qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6
   7#include "qemu.h"
   8#include "disas/disas.h"
   9#include "qemu/path.h"
  10
  11#ifdef _ARCH_PPC64
  12#undef ARCH_DLINFO
  13#undef ELF_PLATFORM
  14#undef ELF_HWCAP
  15#undef ELF_HWCAP2
  16#undef ELF_CLASS
  17#undef ELF_DATA
  18#undef ELF_ARCH
  19#endif
  20
  21#define ELF_OSABI   ELFOSABI_SYSV
  22
  23/* from personality.h */
  24
  25/*
  26 * Flags for bug emulation.
  27 *
  28 * These occupy the top three bytes.
  29 */
  30enum {
  31    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  32    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  33                                           descriptors (signal handling) */
  34    MMAP_PAGE_ZERO =    0x0100000,
  35    ADDR_COMPAT_LAYOUT = 0x0200000,
  36    READ_IMPLIES_EXEC = 0x0400000,
  37    ADDR_LIMIT_32BIT =  0x0800000,
  38    SHORT_INODE =       0x1000000,
  39    WHOLE_SECONDS =     0x2000000,
  40    STICKY_TIMEOUTS =   0x4000000,
  41    ADDR_LIMIT_3GB =    0x8000000,
  42};
  43
  44/*
  45 * Personality types.
  46 *
  47 * These go in the low byte.  Avoid using the top bit, it will
  48 * conflict with error returns.
  49 */
  50enum {
  51    PER_LINUX =         0x0000,
  52    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  53    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  54    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  55    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  56    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  57    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  58    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  59    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  60    PER_BSD =           0x0006,
  61    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  62    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  63    PER_LINUX32 =       0x0008,
  64    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  65    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  66    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  67    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  68    PER_RISCOS =        0x000c,
  69    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  70    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  71    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  72    PER_HPUX =          0x0010,
  73    PER_MASK =          0x00ff,
  74};
  75
  76/*
  77 * Return the base personality without flags.
  78 */
  79#define personality(pers)       (pers & PER_MASK)
  80
  81/* this flag is uneffective under linux too, should be deleted */
  82#ifndef MAP_DENYWRITE
  83#define MAP_DENYWRITE 0
  84#endif
  85
  86/* should probably go in elf.h */
  87#ifndef ELIBBAD
  88#define ELIBBAD 80
  89#endif
  90
  91#ifdef TARGET_WORDS_BIGENDIAN
  92#define ELF_DATA        ELFDATA2MSB
  93#else
  94#define ELF_DATA        ELFDATA2LSB
  95#endif
  96
  97#ifdef TARGET_ABI_MIPSN32
  98typedef abi_ullong      target_elf_greg_t;
  99#define tswapreg(ptr)   tswap64(ptr)
 100#else
 101typedef abi_ulong       target_elf_greg_t;
 102#define tswapreg(ptr)   tswapal(ptr)
 103#endif
 104
 105#ifdef USE_UID16
 106typedef abi_ushort      target_uid_t;
 107typedef abi_ushort      target_gid_t;
 108#else
 109typedef abi_uint        target_uid_t;
 110typedef abi_uint        target_gid_t;
 111#endif
 112typedef abi_int         target_pid_t;
 113
 114#ifdef TARGET_I386
 115
 116#define ELF_PLATFORM get_elf_platform()
 117
 118static const char *get_elf_platform(void)
 119{
 120    static char elf_platform[] = "i386";
 121    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 122    if (family > 6)
 123        family = 6;
 124    if (family >= 3)
 125        elf_platform[1] = '0' + family;
 126    return elf_platform;
 127}
 128
 129#define ELF_HWCAP get_elf_hwcap()
 130
 131static uint32_t get_elf_hwcap(void)
 132{
 133    X86CPU *cpu = X86_CPU(thread_cpu);
 134
 135    return cpu->env.features[FEAT_1_EDX];
 136}
 137
 138#ifdef TARGET_X86_64
 139#define ELF_START_MMAP 0x2aaaaab000ULL
 140
 141#define ELF_CLASS      ELFCLASS64
 142#define ELF_ARCH       EM_X86_64
 143
 144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 145{
 146    regs->rax = 0;
 147    regs->rsp = infop->start_stack;
 148    regs->rip = infop->entry;
 149}
 150
 151#define ELF_NREG    27
 152typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 153
 154/*
 155 * Note that ELF_NREG should be 29 as there should be place for
 156 * TRAPNO and ERR "registers" as well but linux doesn't dump
 157 * those.
 158 *
 159 * See linux kernel: arch/x86/include/asm/elf.h
 160 */
 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 162{
 163    (*regs)[0] = env->regs[15];
 164    (*regs)[1] = env->regs[14];
 165    (*regs)[2] = env->regs[13];
 166    (*regs)[3] = env->regs[12];
 167    (*regs)[4] = env->regs[R_EBP];
 168    (*regs)[5] = env->regs[R_EBX];
 169    (*regs)[6] = env->regs[11];
 170    (*regs)[7] = env->regs[10];
 171    (*regs)[8] = env->regs[9];
 172    (*regs)[9] = env->regs[8];
 173    (*regs)[10] = env->regs[R_EAX];
 174    (*regs)[11] = env->regs[R_ECX];
 175    (*regs)[12] = env->regs[R_EDX];
 176    (*regs)[13] = env->regs[R_ESI];
 177    (*regs)[14] = env->regs[R_EDI];
 178    (*regs)[15] = env->regs[R_EAX]; /* XXX */
 179    (*regs)[16] = env->eip;
 180    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 181    (*regs)[18] = env->eflags;
 182    (*regs)[19] = env->regs[R_ESP];
 183    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 184    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 185    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 186    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 187    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 188    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 189    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 190}
 191
 192#else
 193
 194#define ELF_START_MMAP 0x80000000
 195
 196/*
 197 * This is used to ensure we don't load something for the wrong architecture.
 198 */
 199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 200
 201/*
 202 * These are used to set parameters in the core dumps.
 203 */
 204#define ELF_CLASS       ELFCLASS32
 205#define ELF_ARCH        EM_386
 206
 207static inline void init_thread(struct target_pt_regs *regs,
 208                               struct image_info *infop)
 209{
 210    regs->esp = infop->start_stack;
 211    regs->eip = infop->entry;
 212
 213    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 214       starts %edx contains a pointer to a function which might be
 215       registered using `atexit'.  This provides a mean for the
 216       dynamic linker to call DT_FINI functions for shared libraries
 217       that have been loaded before the code runs.
 218
 219       A value of 0 tells we have no such handler.  */
 220    regs->edx = 0;
 221}
 222
 223#define ELF_NREG    17
 224typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 225
 226/*
 227 * Note that ELF_NREG should be 19 as there should be place for
 228 * TRAPNO and ERR "registers" as well but linux doesn't dump
 229 * those.
 230 *
 231 * See linux kernel: arch/x86/include/asm/elf.h
 232 */
 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 234{
 235    (*regs)[0] = env->regs[R_EBX];
 236    (*regs)[1] = env->regs[R_ECX];
 237    (*regs)[2] = env->regs[R_EDX];
 238    (*regs)[3] = env->regs[R_ESI];
 239    (*regs)[4] = env->regs[R_EDI];
 240    (*regs)[5] = env->regs[R_EBP];
 241    (*regs)[6] = env->regs[R_EAX];
 242    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 243    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 244    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 245    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 246    (*regs)[11] = env->regs[R_EAX]; /* XXX */
 247    (*regs)[12] = env->eip;
 248    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 249    (*regs)[14] = env->eflags;
 250    (*regs)[15] = env->regs[R_ESP];
 251    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 252}
 253#endif
 254
 255#define USE_ELF_CORE_DUMP
 256#define ELF_EXEC_PAGESIZE       4096
 257
 258#endif
 259
 260#ifdef TARGET_ARM
 261
 262#ifndef TARGET_AARCH64
 263/* 32 bit ARM definitions */
 264
 265#define ELF_START_MMAP 0x80000000
 266
 267#define ELF_ARCH        EM_ARM
 268#define ELF_CLASS       ELFCLASS32
 269
 270static inline void init_thread(struct target_pt_regs *regs,
 271                               struct image_info *infop)
 272{
 273    abi_long stack = infop->start_stack;
 274    memset(regs, 0, sizeof(*regs));
 275
 276    regs->uregs[16] = ARM_CPU_MODE_USR;
 277    if (infop->entry & 1) {
 278        regs->uregs[16] |= CPSR_T;
 279    }
 280    regs->uregs[15] = infop->entry & 0xfffffffe;
 281    regs->uregs[13] = infop->start_stack;
 282    /* FIXME - what to for failure of get_user()? */
 283    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 284    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 285    /* XXX: it seems that r0 is zeroed after ! */
 286    regs->uregs[0] = 0;
 287    /* For uClinux PIC binaries.  */
 288    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 289    regs->uregs[10] = infop->start_data;
 290}
 291
 292#define ELF_NREG    18
 293typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 294
 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 296{
 297    (*regs)[0] = tswapreg(env->regs[0]);
 298    (*regs)[1] = tswapreg(env->regs[1]);
 299    (*regs)[2] = tswapreg(env->regs[2]);
 300    (*regs)[3] = tswapreg(env->regs[3]);
 301    (*regs)[4] = tswapreg(env->regs[4]);
 302    (*regs)[5] = tswapreg(env->regs[5]);
 303    (*regs)[6] = tswapreg(env->regs[6]);
 304    (*regs)[7] = tswapreg(env->regs[7]);
 305    (*regs)[8] = tswapreg(env->regs[8]);
 306    (*regs)[9] = tswapreg(env->regs[9]);
 307    (*regs)[10] = tswapreg(env->regs[10]);
 308    (*regs)[11] = tswapreg(env->regs[11]);
 309    (*regs)[12] = tswapreg(env->regs[12]);
 310    (*regs)[13] = tswapreg(env->regs[13]);
 311    (*regs)[14] = tswapreg(env->regs[14]);
 312    (*regs)[15] = tswapreg(env->regs[15]);
 313
 314    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 315    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 316}
 317
 318#define USE_ELF_CORE_DUMP
 319#define ELF_EXEC_PAGESIZE       4096
 320
 321enum
 322{
 323    ARM_HWCAP_ARM_SWP       = 1 << 0,
 324    ARM_HWCAP_ARM_HALF      = 1 << 1,
 325    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 326    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 327    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 328    ARM_HWCAP_ARM_FPA       = 1 << 5,
 329    ARM_HWCAP_ARM_VFP       = 1 << 6,
 330    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 331    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 332    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 333    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 334    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 335    ARM_HWCAP_ARM_NEON      = 1 << 12,
 336    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 337    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 338    ARM_HWCAP_ARM_TLS       = 1 << 15,
 339    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 340    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 341    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 342    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 343    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 344    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 345};
 346
 347enum {
 348    ARM_HWCAP2_ARM_AES      = 1 << 0,
 349    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 350    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 351    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 352    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 353};
 354
 355/* The commpage only exists for 32 bit kernels */
 356
 357#define TARGET_HAS_VALIDATE_GUEST_SPACE
 358/* Return 1 if the proposed guest space is suitable for the guest.
