qemu/hw/vfio/pci-quirks.c
<<
>>
Prefs
   1/*
   2 * device quirks for PCI devices
   3 *
   4 * Copyright Red Hat, Inc. 2012-2015
   5 *
   6 * Authors:
   7 *  Alex Williamson <alex.williamson@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qemu/error-report.h"
  15#include "qemu/range.h"
  16#include "qapi/error.h"
  17#include "qapi/visitor.h"
  18#include "hw/nvram/fw_cfg.h"
  19#include "pci.h"
  20#include "trace.h"
  21
  22/* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
  23static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
  24{
  25    return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
  26           (device == PCI_ANY_ID || device == vdev->device_id);
  27}
  28
  29static bool vfio_is_vga(VFIOPCIDevice *vdev)
  30{
  31    PCIDevice *pdev = &vdev->pdev;
  32    uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
  33
  34    return class == PCI_CLASS_DISPLAY_VGA;
  35}
  36
  37/*
  38 * List of device ids/vendor ids for which to disable
  39 * option rom loading. This avoids the guest hangs during rom
  40 * execution as noticed with the BCM 57810 card for lack of a
  41 * more better way to handle such issues.
  42 * The  user can still override by specifying a romfile or
  43 * rombar=1.
  44 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
  45 * for an analysis of the 57810 card hang. When adding
  46 * a new vendor id/device id combination below, please also add
  47 * your card/environment details and information that could
  48 * help in debugging to the bug tracking this issue
  49 */
  50static const struct {
  51    uint32_t vendor;
  52    uint32_t device;
  53} romblacklist[] = {
  54    { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
  55};
  56
  57bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
  58{
  59    int i;
  60
  61    for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
  62        if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
  63            trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
  64                                             romblacklist[i].vendor,
  65                                             romblacklist[i].device);
  66            return true;
  67        }
  68    }
  69    return false;
  70}
  71
  72/*
  73 * Device specific region quirks (mostly backdoors to PCI config space)
  74 */
  75
  76/*
  77 * The generic window quirks operate on an address and data register,
  78 * vfio_generic_window_address_quirk handles the address register and
  79 * vfio_generic_window_data_quirk handles the data register.  These ops
  80 * pass reads and writes through to hardware until a value matching the
  81 * stored address match/mask is written.  When this occurs, the data
  82 * register access emulated PCI config space for the device rather than
  83 * passing through accesses.  This enables devices where PCI config space
  84 * is accessible behind a window register to maintain the virtualization
  85 * provided through vfio.
  86 */
  87typedef struct VFIOConfigWindowMatch {
  88    uint32_t match;
  89    uint32_t mask;
  90} VFIOConfigWindowMatch;
  91
  92typedef struct VFIOConfigWindowQuirk {
  93    struct VFIOPCIDevice *vdev;
  94
  95    uint32_t address_val;
  96
  97    uint32_t address_offset;
  98    uint32_t data_offset;
  99
 100    bool window_enabled;
 101    uint8_t bar;
 102
 103    MemoryRegion *addr_mem;
 104    MemoryRegion *data_mem;
 105
 106    uint32_t nr_matches;
 107    VFIOConfigWindowMatch matches[];
 108} VFIOConfigWindowQuirk;
 109
 110static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
 111                                                       hwaddr addr,
 112                                                       unsigned size)
 113{
 114    VFIOConfigWindowQuirk *window = opaque;
 115    VFIOPCIDevice *vdev = window->vdev;
 116
 117    return vfio_region_read(&vdev->bars[window->bar].region,
 118                            addr + window->address_offset, size);
 119}
 120
 121static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
 122                                                    uint64_t data,
 123                                                    unsigned size)
 124{
 125    VFIOConfigWindowQuirk *window = opaque;
 126    VFIOPCIDevice *vdev = window->vdev;
 127    int i;
 128
 129    window->window_enabled = false;
 130
 131    vfio_region_write(&vdev->bars[window->bar].region,
 132                      addr + window->address_offset, data, size);
 133
 134    for (i = 0; i < window->nr_matches; i++) {
 135        if ((data & ~window->matches[i].mask) == window->matches[i].match) {
 136            window->window_enabled = true;
 137            window->address_val = data & window->matches[i].mask;
 138            trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
 139                                    memory_region_name(window->addr_mem), data);
 140            break;
 141        }
 142    }
 143}
 144
 145static const MemoryRegionOps vfio_generic_window_address_quirk = {
 146    .read = vfio_generic_window_quirk_address_read,
 147    .write = vfio_generic_window_quirk_address_write,
 148    .endianness = DEVICE_LITTLE_ENDIAN,
 149};
 150
 151static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
 152                                                    hwaddr addr, unsigned size)
 153{
 154    VFIOConfigWindowQuirk *window = opaque;
 155    VFIOPCIDevice *vdev = window->vdev;
 156    uint64_t data;
 157
 158    /* Always read data reg, discard if window enabled */
 159    data = vfio_region_read(&vdev->bars[window->bar].region,
 160                            addr + window->data_offset, size);
 161
 162    if (window->window_enabled) {
 163        data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
 164        trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
 165                                    memory_region_name(window->data_mem), data);
 166    }
 167
 168    return data;
 169}
 170
 171static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
 172                                                 uint64_t data, unsigned size)
 173{
 174    VFIOConfigWindowQuirk *window = opaque;
 175    VFIOPCIDevice *vdev = window->vdev;
 176
 177    if (window->window_enabled) {
 178        vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
 179        trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
 180                                    memory_region_name(window->data_mem), data);
 181        return;
 182    }
 183
 184    vfio_region_write(&vdev->bars[window->bar].region,
 185                      addr + window->data_offset, data, size);
 186}
 187
 188static const MemoryRegionOps vfio_generic_window_data_quirk = {
 189    .read = vfio_generic_window_quirk_data_read,
 190    .write = vfio_generic_window_quirk_data_write,
 191    .endianness = DEVICE_LITTLE_ENDIAN,
 192};
 193
 194/*
 195 * The generic mirror quirk handles devices which expose PCI config space
 196 * through a region within a BAR.  When enabled, reads and writes are
 197 * redirected through to emulated PCI config space.  XXX if PCI config space
 198 * used memory regions, this could just be an alias.
 199 */
 200typedef struct VFIOConfigMirrorQuirk {
 201    struct VFIOPCIDevice *vdev;
 202    uint32_t offset;
 203    uint8_t bar;
 204    MemoryRegion *mem;
 205} VFIOConfigMirrorQuirk;
 206
 207static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
 208                                               hwaddr addr, unsigned size)
 209{
 210    VFIOConfigMirrorQuirk *mirror = opaque;
 211    VFIOPCIDevice *vdev = mirror->vdev;
 212    uint64_t data;
 213
 214    /* Read and discard in case the hardware cares */
 215    (void)vfio_region_read(&vdev->bars[mirror->bar].region,
 216                           addr + mirror->offset, size);
 217
 218    data = vfio_pci_read_config(&vdev->pdev, addr, size);
 219    trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
 220                                         memory_region_name(mirror->mem),
 221                                         addr, data);
 222    return data;
 223}
 224
 225static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
 226                                            uint64_t data, unsigned size)
 227{
 228    VFIOConfigMirrorQuirk *mirror = opaque;
 229    VFIOPCIDevice *vdev = mirror->vdev;
 230
 231    vfio_pci_write_config(&vdev->pdev, addr, data, size);
 232    trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
 233                                          memory_region_name(mirror->mem),
 234                                          addr, data);
 235}
 236
 237static const MemoryRegionOps vfio_generic_mirror_quirk = {
 238    .read = vfio_generic_quirk_mirror_read,
 239    .write = vfio_generic_quirk_mirror_write,
 240    .endianness = DEVICE_LITTLE_ENDIAN,
 241};
 242
 243/* Is range1 fully contained within range2?  */
 244static bool vfio_range_contained(uint64_t first1, uint64_t len1,
 245                                 uint64_t first2, uint64_t len2) {
 246    return (first1 >= first2 && first1 + len1 <= first2 + len2);
 247}
 248
 249#define PCI_VENDOR_ID_ATI               0x1002
 250
 251/*
 252 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
 253 * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
 254 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
 255 * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
 256 * I/O port BAR address.  Originally this was coded to return the virtual BAR
 257 * address only if the physical register read returns the actual BAR address,
 258 * but users have reported greater success if we return the virtual address
 259 * unconditionally.
