)
 818{
 819    void *fdt, *fdt_skel;
 820    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 821
 822    if (spapr_hotplugged_dev_before_cas()) {
 823        return 1;
 824    }
 825
 826    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 827        error_report("SLOF provided an unexpected CAS buffer size "
 828                     TARGET_FMT_lu " (min: %zu, max: %u)",
 829                     size, sizeof(hdr), FW_MAX_SIZE);
 830        exit(EXIT_FAILURE);
 831    }
 832
 833    size -= sizeof(hdr);
 834
 835    /* Create skeleton */
 836    fdt_skel = g_malloc0(size);
 837    _FDT((fdt_create(fdt_skel, size)));
 838    _FDT((fdt_begin_node(fdt_skel, "")));
 839    _FDT((fdt_end_node(fdt_skel)));
 840    _FDT((fdt_finish(fdt_skel)));
 841    fdt = g_malloc0(size);
 842    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 843    g_free(fdt_skel);
 844
 845    /* Fixup cpu nodes */
 846    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 847
 848    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 849        return -1;
 850    }
 851
 852    /* Pack resulting tree */
 853    _FDT((fdt_pack(fdt)));
 854
 855    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 856        trace_spapr_cas_failed(size);
 857        return -1;
 858    }
 859
 860    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 861    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 862    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 863    g_free(fdt);
 864
 865    return 0;
 866}
 867
 868static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 869{
 870    int rtas;
 871    GString *hypertas = g_string_sized_new(256);
 872    GString *qemu_hypertas = g_string_sized_new(256);
 873    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 874    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 875        memory_region_size(&spapr->hotplug_memory.mr);
 876    uint32_t lrdr_capacity[] = {
 877        cpu_to_be32(max_hotplug_addr >> 32),
 878        cpu_to_be32(max_hotplug_addr & 0xffffffff),
 879        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 880        cpu_to_be32(max_cpus / smp_threads),
 881    };
 882
 883    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 884
 885    /* hypertas */
 886    add_str(hypertas, "hcall-pft");
 887    add_str(hypertas, "hcall-term");
 888    add_str(hypertas, "hcall-dabr");
 889    add_str(hypertas, "hcall-interrupt");
 890    add_str(hypertas, "hcall-tce");
 891    add_str(hypertas, "hcall-vio");
 892    add_str(hypertas, "hcall-splpar");
 893    add_str(hypertas, "hcall-bulk");
 894    add_str(hypertas, "hcall-set-mode");
 895    add_str(hypertas, "hcall-sprg0");
 896    add_str(hypertas, "hcall-copy");
 897    add_str(hypertas, "hcall-debug");
 898    add_str(qemu_hypertas, "hcall-memop1");
 899
 900    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 901        add_str(hypertas, "hcall-multi-tce");
 902    }
 903
 904    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 905        add_str(hypertas, "hcall-hpt-resize");
 906    }
 907
 908    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 909                     hypertas->str, hypertas->len));
 910    g_string_free(hypertas, TRUE);
 911    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 912                     qemu_hypertas->str, qemu_hypertas->len));
 913    g_string_free(qemu_hypertas, TRUE);
 914
 915    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 916                     refpoints, sizeof(refpoints)));
 917
 918    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 919                          RTAS_ERROR_LOG_MAX));
 920    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 921                          RTAS_EVENT_SCAN_RATE));
 922
 923    if (msi_nonbroken) {
 924        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 925    }
 926
 927    /*
 928     * According to PAPR, rtas ibm,os-term does not guarantee a return
 929     * back to the guest cpu.
 930     *
 931     * While an additional ibm,extended-os-term property indicates
 932     * that rtas call return will always occur. Set this property.
 933     */
 934    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 935
 936    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 937                     lrdr_capacity, sizeof(lrdr_capacity)));
 938
 939    spapr_dt_rtas_tokens(fdt, rtas);
 940}
 941
 942/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 943 * that the guest may request and thus the valid values for bytes 24..26 of
 944 * option vector 5: */
 945static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
 946{
 947    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 948
 949    char val[2 * 4] = {
 950        23, 0x00, /* Xive mode, filled in below. */
 951        24, 0x00, /* Hash/Radix, filled in below. */
 952        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 953        26, 0x40, /* Radix options: GTSE == yes. */
 954    };
 955
 956    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 957                          first_ppc_cpu->compat_pvr)) {
 958        /* If we're in a pre POWER9 compat mode then the guest should do hash */
 959        val[3] = 0x00; /* Hash */
 960    } else if (kvm_enabled()) {
 961        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 962            val[3] = 0x80; /* OV5_MMU_BOTH */
 963        } else if (kvmppc_has_cap_mmu_radix()) {
 964            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 965        } else {
 966            val[3] = 0x00; /* Hash */
 967        }
 968    } else {
 969        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
 970        val[3] = 0xC0;
 971    }
 972    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 973                     val, sizeof(val)));
 974}
 975
 976static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
 977{
 978    MachineState *machine = MACHINE(spapr);
 979    int chosen;
 980    const char *boot_device = machine->boot_order;
 981    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 982    size_t cb = 0;
 983    char *bootlist = get_boot_devices_list(&cb, true);
 984
 985    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 986
 987    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
 988    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 989                          spapr->initrd_base));
 990    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 991                          spapr->initrd_base + spapr->initrd_size));
 992
 993    if (spapr->kernel_size) {
 994        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 995                              cpu_to_be64(spapr->kernel_size) };
 996
 997        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 998                         &kprop, sizeof(kprop)));
 999        if (spapr->kernel_le) {
1000            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1001        }
1002    }
1003    if (boot_menu) {
1004        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1005    }
1006    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1007    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1008    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1009
1010    if (cb && bootlist) {
1011        int i;
1012
1013        for (i = 0; i < cb; i++) {
1014            if (bootlist[i] == '\n') {
1015                bootlist[i] = ' ';
1016            }
1017        }
1018        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1019    }
1020
1021    if (boot_device && strlen(boot_device)) {
1022        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1023    }
1024
1025    if (!spapr->has_graphics && stdout_path) {
1026        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1027    }
1028
1029    spapr_dt_ov5_platform_support(fdt, chosen);
1030
1031    g_free(stdout_path);
1032    g_free(bootlist);
1033}
1034
1035static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1036{
1037    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1038     * KVM to work under pHyp with some guest co-operation */
1039    int hypervisor;
1040    uint8_t hypercall[16];
1041
1042    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1043    /* indicate KVM hypercall interface */
1044    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1045    if (kvmppc_has_cap_fixup_hcalls()) {
1046        /*
1047         * Older KVM versions with older guest kernels were broken
1048         * with the magic page, don't allow the guest to map it.
1049         */
1050        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1051                                  sizeof(hypercall))) {
1052            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1053                             hypercall, sizeof(hypercall)));
1054        }
1055    }
1056}
1057
1058static void *spapr_build_fdt(sPAPRMachineState *spapr,
1059                             hwaddr rtas_addr,
1060                             hwaddr rtas_size)
1061{
1062    MachineState *machine = MACHINE(spapr);
1063    MachineClass *mc = MACHINE_GET_CLASS(machine);
1064    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1065    int ret;
1066    void *fdt;
1067    sPAPRPHBState *phb;
1068    char *buf;
1069
1070    fdt = g_malloc0(FDT_MAX_SIZE);
1071    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1072
1073    /* Root node */
1074    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1075    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1076    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1077
1078    /*
1079     * Add info to guest to indentify which host is it being run on
1080     * and what is the uuid of the guest
1081     */
1082    if (kvmppc_get_host_model(&buf)) {
1083        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1084        g_free(buf);
1085    }
1086    if (kvmppc_get_host_serial(&buf)) {
1087        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1088        g_free(buf);
1089    }
1090
1091    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1092
1093    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1094    if (qemu_uuid_set) {
1095        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1096    }
1097    g_free(buf);
1098
1099    if (qemu_get_vm_name()) {
1100        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1101                                qemu_get_vm_name()));
1102    }
1103
1104    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1105    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1106
1107    /* /interrupt controller */
1108    spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1109
1110    ret = spapr_populate_memory(spapr, fdt);
1111    if (ret < 0) {
1112        error_report("couldn't setup memory nodes in fdt");
1113        exit(1);
1114    }
1115
1116    /* /vdevice */
1117    spapr_dt_vdevice(spapr->vio_bus, fdt);
1118
1119    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1120        ret = spapr_rng_populate_dt(fdt);
1121        if (ret < 0) {
1122            error_report("could not set up rng device in the fdt");
1123            exit(1);
1124        }
1125    }
1126
1127    QLIST_FOREACH(phb, &spapr->phbs, list) {
1128        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1129        if (ret < 0) {
1130            error_report("couldn't setup PCI devices in fdt");
1131            exit(1);
1132        }
1133    }
1134
1135    /* cpus */
1136    spapr_populate_cpus_dt_node(fdt, spapr);
1137
1138    if (smc->dr_lmb_enabled) {
1139        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1140    }
1141
1142    if (mc->has_hotpluggable_cpus) {
1143        int offset = fdt_path_offset(fdt, "/cpus");
1144        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1145                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1146        if (ret < 0) {
1147            error_report("Couldn't set up CPU DR device tree properties");
1148            exit(1);
1149        }
1150    }
1151
1152    /* /event-sources */
1153    spapr_dt_events(spapr, fdt);
1154
1155    /* /rtas */
1156    spapr_dt_rtas(spapr, fdt);
1157
1158    /* /chosen */
1159    spapr_dt_chosen(spapr, fdt);
1160
1161    /* /hypervisor */
1162    if (kvm_enabled()) {
1163        spapr_dt_hypervisor(spapr, fdt);
1164    }
1165
1166    /* Build memory reserve map */
1167    if (spapr->kernel_size) {
1168        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1169    }
1170    if (spapr->initrd_size) {
1171        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1172    }
1173
1174    /* ibm,client-architecture-support updates */
1175    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1176    if (ret < 0) {
1177        error_report("couldn't setup CAS properties fdt");
1178        exit(1);
1179    }
1180
1181    return fdt;
1182}
1183
1184static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1185{
1186    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1187}
1188
1189static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1190                                    PowerPCCPU *cpu)
1191{
1192    CPUPPCState *env = &cpu->env;
1193
1194    /* The TCG path should also be holding the BQL at this point */
1195    g_assert(qemu_mutex_iothread_locked());
1196
1197    if (msr_pr) {
1198        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1199        env->gpr[3] = H_PRIVILEGE;
1200    } else {
1201        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1202    }
1203}
1204
1205static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1206{
1207    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1208
1209    return spapr->patb_entry;
1210}
1211
1212#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1213#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1214#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1215#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1216#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1217
1218/*
1219 * Get the fd to access the kernel htab, re-opening it if necessary
1220 */
1221static int get_htab_fd(sPAPRMachineState *spapr)
1222{
1223    Error *local_err = NULL;
1224
1225    if (spapr->htab_fd >= 0) {
1226        return spapr->htab_fd;
1227    }
1228
1229    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1230    if (spapr->htab_fd < 0) {
1231        error_report_err(local_err);
1232    }
1233
1234    return spapr->htab_fd;
1235}
1236
1237void close_htab_fd(sPAPRMachineState *spapr)
1238{
1239    if (spapr->htab_fd >= 0) {
1240        close(spapr->htab_fd);
1241    }
1242    spapr->htab_fd = -1;
1243}
1244
1245static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1246{
1247    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1248
1249    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1250}
1251
1252static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1253{
1254    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1255
1256    assert(kvm_enabled());
1257
1258    if (!spapr->htab) {
1259        return 0;
1260    }
1261
1262    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1263}
1264
1265static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1266                                                hwaddr ptex, int n)
1267{
1268    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1269    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1270
1271    if (!spapr->htab) {
1272        /*
1273         * HTAB is controlled by KVM. Fetch into temporary buffer
1274         */
1275        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1276        kvmppc_read_hptes(hptes, ptex, n);
1277        return hptes;
1278    }
1279
1280    /*
1281     * HTAB is controlled by QEMU. Just point to the internally
1282     * accessible PTEG.