 359 * Return 0 if the proposed guest space isn't suitable, but another
 360 * address space should be tried.
 361 * Return -1 if there is no way the proposed guest space can be
 362 * valid regardless of the base.
 363 * The guest code may leave a page mapped and populate it if the
 364 * address is suitable.
 365 */
 366static int validate_guest_space(unsigned long guest_base,
 367                                unsigned long guest_size)
 368{
 369    unsigned long real_start, test_page_addr;
 370
 371    /* We need to check that we can force a fault on access to the
 372     * commpage at 0xffff0fxx
 373     */
 374    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 375
 376    /* If the commpage lies within the already allocated guest space,
 377     * then there is no way we can allocate it.
 378     */
 379    if (test_page_addr >= guest_base
 380        && test_page_addr < (guest_base + guest_size)) {
 381        return -1;
 382    }
 383
 384    /* Note it needs to be writeable to let us initialise it */
 385    real_start = (unsigned long)
 386                 mmap((void *)test_page_addr, qemu_host_page_size,
 387                     PROT_READ | PROT_WRITE,
 388                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 389
 390    /* If we can't map it then try another address */
 391    if (real_start == -1ul) {
 392        return 0;
 393    }
 394
 395    if (real_start != test_page_addr) {
 396        /* OS didn't put the page where we asked - unmap and reject */
 397        munmap((void *)real_start, qemu_host_page_size);
 398        return 0;
 399    }
 400
 401    /* Leave the page mapped
 402     * Populate it (mmap should have left it all 0'd)
 403     */
 404
 405    /* Kernel helper versions */
 406    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 407
 408    /* Now it's populated make it RO */
 409    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 410        perror("Protecting guest commpage");
 411        exit(-1);
 412    }
 413
 414    return 1; /* All good */
 415}
 416
 417#define ELF_HWCAP get_elf_hwcap()
 418#define ELF_HWCAP2 get_elf_hwcap2()
 419
 420static uint32_t get_elf_hwcap(void)
 421{
 422    ARMCPU *cpu = ARM_CPU(thread_cpu);
 423    uint32_t hwcaps = 0;
 424
 425    hwcaps |= ARM_HWCAP_ARM_SWP;
 426    hwcaps |= ARM_HWCAP_ARM_HALF;
 427    hwcaps |= ARM_HWCAP_ARM_THUMB;
 428    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 429
 430    /* probe for the extra features */
 431#define GET_FEATURE(feat, hwcap) \
 432    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 433    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 434    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 435    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 436    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 437    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 438    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 439    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 440    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 441    GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
 442    GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
 443    GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
 444    /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
 445     * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
 446     * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
 447     * to our VFP_FP16 feature bit.
 448     */
 449    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
 450    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 451
 452    return hwcaps;
 453}
 454
 455static uint32_t get_elf_hwcap2(void)
 456{
 457    ARMCPU *cpu = ARM_CPU(thread_cpu);
 458    uint32_t hwcaps = 0;
 459
 460    GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
 461    GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
 462    GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
 463    GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
 464    GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
 465    return hwcaps;
 466}
 467
 468#undef GET_FEATURE
 469
 470#else
 471/* 64 bit ARM definitions */
 472#define ELF_START_MMAP 0x80000000
 473
 474#define ELF_ARCH        EM_AARCH64
 475#define ELF_CLASS       ELFCLASS64
 476#define ELF_PLATFORM    "aarch64"
 477
 478static inline void init_thread(struct target_pt_regs *regs,
 479                               struct image_info *infop)
 480{
 481    abi_long stack = infop->start_stack;
 482    memset(regs, 0, sizeof(*regs));
 483
 484    regs->pc = infop->entry & ~0x3ULL;
 485    regs->sp = stack;
 486}
 487
 488#define ELF_NREG    34
 489typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 490
 491static void elf_core_copy_regs(target_elf_gregset_t *regs,
 492                               const CPUARMState *env)
 493{
 494    int i;
 495
 496    for (i = 0; i < 32; i++) {
 497        (*regs)[i] = tswapreg(env->xregs[i]);
 498    }
 499    (*regs)[32] = tswapreg(env->pc);
 500    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 501}
 502
 503#define USE_ELF_CORE_DUMP
 504#define ELF_EXEC_PAGESIZE       4096
 505
 506enum {
 507    ARM_HWCAP_A64_FP            = 1 << 0,
 508    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 509    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 510    ARM_HWCAP_A64_AES           = 1 << 3,
 511    ARM_HWCAP_A64_PMULL         = 1 << 4,
 512    ARM_HWCAP_A64_SHA1          = 1 << 5,
 513    ARM_HWCAP_A64_SHA2          = 1 << 6,
 514    ARM_HWCAP_A64_CRC32         = 1 << 7,
 515};
 516
 517#define ELF_HWCAP get_elf_hwcap()
 518
 519static uint32_t get_elf_hwcap(void)
 520{
 521    ARMCPU *cpu = ARM_CPU(thread_cpu);
 522    uint32_t hwcaps = 0;
 523
 524    hwcaps |= ARM_HWCAP_A64_FP;
 525    hwcaps |= ARM_HWCAP_A64_ASIMD;
 526
 527    /* probe for the extra features */
 528#define GET_FEATURE(feat, hwcap) \
 529    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 530    GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
 531    GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
 532    GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
 533    GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
 534    GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
 535#undef GET_FEATURE
 536
 537    return hwcaps;
 538}
 539
 540#endif /* not TARGET_AARCH64 */
 541#endif /* TARGET_ARM */
 542
 543#ifdef TARGET_UNICORE32
 544
 545#define ELF_START_MMAP          0x80000000
 546
 547#define ELF_CLASS               ELFCLASS32
 548#define ELF_DATA                ELFDATA2LSB
 549#define ELF_ARCH                EM_UNICORE32
 550
 551static inline void init_thread(struct target_pt_regs *regs,
 552        struct image_info *infop)
 553{
 554    abi_long stack = infop->start_stack;
 555    memset(regs, 0, sizeof(*regs));
 556    regs->UC32_REG_asr = 0x10;
 557    regs->UC32_REG_pc = infop->entry & 0xfffffffe;
 558    regs->UC32_REG_sp = infop->start_stack;
 559    /* FIXME - what to for failure of get_user()? */
 560    get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
 561    get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
 562    /* XXX: it seems that r0 is zeroed after ! */
 563    regs->UC32_REG_00 = 0;
 564}
 565
 566#define ELF_NREG    34
 567typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 568
 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
 570{
 571    (*regs)[0] = env->regs[0];
 572    (*regs)[1] = env->regs[1];
 573    (*regs)[2] = env->regs[2];
 574    (*regs)[3] = env->regs[3];
 575    (*regs)[4] = env->regs[4];
 576    (*regs)[5] = env->regs[5];
 577    (*regs)[6] = env->regs[6];
 578    (*regs)[7] = env->regs[7];
 579    (*regs)[8] = env->regs[8];
 580    (*regs)[9] = env->regs[9];
 581    (*regs)[10] = env->regs[10];
 582    (*regs)[11] = env->regs[11];
 583    (*regs)[12] = env->regs[12];
 584    (*regs)[13] = env->regs[13];
 585    (*regs)[14] = env->regs[14];
 586    (*regs)[15] = env->regs[15];
 587    (*regs)[16] = env->regs[16];
 588    (*regs)[17] = env->regs[17];
 589    (*regs)[18] = env->regs[18];
 590    (*regs)[19] = env->regs[19];
 591    (*regs)[20] = env->regs[20];
 592    (*regs)[21] = env->regs[21];
 593    (*regs)[22] = env->regs[22];
 594    (*regs)[23] = env->regs[23];
 595    (*regs)[24] = env->regs[24];
 596    (*regs)[25] = env->regs[25];
 597    (*regs)[26] = env->regs[26];
 598    (*regs)[27] = env->regs[27];
 599    (*regs)[28] = env->regs[28];
 600    (*regs)[29] = env->regs[29];
 601    (*regs)[30] = env->regs[30];
 602    (*regs)[31] = env->regs[31];
 603
 604    (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
 605    (*regs)[33] = env->regs[0]; /* XXX */
 606}
 607
 608#define USE_ELF_CORE_DUMP
 609#define ELF_EXEC_PAGESIZE               4096
 610
 611#define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
 612
 613#endif
 614
 615#ifdef TARGET_SPARC
 616#ifdef TARGET_SPARC64
 617
 618#define ELF_START_MMAP 0x80000000
 619#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 620                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 621#ifndef TARGET_ABI32
 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 623#else
 624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 625#endif
 626
 627#define ELF_CLASS   ELFCLASS64
 628#define ELF_ARCH    EM_SPARCV9
 629
 630#define STACK_BIAS              2047
 631
 632static inline void init_thread(struct target_pt_regs *regs,
 633                               struct image_info *infop)
 634{
 635#ifndef TARGET_ABI32
 636    regs->tstate = 0;
 637#endif
 638    regs->pc = infop->entry;
 639    regs->npc = regs->pc + 4;
 640    regs->y = 0;
 641#ifdef TARGET_ABI32
 642    regs->u_regs[14] = infop->start_stack - 16 * 4;
 643#else
 644    if (personality(infop->personality) == PER_LINUX32)
 645        regs->u_regs[14] = infop->start_stack - 16 * 4;
 646    else
 647        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 648#endif
 649}
 650
 651#else
 652#define ELF_START_MMAP 0x80000000
 653#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 654                    | HWCAP_SPARC_MULDIV)
 655
 656#define ELF_CLASS   ELFCLASS32
 657#define ELF_ARCH    EM_SPARC
 658
 659static inline void init_thread(struct target_pt_regs *regs,
 660                               struct image_info *infop)
 661{
 662    regs->psr = 0;
 663    regs->pc = infop->entry;
 664    regs->npc = regs->pc + 4;
 665    regs->y = 0;
 666    regs->u_regs[14] = infop->start_stack - 16 * 4;
 667}
 668
 669#endif
 670#endif
 671
 672#ifdef TARGET_PPC
 673
 674#define ELF_MACHINE    PPC_ELF_MACHINE
 675#define ELF_START_MMAP 0x80000000
 676
 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 678
 679#define elf_check_arch(x) ( (x) == EM_PPC64 )
 680
 681#define ELF_CLASS       ELFCLASS64
 682
 683#else
 684
 685#define ELF_CLASS       ELFCLASS32
 686
 687#endif
 688
 689#define ELF_ARCH        EM_PPC
 690
 691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 692   See arch/powerpc/include/asm/cputable.h.  */
 693enum {
 694    QEMU_PPC_FEATURE_32 = 0x80000000,
 695    QEMU_PPC_FEATURE_64 = 0x40000000,
 696    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 697    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 698    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 699    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 700    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 701    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 702    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 703    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 704    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 705    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 706    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 707    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 708    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 709    QEMU_PPC_FEATURE_CELL = 0x00010000,
 710    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 711    QEMU_PPC_FEATURE_SMT = 0x00004000,
 712    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 713    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 714    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 715    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 716    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 717    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 718    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 719    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 720
 721    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 722    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 723
 724    /* Feature definitions in AT_HWCAP2.  */
 725    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 726    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 727    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 728    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 729    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 730    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 731};
 732
 733#define ELF_HWCAP get_elf_hwcap()
 734
 735static uint32_t get_elf_hwcap(void)
 736{
 737    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 738    uint32_t features = 0;
 739
 740    /* We don't have to be terribly complete here; the high points are
 741       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 742#define GET_FEATURE(flag, feature)                                      \
 743    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 744#define GET_FEATURE2(flags, feature) \
 745    do { \
 746        if ((cpu->env.insns_flags2 & flags) == flags) { \
 747            features |= feature; \
 748        } \
 749    } while (0)
 750    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 751    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 752    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 753    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 754    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 755    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 756    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 757    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 758    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 759    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 760    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 761                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 762                  QEMU_PPC_FEATURE_ARCH_2_06);
 763#undef GET_FEATURE
 764#undef GET_FEATURE2
 765
 766    return features;
 767}
 768
 769#define ELF_HWCAP2 get_elf_hwcap2()
 770
 771static uint32_t get_elf_hwcap2(void)
 772{
 773    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 774    uint32_t features = 0;
 775
 776#define GET_FEATURE(flag, feature)                                      \
 777    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 778#define GET_FEATURE2(flag, feature)                                      \
 779    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 780
 781    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 782    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 783    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 784                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
 785
 786#undef GET_FEATURE
 787#undef GET_FEATURE2
 788
 789    return features;
 790}
 791
 792/*
 793 * The requirements here are:
 794 * - keep the final alignment of sp (sp & 0xf)
 795 * - make sure the 32-bit value at the first 16 byte aligned position of
 796 *   AUXV is greater than 16 for glibc compatibility.