 260 */
 261static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
 262                                        hwaddr addr, unsigned size)
 263{
 264    VFIOPCIDevice *vdev = opaque;
 265    uint64_t data = vfio_pci_read_config(&vdev->pdev,
 266                                         PCI_BASE_ADDRESS_4 + 1, size);
 267
 268    trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
 269
 270    return data;
 271}
 272
 273static const MemoryRegionOps vfio_ati_3c3_quirk = {
 274    .read = vfio_ati_3c3_quirk_read,
 275    .endianness = DEVICE_LITTLE_ENDIAN,
 276};
 277
 278static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
 279{
 280    VFIOQuirk *quirk;
 281
 282    /*
 283     * As long as the BAR is >= 256 bytes it will be aligned such that the
 284     * lower byte is always zero.  Filter out anything else, if it exists.
 285     */
 286    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 287        !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
 288        return;
 289    }
 290
 291    quirk = g_malloc0(sizeof(*quirk));
 292    quirk->mem = g_new0(MemoryRegion, 1);
 293    quirk->nr_mem = 1;
 294
 295    memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
 296                          "vfio-ati-3c3-quirk", 1);
 297    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 298                                3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
 299
 300    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 301                      quirk, next);
 302
 303    trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
 304}
 305
 306/*
 307 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
 308 * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
 309 * the MMIO space directly, but a window to this space is provided through
 310 * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
 311 * data register.  When the address is programmed to a range of 0x4000-0x4fff
 312 * PCI configuration space is available.  Experimentation seems to indicate
 313 * that read-only may be provided by hardware.
 314 */
 315static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
 316{
 317    VFIOQuirk *quirk;
 318    VFIOConfigWindowQuirk *window;
 319
 320    /* This windows doesn't seem to be used except by legacy VGA code */
 321    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 322        !vdev->vga || nr != 4) {
 323        return;
 324    }
 325
 326    quirk = g_malloc0(sizeof(*quirk));
 327    quirk->mem = g_new0(MemoryRegion, 2);
 328    quirk->nr_mem = 2;
 329    window = quirk->data = g_malloc0(sizeof(*window) +
 330                                     sizeof(VFIOConfigWindowMatch));
 331    window->vdev = vdev;
 332    window->address_offset = 0;
 333    window->data_offset = 4;
 334    window->nr_matches = 1;
 335    window->matches[0].match = 0x4000;
 336    window->matches[0].mask = vdev->config_size - 1;
 337    window->bar = nr;
 338    window->addr_mem = &quirk->mem[0];
 339    window->data_mem = &quirk->mem[1];
 340
 341    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 342                          &vfio_generic_window_address_quirk, window,
 343                          "vfio-ati-bar4-window-address-quirk", 4);
 344    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 345                                        window->address_offset,
 346                                        window->addr_mem, 1);
 347
 348    memory_region_init_io(window->data_mem, OBJECT(vdev),
 349                          &vfio_generic_window_data_quirk, window,
 350                          "vfio-ati-bar4-window-data-quirk", 4);
 351    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 352                                        window->data_offset,
 353                                        window->data_mem, 1);
 354
 355    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 356
 357    trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
 358}
 359
 360/*
 361 * Trap the BAR2 MMIO mirror to config space as well.
 362 */
 363static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 364{
 365    VFIOQuirk *quirk;
 366    VFIOConfigMirrorQuirk *mirror;
 367
 368    /* Only enable on newer devices where BAR2 is 64bit */
 369    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 370        !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
 371        return;
 372    }
 373
 374    quirk = g_malloc0(sizeof(*quirk));
 375    mirror = quirk->data = g_malloc0(sizeof(*mirror));
 376    mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 377    quirk->nr_mem = 1;
 378    mirror->vdev = vdev;
 379    mirror->offset = 0x4000;
 380    mirror->bar = nr;
 381
 382    memory_region_init_io(mirror->mem, OBJECT(vdev),
 383                          &vfio_generic_mirror_quirk, mirror,
 384                          "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
 385    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 386                                        mirror->offset, mirror->mem, 1);
 387
 388    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 389
 390    trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
 391}
 392
 393/*
 394 * Older ATI/AMD cards like the X550 have a similar window to that above.
 395 * I/O port BAR1 provides a window to a mirror of PCI config space located
 396 * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
 397 * note it for future reference.
 398 */
 399
 400#define PCI_VENDOR_ID_NVIDIA                    0x10de
 401
 402/*
 403 * Nvidia has several different methods to get to config space, the
 404 * nouveu project has several of these documented here:
 405 * https://github.com/pathscale/envytools/tree/master/hwdocs
 406 *
 407 * The first quirk is actually not documented in envytools and is found
 408 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
 409 * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
 410 * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
 411 * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
 412 * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
 413 * is written for a write to 0x3d4.  The BAR0 offset is then accessible
 414 * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
 415 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
 416 */
 417typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
 418static const char *nv3d0_states[] = { "NONE", "SELECT",
 419                                      "WINDOW", "READ", "WRITE" };
 420
 421typedef struct VFIONvidia3d0Quirk {
 422    VFIOPCIDevice *vdev;
 423    VFIONvidia3d0State state;
 424    uint32_t offset;
 425} VFIONvidia3d0Quirk;
 426
 427static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
 428                                           hwaddr addr, unsigned size)
 429{
 430    VFIONvidia3d0Quirk *quirk = opaque;
 431    VFIOPCIDevice *vdev = quirk->vdev;
 432
 433    quirk->state = NONE;
 434
 435    return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 436                         addr + 0x14, size);
 437}
 438
 439static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
 440                                        uint64_t data, unsigned size)
 441{
 442    VFIONvidia3d0Quirk *quirk = opaque;
 443    VFIOPCIDevice *vdev = quirk->vdev;
 444    VFIONvidia3d0State old_state = quirk->state;
 445
 446    quirk->state = NONE;
 447
 448    switch (data) {
 449    case 0x338:
 450        if (old_state == NONE) {
 451            quirk->state = SELECT;
 452            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 453                                              nv3d0_states[quirk->state]);
 454        }
 455        break;
 456    case 0x538:
 457        if (old_state == WINDOW) {
 458            quirk->state = READ;
 459            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 460                                              nv3d0_states[quirk->state]);
 461        }
 462        break;
 463    case 0x738:
 464        if (old_state == WINDOW) {
 465            quirk->state = WRITE;
 466            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 467                                              nv3d0_states[quirk->state]);
 468        }
 469        break;
 470    }
 471
 472    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 473                   addr + 0x14, data, size);
 474}
 475
 476static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
 477    .read = vfio_nvidia_3d4_quirk_read,
 478    .write = vfio_nvidia_3d4_quirk_write,
 479    .endianness = DEVICE_LITTLE_ENDIAN,
 480};
 481
 482static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
 483                                           hwaddr addr, unsigned size)
 484{
 485    VFIONvidia3d0Quirk *quirk = opaque;
 486    VFIOPCIDevice *vdev = quirk->vdev;
 487    VFIONvidia3d0State old_state = quirk->state;
 488    uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 489                                  addr + 0x10, size);
 490
 491    quirk->state = NONE;
 492
 493    if (old_state == READ &&