1283     */
1284    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1285}
1286
1287static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1288                              const ppc_hash_pte64_t *hptes,
1289                              hwaddr ptex, int n)
1290{
1291    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292
1293    if (!spapr->htab) {
1294        g_free((void *)hptes);
1295    }
1296
1297    /* Nothing to do for qemu managed HPT */
1298}
1299
1300static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1301                             uint64_t pte0, uint64_t pte1)
1302{
1303    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1304    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1305
1306    if (!spapr->htab) {
1307        kvmppc_write_hpte(ptex, pte0, pte1);
1308    } else {
1309        stq_p(spapr->htab + offset, pte0);
1310        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1311    }
1312}
1313
1314int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1315{
1316    int shift;
1317
1318    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1319     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1320     * that's much more than is needed for Linux guests */
1321    shift = ctz64(pow2ceil(ramsize)) - 7;
1322    shift = MAX(shift, 18); /* Minimum architected size */
1323    shift = MIN(shift, 46); /* Maximum architected size */
1324    return shift;
1325}
1326
1327void spapr_free_hpt(sPAPRMachineState *spapr)
1328{
1329    g_free(spapr->htab);
1330    spapr->htab = NULL;
1331    spapr->htab_shift = 0;
1332    close_htab_fd(spapr);
1333}
1334
1335void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1336                          Error **errp)
1337{
1338    long rc;
1339
1340    /* Clean up any HPT info from a previous boot */
1341    spapr_free_hpt(spapr);
1342
1343    rc = kvmppc_reset_htab(shift);
1344    if (rc < 0) {
1345        /* kernel-side HPT needed, but couldn't allocate one */
1346        error_setg_errno(errp, errno,
1347                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1348                         shift);
1349        /* This is almost certainly fatal, but if the caller really
1350         * wants to carry on with shift == 0, it's welcome to try */
1351    } else if (rc > 0) {
1352        /* kernel-side HPT allocated */
1353        if (rc != shift) {
1354            error_setg(errp,
1355                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1356                       shift, rc);
1357        }
1358
1359        spapr->htab_shift = shift;
1360        spapr->htab = NULL;
1361    } else {
1362        /* kernel-side HPT not needed, allocate in userspace instead */
1363        size_t size = 1ULL << shift;
1364        int i;
1365
1366        spapr->htab = qemu_memalign(size, size);
1367        if (!spapr->htab) {
1368            error_setg_errno(errp, errno,
1369                             "Could not allocate HPT of order %d", shift);
1370            return;
1371        }
1372
1373        memset(spapr->htab, 0, size);
1374        spapr->htab_shift = shift;
1375
1376        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1377            DIRTY_HPTE(HPTE(spapr->htab, i));
1378        }
1379    }
1380    /* We're setting up a hash table, so that means we're not radix */
1381    spapr->patb_entry = 0;
1382}
1383
1384void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1385{
1386    int hpt_shift;
1387
1388    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1389        || (spapr->cas_reboot
1390            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1391        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1392    } else {
1393        uint64_t current_ram_size;
1394
1395        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1396        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1397    }
1398    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1399
1400    if (spapr->vrma_adjust) {
1401        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1402                                          spapr->htab_shift);
1403    }
1404}
1405
1406static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1407{
1408    bool matched = false;
1409
1410    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1411        matched = true;
1412    }
1413
1414    if (!matched) {
1415        error_report("Device %s is not supported by this machine yet.",
1416                     qdev_fw_name(DEVICE(sbdev)));
1417        exit(1);
1418    }
1419}
1420
1421static int spapr_reset_drcs(Object *child, void *opaque)
1422{
1423    sPAPRDRConnector *drc =
1424        (sPAPRDRConnector *) object_dynamic_cast(child,
1425                                                 TYPE_SPAPR_DR_CONNECTOR);
1426
1427    if (drc) {
1428        spapr_drc_reset(drc);
1429    }
1430
1431    return 0;
1432}
1433
1434static void ppc_spapr_reset(void)
1435{
1436    MachineState *machine = MACHINE(qdev_get_machine());
1437    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1438    PowerPCCPU *first_ppc_cpu;
1439    uint32_t rtas_limit;
1440    hwaddr rtas_addr, fdt_addr;
1441    void *fdt;
1442    int rc;
1443
1444    /* Check for unknown sysbus devices */
1445    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1446
1447    spapr_caps_reset(spapr);
1448
1449    first_ppc_cpu = POWERPC_CPU(first_cpu);
1450    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1451        ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1452                         spapr->max_compat_pvr)) {
1453        /* If using KVM with radix mode available, VCPUs can be started
1454         * without a HPT because KVM will start them in radix mode.
1455         * Set the GR bit in PATB so that we know there is no HPT. */
1456        spapr->patb_entry = PATBE1_GR;
1457    } else {
1458        spapr_setup_hpt_and_vrma(spapr);
1459    }
1460
1461    /* if this reset wasn't generated by CAS, we should reset our
1462     * negotiated options and start from scratch */
1463    if (!spapr->cas_reboot) {
1464        spapr_ovec_cleanup(spapr->ov5_cas);
1465        spapr->ov5_cas = spapr_ovec_new();
1466
1467        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1468    }
1469
1470    qemu_devices_reset();
1471
1472    /* DRC reset may cause a device to be unplugged. This will cause troubles
1473     * if this device is used by another device (eg, a running vhost backend
1474     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1475     * situations, we reset DRCs after all devices have been reset.
1476     */
1477    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1478
1479    spapr_clear_pending_events(spapr);
1480
1481    /*
1482     * We place the device tree and RTAS just below either the top of the RMA,
1483     * or just below 2GB, whichever is lowere, so that it can be
1484     * processed with 32-bit real mode code if necessary
1485     */
1486    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1487    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1488    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1489
1490    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1491
1492    spapr_load_rtas(spapr, fdt, rtas_addr);
1493
1494    rc = fdt_pack(fdt);
1495
1496    /* Should only fail if we've built a corrupted tree */
1497    assert(rc == 0);
1498
1499    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1500        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1501                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1502        exit(1);
1503    }
1504
1505    /* Load the fdt */
1506    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1507    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1508    g_free(fdt);
1509
1510    /* Set up the entry state */
1511    first_ppc_cpu->env.gpr[3] = fdt_addr;
1512    first_ppc_cpu->env.gpr[5] = 0;
1513    first_cpu->halted = 0;
1514    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1515
1516    spapr->cas_reboot = false;
1517}
1518
1519static void spapr_create_nvram(sPAPRMachineState *spapr)
1520{
1521    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1522    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1523
1524    if (dinfo) {
1525        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1526                            &error_fatal);
1527    }
1528
1529    qdev_init_nofail(dev);
1530
1531    spapr->nvram = (struct sPAPRNVRAM *)dev;
1532}
1533
1534static void spapr_rtc_create(sPAPRMachineState *spapr)
1535{
1536    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1537    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1538                              &error_fatal);
1539    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1540                              &error_fatal);
1541    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1542                              "date", &error_fatal);
1543}
1544
1545/* Returns whether we want to use VGA or not */
1546static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1547{
1548    switch (vga_interface_type) {
1549    case VGA_NONE:
1550        return false;
1551    case VGA_DEVICE:
1552        return true;
1553    case VGA_STD:
1554    case VGA_VIRTIO:
1555        return pci_vga_init(pci_bus) != NULL;
1556    default:
1557        error_setg(errp,
1558                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1559        return false;
1560    }
1561}
1562
1563static int spapr_pre_load(void *opaque)
1564{
1565    int rc;
1566
1567    rc = spapr_caps_pre_load(opaque);
1568    if (rc) {
1569        return rc;
1570    }
1571
1572    return 0;
1573}
1574
1575static int spapr_post_load(void *opaque, int version_id)
1576{
1577    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1578    int err = 0;
1579
1580    err = spapr_caps_post_migration(spapr);
1581    if (err) {
1582        return err;
1583    }
1584
1585    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1586        CPUState *cs;
1587        CPU_FOREACH(cs) {
1588            PowerPCCPU *cpu = POWERPC_CPU(cs);
1589            icp_resend(ICP(cpu->intc));
1590        }
1591    }
1592
1593    /* In earlier versions, there was no separate qdev for the PAPR
1594     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1595     * So when migrating from those versions, poke the incoming offset
1596     * value into the RTC device */
1597    if (version_id < 3) {
1598        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1599    }
1600
1601    if (kvm_enabled() && spapr->patb_entry) {
1602        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1603        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1604        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1605
1606        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1607        if (err) {
1608            error_report("Process table config unsupported by the host");
1609            return -EINVAL;
1610        }
1611    }
1612
1613    return err;
1614}
1615
1616static int spapr_pre_save(void *opaque)
1617{
1618    int rc;
1619
1620    rc = spapr_caps_pre_save(opaque);
1621    if (rc) {
1622        return rc;
1623    }
1624
1625    return 0;
1626}
1627
1628static bool version_before_3(void *opaque, int version_id)
1629{
1630    return version_id < 3;
1631}
1632
1633static bool spapr_pending_events_needed(void *opaque)
1634{
1635    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1636    return !QTAILQ_EMPTY(&spapr->pending_events);
1637}
1638
1639static const VMStateDescription vmstate_spapr_event_entry = {
1640    .name = "spapr_event_log_entry",
1641    .version_id = 1,
1642    .minimum_version_id = 1,
1643    .fields = (VMStateField[]) {
1644        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1645        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1646        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1647                                     NULL, extended_length),
1648        VMSTATE_END_OF_LIST()
1649    },
1650};
1651
1652static const VMStateDescription vmstate_spapr_pending_events = {
1653    .name = "spapr_pending_events",
1654    .version_id = 1,
1655    .minimum_version_id = 1,
1656    .needed = spapr_pending_events_needed,
1657    .fields = (VMStateField[]) {
1658        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1659                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1660        VMSTATE_END_OF_LIST()
1661    },
1662};
1663
1664static bool spapr_ov5_cas_needed(void *opaque)
1665{
1666    sPAPRMachineState *spapr = opaque;
1667    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1668    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1669    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1670    bool cas_needed;
1671
1672    /* Prior to the introduction of sPAPROptionVector, we had two option
1673     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1674     * Both of these options encode machine topology into the device-tree
1675     * in such a way that the now-booted OS should still be able to interact
1676     * appropriately with QEMU regardless of what options were actually
1677     * negotiatied on the source side.
1678     *
1679     * As such, we can avoid migrating the CAS-negotiated options if these
1680     * are the only options available on the current machine/platform.
1681     * Since these are the only options available for pseries-2.7 and
1682     * earlier, this allows us to maintain old->new/new->old migration
1683     * compatibility.