 797 *   AT_IGNOREPPC is used for that.
 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 799 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 800 */
 801#define DLINFO_ARCH_ITEMS       5
 802#define ARCH_DLINFO                                     \
 803    do {                                                \
 804        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 805        /*                                              \
 806         * Handle glibc compatibility: these magic entries must \
 807         * be at the lowest addresses in the final auxv.        \
 808         */                                             \
 809        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 810        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 811        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 812        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 813        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 814    } while (0)
 815
 816static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 817{
 818    _regs->gpr[1] = infop->start_stack;
 819#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 820    if (get_ppc64_abi(infop) < 2) {
 821        uint64_t val;
 822        get_user_u64(val, infop->entry + 8);
 823        _regs->gpr[2] = val + infop->load_bias;
 824        get_user_u64(val, infop->entry);
 825        infop->entry = val + infop->load_bias;
 826    } else {
 827        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 828    }
 829#endif
 830    _regs->nip = infop->entry;
 831}
 832
 833/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 834#define ELF_NREG 48
 835typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 836
 837static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 838{
 839    int i;
 840    target_ulong ccr = 0;
 841
 842    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 843        (*regs)[i] = tswapreg(env->gpr[i]);
 844    }
 845
 846    (*regs)[32] = tswapreg(env->nip);
 847    (*regs)[33] = tswapreg(env->msr);
 848    (*regs)[35] = tswapreg(env->ctr);
 849    (*regs)[36] = tswapreg(env->lr);
 850    (*regs)[37] = tswapreg(env->xer);
 851
 852    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 853        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 854    }
 855    (*regs)[38] = tswapreg(ccr);
 856}
 857
 858#define USE_ELF_CORE_DUMP
 859#define ELF_EXEC_PAGESIZE       4096
 860
 861#endif
 862
 863#ifdef TARGET_MIPS
 864
 865#define ELF_START_MMAP 0x80000000
 866
 867#ifdef TARGET_MIPS64
 868#define ELF_CLASS   ELFCLASS64
 869#else
 870#define ELF_CLASS   ELFCLASS32
 871#endif
 872#define ELF_ARCH    EM_MIPS
 873
 874static inline void init_thread(struct target_pt_regs *regs,
 875                               struct image_info *infop)
 876{
 877    regs->cp0_status = 2 << CP0St_KSU;
 878    regs->cp0_epc = infop->entry;
 879    regs->regs[29] = infop->start_stack;
 880}
 881
 882/* See linux kernel: arch/mips/include/asm/elf.h.  */
 883#define ELF_NREG 45
 884typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 885
 886/* See linux kernel: arch/mips/include/asm/reg.h.  */
 887enum {
 888#ifdef TARGET_MIPS64
 889    TARGET_EF_R0 = 0,
 890#else
 891    TARGET_EF_R0 = 6,
 892#endif
 893    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 894    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 895    TARGET_EF_LO = TARGET_EF_R0 + 32,
 896    TARGET_EF_HI = TARGET_EF_R0 + 33,
 897    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 898    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 899    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 900    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 901};
 902
 903/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 904static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 905{
 906    int i;
 907
 908    for (i = 0; i < TARGET_EF_R0; i++) {
 909        (*regs)[i] = 0;
 910    }
 911    (*regs)[TARGET_EF_R0] = 0;
 912
 913    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 914        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 915    }
 916
 917    (*regs)[TARGET_EF_R26] = 0;
 918    (*regs)[TARGET_EF_R27] = 0;
 919    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 920    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 921    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 922    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 923    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 924    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 925}
 926
 927#define USE_ELF_CORE_DUMP
 928#define ELF_EXEC_PAGESIZE        4096
 929
 930#endif /* TARGET_MIPS */
 931
 932#ifdef TARGET_MICROBLAZE
 933
 934#define ELF_START_MMAP 0x80000000
 935
 936#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 937
 938#define ELF_CLASS   ELFCLASS32
 939#define ELF_ARCH    EM_MICROBLAZE
 940
 941static inline void init_thread(struct target_pt_regs *regs,
 942                               struct image_info *infop)
 943{
 944    regs->pc = infop->entry;
 945    regs->r1 = infop->start_stack;
 946
 947}
 948
 949#define ELF_EXEC_PAGESIZE        4096
 950
 951#define USE_ELF_CORE_DUMP
 952#define ELF_NREG 38
 953typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 954
 955/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 956static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 957{
 958    int i, pos = 0;
 959
 960    for (i = 0; i < 32; i++) {
 961        (*regs)[pos++] = tswapreg(env->regs[i]);
 962    }
 963
 964    for (i = 0; i < 6; i++) {
 965        (*regs)[pos++] = tswapreg(env->sregs[i]);
 966    }
 967}
 968
 969#endif /* TARGET_MICROBLAZE */
 970
 971#ifdef TARGET_NIOS2
 972
 973#define ELF_START_MMAP 0x80000000
 974
 975#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
 976
 977#define ELF_CLASS   ELFCLASS32
 978#define ELF_ARCH    EM_ALTERA_NIOS2
 979
 980static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 981{
 982    regs->ea = infop->entry;
 983    regs->sp = infop->start_stack;
 984    regs->estatus = 0x3;
 985}
 986
 987#define ELF_EXEC_PAGESIZE        4096
 988
 989#define USE_ELF_CORE_DUMP
 990#define ELF_NREG 49
 991typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 992
 993/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 994static void elf_core_copy_regs(target_elf_gregset_t *regs,
 995                               const CPUNios2State *env)
 996{
 997    int i;
 998
 999    (*regs)[0] = -1;
1000    for (i = 1; i < 8; i++)    /* r0-r7 */
1001        (*regs)[i] = tswapreg(env->regs[i + 7]);
1002
1003    for (i = 8; i < 16; i++)   /* r8-r15 */
1004        (*regs)[i] = tswapreg(env->regs[i - 8]);
1005
1006    for (i = 16; i < 24; i++)  /* r16-r23 */
1007        (*regs)[i] = tswapreg(env->regs[i + 7]);
1008    (*regs)[24] = -1;    /* R_ET */
1009    (*regs)[25] = -1;    /* R_BT */
1010    (*regs)[26] = tswapreg(env->regs[R_GP]);
1011    (*regs)[27] = tswapreg(env->regs[R_SP]);
1012    (*regs)[28] = tswapreg(env->regs[R_FP]);
1013    (*regs)[29] = tswapreg(env->regs[R_EA]);
1014    (*regs)[30] = -1;    /* R_SSTATUS */
1015    (*regs)[31] = tswapreg(env->regs[R_RA]);
1016
1017    (*regs)[32] = tswapreg(env->regs[R_PC]);
1018
1019    (*regs)[33] = -1; /* R_STATUS */
1020    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1021
1022    for (i = 35; i < 49; i++)    /* ... */
1023        (*regs)[i] = -1;
1024}
1025
1026#endif /* TARGET_NIOS2 */
1027
1028#ifdef TARGET_OPENRISC
1029
1030#define ELF_START_MMAP 0x08000000
1031
1032#define ELF_ARCH EM_OPENRISC
1033#define ELF_CLASS ELFCLASS32
1034#define ELF_DATA  ELFDATA2MSB
1035
1036static inline void init_thread(struct target_pt_regs *regs,
1037                               struct image_info *infop)
1038{
1039    regs->pc = infop->entry;
1040    regs->gpr[1] = infop->start_stack;
1041}
1042
1043#define USE_ELF_CORE_DUMP
1044#define ELF_EXEC_PAGESIZE 8192
1045
1046/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1047#define ELF_NREG 34 /* gprs and pc, sr */
1048typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1049
1050static void elf_core_copy_regs(target_elf_gregset_t *regs,
1051                               const CPUOpenRISCState *env)
1052{
1053    int i;
1054
1055    for (i = 0; i < 32; i++) {
1056        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1057    }
1058    (*regs)[32] = tswapreg(env->pc);
1059    (*regs)[33] = tswapreg(cpu_get_sr(env));
1060}
1061#define ELF_HWCAP 0
1062#define ELF_PLATFORM NULL
1063
1064#endif /* TARGET_OPENRISC */
1065
1066#ifdef TARGET_SH4
1067
1068#define ELF_START_MMAP 0x80000000
1069
1070#define ELF_CLASS ELFCLASS32
1071#define ELF_ARCH  EM_SH
1072
1073static inline void init_thread(struct target_pt_regs *regs,
1074                               struct image_info *infop)
1075{
1076    /* Check other registers XXXXX */
1077    regs->pc = infop->entry;
1078    regs->regs[15] = infop->start_stack;
1079}
1080
1081/* See linux kernel: arch/sh/include/asm/elf.h.  */
1082#define ELF_NREG 23
1083typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1084
1085/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1086enum {
1087    TARGET_REG_PC = 16,
1088    TARGET_REG_PR = 17,
1089    TARGET_REG_SR = 18,
1090    TARGET_REG_GBR = 19,
1091    TARGET_REG_MACH = 20,
1092    TARGET_REG_MACL = 21,
1093    TARGET_REG_SYSCALL = 22
1094};
1095
1096static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1097                                      const CPUSH4State *env)
1098{
1099    int i;
1100
1101    for (i = 0; i < 16; i++) {
1102        (*regs)[i] = tswapreg(env->gregs[i]);
1103    }
1104
1105    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1106    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1107    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1108    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1109    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1110    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1111    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1112}
1113
1114#define USE_ELF_CORE_DUMP
1115#define ELF_EXEC_PAGESIZE        4096
1116
1117enum {
1118    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1119    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1120    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1121    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1122    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1123    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1124    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1125    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1126    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1127    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1128};
1129
1130#define ELF_HWCAP get_elf_hwcap()
1131
1132static uint32_t get_elf_hwcap(void)
1133{
1134    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1135    uint32_t hwcap = 0;
1136
1137    hwcap |= SH_CPU_HAS_FPU;
1138
1139    if (cpu->env.features & SH_FEATURE_SH4A) {
1140        hwcap |= SH_CPU_HAS_LLSC;
1141    }
1142
1143    return hwcap;
1144}
1145
1146#endif
1147
1148#ifdef TARGET_CRIS
1149
1150#define ELF_START_MMAP 0x80000000
1151
1152#define ELF_CLASS ELFCLASS32
1153#define ELF_ARCH  EM_CRIS
1154
1155static inline void init_thread(struct target_pt_regs *regs,
1156                               struct image_info *infop)
1157{
1158    regs->erp = infop->entry;
1159}
1160
1161#define ELF_EXEC_PAGESIZE        8192
1162
1163#endif
1164
1165#ifdef TARGET_M68K
1166
1167#define ELF_START_MMAP 0x80000000
1168
1169#define ELF_CLASS       ELFCLASS32
1170#define ELF_ARCH        EM_68K
1171
1172/* ??? Does this need to do anything?