 494        (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 495        uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 496
 497        data = vfio_pci_read_config(&vdev->pdev, offset, size);
 498        trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
 499                                         offset, size, data);
 500    }
 501
 502    return data;
 503}
 504
 505static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
 506                                        uint64_t data, unsigned size)
 507{
 508    VFIONvidia3d0Quirk *quirk = opaque;
 509    VFIOPCIDevice *vdev = quirk->vdev;
 510    VFIONvidia3d0State old_state = quirk->state;
 511
 512    quirk->state = NONE;
 513
 514    if (old_state == SELECT) {
 515        quirk->offset = (uint32_t)data;
 516        quirk->state = WINDOW;
 517        trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 518                                          nv3d0_states[quirk->state]);
 519    } else if (old_state == WRITE) {
 520        if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 521            uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 522
 523            vfio_pci_write_config(&vdev->pdev, offset, data, size);
 524            trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
 525                                              offset, data, size);
 526            return;
 527        }
 528    }
 529
 530    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 531                   addr + 0x10, data, size);
 532}
 533
 534static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
 535    .read = vfio_nvidia_3d0_quirk_read,
 536    .write = vfio_nvidia_3d0_quirk_write,
 537    .endianness = DEVICE_LITTLE_ENDIAN,
 538};
 539
 540static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
 541{
 542    VFIOQuirk *quirk;
 543    VFIONvidia3d0Quirk *data;
 544
 545    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 546        !vdev->bars[1].region.size) {
 547        return;
 548    }
 549
 550    quirk = g_malloc0(sizeof(*quirk));
 551    quirk->data = data = g_malloc0(sizeof(*data));
 552    quirk->mem = g_new0(MemoryRegion, 2);
 553    quirk->nr_mem = 2;
 554    data->vdev = vdev;
 555
 556    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
 557                          data, "vfio-nvidia-3d4-quirk", 2);
 558    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 559                                0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
 560
 561    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
 562                          data, "vfio-nvidia-3d0-quirk", 2);
 563    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 564                                0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
 565
 566    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 567                      quirk, next);
 568
 569    trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
 570}
 571
 572/*
 573 * The second quirk is documented in envytools.  The I/O port BAR5 is just
 574 * a set of address/data ports to the MMIO BARs.  The BAR we care about is
 575 * again BAR0.  This backdoor is apparently a bit newer than the one above
 576 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
 577 * space, including extended space is available at the 4k @0x88000.
 578 */
 579typedef struct VFIONvidiaBAR5Quirk {
 580    uint32_t master;
 581    uint32_t enable;
 582    MemoryRegion *addr_mem;
 583    MemoryRegion *data_mem;
 584    bool enabled;
 585    VFIOConfigWindowQuirk window; /* last for match data */
 586} VFIONvidiaBAR5Quirk;
 587
 588static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
 589{
 590    VFIOPCIDevice *vdev = bar5->window.vdev;
 591
 592    if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
 593        return;
 594    }
 595
 596    bar5->enabled = !bar5->enabled;
 597    trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
 598                                       bar5->enabled ?  "Enable" : "Disable");
 599    memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
 600    memory_region_set_enabled(bar5->data_mem, bar5->enabled);
 601}
 602
 603static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
 604                                                   hwaddr addr, unsigned size)
 605{
 606    VFIONvidiaBAR5Quirk *bar5 = opaque;
 607    VFIOPCIDevice *vdev = bar5->window.vdev;
 608
 609    return vfio_region_read(&vdev->bars[5].region, addr, size);
 610}
 611
 612static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
 613                                                uint64_t data, unsigned size)
 614{
 615    VFIONvidiaBAR5Quirk *bar5 = opaque;
 616    VFIOPCIDevice *vdev = bar5->window.vdev;
 617
 618    vfio_region_write(&vdev->bars[5].region, addr, data, size);
 619
 620    bar5->master = data;
 621    vfio_nvidia_bar5_enable(bar5);
 622}
 623
 624static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
 625    .read = vfio_nvidia_bar5_quirk_master_read,
 626    .write = vfio_nvidia_bar5_quirk_master_write,
 627    .endianness = DEVICE_LITTLE_ENDIAN,
 628};
 629
 630static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
 631                                                   hwaddr addr, unsigned size)
 632{
 633    VFIONvidiaBAR5Quirk *bar5 = opaque;
 634    VFIOPCIDevice *vdev = bar5->window.vdev;
 635
 636    return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
 637}
 638
 639static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
 640                                                uint64_t data, unsigned size)
 641{
 642    VFIONvidiaBAR5Quirk *bar5 = opaque;
 643    VFIOPCIDevice *vdev = bar5->window.vdev;
 644
 645    vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
 646
 647    bar5->enable = data;
 648    vfio_nvidia_bar5_enable(bar5);
 649}
 650
 651static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
 652    .read = vfio_nvidia_bar5_quirk_enable_read,
 653    .write = vfio_nvidia_bar5_quirk_enable_write,
 654    .endianness = DEVICE_LITTLE_ENDIAN,
 655};
 656
 657static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
 658{
 659    VFIOQuirk *quirk;
 660    VFIONvidiaBAR5Quirk *bar5;
 661    VFIOConfigWindowQuirk *window;
 662
 663    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 664        !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
 665        return;
 666    }
 667
 668    quirk = g_malloc0(sizeof(*quirk));
 669    quirk->mem = g_new0(MemoryRegion, 4);
 670    quirk->nr_mem = 4;
 671    bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
 672                                   (sizeof(VFIOConfigWindowMatch) * 2));
 673    window = &bar5->window;
 674
 675    window->vdev = vdev;
 676    window->address_offset = 0x8;
 677    window->data_offset = 0xc;
 678    window->nr_matches = 2;
 679    window->matches[0].match = 0x1800;
 680    window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
 681    window->matches[1].match = 0x88000;
 682    window->matches[1].mask = vdev->config_size - 1;
 683    window->bar = nr;
 684    window->addr_mem = bar5->addr_mem = &quirk->mem[0];
 685    window->data_mem = bar5->data_mem = &quirk->mem[1];
 686
 687    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 688                          &vfio_generic_window_address_quirk, window,
 689                          "vfio-nvidia-bar5-window-address-quirk", 4);
 690    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 691                                        window->address_offset,
 692                                        window->addr_mem, 1);
 693    memory_region_set_enabled(window->addr_mem, false);
 694
 695    memory_region_init_io(window->data_mem, OBJECT(vdev),
 696                          &vfio_generic_window_data_quirk, window,
 697                          "vfio-nvidia-bar5-window-data-quirk", 4);
 698    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 699                                        window->data_offset,
 700                                        window->data_mem, 1);
 701    memory_region_set_enabled(window->data_mem, false);
 702
 703    memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
 704                          &vfio_nvidia_bar5_quirk_master, bar5,
 705                          "vfio-nvidia-bar5-master-quirk", 4);
 706    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 707                                        0, &quirk->mem[2], 1);
 708
 709    memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
 710                          &vfio_nvidia_bar5_quirk_enable, bar5,
 711                          "vfio-nvidia-bar5-enable-quirk", 4);
 712    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 713                                        4, &quirk->mem[3], 1);
 714
 715    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 716
 717    trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
 718}
 719
 720/*
 721 * Finally, BAR0 itself.  We want to redirect any accesses to either
 722 * 0x1800 or 0x88000 through the PCI config space access functions.