1684     *
1685     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1686     * via default pseries-2.8 machines and explicit command-line parameters.
1687     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1688     * of the actual CAS-negotiated values to continue working properly. For
1689     * example, availability of memory unplug depends on knowing whether
1690     * OV5_HP_EVT was negotiated via CAS.
1691     *
1692     * Thus, for any cases where the set of available CAS-negotiatable
1693     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1694     * include the CAS-negotiated options in the migration stream.
1695     */
1696    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1697    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1698
1699    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1700     * the mask itself since in the future it's possible "legacy" bits may be
1701     * removed via machine options, which could generate a false positive
1702     * that breaks migration.
1703     */
1704    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1705    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1706
1707    spapr_ovec_cleanup(ov5_mask);
1708    spapr_ovec_cleanup(ov5_legacy);
1709    spapr_ovec_cleanup(ov5_removed);
1710
1711    return cas_needed;
1712}
1713
1714static const VMStateDescription vmstate_spapr_ov5_cas = {
1715    .name = "spapr_option_vector_ov5_cas",
1716    .version_id = 1,
1717    .minimum_version_id = 1,
1718    .needed = spapr_ov5_cas_needed,
1719    .fields = (VMStateField[]) {
1720        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1721                                 vmstate_spapr_ovec, sPAPROptionVector),
1722        VMSTATE_END_OF_LIST()
1723    },
1724};
1725
1726static bool spapr_patb_entry_needed(void *opaque)
1727{
1728    sPAPRMachineState *spapr = opaque;
1729
1730    return !!spapr->patb_entry;
1731}
1732
1733static const VMStateDescription vmstate_spapr_patb_entry = {
1734    .name = "spapr_patb_entry",
1735    .version_id = 1,
1736    .minimum_version_id = 1,
1737    .needed = spapr_patb_entry_needed,
1738    .fields = (VMStateField[]) {
1739        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1740        VMSTATE_END_OF_LIST()
1741    },
1742};
1743
1744static const VMStateDescription vmstate_spapr = {
1745    .name = "spapr",
1746    .version_id = 3,
1747    .minimum_version_id = 1,
1748    .pre_load = spapr_pre_load,
1749    .post_load = spapr_post_load,
1750    .pre_save = spapr_pre_save,
1751    .fields = (VMStateField[]) {
1752        /* used to be @next_irq */
1753        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1754
1755        /* RTC offset */
1756        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1757
1758        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1759        VMSTATE_END_OF_LIST()
1760    },
1761    .subsections = (const VMStateDescription*[]) {
1762        &vmstate_spapr_ov5_cas,
1763        &vmstate_spapr_patb_entry,
1764        &vmstate_spapr_pending_events,
1765        &vmstate_spapr_cap_htm,
1766        &vmstate_spapr_cap_vsx,
1767        &vmstate_spapr_cap_dfp,
1768        &vmstate_spapr_cap_cfpc,
1769        &vmstate_spapr_cap_sbbc,
1770        &vmstate_spapr_cap_ibs,
1771        NULL
1772    }
1773};
1774
1775static int htab_save_setup(QEMUFile *f, void *opaque)
1776{
1777    sPAPRMachineState *spapr = opaque;
1778
1779    /* "Iteration" header */
1780    if (!spapr->htab_shift) {
1781        qemu_put_be32(f, -1);
1782    } else {
1783        qemu_put_be32(f, spapr->htab_shift);
1784    }
1785
1786    if (spapr->htab) {
1787        spapr->htab_save_index = 0;
1788        spapr->htab_first_pass = true;
1789    } else {
1790        if (spapr->htab_shift) {
1791            assert(kvm_enabled());
1792        }
1793    }
1794
1795
1796    return 0;
1797}
1798
1799static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1800                            int chunkstart, int n_valid, int n_invalid)
1801{
1802    qemu_put_be32(f, chunkstart);
1803    qemu_put_be16(f, n_valid);
1804    qemu_put_be16(f, n_invalid);
1805    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1806                    HASH_PTE_SIZE_64 * n_valid);
1807}
1808
1809static void htab_save_end_marker(QEMUFile *f)
1810{
1811    qemu_put_be32(f, 0);
1812    qemu_put_be16(f, 0);
1813    qemu_put_be16(f, 0);
1814}
1815
1816static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1817                                 int64_t max_ns)
1818{
1819    bool has_timeout = max_ns != -1;
1820    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1821    int index = spapr->htab_save_index;
1822    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1823
1824    assert(spapr->htab_first_pass);
1825
1826    do {
1827        int chunkstart;
1828
1829        /* Consume invalid HPTEs */
1830        while ((index < htabslots)
1831               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1832            CLEAN_HPTE(HPTE(spapr->htab, index));
1833            index++;
1834        }
1835
1836        /* Consume valid HPTEs */
1837        chunkstart = index;
1838        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1839               && HPTE_VALID(HPTE(spapr->htab, index))) {
1840            CLEAN_HPTE(HPTE(spapr->htab, index));
1841            index++;
1842        }
1843
1844        if (index > chunkstart) {
1845            int n_valid = index - chunkstart;
1846
1847            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1848
1849            if (has_timeout &&
1850                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1851                break;
1852            }
1853        }
1854    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1855
1856    if (index >= htabslots) {
1857        assert(index == htabslots);
1858        index = 0;
1859        spapr->htab_first_pass = false;
1860    }
1861    spapr->htab_save_index = index;
1862}
1863
1864static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1865                                int64_t max_ns)
1866{
1867    bool final = max_ns < 0;
1868    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1869    int examined = 0, sent = 0;
1870    int index = spapr->htab_save_index;
1871    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1872
1873    assert(!spapr->htab_first_pass);
1874
1875    do {
1876        int chunkstart, invalidstart;
1877
1878        /* Consume non-dirty HPTEs */
1879        while ((index < htabslots)
1880               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1881            index++;
1882            examined++;
1883        }
1884
1885        chunkstart = index;
1886        /* Consume valid dirty HPTEs */
1887        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1888               && HPTE_DIRTY(HPTE(spapr->htab, index))
1889               && HPTE_VALID(HPTE(spapr->htab, index))) {
1890            CLEAN_HPTE(HPTE(spapr->htab, index));
1891            index++;
1892            examined++;
1893        }
1894
1895        invalidstart = index;
1896        /* Consume invalid dirty HPTEs */
1897        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1898               && HPTE_DIRTY(HPTE(spapr->htab, index))
1899               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1900            CLEAN_HPTE(HPTE(spapr->htab, index));
1901            index++;
1902            examined++;
1903        }
1904
1905        if (index > chunkstart) {
1906            int n_valid = invalidstart - chunkstart;
1907            int n_invalid = index - invalidstart;
1908
1909            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1910            sent += index - chunkstart;
1911
1912            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1913                break;
1914            }
1915        }
1916
1917        if (examined >= htabslots) {
1918            break;
1919        }
1920
1921        if (index >= htabslots) {
1922            assert(index == htabslots);
1923            index = 0;
1924        }
1925    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1926
1927    if (index >= htabslots) {
1928        assert(index == htabslots);
1929        index = 0;
1930    }
1931
1932    spapr->htab_save_index = index;
1933
1934    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1935}
1936
1937#define MAX_ITERATION_NS    5000000 /* 5 ms */
1938#define MAX_KVM_BUF_SIZE    2048
1939
1940static int htab_save_iterate(QEMUFile *f, void *opaque)
1941{
1942    sPAPRMachineState *spapr = opaque;
1943    int fd;
1944    int rc = 0;
1945
1946    /* Iteration header */
1947    if (!spapr->htab_shift) {
1948        qemu_put_be32(f, -1);
1949        return 1;
1950    } else {
1951        qemu_put_be32(f, 0);
1952    }
1953
1954    if (!spapr->htab) {
1955        assert(kvm_enabled());
1956
1957        fd = get_htab_fd(spapr);
1958        if (fd < 0) {
1959            return fd;
1960        }
1961
1962        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1963        if (rc < 0) {
1964            return rc;
1965        }
1966    } else  if (spapr->htab_first_pass) {
1967        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1968    } else {
1969        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1970    }
1971
1972    htab_save_end_marker(f);
1973
1974    return rc;
1975}
1976
1977static int htab_save_complete(QEMUFile *f, void *opaque)
1978{
1979    sPAPRMachineState *spapr = opaque;
1980    int fd;
1981
1982    /* Iteration header */
1983    if (!spapr->htab_shift) {
1984        qemu_put_be32(f, -1);
1985        return 0;
1986    } else {
1987        qemu_put_be32(f, 0);
1988    }
1989
1990    if (!spapr->htab) {
1991        int rc;
1992
1993        assert(kvm_enabled());
1994
1995        fd = get_htab_fd(spapr);
1996        if (fd < 0) {
1997            return fd;
1998        }
1999
2000        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2001        if (rc < 0) {
2002            return rc;
2003        }
2004    } else {
2005        if (spapr->htab_first_pass) {
2006            htab_save_first_pass(f, spapr, -1);
2007        }
2008        htab_save_later_pass(f, spapr, -1);
2009    }
2010
2011    /* End marker */
2012    htab_save_end_marker(f);
2013
2014    return 0;
2015}
2016
2017static int htab_load(QEMUFile *f, void *opaque, int version_id)
2018{
2019    sPAPRMachineState *spapr = opaque;
2020    uint32_t section_hdr;
2021    int fd = -1;
2022    Error *local_err = NULL;
2023
2024    if (version_id < 1 || version_id > 1) {
2025        error_report("htab_load() bad version");
2026        return -EINVAL;
2027    }
2028
2029    section_hdr = qemu_get_be32(f);
2030
2031    if (section_hdr == -1) {
2032        spapr_free_hpt(spapr);
2033        return 0;
2034    }
2035
2036    if (section_hdr) {
2037        /* First section gives the htab size */
2038        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2039        if (local_err) {
2040            error_report_err(local_err);
2041            return -EINVAL;
2042        }
2043        return 0;
2044    }
2045
2046    if (!spapr->htab) {
2047        assert(kvm_enabled());
2048
2049        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2050        if (fd < 0) {
2051            error_report_err(local_err);
2052            return fd;
2053        }
2054    }
2055
2056    while (true) {
2057        uint32_t index;
2058        uint16_t n_valid, n_invalid;
2059
2060        index = qemu_get_be32(f);
2061        n_valid = qemu_get_be16(f);
2062        n_invalid = qemu_get_be16(f);
2063
2064        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2065            /* End of Stream */
2066            break;
2067        }
2068
2069        if ((index + n_valid + n_invalid) >
2070            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2071            /* Bad index in stream */
2072            error_report(
2073                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2074                index, n_valid, n_invalid, spapr->htab_shift);
2075            return -EINVAL;
2076        }
2077
2078        if (spapr->htab) {
2079            if (n_valid) {
2080                qemu_get_buffer(f, HPTE(spapr->htab, index),
2081                                HASH_PTE_SIZE_64 * n_valid);
2082            }
2083            if (n_invalid) {
2084                memset(HPTE(spapr->htab, index + n_valid), 0,
2085                       HASH_PTE_SIZE_64 * n_invalid);
2086            }
2087        } else {
2088            int rc;
2089
2090            assert(fd >= 0);
2091
2092            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2093            if (rc < 0) {
2094                return rc;
2095            }
2096        }
2097    }
2098
2099    if (!spapr->htab) {
2100        assert(fd >= 0);
2101        close(fd);
2102    }
2103
2104    return 0;
2105}
2106
2107static void htab_save_cleanup(void *opaque)
2108{
2109    sPAPRMachineState *spapr = opaque;
2110
2111    close_htab_fd(spapr);
2112}
2113
2114static SaveVMHandlers savevm_htab_handlers = {
2115    .save_setup = htab_save_setup,
2116    .save_live_iterate = htab_save_iterate,
2117    .save_live_complete_precopy = htab_save_complete,
2118    .save_cleanup = htab_save_cleanup,
2119    .load_state = htab_load,
2120};
2121