1173   #define ELF_PLAT_INIT(_r) */
1174
1175static inline void init_thread(struct target_pt_regs *regs,
1176                               struct image_info *infop)
1177{
1178    regs->usp = infop->start_stack;
1179    regs->sr = 0;
1180    regs->pc = infop->entry;
1181}
1182
1183/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1184#define ELF_NREG 20
1185typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186
1187static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1188{
1189    (*regs)[0] = tswapreg(env->dregs[1]);
1190    (*regs)[1] = tswapreg(env->dregs[2]);
1191    (*regs)[2] = tswapreg(env->dregs[3]);
1192    (*regs)[3] = tswapreg(env->dregs[4]);
1193    (*regs)[4] = tswapreg(env->dregs[5]);
1194    (*regs)[5] = tswapreg(env->dregs[6]);
1195    (*regs)[6] = tswapreg(env->dregs[7]);
1196    (*regs)[7] = tswapreg(env->aregs[0]);
1197    (*regs)[8] = tswapreg(env->aregs[1]);
1198    (*regs)[9] = tswapreg(env->aregs[2]);
1199    (*regs)[10] = tswapreg(env->aregs[3]);
1200    (*regs)[11] = tswapreg(env->aregs[4]);
1201    (*regs)[12] = tswapreg(env->aregs[5]);
1202    (*regs)[13] = tswapreg(env->aregs[6]);
1203    (*regs)[14] = tswapreg(env->dregs[0]);
1204    (*regs)[15] = tswapreg(env->aregs[7]);
1205    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1206    (*regs)[17] = tswapreg(env->sr);
1207    (*regs)[18] = tswapreg(env->pc);
1208    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1209}
1210
1211#define USE_ELF_CORE_DUMP
1212#define ELF_EXEC_PAGESIZE       8192
1213
1214#endif
1215
1216#ifdef TARGET_ALPHA
1217
1218#define ELF_START_MMAP (0x30000000000ULL)
1219
1220#define ELF_CLASS      ELFCLASS64
1221#define ELF_ARCH       EM_ALPHA
1222
1223static inline void init_thread(struct target_pt_regs *regs,
1224                               struct image_info *infop)
1225{
1226    regs->pc = infop->entry;
1227    regs->ps = 8;
1228    regs->usp = infop->start_stack;
1229}
1230
1231#define ELF_EXEC_PAGESIZE        8192
1232
1233#endif /* TARGET_ALPHA */
1234
1235#ifdef TARGET_S390X
1236
1237#define ELF_START_MMAP (0x20000000000ULL)
1238
1239#define ELF_CLASS       ELFCLASS64
1240#define ELF_DATA        ELFDATA2MSB
1241#define ELF_ARCH        EM_S390
1242
1243static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1244{
1245    regs->psw.addr = infop->entry;
1246    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1247    regs->gprs[15] = infop->start_stack;
1248}
1249
1250#endif /* TARGET_S390X */
1251
1252#ifdef TARGET_TILEGX
1253
1254/* 42 bits real used address, a half for user mode */
1255#define ELF_START_MMAP (0x00000020000000000ULL)
1256
1257#define elf_check_arch(x) ((x) == EM_TILEGX)
1258
1259#define ELF_CLASS   ELFCLASS64
1260#define ELF_DATA    ELFDATA2LSB
1261#define ELF_ARCH    EM_TILEGX
1262
1263static inline void init_thread(struct target_pt_regs *regs,
1264                               struct image_info *infop)
1265{
1266    regs->pc = infop->entry;
1267    regs->sp = infop->start_stack;
1268
1269}
1270
1271#define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1272
1273#endif /* TARGET_TILEGX */
1274
1275#ifdef TARGET_HPPA
1276
1277#define ELF_START_MMAP  0x80000000
1278#define ELF_CLASS       ELFCLASS32
1279#define ELF_ARCH        EM_PARISC
1280#define ELF_PLATFORM    "PARISC"
1281#define STACK_GROWS_DOWN 0
1282#define STACK_ALIGNMENT  64
1283
1284static inline void init_thread(struct target_pt_regs *regs,
1285                               struct image_info *infop)
1286{
1287    regs->iaoq[0] = infop->entry;
1288    regs->iaoq[1] = infop->entry + 4;
1289    regs->gr[23] = 0;
1290    regs->gr[24] = infop->arg_start;
1291    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1292    /* The top-of-stack contains a linkage buffer.  */
1293    regs->gr[30] = infop->start_stack + 64;
1294    regs->gr[31] = infop->entry;
1295}
1296
1297#endif /* TARGET_HPPA */
1298
1299#ifndef ELF_PLATFORM
1300#define ELF_PLATFORM (NULL)
1301#endif
1302
1303#ifndef ELF_MACHINE
1304#define ELF_MACHINE ELF_ARCH
1305#endif
1306
1307#ifndef elf_check_arch
1308#define elf_check_arch(x) ((x) == ELF_ARCH)
1309#endif
1310
1311#ifndef ELF_HWCAP
1312#define ELF_HWCAP 0
1313#endif
1314
1315#ifndef STACK_GROWS_DOWN
1316#define STACK_GROWS_DOWN 1
1317#endif
1318
1319#ifndef STACK_ALIGNMENT
1320#define STACK_ALIGNMENT 16
1321#endif
1322
1323#ifdef TARGET_ABI32
1324#undef ELF_CLASS
1325#define ELF_CLASS ELFCLASS32
1326#undef bswaptls
1327#define bswaptls(ptr) bswap32s(ptr)
1328#endif
1329
1330#include "elf.h"
1331
1332struct exec
1333{
1334    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1335    unsigned int a_text;   /* length of text, in bytes */
1336    unsigned int a_data;   /* length of data, in bytes */
1337    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1338    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1339    unsigned int a_entry;  /* start address */
1340    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1341    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1342};
1343
1344
1345#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1346#define OMAGIC 0407
1347#define NMAGIC 0410
1348#define ZMAGIC 0413
1349#define QMAGIC 0314
1350
1351/* Necessary parameters */
1352#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1353#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1355#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1356
1357#define DLINFO_ITEMS 14
1358
1359static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1360{
1361    memcpy(to, from, n);
1362}
1363
1364#ifdef BSWAP_NEEDED
1365static void bswap_ehdr(struct elfhdr *ehdr)
1366{
1367    bswap16s(&ehdr->e_type);            /* Object file type */
1368    bswap16s(&ehdr->e_machine);         /* Architecture */
1369    bswap32s(&ehdr->e_version);         /* Object file version */
1370    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1371    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1372    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1373    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1374    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1375    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1376    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1377    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1378    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1379    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1380}
1381
1382static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1383{
1384    int i;
1385    for (i = 0; i < phnum; ++i, ++phdr) {
1386        bswap32s(&phdr->p_type);        /* Segment type */
1387        bswap32s(&phdr->p_flags);       /* Segment flags */
1388        bswaptls(&phdr->p_offset);      /* Segment file offset */
1389        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1390        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1391        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1392        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1393        bswaptls(&phdr->p_align);       /* Segment alignment */
1394    }
1395}
1396
1397static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1398{
1399    int i;
1400    for (i = 0; i < shnum; ++i, ++shdr) {
1401        bswap32s(&shdr->sh_name);
1402        bswap32s(&shdr->sh_type);
1403        bswaptls(&shdr->sh_flags);
1404        bswaptls(&shdr->sh_addr);
1405        bswaptls(&shdr->sh_offset);
1406        bswaptls(&shdr->sh_size);
1407        bswap32s(&shdr->sh_link);
1408        bswap32s(&shdr->sh_info);
1409        bswaptls(&shdr->sh_addralign);
1410        bswaptls(&shdr->sh_entsize);
1411    }
1412}
1413
1414static void bswap_sym(struct elf_sym *sym)
1415{
1416    bswap32s(&sym->st_name);
1417    bswaptls(&sym->st_value);
1418    bswaptls(&sym->st_size);
1419    bswap16s(&sym->st_shndx);
1420}
1421#else
1422static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1423static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1424static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1425static inline void bswap_sym(struct elf_sym *sym) { }
1426#endif
1427
1428#ifdef USE_ELF_CORE_DUMP
1429static int elf_core_dump(int, const CPUArchState *);
1430#endif /* USE_ELF_CORE_DUMP */
1431static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1432
1433/* Verify the portions of EHDR within E_IDENT for the target.