 723 */
 724static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
 725                                           uint64_t data, unsigned size)
 726{
 727    VFIOConfigMirrorQuirk *mirror = opaque;
 728    VFIOPCIDevice *vdev = mirror->vdev;
 729    PCIDevice *pdev = &vdev->pdev;
 730
 731    vfio_generic_quirk_mirror_write(opaque, addr, data, size);
 732
 733    /*
 734     * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
 735     * MSI capability ID register.  Both the ID and next register are
 736     * read-only, so we allow writes covering either of those to real hw.
 737     */
 738    if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
 739        vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
 740        vfio_region_write(&vdev->bars[mirror->bar].region,
 741                          addr + mirror->offset, data, size);
 742        trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
 743    }
 744}
 745
 746static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
 747    .read = vfio_generic_quirk_mirror_read,
 748    .write = vfio_nvidia_quirk_mirror_write,
 749    .endianness = DEVICE_LITTLE_ENDIAN,
 750};
 751
 752static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
 753{
 754    VFIOQuirk *quirk;
 755    VFIOConfigMirrorQuirk *mirror;
 756
 757    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 758        !vfio_is_vga(vdev) || nr != 0) {
 759        return;
 760    }
 761
 762    quirk = g_malloc0(sizeof(*quirk));
 763    mirror = quirk->data = g_malloc0(sizeof(*mirror));
 764    mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 765    quirk->nr_mem = 1;
 766    mirror->vdev = vdev;
 767    mirror->offset = 0x88000;
 768    mirror->bar = nr;
 769
 770    memory_region_init_io(mirror->mem, OBJECT(vdev),
 771                          &vfio_nvidia_mirror_quirk, mirror,
 772                          "vfio-nvidia-bar0-88000-mirror-quirk",
 773                          vdev->config_size);
 774    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 775                                        mirror->offset, mirror->mem, 1);
 776
 777    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 778
 779    /* The 0x1800 offset mirror only seems to get used by legacy VGA */
 780    if (vdev->vga) {
 781        quirk = g_malloc0(sizeof(*quirk));
 782        mirror = quirk->data = g_malloc0(sizeof(*mirror));
 783        mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
 784        quirk->nr_mem = 1;
 785        mirror->vdev = vdev;
 786        mirror->offset = 0x1800;
 787        mirror->bar = nr;
 788
 789        memory_region_init_io(mirror->mem, OBJECT(vdev),
 790                              &vfio_nvidia_mirror_quirk, mirror,
 791                              "vfio-nvidia-bar0-1800-mirror-quirk",
 792                              PCI_CONFIG_SPACE_SIZE);
 793        memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 794                                            mirror->offset, mirror->mem, 1);
 795
 796        QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 797    }
 798
 799    trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
 800}
 801
 802/*
 803 * TODO - Some Nvidia devices provide config access to their companion HDA
 804 * device and even to their parent bridge via these config space mirrors.
 805 * Add quirks for those regions.
 806 */
 807
 808#define PCI_VENDOR_ID_REALTEK 0x10ec
 809
 810/*
 811 * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
 812 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
 813 * register.  According to the Linux r8169 driver, the MSI-X table is addressed
 814 * when the "type" portion of the address register is set to 0x1.  This appears
 815 * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
 816 * "address latched" indicator.  Bits 12:15 are a mask field, which we can
 817 * ignore because the MSI-X table should always be accessed as a dword (full
 818 * mask).  Bits 0:11 is offset within the type.
 819 *
 820 * Example trace:
 821 *
 822 * Read from MSI-X table offset 0
 823 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
 824 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
 825 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
 826 *
 827 * Write 0xfee00000 to MSI-X table offset 0
 828 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
 829 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
 830 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
 831 */
 832typedef struct VFIOrtl8168Quirk {
 833    VFIOPCIDevice *vdev;
 834    uint32_t addr;
 835    uint32_t data;
 836    bool enabled;
 837} VFIOrtl8168Quirk;
 838
 839static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
 840                                                hwaddr addr, unsigned size)
 841{
 842    VFIOrtl8168Quirk *rtl = opaque;
 843    VFIOPCIDevice *vdev = rtl->vdev;
 844    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
 845
 846    if (rtl->enabled) {
 847        data = rtl->addr ^ 0x80000000U; /* latch/complete */
 848        trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
 849    }
 850
 851    return data;
 852}
 853
 854static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
 855                                             uint64_t data, unsigned size)
 856{
 857    VFIOrtl8168Quirk *rtl = opaque;
 858    VFIOPCIDevice *vdev = rtl->vdev;
 859
 860    rtl->enabled = false;
 861
 862    if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
 863        rtl->enabled = true;
 864        rtl->addr = (uint32_t)data;
 865
 866        if (data & 0x80000000U) { /* Do write */
 867            if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
 868                hwaddr offset = data & 0xfff;
 869                uint64_t val = rtl->data;
 870
 871                trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
 872                                                    (uint16_t)offset, val);
 873
 874                /* Write to the proper guest MSI-X table instead */
 875                memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
 876                                             offset, val, size,
 877                                             MEMTXATTRS_UNSPECIFIED);
 878            }
 879            return; /* Do not write guest MSI-X data to hardware */
 880        }
 881    }
 882
 883    vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
 884}
 885
 886static const MemoryRegionOps vfio_rtl_address_quirk = {
 887    .read = vfio_rtl8168_quirk_address_read,
 888    .write = vfio_rtl8168_quirk_address_write,
 889    .valid = {
 890        .min_access_size = 4,
 891        .max_access_size = 4,
 892        .unaligned = false,
 893    },
 894    .endianness = DEVICE_LITTLE_ENDIAN,
 895};
 896
 897static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
 898                                             hwaddr addr, unsigned size)
 899{
 900    VFIOrtl8168Quirk *rtl = opaque;
 901    VFIOPCIDevice *vdev = rtl->vdev;
 902    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
 903
 904    if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
 905        hwaddr offset = rtl->addr & 0xfff;
 906        memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
 907                                    &data, size, MEMTXATTRS_UNSPECIFIED);
 908        trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
 909    }
 910
 911    return data;
 912}
 913
 914static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
 915                                          uint64_t data, unsigned size)
 916{
 917    VFIOrtl8168Quirk *rtl = opaque;
 918    VFIOPCIDevice *vdev = rtl->vdev;
 919
 920    rtl->data = (uint32_t)data;
 921
 922    vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
 923}
 924
 925static const MemoryRegionOps vfio_rtl_data_quirk = {
 926    .read = vfio_rtl8168_quirk_data_read,
 927    .write = vfio_rtl8168_quirk_data_write,
 928    .valid = {
 929        .min_access_size = 4,
 930        .max_access_size = 4,
 931        .unaligned = false,
 932    },
 933    .endianness = DEVICE_LITTLE_ENDIAN,
 934};
 935
 936static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 937{
 938    VFIOQuirk *quirk;
 939    VFIOrtl8168Quirk *rtl;
 940
 941    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
 942        return;
 943    }
 944
 945    quirk = g_malloc0(sizeof(*quirk));
 946    quirk->mem = g_new0(MemoryRegion, 2);
 947    quirk->nr_mem = 2;
 948    quirk->data = rtl = g_malloc0(sizeof(*rtl));
 949    rtl->vdev = vdev;
 950
 951    memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
 952                          &vfio_rtl_address_quirk, rtl,
 953                          "vfio-rtl8168-window-address-quirk", 4);
 954    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 955                                        0x74, &quirk->mem[0], 1);
 956
 957    memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
 958                          &vfio_rtl_data_quirk, rtl,
 959                          "vfio-rtl8168-window-data-quirk", 4);
 960    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 961                                        0x70, &quirk->mem[1], 1);
 962
 963    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 964
 965    trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
 966}
 967
 968/*
 969 * Intel IGD support
 970 *
 971 * Obviously IGD is not a discrete device, this is evidenced not only by it
 972 * being integrated into the CPU, but by the various chipset and BIOS
 973 * dependencies that it brings along with it.  Intel is trying to move away
 974 * from this and Broadwell and newer devices can run in what Intel calls
 975 * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
 976 * more is required beyond assigning the IGD device to a VM.  There are
 977 * however support limitations to this mode.  It only supports IGD as a
 978 * secondary graphics device in the VM and it doesn't officially support any
 979 * physical outputs.