2122static void spapr_boot_set(void *opaque, const char *boot_device,
2123                           Error **errp)
2124{
2125    MachineState *machine = MACHINE(opaque);
2126    machine->boot_order = g_strdup(boot_device);
2127}
2128
2129static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2130{
2131    MachineState *machine = MACHINE(spapr);
2132    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2133    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2134    int i;
2135
2136    for (i = 0; i < nr_lmbs; i++) {
2137        uint64_t addr;
2138
2139        addr = i * lmb_size + spapr->hotplug_memory.base;
2140        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2141                               addr / lmb_size);
2142    }
2143}
2144
2145/*
2146 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2147 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2148 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2149 */
2150static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2151{
2152    int i;
2153
2154    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2155        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2156                   " is not aligned to %llu MiB",
2157                   machine->ram_size,
2158                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2159        return;
2160    }
2161
2162    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2163        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2164                   " is not aligned to %llu MiB",
2165                   machine->ram_size,
2166                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2167        return;
2168    }
2169
2170    for (i = 0; i < nb_numa_nodes; i++) {
2171        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2172            error_setg(errp,
2173                       "Node %d memory size 0x%" PRIx64
2174                       " is not aligned to %llu MiB",
2175                       i, numa_info[i].node_mem,
2176                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2177            return;
2178        }
2179    }
2180}
2181
2182/* find cpu slot in machine->possible_cpus by core_id */
2183static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2184{
2185    int index = id / smp_threads;
2186
2187    if (index >= ms->possible_cpus->len) {
2188        return NULL;
2189    }
2190    if (idx) {
2191        *idx = index;
2192    }
2193    return &ms->possible_cpus->cpus[index];
2194}
2195
2196static void spapr_init_cpus(sPAPRMachineState *spapr)
2197{
2198    MachineState *machine = MACHINE(spapr);
2199    MachineClass *mc = MACHINE_GET_CLASS(machine);
2200    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2201    int smt = kvmppc_smt_threads();
2202    const CPUArchIdList *possible_cpus;
2203    int boot_cores_nr = smp_cpus / smp_threads;
2204    int i;
2205
2206    if (!type) {
2207        error_report("Unable to find sPAPR CPU Core definition");
2208        exit(1);
2209    }
2210
2211    possible_cpus = mc->possible_cpu_arch_ids(machine);
2212    if (mc->has_hotpluggable_cpus) {
2213        if (smp_cpus % smp_threads) {
2214            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2215                         smp_cpus, smp_threads);
2216            exit(1);
2217        }
2218        if (max_cpus % smp_threads) {
2219            error_report("max_cpus (%u) must be multiple of threads (%u)",
2220                         max_cpus, smp_threads);
2221            exit(1);
2222        }
2223    } else {
2224        if (max_cpus != smp_cpus) {
2225            error_report("This machine version does not support CPU hotplug");
2226            exit(1);
2227        }
2228        boot_cores_nr = possible_cpus->len;
2229    }
2230
2231    for (i = 0; i < possible_cpus->len; i++) {
2232        int core_id = i * smp_threads;
2233
2234        if (mc->has_hotpluggable_cpus) {
2235            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2236                                   (core_id / smp_threads) * smt);
2237        }
2238
2239        if (i < boot_cores_nr) {
2240            Object *core  = object_new(type);
2241            int nr_threads = smp_threads;
2242
2243            /* Handle the partially filled core for older machine types */
2244            if ((i + 1) * smp_threads >= smp_cpus) {
2245                nr_threads = smp_cpus - i * smp_threads;
2246            }
2247
2248            object_property_set_int(core, nr_threads, "nr-threads",
2249                                    &error_fatal);
2250            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2251                                    &error_fatal);
2252            object_property_set_bool(core, true, "realized", &error_fatal);
2253        }
2254    }
2255}
2256
2257static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2258{
2259    Error *local_err = NULL;
2260    bool vsmt_user = !!spapr->vsmt;
2261    int kvm_smt = kvmppc_smt_threads();
2262    int ret;
2263
2264    if (!kvm_enabled() && (smp_threads > 1)) {
2265        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2266                     "on a pseries machine");
2267        goto out;
2268    }
2269    if (!is_power_of_2(smp_threads)) {
2270        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2271                     "machine because it must be a power of 2", smp_threads);
2272        goto out;
2273    }
2274
2275    /* Detemine the VSMT mode to use: */
2276    if (vsmt_user) {
2277        if (spapr->vsmt < smp_threads) {
2278            error_setg(&local_err, "Cannot support VSMT mode %d"
2279                         " because it must be >= threads/core (%d)",
2280                         spapr->vsmt, smp_threads);
2281            goto out;
2282        }
2283        /* In this case, spapr->vsmt has been set by the command line */
2284    } else {
2285        /* Choose a VSMT mode that may be higher than necessary but is
2286         * likely to be compatible with hosts that don't have VSMT. */
2287        spapr->vsmt = MAX(kvm_smt, smp_threads);
2288    }
2289
2290    /* KVM: If necessary, set the SMT mode: */
2291    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2292        ret = kvmppc_set_smt_threads(spapr->vsmt);
2293        if (ret) {
2294            error_setg(&local_err,
2295                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2296                       spapr->vsmt, ret);
2297            if (!vsmt_user) {
2298                error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2299                             "core on a host with %d threads/core requires "
2300                             " the use of VSMT mode %d.\n",
2301                             smp_threads, kvm_smt, spapr->vsmt);
2302            }
2303            kvmppc_hint_smt_possible(&local_err);
2304            goto out;
2305        }
2306    }
2307    /* else TCG: nothing to do currently */
2308out:
2309    error_propagate(errp, local_err);
2310}
2311
2312/* pSeries LPAR / sPAPR hardware init */
2313static void ppc_spapr_init(MachineState *machine)
2314{
2315    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2316    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2317    const char *kernel_filename = machine->kernel_filename;
2318    const char *initrd_filename = machine->initrd_filename;
2319    PCIHostState *phb;
2320    int i;
2321    MemoryRegion *sysmem = get_system_memory();
2322    MemoryRegion *ram = g_new(MemoryRegion, 1);
2323    MemoryRegion *rma_region;
2324    void *rma = NULL;
2325    hwaddr rma_alloc_size;
2326    hwaddr node0_size = spapr_node0_size(machine);
2327    long load_limit, fw_size;
2328    char *filename;
2329    Error *resize_hpt_err = NULL;
2330
2331    msi_nonbroken = true;
2332
2333    QLIST_INIT(&spapr->phbs);
2334    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2335
2336    /* Check HPT resizing availability */
2337    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2338    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2339        /*
2340         * If the user explicitly requested a mode we should either
2341         * supply it, or fail completely (which we do below).  But if
2342         * it's not set explicitly, we reset our mode to something
2343         * that works
2344         */
2345        if (resize_hpt_err) {
2346            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2347            error_free(resize_hpt_err);
2348            resize_hpt_err = NULL;
2349        } else {
2350            spapr->resize_hpt = smc->resize_hpt_default;
2351        }
2352    }
2353
2354    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2355
2356    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2357        /*
2358         * User requested HPT resize, but this host can't supply it.  Bail out
2359         */
2360        error_report_err(resize_hpt_err);
2361        exit(1);
2362    }
2363
2364    /* Allocate RMA if necessary */
2365    rma_alloc_size = kvmppc_alloc_rma(&rma);
2366
2367    if (rma_alloc_size == -1) {
2368        error_report("Unable to create RMA");
2369        exit(1);
2370    }
2371
2372    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2373        spapr->rma_size = rma_alloc_size;
2374    } else {
2375        spapr->rma_size = node0_size;
2376
2377        /* With KVM, we don't actually know whether KVM supports an
2378         * unbounded RMA (PR KVM) or is limited by the hash table size
2379         * (HV KVM using VRMA), so we always assume the latter
2380         *
2381         * In that case, we also limit the initial allocations for RTAS
2382         * etc... to 256M since we have no way to know what the VRMA size
2383         * is going to be as it depends on the size of the hash table
2384         * isn't determined yet.
2385         */
2386        if (kvm_enabled()) {
2387            spapr->vrma_adjust = 1;
2388            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2389        }
2390
2391        /* Actually we don't support unbounded RMA anymore since we
2392         * added proper emulation of HV mode. The max we can get is
2393         * 16G which also happens to be what we configure for PAPR
2394         * mode so make sure we don't do anything bigger than that
2395         */
2396        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2397    }
2398
2399    if (spapr->rma_size > node0_size) {
2400        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2401                     spapr->rma_size);
2402        exit(1);
2403    }
2404
2405    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2406    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2407
2408    /* Set up Interrupt Controller before we create the VCPUs */
2409    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2410
2411    /* Set up containers for ibm,client-architecture-support negotiated options
2412     */
2413    spapr->ov5 = spapr_ovec_new();
2414    spapr->ov5_cas = spapr_ovec_new();
2415
2416    if (smc->dr_lmb_enabled) {
2417        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2418        spapr_validate_node_memory(machine, &error_fatal);
2419    }
2420
2421    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2422    if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2423        /* KVM and TCG always allow GTSE with radix... */
2424        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2425    }
2426    /* ... but not with hash (currently). */
2427
2428    /* advertise support for dedicated HP event source to guests */
2429    if (spapr->use_hotplug_event_source) {
2430        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2431    }
2432
2433    /* advertise support for HPT resizing */
2434    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2435        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2436    }
2437
2438    /* init CPUs */
2439    spapr_set_vsmt_mode(spapr, &error_fatal);
2440
2441    spapr_init_cpus(spapr);
2442
2443    if (kvm_enabled()) {
2444        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2445        kvmppc_enable_logical_ci_hcalls();
2446        kvmppc_enable_set_mode_hcall();
2447
2448        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2449        kvmppc_enable_clear_ref_mod_hcalls();
2450    }
2451
2452    /* allocate RAM */
2453    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2454                                         machine->ram_size);
2455    memory_region_add_subregion(sysmem, 0, ram);
2456
2457    if (rma_alloc_size && rma) {
2458        rma_region = g_new(MemoryRegion, 1);
2459        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2460                                   rma_alloc_size, rma);
2461        vmstate_register_ram_global(rma_region);
2462        memory_region_add_subregion(sysmem, 0, rma_region);
2463    }
2464
2465    /* initialize hotplug memory address space */
2466    if (machine->ram_size < machine->maxram_size) {
2467        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2468        /*
2469         * Limit the number of hotpluggable memory slots to half the number
2470         * slots that KVM supports, leaving the other half for PCI and other
2471         * devices. However ensure that number of slots doesn't drop below 32.