1434   This can be performed before bswapping the entire header.  */
1435static bool elf_check_ident(struct elfhdr *ehdr)
1436{
1437    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1438            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1439            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1440            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1441            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1442            && ehdr->e_ident[EI_DATA] == ELF_DATA
1443            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1444}
1445
1446/* Verify the portions of EHDR outside of E_IDENT for the target.
1447   This has to wait until after bswapping the header.  */
1448static bool elf_check_ehdr(struct elfhdr *ehdr)
1449{
1450    return (elf_check_arch(ehdr->e_machine)
1451            && ehdr->e_ehsize == sizeof(struct elfhdr)
1452            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1453            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1454}
1455
1456/*
1457 * 'copy_elf_strings()' copies argument/envelope strings from user
1458 * memory to free pages in kernel mem. These are in a format ready
1459 * to be put directly into the top of new user memory.
1460 *
1461 */
1462static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1463                                  abi_ulong p, abi_ulong stack_limit)
1464{
1465    char *tmp;
1466    int len, i;
1467    abi_ulong top = p;
1468
1469    if (!p) {
1470        return 0;       /* bullet-proofing */
1471    }
1472
1473    if (STACK_GROWS_DOWN) {
1474        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1475        for (i = argc - 1; i >= 0; --i) {
1476            tmp = argv[i];
1477            if (!tmp) {
1478                fprintf(stderr, "VFS: argc is wrong");
1479                exit(-1);
1480            }
1481            len = strlen(tmp) + 1;
1482            tmp += len;
1483
1484            if (len > (p - stack_limit)) {
1485                return 0;
1486            }
1487            while (len) {
1488                int bytes_to_copy = (len > offset) ? offset : len;
1489                tmp -= bytes_to_copy;
1490                p -= bytes_to_copy;
1491                offset -= bytes_to_copy;
1492                len -= bytes_to_copy;
1493
1494                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1495
1496                if (offset == 0) {
1497                    memcpy_to_target(p, scratch, top - p);
1498                    top = p;
1499                    offset = TARGET_PAGE_SIZE;
1500                }
1501            }
1502        }
1503        if (p != top) {
1504            memcpy_to_target(p, scratch + offset, top - p);
1505        }
1506    } else {
1507        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1508        for (i = 0; i < argc; ++i) {
1509            tmp = argv[i];
1510            if (!tmp) {
1511                fprintf(stderr, "VFS: argc is wrong");
1512                exit(-1);
1513            }
1514            len = strlen(tmp) + 1;
1515            if (len > (stack_limit - p)) {
1516                return 0;
1517            }
1518            while (len) {
1519                int bytes_to_copy = (len > remaining) ? remaining : len;
1520
1521                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1522
1523                tmp += bytes_to_copy;
1524                remaining -= bytes_to_copy;
1525                p += bytes_to_copy;
1526                len -= bytes_to_copy;
1527
1528                if (remaining == 0) {
1529                    memcpy_to_target(top, scratch, p - top);
1530                    top = p;
1531                    remaining = TARGET_PAGE_SIZE;
1532                }
1533            }
1534        }
1535        if (p != top) {
1536            memcpy_to_target(top, scratch, p - top);
1537        }
1538    }
1539
1540    return p;
1541}
1542
1543/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544 * argument/environment space. Newer kernels (>2.6.33) allow more,
1545 * dependent on stack size, but guarantee at least 32 pages for
1546 * backwards compatibility.
1547 */
1548#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1549
1550static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1551                                 struct image_info *info)
1552{
1553    abi_ulong size, error, guard;
1554
1555    size = guest_stack_size;
1556    if (size < STACK_LOWER_LIMIT) {
1557        size = STACK_LOWER_LIMIT;
1558    }
1559    guard = TARGET_PAGE_SIZE;
1560    if (guard < qemu_real_host_page_size) {
1561        guard = qemu_real_host_page_size;
1562    }
1563
1564    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1565                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1566    if (error == -1) {
1567        perror("mmap stack");
1568        exit(-1);
1569    }
1570
1571    /* We reserve one extra page at the top of the stack as guard.  */
1572    if (STACK_GROWS_DOWN) {
1573        target_mprotect(error, guard, PROT_NONE);
1574        info->stack_limit = error + guard;
1575        return info->stack_limit + size - sizeof(void *);
1576    } else {
1577        target_mprotect(error + size, guard, PROT_NONE);
1578        info->stack_limit = error + size;
1579        return error;
1580    }
1581}
1582
1583/* Map and zero the bss.  We need to explicitly zero any fractional pages
1584   after the data section (i.e. bss).  */
1585static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1586{
1587    uintptr_t host_start, host_map_start, host_end;
1588
1589    last_bss = TARGET_PAGE_ALIGN(last_bss);
1590
1591    /* ??? There is confusion between qemu_real_host_page_size and
1592       qemu_host_page_size here and elsewhere in target_mmap, which
1593       may lead to the end of the data section mapping from the file
1594       not being mapped.  At least there was an explicit test and
1595       comment for that here, suggesting that "the file size must
1596       be known".  The comment probably pre-dates the introduction
1597       of the fstat system call in target_mmap which does in fact
1598       find out the size.  What isn't clear is if the workaround
1599       here is still actually needed.  For now, continue with it,
1600       but merge it with the "normal" mmap that would allocate the bss.  */
1601
1602    host_start = (uintptr_t) g2h(elf_bss);
1603    host_end = (uintptr_t) g2h(last_bss);
1604    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1605
1606    if (host_map_start < host_end) {
1607        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1608                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1609        if (p == MAP_FAILED) {
1610            perror("cannot mmap brk");
1611            exit(-1);
1612        }
1613    }
1614
1615    /* Ensure that the bss page(s) are valid */
1616    if ((page_get_flags(last_bss-1) & prot) != prot) {
1617        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1618    }
1619
1620    if (host_start < host_map_start) {
1621        memset((void *)host_start, 0, host_map_start - host_start);
1622    }
1623}
1624
1625#ifdef CONFIG_USE_FDPIC
1626static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1627{
1628    uint16_t n;
1629    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1630
1631    /* elf32_fdpic_loadseg */
1632    n = info->nsegs;
1633    while (n--) {
1634        sp -= 12;
1635        put_user_u32(loadsegs[n].addr, sp+0);
1636        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1637        put_user_u32(loadsegs[n].p_memsz, sp+8);
1638    }
1639
1640    /* elf32_fdpic_loadmap */
1641    sp -= 4;
1642    put_user_u16(0, sp+0); /* version */
1643    put_user_u16(info->nsegs, sp+2); /* nsegs */
1644
1645    info->personality = PER_LINUX_FDPIC;
1646    info->loadmap_addr = sp;
1647
1648    return sp;
1649}
1650#endif
1651
1652static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1653                                   struct elfhdr *exec,
1654                                   struct image_info *info,
1655                                   struct image_info *interp_info)
1656{
1657    abi_ulong sp;
1658    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1659    int size;
1660    int i;
1661    abi_ulong u_rand_bytes;
1662    uint8_t k_rand_bytes[16];
1663    abi_ulong u_platform;
1664    const char *k_platform;
1665    const int n = sizeof(elf_addr_t);
1666
1667    sp = p;
1668
1669#ifdef CONFIG_USE_FDPIC
1670    /* Needs to be before we load the env/argc/... */
1671    if (elf_is_fdpic(exec)) {
1672        /* Need 4 byte alignment for these structs */
1673        sp &= ~3;
1674        sp = loader_build_fdpic_loadmap(info, sp);
1675        info->other_info = interp_info;
1676        if (interp_info) {
1677            interp_info->other_info = info;
1678            sp = loader_build_fdpic_loadmap(interp_info, sp);
1679        }
1680    }
1681#endif
1682
1683    u_platform = 0;
1684    k_platform = ELF_PLATFORM;
1685    if (k_platform) {
1686        size_t len = strlen(k_platform) + 1;
1687        if (STACK_GROWS_DOWN) {
1688            sp -= (len + n - 1) & ~(n - 1);
1689            u_platform = sp;
1690            /* FIXME - check return value of memcpy_to_target() for failure */
1691            memcpy_to_target(sp, k_platform, len);
1692        } else {
1693            memcpy_to_target(sp, k_platform, len);
1694            u_platform = sp;
1695            sp += len + 1;
1696        }
1697    }
1698
1699    /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700     * the argv and envp pointers.
1701     */
1702    if (STACK_GROWS_DOWN) {
1703        sp = QEMU_ALIGN_DOWN(sp, 16);
1704    } else {
1705        sp = QEMU_ALIGN_UP(sp, 16);
1706    }
1707
1708    /*
1709     * Generate 16 random bytes for userspace PRNG seeding (not
1710     * cryptically secure but it's not the aim of QEMU).
1711     */
1712    for (i = 0; i < 16; i++) {
1713        k_rand_bytes[i] = rand();
1714    }
1715    if (STACK_GROWS_DOWN) {
1716        sp -= 16;
1717        u_rand_bytes = sp;
1718        /* FIXME - check return value of memcpy_to_target() for failure */
1719        memcpy_to_target(sp, k_rand_bytes, 16);
1720    } else {
1721        memcpy_to_target(sp, k_rand_bytes, 16);
1722        u_rand_bytes = sp;
1723        sp += 16;
1724    }
1725
1726    size = (DLINFO_ITEMS + 1) * 2;
1727    if (k_platform)
1728        size += 2;
1729#ifdef DLINFO_ARCH_ITEMS
1730    size += DLINFO_ARCH_ITEMS * 2;
1731#endif
1732#ifdef ELF_HWCAP2
1733    size += 2;
1734#endif
1735    info->auxv_len = size * n;
1736
1737    size += envc + argc + 2;
1738    size += 1;  /* argc itself */
1739    size *= n;
1740
1741    /* Allocate space and finalize stack alignment for entry now.  */
1742    if (STACK_GROWS_DOWN) {
1743        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1744        sp = u_argc;
1745    } else {
1746        u_argc = sp;
1747        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1748    }
1749
1750    u_argv = u_argc + n;
1751    u_envp = u_argv + (argc + 1) * n;
1752    u_auxv = u_envp + (envc + 1) * n;
1753    info->saved_auxv = u_auxv;
1754    info->arg_start = u_argv;
1755    info->arg_end = u_argv + argc * n;
1756
1757    /* This is correct because Linux defines
1758     * elf_addr_t as Elf32_Off / Elf64_Off
1759     */
1760#define NEW_AUX_ENT(id, val) do {               \
1761        put_user_ual(id, u_auxv);  u_auxv += n; \
1762        put_user_ual(val, u_auxv); u_auxv += n; \
1763    } while(0)
1764
1765#ifdef ARCH_DLINFO
1766    /*
1767     * ARCH_DLINFO must come first so platform specific code can enforce
1768     * special alignment requirements on the AUXV if necessary (eg. PPC).