 980 *
 981 * The code here attempts to enable what we'll call legacy mode assignment,
 982 * IGD retains most of the capabilities we expect for it to have on bare
 983 * metal.  To enable this mode, the IGD device must be assigned to the VM
 984 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
 985 * support, we must have VM BIOS support for reserving and populating some
 986 * of the required tables, and we need to tweak the chipset with revisions
 987 * and IDs and an LPC/ISA bridge device.  The intention is to make all of
 988 * this happen automatically by installing the device at the correct VM PCI
 989 * bus address.  If any of the conditions are not met, we cross our fingers
 990 * and hope the user knows better.
 991 *
 992 * NB - It is possible to enable physical outputs in UPT mode by supplying
 993 * an OpRegion table.  We don't do this by default because the guest driver
 994 * behaves differently if an OpRegion is provided and no monitor is attached
 995 * vs no OpRegion and a monitor being attached or not.  Effectively, if a
 996 * headless setup is desired, the OpRegion gets in the way of that.
 997 */
 998
 999/*
1000 * This presumes the device is already known to be an Intel VGA device, so we
1001 * take liberties in which device ID bits match which generation.  This should
1002 * not be taken as an indication that all the devices are supported, or even
1003 * supportable, some of them don't even support VT-d.
1004 * See linux:include/drm/i915_pciids.h for IDs.
1005 */
1006static int igd_gen(VFIOPCIDevice *vdev)
1007{
1008    if ((vdev->device_id & 0xfff) == 0xa84) {
1009        return 8; /* Broxton */
1010    }
1011
1012    switch (vdev->device_id & 0xff00) {
1013    /* Old, untested, unavailable, unknown */
1014    case 0x0000:
1015    case 0x2500:
1016    case 0x2700:
1017    case 0x2900:
1018    case 0x2a00:
1019    case 0x2e00:
1020    case 0x3500:
1021    case 0xa000:
1022        return -1;
1023    /* SandyBridge, IvyBridge, ValleyView, Haswell */
1024    case 0x0100:
1025    case 0x0400:
1026    case 0x0a00:
1027    case 0x0c00:
1028    case 0x0d00:
1029    case 0x0f00:
1030        return 6;
1031    /* BroadWell, CherryView, SkyLake, KabyLake */
1032    case 0x1600:
1033    case 0x1900:
1034    case 0x2200:
1035    case 0x5900:
1036        return 8;
1037    }
1038
1039    return 8; /* Assume newer is compatible */
1040}
1041
1042typedef struct VFIOIGDQuirk {
1043    struct VFIOPCIDevice *vdev;
1044    uint32_t index;
1045    uint32_t bdsm;
1046} VFIOIGDQuirk;
1047
1048#define IGD_GMCH 0x50 /* Graphics Control Register */
1049#define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1050#define IGD_ASLS 0xfc /* ASL Storage Register */
1051
1052/*
1053 * The OpRegion includes the Video BIOS Table, which seems important for
1054 * telling the driver what sort of outputs it has.  Without this, the device
1055 * may work in the guest, but we may not get output.  This also requires BIOS
1056 * support to reserve and populate a section of guest memory sufficient for
1057 * the table and to write the base address of that memory to the ASLS register
1058 * of the IGD device.
1059 */
1060int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1061                               struct vfio_region_info *info, Error **errp)
1062{
1063    int ret;
1064
1065    vdev->igd_opregion = g_malloc0(info->size);
1066    ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1067                info->size, info->offset);
1068    if (ret != info->size) {
1069        error_setg(errp, "failed to read IGD OpRegion");
1070        g_free(vdev->igd_opregion);
1071        vdev->igd_opregion = NULL;
1072        return -EINVAL;
1073    }
1074
1075    /*
1076     * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1077     * allocate 32bit reserved memory for, copy these contents into, and write
1078     * the reserved memory base address to the device ASLS register at 0xFC.
1079     * Alignment of this reserved region seems flexible, but using a 4k page
1080     * alignment seems to work well.  This interface assumes a single IGD
1081     * device, which may be at VM address 00:02.0 in legacy mode or another
1082     * address in UPT mode.
1083     *
1084     * NB, there may be future use cases discovered where the VM should have
1085     * direct interaction with the host OpRegion, in which case the write to
1086     * the ASLS register would trigger MemoryRegion setup to enable that.
1087     */
1088    fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1089                    vdev->igd_opregion, info->size);
1090
1091    trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1092
1093    pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1094    pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1095    pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1096
1097    return 0;
1098}
1099
1100/*
1101 * The rather short list of registers that we copy from the host devices.
1102 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1103 * host bridge values may or may not be needed depending on the guest OS.
1104 * Since we're only munging revision and subsystem values on the host bridge,
1105 * we don't require our own device.  The LPC/ISA bridge needs to be our very
1106 * own though.
1107 */
1108typedef struct {
1109    uint8_t offset;
1110    uint8_t len;
1111} IGDHostInfo;
1112
1113static const IGDHostInfo igd_host_bridge_infos[] = {
1114    {PCI_REVISION_ID,         2},
1115    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1116    {PCI_SUBSYSTEM_ID,        2},
1117};
1118
1119static const IGDHostInfo igd_lpc_bridge_infos[] = {
1120    {PCI_VENDOR_ID,           2},
1121    {PCI_DEVICE_ID,           2},
1122    {PCI_REVISION_ID,         2},
1123    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1124    {PCI_SUBSYSTEM_ID,        2},
1125};
1126
1127static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1128                             struct vfio_region_info *info,
1129                             const IGDHostInfo *list, int len)
1130{
1131    int i, ret;
1132
1133    for (i = 0; i < len; i++) {
1134        ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1135                    list[i].len, info->offset + list[i].offset);
1136        if (ret != list[i].len) {
1137            error_report("IGD copy failed: %m");
1138            return -errno;
1139        }
1140    }
1141
1142    return 0;
1143}
1144
1145/*
1146 * Stuff a few values into the host bridge.
1147 */
1148static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1149                                  struct vfio_region_info *info)
1150{
1151    PCIBus *bus;
1152    PCIDevice *host_bridge;
1153    int ret;
1154
1155    bus = pci_device_root_bus(&vdev->pdev);
1156    host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1157
1158    if (!host_bridge) {
1159        error_report("Can't find host bridge");
1160        return -ENODEV;
1161    }
1162
1163    ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1164                            ARRAY_SIZE(igd_host_bridge_infos));
1165    if (!ret) {
1166        trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1167    }
1168
1169    return ret;
1170}
1171
1172/*
1173 * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1174 * arbitrary values into just any bridge, so we must create our own.  We try
1175 * to handle if the user has created it for us, which they might want to do
1176 * to enable multifunction so we don't occupy the whole PCI slot.