2472         */
2473        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2474                           SPAPR_MAX_RAM_SLOTS;
2475
2476        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2477            max_memslots = SPAPR_MAX_RAM_SLOTS;
2478        }
2479        if (machine->ram_slots > max_memslots) {
2480            error_report("Specified number of memory slots %"
2481                         PRIu64" exceeds max supported %d",
2482                         machine->ram_slots, max_memslots);
2483            exit(1);
2484        }
2485
2486        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2487                                              SPAPR_HOTPLUG_MEM_ALIGN);
2488        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2489                           "hotplug-memory", hotplug_mem_size);
2490        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2491                                    &spapr->hotplug_memory.mr);
2492    }
2493
2494    if (smc->dr_lmb_enabled) {
2495        spapr_create_lmb_dr_connectors(spapr);
2496    }
2497
2498    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2499    if (!filename) {
2500        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2501        exit(1);
2502    }
2503    spapr->rtas_size = get_image_size(filename);
2504    if (spapr->rtas_size < 0) {
2505        error_report("Could not get size of LPAR rtas '%s'", filename);
2506        exit(1);
2507    }
2508    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2509    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2510        error_report("Could not load LPAR rtas '%s'", filename);
2511        exit(1);
2512    }
2513    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2514        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2515                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2516        exit(1);
2517    }
2518    g_free(filename);
2519
2520    /* Set up RTAS event infrastructure */
2521    spapr_events_init(spapr);
2522
2523    /* Set up the RTC RTAS interfaces */
2524    spapr_rtc_create(spapr);
2525
2526    /* Set up VIO bus */
2527    spapr->vio_bus = spapr_vio_bus_init();
2528
2529    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2530        if (serial_hds[i]) {
2531            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2532        }
2533    }
2534
2535    /* We always have at least the nvram device on VIO */
2536    spapr_create_nvram(spapr);
2537
2538    /* Set up PCI */
2539    spapr_pci_rtas_init();
2540
2541    phb = spapr_create_phb(spapr, 0);
2542
2543    for (i = 0; i < nb_nics; i++) {
2544        NICInfo *nd = &nd_table[i];
2545
2546        if (!nd->model) {
2547            nd->model = g_strdup("ibmveth");
2548        }
2549
2550        if (strcmp(nd->model, "ibmveth") == 0) {
2551            spapr_vlan_create(spapr->vio_bus, nd);
2552        } else {
2553            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2554        }
2555    }
2556
2557    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2558        spapr_vscsi_create(spapr->vio_bus);
2559    }
2560
2561    /* Graphics */
2562    if (spapr_vga_init(phb->bus, &error_fatal)) {
2563        spapr->has_graphics = true;
2564        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2565    }
2566
2567    if (machine->usb) {
2568        if (smc->use_ohci_by_default) {
2569            pci_create_simple(phb->bus, -1, "pci-ohci");
2570        } else {
2571            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2572        }
2573
2574        if (spapr->has_graphics) {
2575            USBBus *usb_bus = usb_bus_find(-1);
2576
2577            usb_create_simple(usb_bus, "usb-kbd");
2578            usb_create_simple(usb_bus, "usb-mouse");
2579        }
2580    }
2581
2582    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2583        error_report(
2584            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2585            MIN_RMA_SLOF);
2586        exit(1);
2587    }
2588
2589    if (kernel_filename) {
2590        uint64_t lowaddr = 0;
2591
2592        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2593                                      NULL, NULL, &lowaddr, NULL, 1,
2594                                      PPC_ELF_MACHINE, 0, 0);
2595        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2596            spapr->kernel_size = load_elf(kernel_filename,
2597                                          translate_kernel_address, NULL, NULL,
2598                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2599                                          0, 0);
2600            spapr->kernel_le = spapr->kernel_size > 0;
2601        }
2602        if (spapr->kernel_size < 0) {
2603            error_report("error loading %s: %s", kernel_filename,
2604                         load_elf_strerror(spapr->kernel_size));
2605            exit(1);
2606        }
2607
2608        /* load initrd */
2609        if (initrd_filename) {
2610            /* Try to locate the initrd in the gap between the kernel
2611             * and the firmware. Add a bit of space just in case
2612             */
2613            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2614                                  + 0x1ffff) & ~0xffff;
2615            spapr->initrd_size = load_image_targphys(initrd_filename,
2616                                                     spapr->initrd_base,
2617                                                     load_limit
2618                                                     - spapr->initrd_base);
2619            if (spapr->initrd_size < 0) {
2620                error_report("could not load initial ram disk '%s'",
2621                             initrd_filename);
2622                exit(1);
2623            }
2624        }
2625    }
2626
2627    if (bios_name == NULL) {
2628        bios_name = FW_FILE_NAME;
2629    }
2630    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2631    if (!filename) {
2632        error_report("Could not find LPAR firmware '%s'", bios_name);
2633        exit(1);
2634    }
2635    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2636    if (fw_size <= 0) {
2637        error_report("Could not load LPAR firmware '%s'", filename);
2638        exit(1);
2639    }
2640    g_free(filename);
2641
2642    /* FIXME: Should register things through the MachineState's qdev
2643     * interface, this is a legacy from the sPAPREnvironment structure
2644     * which predated MachineState but had a similar function */
2645    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2646    register_savevm_live(NULL, "spapr/htab", -1, 1,
2647                         &savevm_htab_handlers, spapr);
2648
2649    qemu_register_boot_set(spapr_boot_set, spapr);
2650
2651    if (kvm_enabled()) {
2652        /* to stop and start vmclock */
2653        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2654                                         &spapr->tb);
2655
2656        kvmppc_spapr_enable_inkernel_multitce();
2657    }
2658}
2659
2660static int spapr_kvm_type(const char *vm_type)
2661{
2662    if (!vm_type) {
2663        return 0;
2664    }
2665
2666    if (!strcmp(vm_type, "HV")) {
2667        return 1;
2668    }
2669
2670    if (!strcmp(vm_type, "PR")) {
2671        return 2;
2672    }
2673
2674    error_report("Unknown kvm-type specified '%s'", vm_type);
2675    exit(1);
2676}
2677
2678/*
2679 * Implementation of an interface to adjust firmware path
2680 * for the bootindex property handling.
2681 */
2682static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2683                                   DeviceState *dev)
2684{
2685#define CAST(type, obj, name) \
2686    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2687    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2688    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2689    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2690
2691    if (d) {
2692        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2693        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2694        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2695
2696        if (spapr) {
2697            /*
2698             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2699             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2700             * in the top 16 bits of the 64-bit LUN
2701             */
2702            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2703            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2704                                   (uint64_t)id << 48);
2705        } else if (virtio) {
2706            /*
2707             * We use SRP luns of the form 01000000 | (target << 8) | lun
2708             * in the top 32 bits of the 64-bit LUN
2709             * Note: the quote above is from SLOF and it is wrong,
2710             * the actual binding is:
2711             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2712             */
2713            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2714            if (d->lun >= 256) {
2715                /* Use the LUN "flat space addressing method" */
2716                id |= 0x4000;
2717            }
2718            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2719                                   (uint64_t)id << 32);
2720        } else if (usb) {
2721            /*
2722             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2723             * in the top 32 bits of the 64-bit LUN
2724             */
2725            unsigned usb_port = atoi(usb->port->path);
2726            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2727            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2728                                   (uint64_t)id << 32);
2729        }
2730    }
2731
2732    /*
2733     * SLOF probes the USB devices, and if it recognizes that the device is a
2734     * storage device, it changes its name to "storage" instead of "usb-host",
2735     * and additionally adds a child node for the SCSI LUN, so the correct
2736     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2737     */
2738    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2739        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2740        if (usb_host_dev_is_scsi_storage(usbdev)) {
2741            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2742        }
2743    }
2744
2745    if (phb) {
2746        /* Replace "pci" with "pci@800000020000000" */
2747        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2748    }
2749
2750    if (vsc) {
2751        /* Same logic as virtio above */
2752        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2753        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2754    }
2755
2756    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2757        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2758        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2759        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2760    }
2761
2762    return NULL;
2763}
2764
2765static char *spapr_get_kvm_type(Object *obj, Error **errp)
2766{
2767    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2768
2769    return g_strdup(spapr->kvm_type);
2770}
2771
2772static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2773{
2774    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2775
2776    g_free(spapr->kvm_type);
2777    spapr->kvm_type = g_strdup(value);
2778}
2779
2780static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2781{
2782    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2783
2784    return spapr->use_hotplug_event_source;
2785}
2786
2787static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2788                                            Error **errp)
2789{
2790    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2791
2792    spapr->use_hotplug_event_source = value;
2793}
2794
2795static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2796{
2797    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2798
2799    switch (spapr->resize_hpt) {
2800    case SPAPR_RESIZE_HPT_DEFAULT:
2801        return g_strdup("default");
2802    case SPAPR_RESIZE_HPT_DISABLED:
2803        return g_strdup("disabled");
2804    case SPAPR_RESIZE_HPT_ENABLED:
2805        return g_strdup("enabled");
2806    case SPAPR_RESIZE_HPT_REQUIRED:
2807        return g_strdup("required");
2808    }
2809    g_assert_not_reached();
2810}
2811
2812static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2813{
2814    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2815
2816    if (strcmp(value, "default") == 0) {
2817        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2818    } else if (strcmp(value, "disabled") == 0) {
2819        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2820    } else if (strcmp(value, "enabled") == 0) {
2821        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2822    } else if (strcmp(value, "required") == 0) {
2823        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2824    } else {
2825        error_setg(errp, "Bad value for \"resize-hpt\" property");
2826    }
2827}
2828
2829static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2830                                   void *opaque, Error **errp)
2831{
2832    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2833}
2834
2835static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2836                                   void *opaque, Error **errp)
2837{
2838    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2839}
2840
2841static void spapr_machine_initfn(Object *obj)
2842{
2843    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2844
2845    spapr->htab_fd = -1;
2846    spapr->use_hotplug_event_source = true;
2847    object_property_add_str(obj, "kvm-type",
2848                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2849    object_property_set_description(obj, "kvm-type",
2850                                    "Specifies the KVM virtualization mode (HV, PR)",
2851                                    NULL);
2852    object_property_add_bool(obj, "modern-hotplug-events",
2853                            spapr_get_modern_hotplug_events,
2854                            spapr_set_modern_hotplug_events,
2855                            NULL);
2856    object_property_set_description(obj, "modern-hotplug-events",
2857                                    "Use dedicated hotplug event mechanism in"
2858                                    " place of standard EPOW events when possible"
2859                                    " (required for memory hot-unplug support)",
2860                                    NULL);
2861
2862    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2863                            "Maximum permitted CPU compatibility mode",
2864                            &error_fatal);
2865
2866    object_property_add_str(obj, "resize-hpt",
2867                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2868    object_property_set_description(obj, "resize-hpt",
2869                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
2870                                    NULL);