1769     */
1770    ARCH_DLINFO;
1771#endif
1772    /* There must be exactly DLINFO_ITEMS entries here, or the assert
1773     * on info->auxv_len will trigger.
1774     */
1775    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1776    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1777    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1778    NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1779    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1780    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1781    NEW_AUX_ENT(AT_ENTRY, info->entry);
1782    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1783    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1784    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1785    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1786    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1787    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1788    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1789
1790#ifdef ELF_HWCAP2
1791    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1792#endif
1793
1794    if (u_platform) {
1795        NEW_AUX_ENT(AT_PLATFORM, u_platform);
1796    }
1797    NEW_AUX_ENT (AT_NULL, 0);
1798#undef NEW_AUX_ENT
1799
1800    /* Check that our initial calculation of the auxv length matches how much
1801     * we actually put into it.
1802     */
1803    assert(info->auxv_len == u_auxv - info->saved_auxv);
1804
1805    put_user_ual(argc, u_argc);
1806
1807    p = info->arg_strings;
1808    for (i = 0; i < argc; ++i) {
1809        put_user_ual(p, u_argv);
1810        u_argv += n;
1811        p += target_strlen(p) + 1;
1812    }
1813    put_user_ual(0, u_argv);
1814
1815    p = info->env_strings;
1816    for (i = 0; i < envc; ++i) {
1817        put_user_ual(p, u_envp);
1818        u_envp += n;
1819        p += target_strlen(p) + 1;
1820    }
1821    put_user_ual(0, u_envp);
1822
1823    return sp;
1824}
1825
1826#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1827/* If the guest doesn't have a validation function just agree */
1828static int validate_guest_space(unsigned long guest_base,
1829                                unsigned long guest_size)
1830{
1831    return 1;
1832}
1833#endif
1834
1835unsigned long init_guest_space(unsigned long host_start,
1836                               unsigned long host_size,
1837                               unsigned long guest_start,
1838                               bool fixed)
1839{
1840    unsigned long current_start, real_start;
1841    int flags;
1842
1843    assert(host_start || host_size);
1844
1845    /* If just a starting address is given, then just verify that
1846     * address.  */
1847    if (host_start && !host_size) {
1848        if (validate_guest_space(host_start, host_size) == 1) {
1849            return host_start;
1850        } else {
1851            return (unsigned long)-1;
1852        }
1853    }
1854
1855    /* Setup the initial flags and start address.  */
1856    current_start = host_start & qemu_host_page_mask;
1857    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1858    if (fixed) {
1859        flags |= MAP_FIXED;
1860    }
1861
1862    /* Otherwise, a non-zero size region of memory needs to be mapped
1863     * and validated.  */
1864    while (1) {
1865        unsigned long real_size = host_size;
1866
1867        /* Do not use mmap_find_vma here because that is limited to the
1868         * guest address space.  We are going to make the
1869         * guest address space fit whatever we're given.
1870         */
1871        real_start = (unsigned long)
1872            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1873        if (real_start == (unsigned long)-1) {
1874            return (unsigned long)-1;
1875        }
1876
1877        /* Ensure the address is properly aligned.  */
1878        if (real_start & ~qemu_host_page_mask) {
1879            munmap((void *)real_start, host_size);
1880            real_size = host_size + qemu_host_page_size;
1881            real_start = (unsigned long)
1882                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1883            if (real_start == (unsigned long)-1) {
1884                return (unsigned long)-1;
1885            }
1886            real_start = HOST_PAGE_ALIGN(real_start);
1887        }
1888
1889        /* Check to see if the address is valid.  */
1890        if (!host_start || real_start == current_start) {
1891            int valid = validate_guest_space(real_start - guest_start,
1892                                             real_size);
1893            if (valid == 1) {
1894                break;
1895            } else if (valid == -1) {
1896                return (unsigned long)-1;
1897            }
1898            /* valid == 0, so try again. */
1899        }
1900
1901        /* That address didn't work.  Unmap and try a different one.
1902         * The address the host picked because is typically right at
1903         * the top of the host address space and leaves the guest with
1904         * no usable address space.  Resort to a linear search.  We
1905         * already compensated for mmap_min_addr, so this should not
1906         * happen often.  Probably means we got unlucky and host
1907         * address space randomization put a shared library somewhere
1908         * inconvenient.
1909         */
1910        munmap((void *)real_start, host_size);
1911        current_start += qemu_host_page_size;
1912        if (host_start == current_start) {
1913            /* Theoretically possible if host doesn't have any suitably
1914             * aligned areas.  Normally the first mmap will fail.
1915             */
1916            return (unsigned long)-1;
1917        }
1918    }
1919
1920    qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1921
1922    return real_start;
1923}
1924
1925static void probe_guest_base(const char *image_name,
1926                             abi_ulong loaddr, abi_ulong hiaddr)
1927{
1928    /* Probe for a suitable guest base address, if the user has not set
1929     * it explicitly, and set guest_base appropriately.
1930     * In case of error we will print a suitable message and exit.
1931     */
1932    const char *errmsg;
1933    if (!have_guest_base && !reserved_va) {
1934        unsigned long host_start, real_start, host_size;
1935
1936        /* Round addresses to page boundaries.  */
1937        loaddr &= qemu_host_page_mask;
1938        hiaddr = HOST_PAGE_ALIGN(hiaddr);
1939
1940        if (loaddr < mmap_min_addr) {
1941            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1942        } else {
1943            host_start = loaddr;
1944            if (host_start != loaddr) {
1945                errmsg = "Address overflow loading ELF binary";
1946                goto exit_errmsg;
1947            }
1948        }
1949        host_size = hiaddr - loaddr;
1950
1951        /* Setup the initial guest memory space with ranges gleaned from
1952         * the ELF image that is being loaded.
1953         */
1954        real_start = init_guest_space(host_start, host_size, loaddr, false);
1955        if (real_start == (unsigned long)-1) {
1956            errmsg = "Unable to find space for application";
1957            goto exit_errmsg;
1958        }
1959        guest_base = real_start - loaddr;
1960
1961        qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1962                      TARGET_ABI_FMT_lx " to 0x%lx\n",
1963                      loaddr, real_start);
1964    }
1965    return;
1966
1967exit_errmsg:
1968    fprintf(stderr, "%s: %s\n", image_name, errmsg);
1969    exit(-1);
1970}
1971
1972
1973/* Load an ELF image into the address space.
1974
1975   IMAGE_NAME is the filename of the image, to use in error messages.
1976   IMAGE_FD is the open file descriptor for the image.
1977
1978   BPRM_BUF is a copy of the beginning of the file; this of course
1979   contains the elf file header at offset 0.  It is assumed that this
1980   buffer is sufficiently aligned to present no problems to the host
1981   in accessing data at aligned offsets within the buffer.
1982
1983   On return: INFO values will be filled in, as necessary or available.  */
1984
1985static void load_elf_image(const char *image_name, int image_fd,
1986                           struct image_info *info, char **pinterp_name,
1987                           char bprm_buf[BPRM_BUF_SIZE])
1988{
1989    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1990    struct elf_phdr *phdr;
1991    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1992    int i, retval;
1993    const char *errmsg;
1994
1995    /* First of all, some simple consistency checks */
1996    errmsg = "Invalid ELF image for this architecture";
1997    if (!elf_check_ident(ehdr)) {
1998        goto exit_errmsg;
1999    }
2000    bswap_ehdr(ehdr);
2001    if (!elf_check_ehdr(ehdr)) {
2002        goto exit_errmsg;
2003    }
2004
2005    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2006    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2007        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2008    } else {
2009        phdr = (struct elf_phdr *) alloca(i);
2010        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2011        if (retval != i) {
2012            goto exit_read;
2013        }
2014    }
2015    bswap_phdr(phdr, ehdr->e_phnum);
2016
2017#ifdef CONFIG_USE_FDPIC
2018    info->nsegs = 0;
2019    info->pt_dynamic_addr = 0;
2020#endif
2021
2022    mmap_lock();
2023
2024    /* Find the maximum size of the image and allocate an appropriate
2025       amount of memory to handle that.  */
2026    loaddr = -1, hiaddr = 0;
2027    for (i = 0; i < ehdr->e_phnum; ++i) {
2028        if (phdr[i].p_type == PT_LOAD) {
2029            abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2030            if (a < loaddr) {
2031                loaddr = a;
2032            }
2033            a = phdr[i].p_vaddr + phdr[i].p_memsz;
2034            if (a > hiaddr) {
2035                hiaddr = a;
2036            }
2037#ifdef CONFIG_USE_FDPIC
2038            ++info->nsegs;
2039#endif
2040        }
2041    }
2042
2043    load_addr = loaddr;
2044    if (ehdr->e_type == ET_DYN) {
2045        /* The image indicates that it can be loaded anywhere.  Find a
2046           location that can hold the memory space required.  If the
2047           image is pre-linked, LOADDR will be non-zero.  Since we do
2048           not supply MAP_FIXED here we'll use that address if and
2049           only if it remains available.  */
2050        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2051                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2052                                -1, 0);
2053        if (load_addr == -1) {
2054            goto exit_perror;
2055        }
2056    } else if (pinterp_name != NULL) {
2057        /* This is the main executable.  Make sure that the low
2058           address does not conflict with MMAP_MIN_ADDR or the
2059           QEMU application itself.  */
2060        probe_guest_base(image_name, loaddr, hiaddr);
2061    }
2062    load_bias = load_addr - loaddr;
2063
2064#ifdef CONFIG_USE_FDPIC
2065    {
2066        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2067            g_malloc(sizeof(*loadsegs) * info->nsegs);
2068
2069        for (i = 0; i < ehdr->e_phnum; ++i) {
2070            switch (phdr[i].p_type) {
2071            case PT_DYNAMIC:
2072                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2073                break;
2074            case PT_LOAD:
2075                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2076                loadsegs->p_vaddr = phdr[i].p_vaddr;
2077                loadsegs->p_memsz = phdr[i].p_memsz;
2078                ++loadsegs;
2079                break;
2080            }
2081        }
2082    }
2083#endif
2084
2085    info->load_bias = load_bias;
2086    info->load_addr = load_addr;
2087    info->entry = ehdr->e_entry + load_bias;
2088    info->start_code = -1;
2089    info->end_code = 0;
2090    info->start_data = -1;
2091    info->end_data = 0;
2092    info->brk = 0;
2093    info->elf_flags = ehdr->e_flags;
2094
2095    for (i = 0; i < ehdr->e_phnum; i++) {
2096        struct elf_phdr *eppnt = phdr + i;
2097        if (eppnt->p_type == PT_LOAD) {