1177 */
1178static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1179{
1180    if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1181        error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1182    }
1183}
1184
1185static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1186{
1187    DeviceClass *dc = DEVICE_CLASS(klass);
1188    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1189
1190    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1191    dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1192    dc->hotpluggable = false;
1193    k->realize = vfio_pci_igd_lpc_bridge_realize;
1194    k->class_id = PCI_CLASS_BRIDGE_ISA;
1195}
1196
1197static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1198    .name = "vfio-pci-igd-lpc-bridge",
1199    .parent = TYPE_PCI_DEVICE,
1200    .class_init = vfio_pci_igd_lpc_bridge_class_init,
1201    .interfaces = (InterfaceInfo[]) {
1202        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1203        { },
1204    },
1205};
1206
1207static void vfio_pci_igd_register_types(void)
1208{
1209    type_register_static(&vfio_pci_igd_lpc_bridge_info);
1210}
1211
1212type_init(vfio_pci_igd_register_types)
1213
1214static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1215                                 struct vfio_region_info *info)
1216{
1217    PCIDevice *lpc_bridge;
1218    int ret;
1219
1220    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1221                                 0, PCI_DEVFN(0x1f, 0));
1222    if (!lpc_bridge) {
1223        lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1224                                 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1225    }
1226
1227    ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1228                            ARRAY_SIZE(igd_lpc_bridge_infos));
1229    if (!ret) {
1230        trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1231    }
1232
1233    return ret;
1234}
1235
1236/*
1237 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1238 * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1239 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1240 * for programming the GTT.
1241 *
1242 * See linux:include/drm/i915_drm.h for shift and mask values.
1243 */
1244static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1245{
1246    uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1247    int ggms, gen = igd_gen(vdev);
1248
1249    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1250    ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1251    if (gen > 6) {
1252        ggms = 1 << ggms;
1253    }
1254
1255    ggms *= 1024 * 1024;
1256
1257    return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1258}
1259
1260/*
1261 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1262 * Somehow the host stolen memory range is used for this, but how the ROM gets
1263 * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1264 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1265 * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1266 * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1267 * IOBAR address and data registers to detect a write sequence targeting the
1268 * GTTADR.  This code is developed by observed behavior and doesn't have a
1269 * direct spec reference, unfortunately.
1270 */
1271static uint64_t vfio_igd_quirk_data_read(void *opaque,
1272                                         hwaddr addr, unsigned size)
1273{
1274    VFIOIGDQuirk *igd = opaque;
1275    VFIOPCIDevice *vdev = igd->vdev;
1276
1277    igd->index = ~0;
1278
1279    return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1280}
1281
1282static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1283                                      uint64_t data, unsigned size)
1284{
1285    VFIOIGDQuirk *igd = opaque;
1286    VFIOPCIDevice *vdev = igd->vdev;
1287    uint64_t val = data;
1288    int gen = igd_gen(vdev);
1289
1290    /*
1291     * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1292     * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1293     * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1294     * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1295     * to a 4k page, which we translate to a page from the VM allocated region,
1296     * pointed to by the BDSM register.  If this is not set, we fail.
1297     *
1298     * We trap writes to the full configured GTT size, but we typically only
1299     * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1300     * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1301     * write of that last entry does work, but is hopefully unnecessary since
1302     * we clear the previous GTT on initialization.
1303     */
1304    if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1305        if (gen < 8 || (igd->index % 8 == 1)) {
1306            uint32_t base;
1307
1308            base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1309            if (!base) {
1310                hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1311                         "BIOS reserved stolen memory.  Unsupported BIOS?");
1312            }
1313
1314            val = data - igd->bdsm + base;
1315        } else {
1316            val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1317        }
1318
1319        trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1320                                      igd->index, data, val);
1321    }
1322
1323    vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1324
1325    igd->index = ~0;
1326}
1327
1328static const MemoryRegionOps vfio_igd_data_quirk = {
1329    .read = vfio_igd_quirk_data_read,
1330    .write = vfio_igd_quirk_data_write,
1331    .endianness = DEVICE_LITTLE_ENDIAN,
1332};
1333
1334static uint64_t vfio_igd_quirk_index_read(void *opaque,
1335                                          hwaddr addr, unsigned size)
1336{
1337    VFIOIGDQuirk *igd = opaque;
1338    VFIOPCIDevice *vdev = igd->vdev;
1339
1340    igd->index = ~0;
1341
1342    return vfio_region_read(&vdev->bars[4].region, addr, size);
1343}
1344
1345static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1346                                       uint64_t data, unsigned size)
1347{
1348    VFIOIGDQuirk *igd = opaque;
1349    VFIOPCIDevice *vdev = igd->vdev;
1350
1351    igd->index = data;
1352
1353    vfio_region_write(&vdev->bars[4].region, addr, data, size);
1354}
1355
1356static const MemoryRegionOps vfio_igd_index_quirk = {
1357    .read = vfio_igd_quirk_index_read,
1358    .write = vfio_igd_quirk_index_write,
1359    .endianness = DEVICE_LITTLE_ENDIAN,
1360};
1361
1362static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1363{
1364    struct vfio_region_info *rom = NULL, *opregion = NULL,
1365                            *host = NULL, *lpc = NULL;
1366    VFIOQuirk *quirk;
1367    VFIOIGDQuirk *igd;
1368    PCIDevice *lpc_bridge;
1369    int i, ret, ggms_mb, gms_mb = 0, gen;
1370    uint64_t *bdsm_size;
1371    uint32_t gmch;
1372    uint16_t cmd_orig, cmd;
1373    Error *err = NULL;
1374
1375    /*
1376     * This must be an Intel VGA device at address 00:02.0 for us to even
1377     * consider enabling legacy mode.  The vBIOS has dependencies on the
1378     * PCI bus address.
1379     */
1380    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1381        !vfio_is_vga(vdev) || nr != 4 ||
1382        &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1383                                       0, PCI_DEVFN(0x2, 0))) {
1384        return;
1385    }
1386
1387    /*
1388     * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1389     * can stuff host values into, so if there's already one there and it's not
1390     * one we can hack on, legacy mode is no-go.  Sorry Q35.
1391     */
1392    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1393                                 0, PCI_DEVFN(0x1f, 0));
1394    if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1395                                           "vfio-pci-igd-lpc-bridge")) {
1396        error_report("IGD device %s cannot support legacy mode due to existing "
1397                     "devices at address 1f.0", vdev->vbasedev.name);
1398        return;
1399    }
1400
1401    /*
1402     * IGD is not a standard, they like to change their specs often.  We
1403     * only attempt to support back to SandBridge and we hope that newer
1404     * devices maintain compatibility with generation 8.
1405     */
1406    gen = igd_gen(vdev);
1407    if (gen != 6 && gen != 8) {
1408        error_report("IGD device %s is unsupported in legacy mode, "
1409                     "try SandyBridge or newer", vdev->vbasedev.name);
1410        return;
1411    }
1412
1413    /*
1414     * Most of what we're doing here is to enable the ROM to run, so if
1415     * there's no ROM, there's no point in setting up this quirk.