2871    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2872                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2873    object_property_set_description(obj, "vsmt",
2874                                    "Virtual SMT: KVM behaves as if this were"
2875                                    " the host's SMT mode", &error_abort);
2876}
2877
2878static void spapr_machine_finalizefn(Object *obj)
2879{
2880    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2881
2882    g_free(spapr->kvm_type);
2883}
2884
2885void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2886{
2887    cpu_synchronize_state(cs);
2888    ppc_cpu_do_system_reset(cs);
2889}
2890
2891static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2892{
2893    CPUState *cs;
2894
2895    CPU_FOREACH(cs) {
2896        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2897    }
2898}
2899
2900static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2901                           uint32_t node, bool dedicated_hp_event_source,
2902                           Error **errp)
2903{
2904    sPAPRDRConnector *drc;
2905    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2906    int i, fdt_offset, fdt_size;
2907    void *fdt;
2908    uint64_t addr = addr_start;
2909    bool hotplugged = spapr_drc_hotplugged(dev);
2910    Error *local_err = NULL;
2911
2912    for (i = 0; i < nr_lmbs; i++) {
2913        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2914                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2915        g_assert(drc);
2916
2917        fdt = create_device_tree(&fdt_size);
2918        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2919                                                SPAPR_MEMORY_BLOCK_SIZE);
2920
2921        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2922        if (local_err) {
2923            while (addr > addr_start) {
2924                addr -= SPAPR_MEMORY_BLOCK_SIZE;
2925                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2926                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
2927                spapr_drc_detach(drc);
2928            }
2929            g_free(fdt);
2930            error_propagate(errp, local_err);
2931            return;
2932        }
2933        if (!hotplugged) {
2934            spapr_drc_reset(drc);
2935        }
2936        addr += SPAPR_MEMORY_BLOCK_SIZE;
2937    }
2938    /* send hotplug notification to the
2939     * guest only in case of hotplugged memory
2940     */
2941    if (hotplugged) {
2942        if (dedicated_hp_event_source) {
2943            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2944                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2945            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2946                                                   nr_lmbs,
2947                                                   spapr_drc_index(drc));
2948        } else {
2949            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2950                                           nr_lmbs);
2951        }
2952    }
2953}
2954
2955static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2956                              uint32_t node, Error **errp)
2957{
2958    Error *local_err = NULL;
2959    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2960    PCDIMMDevice *dimm = PC_DIMM(dev);
2961    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2962    MemoryRegion *mr;
2963    uint64_t align, size, addr;
2964
2965    mr = ddc->get_memory_region(dimm, &local_err);
2966    if (local_err) {
2967        goto out;
2968    }
2969    align = memory_region_get_alignment(mr);
2970    size = memory_region_size(mr);
2971
2972    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2973    if (local_err) {
2974        goto out;
2975    }
2976
2977    addr = object_property_get_uint(OBJECT(dimm),
2978                                    PC_DIMM_ADDR_PROP, &local_err);
2979    if (local_err) {
2980        goto out_unplug;
2981    }
2982
2983    spapr_add_lmbs(dev, addr, size, node,
2984                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2985                   &local_err);
2986    if (local_err) {
2987        goto out_unplug;
2988    }
2989
2990    return;
2991
2992out_unplug:
2993    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2994out:
2995    error_propagate(errp, local_err);
2996}
2997
2998static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2999                                  Error **errp)
3000{
3001    PCDIMMDevice *dimm = PC_DIMM(dev);
3002    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3003    MemoryRegion *mr;
3004    uint64_t size;
3005    char *mem_dev;
3006
3007    mr = ddc->get_memory_region(dimm, errp);
3008    if (!mr) {
3009        return;
3010    }
3011    size = memory_region_size(mr);
3012
3013    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3014        error_setg(errp, "Hotplugged memory size must be a multiple of "
3015                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3016        return;
3017    }
3018
3019    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3020    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3021        error_setg(errp, "Memory backend has bad page size. "
3022                   "Use 'memory-backend-file' with correct mem-path.");
3023        goto out;
3024    }
3025
3026out:
3027    g_free(mem_dev);
3028}
3029
3030struct sPAPRDIMMState {
3031    PCDIMMDevice *dimm;
3032    uint32_t nr_lmbs;
3033    QTAILQ_ENTRY(sPAPRDIMMState) next;
3034};
3035
3036static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3037                                                       PCDIMMDevice *dimm)
3038{
3039    sPAPRDIMMState *dimm_state = NULL;
3040
3041    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3042        if (dimm_state->dimm == dimm) {
3043            break;
3044        }
3045    }
3046    return dimm_state;
3047}
3048
3049static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3050                                                      uint32_t nr_lmbs,
3051                                                      PCDIMMDevice *dimm)
3052{
3053    sPAPRDIMMState *ds = NULL;
3054
3055    /*
3056     * If this request is for a DIMM whose removal had failed earlier
3057     * (due to guest's refusal to remove the LMBs), we would have this
3058     * dimm already in the pending_dimm_unplugs list. In that
3059     * case don't add again.
3060     */
3061    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3062    if (!ds) {
3063        ds = g_malloc0(sizeof(sPAPRDIMMState));
3064        ds->nr_lmbs = nr_lmbs;
3065        ds->dimm = dimm;
3066        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3067    }
3068    return ds;
3069}
3070
3071static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3072                                              sPAPRDIMMState *dimm_state)
3073{
3074    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3075    g_free(dimm_state);
3076}
3077
3078static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3079                                                        PCDIMMDevice *dimm)
3080{
3081    sPAPRDRConnector *drc;
3082    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3083    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3084    uint64_t size = memory_region_size(mr);
3085    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3086    uint32_t avail_lmbs = 0;
3087    uint64_t addr_start, addr;
3088    int i;
3089
3090    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3091                                         &error_abort);
3092
3093    addr = addr_start;
3094    for (i = 0; i < nr_lmbs; i++) {
3095        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3096                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3097        g_assert(drc);
3098        if (drc->dev) {
3099            avail_lmbs++;
3100        }
3101        addr += SPAPR_MEMORY_BLOCK_SIZE;
3102    }
3103
3104    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3105}
3106
3107/* Callback to be called during DRC release. */
3108void spapr_lmb_release(DeviceState *dev)
3109{
3110    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3111    PCDIMMDevice *dimm = PC_DIMM(dev);
3112    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3113    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3114    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3115
3116    /* This information will get lost if a migration occurs
3117     * during the unplug process. In this case recover it. */
3118    if (ds == NULL) {
3119        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3120        g_assert(ds);
3121        /* The DRC being examined by the caller at least must be counted */
3122        g_assert(ds->nr_lmbs);
3123    }
3124
3125    if (--ds->nr_lmbs) {
3126        return;
3127    }
3128
3129    /*
3130     * Now that all the LMBs have been removed by the guest, call the
3131     * pc-dimm unplug handler to cleanup up the pc-dimm device.
3132     */
3133    pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3134    object_unparent(OBJECT(dev));
3135    spapr_pending_dimm_unplugs_remove(spapr, ds);
3136}
3137
3138static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3139                                        DeviceState *dev, Error **errp)
3140{
3141    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3142    Error *local_err = NULL;
3143    PCDIMMDevice *dimm = PC_DIMM(dev);
3144    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3145    MemoryRegion *mr;
3146    uint32_t nr_lmbs;
3147    uint64_t size, addr_start, addr;
3148    int i;
3149    sPAPRDRConnector *drc;
3150
3151    mr = ddc->get_memory_region(dimm, &local_err);
3152    if (local_err) {
3153        goto out;
3154    }
3155    size = memory_region_size(mr);
3156    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3157
3158    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3159                                         &local_err);
3160    if (local_err) {
3161        goto out;
3162    }
3163
3164    /*
3165     * An existing pending dimm state for this DIMM means that there is an
3166     * unplug operation in progress, waiting for the spapr_lmb_release
3167     * callback to complete the job (BQL can't cover that far). In this case,
3168     * bail out to avoid detaching DRCs that were already released.
3169     */
3170    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3171        error_setg(&local_err,
3172                   "Memory unplug already in progress for device %s",
3173                   dev->id);
3174        goto out;
3175    }
3176
3177    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3178
3179    addr = addr_start;
3180    for (i = 0; i < nr_lmbs; i++) {
3181        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3182                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3183        g_assert(drc);
3184
3185        spapr_drc_detach(drc);
3186        addr += SPAPR_MEMORY_BLOCK_SIZE;
3187    }
3188
3189    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3190                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3191    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3192                                              nr_lmbs, spapr_drc_index(drc));
3193out:
3194    error_propagate(errp, local_err);
3195}
3196
3197static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3198                                           sPAPRMachineState *spapr)
3199{
3200    PowerPCCPU *cpu = POWERPC_CPU(cs);
3201    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3202    int id = spapr_vcpu_id(cpu);
3203    void *fdt;
3204    int offset, fdt_size;
3205    char *nodename;
3206
3207    fdt = create_device_tree(&fdt_size);
3208    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3209    offset = fdt_add_subnode(fdt, 0, nodename);
3210
3211    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3212    g_free(nodename);
3213
3214    *fdt_offset = offset;
3215    return fdt;
3216}
3217
3218/* Callback to be called during DRC release. */
3219void spapr_core_release(DeviceState *dev)
3220{
3221    MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3222    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3223    CPUCore *cc = CPU_CORE(dev);
3224    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3225
3226    if (smc->pre_2_10_has_unused_icps) {
3227        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3228        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3229        size_t size = object_type_get_instance_size(scc->cpu_type);
3230        int i;
3231
3232        for (i = 0; i < cc->nr_threads; i++) {
3233            CPUState *cs = CPU(sc->threads + i * size);
3234
3235            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3236        }
3237    }
3238
3239    assert(core_slot);
3240    core_slot->cpu = NULL;
3241    object_unparent(OBJECT(dev));
3242}
3243
3244static
3245void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3246                               Error **errp)
3247{
3248    int index;
3249    sPAPRDRConnector *drc;
3250    CPUCore *cc = CPU_CORE(dev);
3251    int smt = kvmppc_smt_threads();
3252
3253    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3254        error_setg(errp, "Unable to find CPU core with core-id: %d",
3255                   cc->core_id);
3256        return;
3257    }
3258    if (index == 0) {
3259        error_setg(errp, "Boot CPU core may not be unplugged");
3260        return;
3261    }
3262
3263    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3264    g_assert(drc);
3265
3266    spapr_drc_detach(drc);
3267
3268    spapr_hotplug_req_remove_by_index(drc);
3269}
3270
3271static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3272                            Error **errp)
3273{
3274    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3275    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3276    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3277    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3278    CPUCore *cc = CPU_CORE(dev);
3279    CPUState *cs = CPU(core->threads);
3280    sPAPRDRConnector *drc;
3281    Error *local_err = NULL;
3282    int smt = kvmppc_smt_threads();
3283    CPUArchId *core_slot;
3284    int index;
3285    bool hotplugged = spapr_drc_hotplugged(dev);
3286
3287    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3288    if (!core_slot) {
3289        error_setg(errp, "Unable to find CPU core with core-id: %d",
3290                   cc->core_id);
3291        return;
3292    }
3293    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3294
3295    g_assert(drc || !mc->has_hotpluggable_cpus);
3296
3297    if (drc) {
3298        void *fdt;
3299        int fdt_offset;
3300
3301        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3302
3303        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3304        if (local_err) {
3305            g_free(fdt);
3306            error_propagate(errp, local_err);
3307            return;
3308        }
3309
3310        if (hotplugged) {
3311            /*
3312             * Send hotplug notification interrupt to the guest only
3313             * in case of hotplugged CPUs.