2098            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2099            int elf_prot = 0;
2100
2101            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2102            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2103            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2104
2105            vaddr = load_bias + eppnt->p_vaddr;
2106            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2107            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2108
2109            error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2110                                elf_prot, MAP_PRIVATE | MAP_FIXED,
2111                                image_fd, eppnt->p_offset - vaddr_po);
2112            if (error == -1) {
2113                goto exit_perror;
2114            }
2115
2116            vaddr_ef = vaddr + eppnt->p_filesz;
2117            vaddr_em = vaddr + eppnt->p_memsz;
2118
2119            /* If the load segment requests extra zeros (e.g. bss), map it.  */
2120            if (vaddr_ef < vaddr_em) {
2121                zero_bss(vaddr_ef, vaddr_em, elf_prot);
2122            }
2123
2124            /* Find the full program boundaries.  */
2125            if (elf_prot & PROT_EXEC) {
2126                if (vaddr < info->start_code) {
2127                    info->start_code = vaddr;
2128                }
2129                if (vaddr_ef > info->end_code) {
2130                    info->end_code = vaddr_ef;
2131                }
2132            }
2133            if (elf_prot & PROT_WRITE) {
2134                if (vaddr < info->start_data) {
2135                    info->start_data = vaddr;
2136                }
2137                if (vaddr_ef > info->end_data) {
2138                    info->end_data = vaddr_ef;
2139                }
2140                if (vaddr_em > info->brk) {
2141                    info->brk = vaddr_em;
2142                }
2143            }
2144        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2145            char *interp_name;
2146
2147            if (*pinterp_name) {
2148                errmsg = "Multiple PT_INTERP entries";
2149                goto exit_errmsg;
2150            }
2151            interp_name = malloc(eppnt->p_filesz);
2152            if (!interp_name) {
2153                goto exit_perror;
2154            }
2155
2156            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2157                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2158                       eppnt->p_filesz);
2159            } else {
2160                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2161                               eppnt->p_offset);
2162                if (retval != eppnt->p_filesz) {
2163                    goto exit_perror;
2164                }
2165            }
2166            if (interp_name[eppnt->p_filesz - 1] != 0) {
2167                errmsg = "Invalid PT_INTERP entry";
2168                goto exit_errmsg;
2169            }
2170            *pinterp_name = interp_name;
2171        }
2172    }
2173
2174    if (info->end_data == 0) {
2175        info->start_data = info->end_code;
2176        info->end_data = info->end_code;
2177        info->brk = info->end_code;
2178    }
2179
2180    if (qemu_log_enabled()) {
2181        load_symbols(ehdr, image_fd, load_bias);
2182    }
2183
2184    mmap_unlock();
2185
2186    close(image_fd);
2187    return;
2188
2189 exit_read:
2190    if (retval >= 0) {
2191        errmsg = "Incomplete read of file header";
2192        goto exit_errmsg;
2193    }
2194 exit_perror:
2195    errmsg = strerror(errno);
2196 exit_errmsg:
2197    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2198    exit(-1);
2199}
2200
2201static void load_elf_interp(const char *filename, struct image_info *info,
2202                            char bprm_buf[BPRM_BUF_SIZE])
2203{
2204    int fd, retval;
2205
2206    fd = open(path(filename), O_RDONLY);
2207    if (fd < 0) {
2208        goto exit_perror;
2209    }
2210
2211    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2212    if (retval < 0) {
2213        goto exit_perror;
2214    }
2215    if (retval < BPRM_BUF_SIZE) {
2216        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2217    }
2218
2219    load_elf_image(filename, fd, info, NULL, bprm_buf);
2220    return;
2221
2222 exit_perror:
2223    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2224    exit(-1);
2225}
2226
2227static int symfind(const void *s0, const void *s1)
2228{
2229    target_ulong addr = *(target_ulong *)s0;
2230    struct elf_sym *sym = (struct elf_sym *)s1;
2231    int result = 0;
2232    if (addr < sym->st_value) {
2233        result = -1;
2234    } else if (addr >= sym->st_value + sym->st_size) {
2235        result = 1;
2236    }
2237    return result;
2238}
2239
2240static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2241{
2242#if ELF_CLASS == ELFCLASS32
2243    struct elf_sym *syms = s->disas_symtab.elf32;
2244#else
2245    struct elf_sym *syms = s->disas_symtab.elf64;
2246#endif
2247
2248    // binary search
2249    struct elf_sym *sym;
2250
2251    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2252    if (sym != NULL) {
2253        return s->disas_strtab + sym->st_name;
2254    }
2255
2256    return "";
2257}
2258
2259/* FIXME: This should use elf_ops.h  */
2260static int symcmp(const void *s0, const void *s1)
2261{
2262    struct elf_sym *sym0 = (struct elf_sym *)s0;
2263    struct elf_sym *sym1 = (struct elf_sym *)s1;
2264    return (sym0->st_value < sym1->st_value)
2265        ? -1
2266        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2267}
2268
2269/* Best attempt to load symbols from this ELF object. */
2270static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2271{
2272    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2273    uint64_t segsz;
2274    struct elf_shdr *shdr;
2275    char *strings = NULL;
2276    struct syminfo *s = NULL;
2277    struct elf_sym *new_syms, *syms = NULL;
2278
2279    shnum = hdr->e_shnum;
2280    i = shnum * sizeof(struct elf_shdr);
2281    shdr = (struct elf_shdr *)alloca(i);
2282    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2283        return;
2284    }
2285
2286    bswap_shdr(shdr, shnum);
2287    for (i = 0; i < shnum; ++i) {
2288        if (shdr[i].sh_type == SHT_SYMTAB) {
2289            sym_idx = i;
2290            str_idx = shdr[i].sh_link;
2291            goto found;
2292        }
2293    }
2294
2295    /* There will be no symbol table if the file was stripped.  */
2296    return;
2297
2298 found:
2299    /* Now know where the strtab and symtab are.  Snarf them.  */
2300    s = g_try_new(struct syminfo, 1);
2301    if (!s) {
2302        goto give_up;
2303    }
2304
2305    segsz = shdr[str_idx].sh_size;
2306    s->disas_strtab = strings = g_try_malloc(segsz);
2307    if (!strings ||
2308        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2309        goto give_up;
2310    }
2311
2312    segsz = shdr[sym_idx].sh_size;
2313    syms = g_try_malloc(segsz);
2314    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2315        goto give_up;
2316    }
2317
2318    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2319        /* Implausibly large symbol table: give up rather than ploughing
2320         * on with the number of symbols calculation overflowing
2321         */
2322        goto give_up;
2323    }
2324    nsyms = segsz / sizeof(struct elf_sym);
2325    for (i = 0; i < nsyms; ) {
2326        bswap_sym(syms + i);
2327        /* Throw away entries which we do not need.  */
2328        if (syms[i].st_shndx == SHN_UNDEF
2329            || syms[i].st_shndx >= SHN_LORESERVE
2330            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2331            if (i < --nsyms) {
2332                syms[i] = syms[nsyms];
2333            }
2334        } else {
2335#if defined(TARGET_ARM) || defined (TARGET_MIPS)
2336            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2337            syms[i].st_value &= ~(target_ulong)1;
2338#endif
2339            syms[i].st_value += load_bias;
2340            i++;
2341        }
2342    }
2343
2344    /* No "useful" symbol.  */
2345    if (nsyms == 0) {
2346        goto give_up;
2347    }
2348
2349    /* Attempt to free the storage associated with the local symbols
2350       that we threw away.  Whether or not this has any effect on the
2351       memory allocation depends on the malloc implementation and how
2352       many symbols we managed to discard.  */
2353    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2354    if (new_syms == NULL) {
2355        goto give_up;
2356    }
2357    syms = new_syms;
2358
2359    qsort(syms, nsyms, sizeof(*syms), symcmp);
2360
2361    s->disas_num_syms = nsyms;
2362#if ELF_CLASS == ELFCLASS32
2363    s->disas_symtab.elf32 = syms;
2364#else
2365    s->disas_symtab.elf64 = syms;
2366#endif
2367    s->lookup_symbol = lookup_symbolxx;
2368    s->next = syminfos;
2369    syminfos = s;
2370
2371    return;
2372
2373give_up:
2374    g_free(s);
2375    g_free(strings);
2376    g_free(syms);
2377}
2378
2379int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2380{
2381    struct image_info interp_info;
2382    struct elfhdr elf_ex;
2383    char *elf_interpreter = NULL;
2384    char *scratch;
2385
2386    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2387
2388    load_elf_image(bprm->filename, bprm->fd, info,
2389                   &elf_interpreter, bprm->buf);
2390
2391    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2392       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2393       when we load the interpreter.  */
2394    elf_ex = *(struct elfhdr *)bprm->buf;
2395
2396    /* Do this so that we can load the interpreter, if need be.  We will
2397       change some of these later */
2398    bprm->p = setup_arg_pages(bprm, info);
2399
2400    scratch = g_new0(char, TARGET_PAGE_SIZE);
2401    if (STACK_GROWS_DOWN) {
2402        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2403                                   bprm->p, info->stack_limit);
2404        info->file_string = bprm->p;
2405        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2406                                   bprm->p, info->stack_limit);
2407        info->env_strings = bprm->p;
2408        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2409                                   bprm->p, info->stack_limit);
2410        info->arg_strings = bprm->p;
2411    } else {
2412        info->arg_strings = bprm->p;
2413        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2414                                   bprm->p, info->stack_limit);
2415        info->env_strings = bprm->p;
2416        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2417                                   bprm->p, info->stack_limit);
2418        info->file_string = bprm->p;
2419        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2420                                   bprm->p, info->stack_limit);
2421    }
2422
2423    g_free(scratch);
2424
2425    if (!bprm->p) {
2426        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2427        exit(-1);
2428    }
2429
2430    if (elf_interpreter) {
2431        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2432
2433        /* If the program interpreter is one of these two, then assume
2434           an iBCS2 image.  Otherwise assume a native linux image.  */
2435
2436        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2437            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2438            info->personality = PER_SVR4;
2439
2440            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2441               and some applications "depend" upon this behavior.  Since
2442               we do not have the power to recompile these, we emulate
2443               the SVr4 behavior.  Sigh.  */
2444            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2445                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2446        }
2447    }
2448
2449    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2450                                info, (elf_interpreter ? &interp_info : NULL));
2451    info->start_stack = bprm->p;
2452
2453    /* If we have an interpreter, set that as the program's entry point.