1416     * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1417     */
1418    ret = vfio_get_region_info(&vdev->vbasedev,
1419                               VFIO_PCI_ROM_REGION_INDEX, &rom);
1420    if ((ret || !rom->size) && !vdev->pdev.romfile) {
1421        error_report("IGD device %s has no ROM, legacy mode disabled",
1422                     vdev->vbasedev.name);
1423        goto out;
1424    }
1425
1426    /*
1427     * Ignore the hotplug corner case, mark the ROM failed, we can't
1428     * create the devices we need for legacy mode in the hotplug scenario.
1429     */
1430    if (vdev->pdev.qdev.hotplugged) {
1431        error_report("IGD device %s hotplugged, ROM disabled, "
1432                     "legacy mode disabled", vdev->vbasedev.name);
1433        vdev->rom_read_failed = true;
1434        goto out;
1435    }
1436
1437    /*
1438     * Check whether we have all the vfio device specific regions to
1439     * support legacy mode (added in Linux v4.6).  If not, bail.
1440     */
1441    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1442                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1443                        VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1444    if (ret) {
1445        error_report("IGD device %s does not support OpRegion access,"
1446                     "legacy mode disabled", vdev->vbasedev.name);
1447        goto out;
1448    }
1449
1450    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1451                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1452                        VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1453    if (ret) {
1454        error_report("IGD device %s does not support host bridge access,"
1455                     "legacy mode disabled", vdev->vbasedev.name);
1456        goto out;
1457    }
1458
1459    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1460                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1461                        VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1462    if (ret) {
1463        error_report("IGD device %s does not support LPC bridge access,"
1464                     "legacy mode disabled", vdev->vbasedev.name);
1465        goto out;
1466    }
1467
1468    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1469
1470    /*
1471     * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1472     * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1473     * but also no point in us enabling VGA if disabled in hardware.
1474     */
1475    if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1476        error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1477        error_report("IGD device %s failed to enable VGA access, "
1478                     "legacy mode disabled", vdev->vbasedev.name);
1479        goto out;
1480    }
1481
1482    /* Create our LPC/ISA bridge */
1483    ret = vfio_pci_igd_lpc_init(vdev, lpc);
1484    if (ret) {
1485        error_report("IGD device %s failed to create LPC bridge, "
1486                     "legacy mode disabled", vdev->vbasedev.name);
1487        goto out;
1488    }
1489
1490    /* Stuff some host values into the VM PCI host bridge */
1491    ret = vfio_pci_igd_host_init(vdev, host);
1492    if (ret) {
1493        error_report("IGD device %s failed to modify host bridge, "
1494                     "legacy mode disabled", vdev->vbasedev.name);
1495        goto out;
1496    }
1497
1498    /* Setup OpRegion access */
1499    ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1500    if (ret) {
1501        error_append_hint(&err, "IGD legacy mode disabled\n");
1502        error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1503        goto out;
1504    }
1505
1506    /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1507    quirk = g_malloc0(sizeof(*quirk));
1508    quirk->mem = g_new0(MemoryRegion, 2);
1509    quirk->nr_mem = 2;
1510    igd = quirk->data = g_malloc0(sizeof(*igd));
1511    igd->vdev = vdev;
1512    igd->index = ~0;
1513    igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1514    igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1515
1516    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1517                          igd, "vfio-igd-index-quirk", 4);
1518    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1519                                        0, &quirk->mem[0], 1);
1520
1521    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1522                          igd, "vfio-igd-data-quirk", 4);
1523    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1524                                        4, &quirk->mem[1], 1);
1525
1526    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1527
1528    /* Determine the size of stolen memory needed for GTT */
1529    ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1530    if (gen > 6) {
1531        ggms_mb = 1 << ggms_mb;
1532    }
1533
1534    /*
1535     * Assume we have no GMS memory, but allow it to be overrided by device
1536     * option (experimental).  The spec doesn't actually allow zero GMS when
1537     * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1538     * so let's not waste VM memory for it.
1539     */
1540    gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1541
1542    if (vdev->igd_gms) {
1543        if (vdev->igd_gms <= 0x10) {
1544            gms_mb = vdev->igd_gms * 32;
1545            gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1546        } else {
1547            error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1548            vdev->igd_gms = 0;
1549        }
1550    }
1551
1552    /*
1553     * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1554     * must allocate a 1MB aligned reserved memory region below 4GB with
1555     * the requested size (in bytes) for use by the Intel PCI class VGA
1556     * device at VM address 00:02.0.  The base address of this reserved
1557     * memory region must be written to the device BDSM regsiter at PCI
1558     * config offset 0x5C.
1559     */
1560    bdsm_size = g_malloc(sizeof(*bdsm_size));
1561    *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1562    fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1563                    bdsm_size, sizeof(*bdsm_size));
1564
1565    /* GMCH is read-only, emulated */
1566    pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1567    pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1568    pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1569
1570    /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1571    pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1572    pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1573    pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1574
1575    /*
1576     * This IOBAR gives us access to GTTADR, which allows us to write to
1577     * the GTT itself.  So let's go ahead and write zero to all the GTT
1578     * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1579     * before talking to the device.
1580     */
1581    if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1582              vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1583        error_report("IGD device %s - failed to read PCI command register",
1584                     vdev->vbasedev.name);
1585    }
1586
1587    cmd = cmd_orig | PCI_COMMAND_IO;
1588
1589    if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1590               vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1591        error_report("IGD device %s - failed to write PCI command register",
1592                     vdev->vbasedev.name);
1593    }
1594
1595    for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1596        vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1597        vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1598    }
1599
1600    if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1601               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1602        error_report("IGD device %s - failed to restore PCI command register",
1603                     vdev->vbasedev.name);
1604    }
1605
1606    trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1607
1608out:
1609    g_free(rom);
1610    g_free(opregion);
1611    g_free(host);
1612    g_free(lpc);
1613}
1614
1615/*
1616 * Common quirk probe entry points.
1617 */
1618void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1619{
1620    vfio_vga_probe_ati_3c3_quirk(vdev);
1621    vfio_vga_probe_nvidia_3d0_quirk(vdev);
1622}
1623
1624void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1625{
1626    VFIOQuirk *quirk;
1627    int i, j;
1628
1629    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1630        QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1631            for (j = 0; j < quirk->nr_mem; j++) {
1632                memory_region_del_subregion(&vdev->vga->region[i].mem,
1633                                            &quirk->mem[j]);
1634            }
1635        }
1636    }
1637}
1638
1639void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1640{
1641    int i, j;
1642
1643    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1644        while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1645            VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1646            QLIST_REMOVE(quirk, next);
1647            for (j = 0; j < quirk->nr_mem; j++) {
1648                object_unparent(OBJECT(&quirk->mem[j]));
1649            }
1650            g_free(quirk->mem);
1651            g_free(quirk->data);
1652            g_free(quirk);
1653        }
1654    }
1655}
1656
1657void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1658{
1659    vfio_probe_ati_bar4_quirk(vdev, nr);
1660    vfio_probe_ati_bar2_quirk(vdev, nr);
1661    vfio_probe_nvidia_bar5_quirk(vdev, nr);
1662    vfio_probe_nvidia_bar0_quirk(vdev, nr);
1663    vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1664    vfio_probe_igd_bar4_quirk(vdev, nr);
1665}
1666
1667void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1668{
1669    VFIOBAR *bar = &vdev->bars[nr];
1670    VFIOQuirk *quirk;
1671    int i;
1672
1673    QLIST_FOREACH(quirk, &bar->quirks, next) {
1674        for (i = 0; i < quirk->nr_mem; i++) {
1675            memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1676        }
1677    }
1678}
1679
1680void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1681{
1682    VFIOBAR *bar = &vdev->bars[nr];
1683    int i;
1684
1685    while (!QLIST_EMPTY(&bar->quirks)) {
1686        VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1687        QLIST_REMOVE(quirk, next);
1688        for (i = 0; i < quirk->nr_mem; i++) {
1689            object_unparent(OBJECT(&quirk->mem[i]));
1690        }
1691        g_free(quirk->mem);
1692        g_free(quirk->data);
1693        g_free(quirk);
1694    }
1695}
1696
1697/*
1698 * Reset quirks
1699 */
1700
1701/*
1702 * AMD Radeon PCI config reset, based on Linux:
1703 *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1704 *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1705 *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1706 *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1707 * IDs: include/drm/drm_pciids.h
1708 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1709 *
1710 * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1711 * hardware that should be fixed on future ASICs.  The symptom of this is that
1712 * once the accerlated driver loads, Windows guests will bsod on subsequent
1713 * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1714 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1715 * reset.  The PCI config reset only works if SMC firmware is running, so we
1716 * have a dependency on the state of the device as to whether this reset will
1717 * be effective.  There are still cases where we won't be able to kick the
1718 * device into working, but this greatly improves the usability overall.  The
1719 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1720 * poking is largely ASIC specific.