3314             */
3315            spapr_hotplug_req_add_by_index(drc);
3316        } else {
3317            spapr_drc_reset(drc);
3318        }
3319    }
3320
3321    core_slot->cpu = OBJECT(dev);
3322
3323    if (smc->pre_2_10_has_unused_icps) {
3324        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3325        size_t size = object_type_get_instance_size(scc->cpu_type);
3326        int i;
3327
3328        for (i = 0; i < cc->nr_threads; i++) {
3329            sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3330            void *obj = sc->threads + i * size;
3331
3332            cs = CPU(obj);
3333            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3334        }
3335    }
3336}
3337
3338static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3339                                Error **errp)
3340{
3341    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3342    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3343    Error *local_err = NULL;
3344    CPUCore *cc = CPU_CORE(dev);
3345    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3346    const char *type = object_get_typename(OBJECT(dev));
3347    CPUArchId *core_slot;
3348    int index;
3349
3350    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3351        error_setg(&local_err, "CPU hotplug not supported for this machine");
3352        goto out;
3353    }
3354
3355    if (strcmp(base_core_type, type)) {
3356        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3357        goto out;
3358    }
3359
3360    if (cc->core_id % smp_threads) {
3361        error_setg(&local_err, "invalid core id %d", cc->core_id);
3362        goto out;
3363    }
3364
3365    /*
3366     * In general we should have homogeneous threads-per-core, but old
3367     * (pre hotplug support) machine types allow the last core to have
3368     * reduced threads as a compatibility hack for when we allowed
3369     * total vcpus not a multiple of threads-per-core.
3370     */
3371    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3372        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3373                   cc->nr_threads, smp_threads);
3374        goto out;
3375    }
3376
3377    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3378    if (!core_slot) {
3379        error_setg(&local_err, "core id %d out of range", cc->core_id);
3380        goto out;
3381    }
3382
3383    if (core_slot->cpu) {
3384        error_setg(&local_err, "core %d already populated", cc->core_id);
3385        goto out;
3386    }
3387
3388    numa_cpu_pre_plug(core_slot, dev, &local_err);
3389
3390out:
3391    error_propagate(errp, local_err);
3392}
3393
3394static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3395                                      DeviceState *dev, Error **errp)
3396{
3397    MachineState *ms = MACHINE(hotplug_dev);
3398    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3399
3400    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3401        int node;
3402
3403        if (!smc->dr_lmb_enabled) {
3404            error_setg(errp, "Memory hotplug not supported for this machine");
3405            return;
3406        }
3407        node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3408        if (*errp) {
3409            return;
3410        }
3411        if (node < 0 || node >= MAX_NODES) {
3412            error_setg(errp, "Invaild node %d", node);
3413            return;
3414        }
3415
3416        /*
3417         * Currently PowerPC kernel doesn't allow hot-adding memory to
3418         * memory-less node, but instead will silently add the memory
3419         * to the first node that has some memory. This causes two
3420         * unexpected behaviours for the user.
3421         *
3422         * - Memory gets hotplugged to a different node than what the user
3423         *   specified.
3424         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3425         *   to memory-less node, a reboot will set things accordingly
3426         *   and the previously hotplugged memory now ends in the right node.
3427         *   This appears as if some memory moved from one node to another.
3428         *
3429         * So until kernel starts supporting memory hotplug to memory-less
3430         * nodes, just prevent such attempts upfront in QEMU.
3431         */
3432        if (nb_numa_nodes && !numa_info[node].node_mem) {
3433            error_setg(errp, "Can't hotplug memory to memory-less node %d",
3434                       node);
3435            return;
3436        }
3437
3438        spapr_memory_plug(hotplug_dev, dev, node, errp);
3439    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3440        spapr_core_plug(hotplug_dev, dev, errp);
3441    }
3442}
3443
3444static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3445                                                DeviceState *dev, Error **errp)
3446{
3447    sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3448    MachineClass *mc = MACHINE_GET_CLASS(sms);
3449
3450    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3451        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3452            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3453        } else {
3454            /* NOTE: this means there is a window after guest reset, prior to
3455             * CAS negotiation, where unplug requests will fail due to the
3456             * capability not being detected yet. This is a bit different than
3457             * the case with PCI unplug, where the events will be queued and
3458             * eventually handled by the guest after boot
3459             */
3460            error_setg(errp, "Memory hot unplug not supported for this guest");
3461        }
3462    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3463        if (!mc->has_hotpluggable_cpus) {
3464            error_setg(errp, "CPU hot unplug not supported on this machine");
3465            return;
3466        }
3467        spapr_core_unplug_request(hotplug_dev, dev, errp);
3468    }
3469}
3470
3471static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3472                                          DeviceState *dev, Error **errp)
3473{
3474    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3475        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3476    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3477        spapr_core_pre_plug(hotplug_dev, dev, errp);
3478    }
3479}
3480
3481static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3482                                                 DeviceState *dev)
3483{
3484    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3485        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3486        return HOTPLUG_HANDLER(machine);
3487    }
3488    return NULL;
3489}
3490
3491static CpuInstanceProperties
3492spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3493{
3494    CPUArchId *core_slot;
3495    MachineClass *mc = MACHINE_GET_CLASS(machine);
3496
3497    /* make sure possible_cpu are intialized */
3498    mc->possible_cpu_arch_ids(machine);
3499    /* get CPU core slot containing thread that matches cpu_index */
3500    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3501    assert(core_slot);
3502    return core_slot->props;
3503}
3504
3505static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3506{
3507    return idx / smp_cores % nb_numa_nodes;
3508}
3509
3510static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3511{
3512    int i;
3513    int spapr_max_cores = max_cpus / smp_threads;
3514    MachineClass *mc = MACHINE_GET_CLASS(machine);
3515
3516    if (!mc->has_hotpluggable_cpus) {
3517        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3518    }
3519    if (machine->possible_cpus) {
3520        assert(machine->possible_cpus->len == spapr_max_cores);
3521        return machine->possible_cpus;
3522    }
3523
3524    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3525                             sizeof(CPUArchId) * spapr_max_cores);
3526    machine->possible_cpus->len = spapr_max_cores;
3527    for (i = 0; i < machine->possible_cpus->len; i++) {
3528        int core_id = i * smp_threads;
3529
3530        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3531        machine->possible_cpus->cpus[i].arch_id = core_id;
3532        machine->possible_cpus->cpus[i].props.has_core_id = true;
3533        machine->possible_cpus->cpus[i].props.core_id = core_id;
3534    }
3535    return machine->possible_cpus;
3536}
3537
3538static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3539                                uint64_t *buid, hwaddr *pio,
3540                                hwaddr *mmio32, hwaddr *mmio64,
3541                                unsigned n_dma, uint32_t *liobns, Error **errp)
3542{
3543    /*
3544     * New-style PHB window placement.
3545     *
3546     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3547     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3548     * windows.
3549     *
3550     * Some guest kernels can't work with MMIO windows above 1<<46
3551     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3552     *
3553     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3554     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3555     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3556     * 1TiB 64-bit MMIO windows for each PHB.
3557     */
3558    const uint64_t base_buid = 0x800000020000000ULL;
3559#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3560                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3561    int i;
3562
3563    /* Sanity check natural alignments */
3564    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3565    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3566    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3567    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3568    /* Sanity check bounds */
3569    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3570                      SPAPR_PCI_MEM32_WIN_SIZE);
3571    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3572                      SPAPR_PCI_MEM64_WIN_SIZE);
3573
3574    if (index >= SPAPR_MAX_PHBS) {
3575        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3576                   SPAPR_MAX_PHBS - 1);
3577        return;
3578    }
3579
3580    *buid = base_buid + index;
3581    for (i = 0; i < n_dma; ++i) {
3582        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3583    }
3584
3585    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3586    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3587    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3588}
3589
3590static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3591{
3592    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3593
3594    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3595}
3596
3597static void spapr_ics_resend(XICSFabric *dev)
3598{
3599    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3600
3601    ics_resend(spapr->ics);
3602}
3603
3604static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3605{
3606    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3607
3608    return cpu ? ICP(cpu->intc) : NULL;
3609}
3610
3611static void spapr_pic_print_info(InterruptStatsProvider *obj,
3612                                 Monitor *mon)
3613{
3614    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3615    CPUState *cs;
3616
3617    CPU_FOREACH(cs) {
3618        PowerPCCPU *cpu = POWERPC_CPU(cs);
3619
3620        icp_pic_print_info(ICP(cpu->intc), mon);
3621    }
3622
3623    ics_pic_print_info(spapr->ics, mon);
3624}
3625
3626int spapr_vcpu_id(PowerPCCPU *cpu)
3627{
3628    CPUState *cs = CPU(cpu);
3629
3630    if (kvm_enabled()) {
3631        return kvm_arch_vcpu_id(cs);
3632    } else {
3633        return cs->cpu_index;
3634    }
3635}
3636
3637PowerPCCPU *spapr_find_cpu(int vcpu_id)
3638{
3639    CPUState *cs;
3640
3641    CPU_FOREACH(cs) {
3642        PowerPCCPU *cpu = POWERPC_CPU(cs);
3643
3644        if (spapr_vcpu_id(cpu) == vcpu_id) {
3645            return cpu;
3646        }
3647    }
3648
3649    return NULL;
3650}
3651
3652static void spapr_machine_class_init(ObjectClass *oc, void *data)
3653{
3654    MachineClass *mc = MACHINE_CLASS(oc);
3655    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3656    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3657    NMIClass *nc = NMI_CLASS(oc);
3658    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3659    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3660    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3661    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3662
3663    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3664
3665    /*
3666     * We set up the default / latest behaviour here.  The class_init
3667     * functions for the specific versioned machine types can override
3668     * these details for backwards compatibility
3669     */
3670    mc->init = ppc_spapr_init;
3671    mc->reset = ppc_spapr_reset;
3672    mc->block_default_type = IF_SCSI;
3673    mc->max_cpus = 1024;
3674    mc->no_parallel = 1;
3675    mc->default_boot_order = "";
3676    mc->default_ram_size = 512 * M_BYTE;
3677    mc->kvm_type = spapr_kvm_type;
3678    mc->has_dynamic_sysbus = true;
3679    mc->pci_allow_0_address = true;
3680    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3681    hc->pre_plug = spapr_machine_device_pre_plug;
3682    hc->plug = spapr_machine_device_plug;
3683    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3684    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3685    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3686    hc->unplug_request = spapr_machine_device_unplug_request;
3687
3688    smc->dr_lmb_enabled = true;
3689    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3690    mc->has_hotpluggable_cpus = true;
3691    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3692    fwc->get_dev_path = spapr_get_fw_dev_path;
3693    nc->nmi_monitor_handler = spapr_nmi;
3694    smc->phb_placement = spapr_phb_placement;
3695    vhc->hypercall = emulate_spapr_hypercall;
3696    vhc->hpt_mask = spapr_hpt_mask;
3697    vhc->map_hptes = spapr_map_hptes;
3698    vhc->unmap_hptes = spapr_unmap_hptes;
3699    vhc->store_hpte = spapr_store_hpte;
3700    vhc->get_patbe = spapr_get_patbe;
3701    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3702    xic->ics_get = spapr_ics_get;
3703    xic->ics_resend = spapr_ics_resend;
3704    xic->icp_get = spapr_icp_get;
3705    ispc->print_info = spapr_pic_print_info;
3706    /* Force NUMA node memory size to be a multiple of
3707     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3708     * in which LMBs are represented and hot-added
3709     */
3710    mc->numa_mem_align_shift = 28;
3711
3712    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3713    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3714    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3715    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3716    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3717    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3718    spapr_caps_add_properties(smc, &error_abort);
3719}
3720
3721static const TypeInfo spapr_machine_info = {
3722    .name          = TYPE_SPAPR_MACHINE,
3723    .parent        = TYPE_MACHINE,
3724    .abstract      = true,
3725    .instance_size = sizeof(sPAPRMachineState),
3726    .instance_init = spapr_machine_initfn,
3727    .instance_finalize = spapr_machine_finalizefn,
3728    .class_size    = sizeof(sPAPRMachineClass),
3729    .class_init    = spapr_machine_class_init,
3730    .interfaces = (InterfaceInfo[]) {
3731        { TYPE_FW_PATH_PROVIDER },
3732        { TYPE_NMI },
3733        { TYPE_HOTPLUG_HANDLER },
3734        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3735        { TYPE_XICS_FABRIC },
3736        { TYPE_INTERRUPT_STATS_PROVIDER },
3737        { }
3738    },
3739};
3740
3741#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3742    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3743                                                    void *data)      \
3744    {                                                                \
3745        MachineClass *mc = MACHINE_CLASS(oc);                        \
3746        spapr_machine_##suffix##_class_options(mc);                  \
3747        if (latest) {                                                \
3748            mc->alias = "pseries";                                   \
3749            mc->is_default = 1;                                      \
3750        }                                                            \
3751    }                                                                \
3752    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3753    {                                                                \
3754        MachineState *machine = MACHINE(obj);                        \
3755        spapr_machine_##suffix##_instance_options(machine);          \
3756    }                                                                \
3757    static const TypeInfo spapr_machine_##suffix##_info = {          \
3758        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3759        .parent = TYPE_SPAPR_MACHINE,                                \
3760        .class_init = spapr_machine_##suffix##_class_init,           \
3761        .instance_init = spapr_machine_##suffix##_instance_init,     \
3762    };                                                               \
3763    static void spapr_machine_register_##suffix(void)                \
3764    {                                                                \
3765        type_register(&spapr_machine_##suffix##_info);               \
3766    }                                                                \
3767    type_init(spapr_machine_register_##suffix)
3768
3769/*
3770 * pseries-2.12
3771 */
3772static void spapr_machine_2_12_instance_options(MachineState *machine)
3773{
3774}
3775
3776static void spapr_machine_2_12_class_options(MachineClass *mc)
3777{
3778    /* Defaults for the latest behaviour inherited from the base class */
3779}
3780
3781DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3782
3783/*
3784 * pseries-2.11
3785 */
3786#define SPAPR_COMPAT_2_11                                              \
3787    HW_COMPAT_2_11
3788
3789static void spapr_machine_2_11_instance_options(MachineState *machine)
3790{
3791    spapr_machine_2_12_instance_options(machine);
3792}
3793
3794static void spapr_machine_2_11_class_options(MachineClass *mc)
3795{
3796    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3797
3798    spapr_machine_2_12_class_options(mc);
3799    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
3800    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
3801}
3802
3803DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
3804
3805/*
3806 * pseries-2.10
3807 */
3808#define SPAPR_COMPAT_2_10                                              \
3809    HW_COMPAT_2_10
3810
3811static void spapr_machine_2_10_instance_options(MachineState *machine)
3812{
3813    spapr_machine_2_11_instance_options(machine);
3814}
3815
3816static void spapr_machine_2_10_class_options(MachineClass *mc)
3817{
3818    spapr_machine_2_11_class_options(mc);
3819    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3820}
3821
3822DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3823
3824/*
3825 * pseries-2.9
3826 */
3827#define SPAPR_COMPAT_2_9                                               \
3828    HW_COMPAT_2_9                                                      \
3829    {                                                                  \
3830        .driver = TYPE_POWERPC_CPU,                                    \
3831        .property = "pre-2.10-migration",                              \
3832        .value    = "on",                                              \
3833    },                                                                 \
3834
3835static void spapr_machine_2_9_instance_options(MachineState *machine)
3836{
3837    spapr_machine_2_10_instance_options(machine);
3838}
3839
3840static void spapr_machine_2_9_class_options(MachineClass *mc)
3841{
3842    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3843
3844    spapr_machine_2_10_class_options(mc);
3845    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3846    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3847    smc->pre_2_10_has_unused_icps = true;
3848    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3849}
3850
3851DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3852
3853/*
3854 * pseries-2.8
3855 */
3856#define SPAPR_COMPAT_2_8                                        \
3857    HW_COMPAT_2_8                                               \
3858    {                                                           \
3859        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3860        .property = "pcie-extended-configuration-space",        \
3861        .value    = "off",                                      \
3862    },
3863
3864static void spapr_machine_2_8_instance_options(MachineState *machine)
3865{
3866    spapr_machine_2_9_instance_options(machine);
3867}
3868
3869static void spapr_machine_2_8_class_options(MachineClass *mc)
3870{
3871    spapr_machine_2_9_class_options(mc);
3872    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3873    mc->numa_mem_align_shift = 23;
3874}
3875
3876DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3877
3878/*
3879 * pseries-2.7
3880 */
3881#define SPAPR_COMPAT_2_7                            \
3882    HW_COMPAT_2_7                                   \
3883    {                                               \
3884        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3885        .property = "mem_win_size",                 \
3886        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3887    },                                              \
3888    {                                               \
3889        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3890        .property = "mem64_win_size",               \
3891        .value    = "0",                            \
3892    },                                              \
3893    {                                               \
3894        .driver = TYPE_POWERPC_CPU,                 \
3895        .property = "pre-2.8-migration",            \
3896        .value    = "on",                           \
3897    },                                              \
3898    {                                               \
3899        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3900        .property = "pre-2.8-migration",            \
3901        .value    = "on",                           \
3902    },
3903
3904static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3905                              uint64_t *buid, hwaddr *pio,
3906                              hwaddr *mmio32, hwaddr *mmio64,
3907                              unsigned n_dma, uint32_t *liobns, Error **errp)
3908{
3909    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3910    const uint64_t base_buid = 0x800000020000000ULL;
3911    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3912    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3913    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3914    const uint32_t max_index = 255;
3915    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3916
3917    uint64_t ram_top = MACHINE(spapr)->ram_size;
3918    hwaddr phb0_base, phb_base;
3919    int i;
3920
3921    /* Do we have hotpluggable memory? */
3922    if (MACHINE(spapr)->maxram_size > ram_top) {
3923        /* Can't just use maxram_size, because there may be an
3924         * alignment gap between normal and hotpluggable memory
3925         * regions */
3926        ram_top = spapr->hotplug_memory.base +
3927            memory_region_size(&spapr->hotplug_memory.mr);
3928    }
3929
3930    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3931
3932    if (index > max_index) {
3933        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3934                   max_index);
3935        return;
3936    }
3937
3938    *buid = base_buid + index;
3939    for (i = 0; i < n_dma; ++i) {
3940        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3941    }
3942
3943    phb_base = phb0_base + index * phb_spacing;
3944    *pio = phb_base + pio_offset;
3945    *mmio32 = phb_base + mmio_offset;
3946    /*
3947     * We don't set the 64-bit MMIO window, relying on the PHB's
3948     * fallback behaviour of automatically splitting a large "32-bit"
3949     * window into contiguous 32-bit and 64-bit windows
3950     */
3951}
3952
3953static void spapr_machine_2_7_instance_options(MachineState *machine)
3954{
3955    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3956
3957    spapr_machine_2_8_instance_options(machine);
3958    spapr->use_hotplug_event_source = false;
3959}
3960
3961static void spapr_machine_2_7_class_options(MachineClass *mc)
3962{
3963    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3964
3965    spapr_machine_2_8_class_options(mc);
3966    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
3967    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3968    smc->phb_placement = phb_placement_2_7;
3969}
3970
3971DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3972
3973/*
3974 * pseries-2.6
3975 */
3976#define SPAPR_COMPAT_2_6 \
3977    HW_COMPAT_2_6 \
3978    { \
3979        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3980        .property = "ddw",\
3981        .value    = stringify(off),\
3982    },
3983
3984static void spapr_machine_2_6_instance_options(MachineState *machine)
3985{
3986    spapr_machine_2_7_instance_options(machine);
3987}
3988
3989static void spapr_machine_2_6_class_options(MachineClass *mc)
3990{
3991    spapr_machine_2_7_class_options(mc);
3992    mc->has_hotpluggable_cpus = false;
3993    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3994}
3995
3996DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3997
3998/*
3999 * pseries-2.5
4000 */
4001#define SPAPR_COMPAT_2_5 \
4002    HW_COMPAT_2_5 \
4003    { \
4004        .driver   = "spapr-vlan", \
4005        .property = "use-rx-buffer-pools", \
4006        .value    = "off", \
4007    },
4008
4009static void spapr_machine_2_5_instance_options(MachineState *machine)
4010{
4011    spapr_machine_2_6_instance_options(machine);
4012}
4013
4014static void spapr_machine_2_5_class_options(MachineClass *mc)
4015{
4016    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4017
4018    spapr_machine_2_6_class_options(mc);
4019    smc->use_ohci_by_default = true;
4020    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4021}
4022
4023DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4024
4025/*
4026 * pseries-2.4
4027 */
4028#define SPAPR_COMPAT_2_4 \
4029        HW_COMPAT_2_4
4030
4031static void spapr_machine_2_4_instance_options(MachineState *machine)
4032{
4033    spapr_machine_2_5_instance_options(machine);
4034}
4035
4036static void spapr_machine_2_4_class_options(MachineClass *mc)
4037{
4038    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4039
4040    spapr_machine_2_5_class_options(mc);
4041    smc->dr_lmb_enabled = false;
4042    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4043}
4044
4045DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4046
4047/*
4048 * pseries-2.3
4049 */
4050#define SPAPR_COMPAT_2_3 \
4051        HW_COMPAT_2_3 \
4052        {\
4053            .driver   = "spapr-pci-host-bridge",\
4054            .property = "dynamic-reconfiguration",\
4055            .value    = "off",\
4056        },
4057
4058static void spapr_machine_2_3_instance_options(MachineState *machine)
4059{
4060    spapr_machine_2_4_instance_options(machine);
4061}
4062
4063static void spapr_machine_2_3_class_options(MachineClass *mc)
4064{
4065    spapr_machine_2_4_class_options(mc);
4066    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4067}
4068DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4069
4070/*
4071 * pseries-2.2
4072 */
4073
4074#define SPAPR_COMPAT_2_2 \
4075        HW_COMPAT_2_2 \
4076        {\
4077            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4078            .property = "mem_win_size",\
4079            .value    = "0x20000000",\
4080        },
4081
4082static void spapr_machine_2_2_instance_options(MachineState *machine)
4083{
4084    spapr_machine_2_3_instance_options(machine);
4085    machine->suppress_vmdesc = true;
4086}
4087
4088static void spapr_machine_2_2_class_options(MachineClass *mc)
4089{
4090    spapr_machine_2_3_class_options(mc);
4091    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4092}
4093DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4094
4095/*
4096 * pseries-2.1
4097 */
4098#define SPAPR_COMPAT_2_1 \
4099        HW_COMPAT_2_1
4100
4101static void spapr_machine_2_1_instance_options(MachineState *machine)
4102{
4103    spapr_machine_2_2_instance_options(machine);
4104}
4105
4106static void spapr_machine_2_1_class_options(MachineClass *mc)
4107{
4108    spapr_machine_2_2_class_options(mc);
4109    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4110}
4111DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4112
4113static void spapr_machine_register_types(void)
4114{
4115    type_register_static(&spapr_machine_info);
4116}
4117
4118type_init(spapr_machine_register_types)
4119