1721 */
1722static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1723{
1724    uint32_t clk, pc_c;
1725
1726    /*
1727     * Registers 200h and 204h are index and data registers for accessing
1728     * indirect configuration registers within the device.
1729     */
1730    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1731    clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1732    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1733    pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1734
1735    return (!(clk & 1) && (0x20100 <= pc_c));
1736}
1737
1738/*
1739 * The scope of a config reset is controlled by a mode bit in the misc register
1740 * and a fuse, exposed as a bit in another register.  The fuse is the default
1741 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1742 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1743 * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1744 * to flip the value of the bit in the misc register.
1745 */
1746static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1747{
1748    uint32_t misc, fuse;
1749    bool a, b;
1750
1751    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1752    fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1753    b = fuse & 64;
1754
1755    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1756    misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1757    a = misc & 2;
1758
1759    if (a == b) {
1760        vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1761        vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1762    }
1763}
1764
1765static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1766{
1767    PCIDevice *pdev = &vdev->pdev;
1768    int i, ret = 0;
1769    uint32_t data;
1770
1771    /* Defer to a kernel implemented reset */
1772    if (vdev->vbasedev.reset_works) {
1773        trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1774        return -ENODEV;
1775    }
1776
1777    /* Enable only memory BAR access */
1778    vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1779
1780    /* Reset only works if SMC firmware is loaded and running */
1781    if (!vfio_radeon_smc_is_running(vdev)) {
1782        ret = -EINVAL;
1783        trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1784        goto out;
1785    }
1786
1787    /* Make sure only the GFX function is reset */
1788    vfio_radeon_set_gfx_only_reset(vdev);
1789
1790    /* AMD PCI config reset */
1791    vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1792    usleep(100);
1793
1794    /* Read back the memory size to make sure we're out of reset */
1795    for (i = 0; i < 100000; i++) {
1796        if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1797            goto reset_smc;
1798        }
1799        usleep(1);
1800    }
1801
1802    trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1803
1804reset_smc:
1805    /* Reset SMC */
1806    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1807    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1808    data |= 1;
1809    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1810
1811    /* Disable SMC clock */
1812    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1813    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1814    data |= 1;
1815    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1816
1817    trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1818
1819out:
1820    /* Restore PCI command register */
1821    vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1822
1823    return ret;
1824}
1825
1826void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1827{
1828    switch (vdev->vendor_id) {
1829    case 0x1002:
1830        switch (vdev->device_id) {
1831        /* Bonaire */
1832        case 0x6649: /* Bonaire [FirePro W5100] */
1833        case 0x6650:
1834        case 0x6651:
1835        case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1836        case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1837        case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1838        /* Hawaii */
1839        case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1840        case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1841        case 0x67A2:
1842        case 0x67A8:
1843        case 0x67A9:
1844        case 0x67AA:
1845        case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1846        case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1847        case 0x67B8:
1848        case 0x67B9:
1849        case 0x67BA:
1850        case 0x67BE:
1851            vdev->resetfn = vfio_radeon_reset;
1852            trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1853            break;
1854        }
1855        break;
1856    }
1857}
1858
1859/*
1860 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
1861 * devices as a member of a clique.  Devices within the same clique ID
1862 * are capable of direct P2P.  It's the user's responsibility that this
1863 * is correct.  The spec says that this may reside at any unused config
1864 * offset, but reserves and recommends hypervisors place this at C8h.
1865 * The spec also states that the hypervisor should place this capability
1866 * at the end of the capability list, thus next is defined as 0h.
1867 *
1868 * +----------------+----------------+----------------+----------------+
1869 * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
1870 * +----------------+----------------+----------------+----------------+
1871 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
1872 * +---------------------------------+---------------------------------+
1873 *
1874 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
1875 */
1876static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1877                                       const char *name, void *opaque,
1878                                       Error **errp)
1879{
1880    DeviceState *dev = DEVICE(obj);
1881    Property *prop = opaque;
1882    uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
1883
1884    visit_type_uint8(v, name, ptr, errp);
1885}
1886
1887static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1888                                       const char *name, void *opaque,
1889                                       Error **errp)
1890{
1891    DeviceState *dev = DEVICE(obj);
1892    Property *prop = opaque;
1893    uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
1894    Error *local_err = NULL;
1895
1896    if (dev->realized) {
1897        qdev_prop_set_after_realize(dev, name, errp);
1898        return;
1899    }
1900
1901    visit_type_uint8(v, name, &value, &local_err);
1902    if (local_err) {
1903        error_propagate(errp, local_err);
1904        return;
1905    }
1906
1907    if (value & ~0xF) {
1908        error_setg(errp, "Property %s: valid range 0-15", name);
1909        return;
1910    }
1911
1912    *ptr = value;
1913}
1914
1915const PropertyInfo qdev_prop_nv_gpudirect_clique = {
1916    .name = "uint4",
1917    .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
1918    .get = get_nv_gpudirect_clique_id,
1919    .set = set_nv_gpudirect_clique_id,
1920};
1921
1922static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
1923{
1924    PCIDevice *pdev = &vdev->pdev;
1925    int ret, pos = 0xC8;
1926
1927    if (vdev->nv_gpudirect_clique == 0xFF) {
1928        return 0;
1929    }
1930
1931    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
1932        error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
1933        return -EINVAL;
1934    }
1935
1936    if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
1937        PCI_BASE_CLASS_DISPLAY) {
1938        error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
1939        return -EINVAL;
1940    }
1941
1942    ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
1943    if (ret < 0) {
1944        error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
1945        return ret;
1946    }
1947
1948    memset(vdev->emulated_config_bits + pos, 0xFF, 8);
1949    pos += PCI_CAP_FLAGS;
1950    pci_set_byte(pdev->config + pos++, 8);
1951    pci_set_byte(pdev->config + pos++, 'P');
1952    pci_set_byte(pdev->config + pos++, '2');
1953    pci_set_byte(pdev->config + pos++, 'P');
1954    pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
1955    pci_set_byte(pdev->config + pos, 0);
1956
1957    return 0;
1958}
1959
1960int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
1961{
1962    int ret;
1963
1964    ret = vfio_add_nv_gpudirect_cap(vdev, errp);
1965    if (ret) {
1966        return ret;
1967    }
1968
1969    return 0;
1970}
1971