2454       Copy the load_bias as well, to help PPC64 interpret the entry
2455       point as a function descriptor.  Do this after creating elf tables
2456       so that we copy the original program entry point into the AUXV.  */
2457    if (elf_interpreter) {
2458        info->load_bias = interp_info.load_bias;
2459        info->entry = interp_info.entry;
2460        free(elf_interpreter);
2461    }
2462
2463#ifdef USE_ELF_CORE_DUMP
2464    bprm->core_dump = &elf_core_dump;
2465#endif
2466
2467    return 0;
2468}
2469
2470#ifdef USE_ELF_CORE_DUMP
2471/*
2472 * Definitions to generate Intel SVR4-like core files.
2473 * These mostly have the same names as the SVR4 types with "target_elf_"
2474 * tacked on the front to prevent clashes with linux definitions,
2475 * and the typedef forms have been avoided.  This is mostly like
2476 * the SVR4 structure, but more Linuxy, with things that Linux does
2477 * not support and which gdb doesn't really use excluded.
2478 *
2479 * Fields we don't dump (their contents is zero) in linux-user qemu
2480 * are marked with XXX.
2481 *
2482 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2483 *
2484 * Porting ELF coredump for target is (quite) simple process.  First you
2485 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2486 * the target resides):
2487 *
2488 * #define USE_ELF_CORE_DUMP
2489 *
2490 * Next you define type of register set used for dumping.  ELF specification
2491 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2492 *
2493 * typedef <target_regtype> target_elf_greg_t;
2494 * #define ELF_NREG <number of registers>
2495 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2496 *
2497 * Last step is to implement target specific function that copies registers
2498 * from given cpu into just specified register set.  Prototype is:
2499 *
2500 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2501 *                                const CPUArchState *env);
2502 *
2503 * Parameters:
2504 *     regs - copy register values into here (allocated and zeroed by caller)
2505 *     env - copy registers from here
2506 *
2507 * Example for ARM target is provided in this file.
2508 */
2509
2510/* An ELF note in memory */
2511struct memelfnote {
2512    const char *name;
2513    size_t     namesz;
2514    size_t     namesz_rounded;
2515    int        type;
2516    size_t     datasz;
2517    size_t     datasz_rounded;
2518    void       *data;
2519    size_t     notesz;
2520};
2521
2522struct target_elf_siginfo {
2523    abi_int    si_signo; /* signal number */
2524    abi_int    si_code;  /* extra code */
2525    abi_int    si_errno; /* errno */
2526};
2527
2528struct target_elf_prstatus {
2529    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2530    abi_short          pr_cursig;    /* Current signal */
2531    abi_ulong          pr_sigpend;   /* XXX */
2532    abi_ulong          pr_sighold;   /* XXX */
2533    target_pid_t       pr_pid;
2534    target_pid_t       pr_ppid;
2535    target_pid_t       pr_pgrp;
2536    target_pid_t       pr_sid;
2537    struct target_timeval pr_utime;  /* XXX User time */
2538    struct target_timeval pr_stime;  /* XXX System time */
2539    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2540    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2541    target_elf_gregset_t      pr_reg;       /* GP registers */
2542    abi_int            pr_fpvalid;   /* XXX */
2543};
2544
2545#define ELF_PRARGSZ     (80) /* Number of chars for args */
2546
2547struct target_elf_prpsinfo {
2548    char         pr_state;       /* numeric process state */
2549    char         pr_sname;       /* char for pr_state */
2550    char         pr_zomb;        /* zombie */
2551    char         pr_nice;        /* nice val */
2552    abi_ulong    pr_flag;        /* flags */
2553    target_uid_t pr_uid;
2554    target_gid_t pr_gid;
2555    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2556    /* Lots missing */
2557    char    pr_fname[16];           /* filename of executable */
2558    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2559};
2560
2561/* Here is the structure in which status of each thread is captured. */
2562struct elf_thread_status {
2563    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2564    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2565#if 0
2566    elf_fpregset_t fpu;             /* NT_PRFPREG */
2567    struct task_struct *thread;
2568    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2569#endif
2570    struct memelfnote notes[1];
2571    int num_notes;
2572};
2573
2574struct elf_note_info {
2575    struct memelfnote   *notes;
2576    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2577    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2578
2579    QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2580#if 0
2581    /*
2582     * Current version of ELF coredump doesn't support
2583     * dumping fp regs etc.
2584     */
2585    elf_fpregset_t *fpu;
2586    elf_fpxregset_t *xfpu;
2587    int thread_status_size;
2588#endif
2589    int notes_size;
2590    int numnote;
2591};
2592
2593struct vm_area_struct {
2594    target_ulong   vma_start;  /* start vaddr of memory region */
2595    target_ulong   vma_end;    /* end vaddr of memory region */
2596    abi_ulong      vma_flags;  /* protection etc. flags for the region */
2597    QTAILQ_ENTRY(vm_area_struct) vma_link;
2598};
2599
2600struct mm_struct {
2601    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2602    int mm_count;           /* number of mappings */
2603};
2604
2605static struct mm_struct *vma_init(void);
2606static void vma_delete(struct mm_struct *);
2607static int vma_add_mapping(struct mm_struct *, target_ulong,
2608                           target_ulong, abi_ulong);
2609static int vma_get_mapping_count(const struct mm_struct *);
2610static struct vm_area_struct *vma_first(const struct mm_struct *);
2611static struct vm_area_struct *vma_next(struct vm_area_struct *);
2612static abi_ulong vma_dump_size(const struct vm_area_struct *);
2613static int vma_walker(void *priv, target_ulong start, target_ulong end,
2614                      unsigned long flags);
2615
2616static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2617static void fill_note(struct memelfnote *, const char *, int,
2618                      unsigned int, void *);
2619static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2620static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2621static void fill_auxv_note(struct memelfnote *, const TaskState *);
2622static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2623static size_t note_size(const struct memelfnote *);
2624static void free_note_info(struct elf_note_info *);
2625static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2626static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2627static int core_dump_filename(const TaskState *, char *, size_t);
2628
2629static int dump_write(int, const void *, size_t);
2630static int write_note(struct memelfnote *, int);
2631static int write_note_info(struct elf_note_info *, int);
2632
2633#ifdef BSWAP_NEEDED
2634static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2635{
2636    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2637    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2638    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2639    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2640    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2641    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2642    prstatus->pr_pid = tswap32(prstatus->pr_pid);
2643    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2644    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2645    prstatus->pr_sid = tswap32(prstatus->pr_sid);
2646    /* cpu times are not filled, so we skip them */
2647    /* regs should be in correct format already */
2648    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2649}
2650
2651static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2652{
2653    psinfo->pr_flag = tswapal(psinfo->pr_flag);
2654    psinfo->pr_uid = tswap16(psinfo->pr_uid);
2655    psinfo->pr_gid = tswap16(psinfo->pr_gid);
2656    psinfo->pr_pid = tswap32(psinfo->pr_pid);
2657    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2658    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2659    psinfo->pr_sid = tswap32(psinfo->pr_sid);
2660}
2661
2662static void bswap_note(struct elf_note *en)
2663{
2664    bswap32s(&en->n_namesz);
2665    bswap32s(&en->n_descsz);
2666    bswap32s(&en->n_type);
2667}
2668#else
2669static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2670static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2671static inline void bswap_note(struct elf_note *en) { }
2672#endif /* BSWAP_NEEDED */
2673
2674/*
2675 * Minimal support for linux memory regions.  These are needed
2676 * when we are finding out what memory exactly belongs to
2677 * emulated process.  No locks needed here, as long as
2678 * thread that received the signal is stopped.
2679 */
2680
2681static struct mm_struct *vma_init(void)
2682{
2683    struct mm_struct *mm;
2684
2685    if ((mm = g_malloc(sizeof (*mm))) == NULL)
2686        return (NULL);
2687
2688    mm->mm_count = 0;
2689    QTAILQ_INIT(&mm->mm_mmap);
2690
2691    return (mm);
2692}
2693
2694static void vma_delete(struct mm_struct *mm)
2695{
2696    struct vm_area_struct *vma;
2697
2698    while ((vma = vma_first(mm)) != NULL) {
2699        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2700        g_free(vma);
2701    }
2702    g_free(mm);
2703}
2704
2705static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2706                           target_ulong end, abi_ulong flags)
2707{
2708    struct vm_area_struct *vma;
2709
2710    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2711        return (-1);
2712
2713    vma->vma_start = start;
2714    vma->vma_end = end;
2715    vma->vma_flags = flags;
2716
2717    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2718    mm->mm_count++;
2719
2720    return (0);
2721}
2722
2723static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2724{
2725    return (QTAILQ_FIRST(&mm->mm_mmap));
2726}
2727
2728static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2729{
2730    return (QTAILQ_NEXT(vma, vma_link));
2731}
2732
2733static int vma_get_mapping_count(const struct mm_struct *mm)
2734{
2735    return (mm->mm_count);
2736}
2737
2738/*
2739 * Calculate file (dump) size of given memory region.
2740 */
2741static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2742{
2743    /* if we cannot even read the first page, skip it */
2744    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2745        return (0);
2746
2747    /*
2748     * Usually we don't dump executable pages as they contain
2749     * non-writable code that debugger can read directly from
2750     * target library etc.  However, thread stacks are marked
2751     * also executable so we read in first page of given region
2752     * and check whether it contains elf header.  If there is
2753     * no elf header, we dump it.
2754     */
2755    if (vma->vma_flags & PROT_EXEC) {
2756        char page[TARGET_PAGE_SIZE];
2757
2758        copy_from_user(page, vma->vma_start, sizeof (page));
2759        if ((page[EI_MAG0] == ELFMAG0) &&
2760            (page[EI_MAG1] == ELFMAG1) &&
2761            (page[EI_MAG2] == ELFMAG2) &&
2762            (page[EI_MAG3] == ELFMAG3)) {
2763            /*
2764             * Mappings are possibly from ELF binary.  Don't dump
2765             * them.
2766             */
2767            return (0);
2768        }
2769    }
2770
2771    return (vma->vma_end - vma->vma_start);
2772}
2773
2774static int vma_walker(void *priv, target_ulong start, target_ulong end,
2775                      unsigned long flags)
2776{
2777    struct mm_struct *mm = (struct mm_struct *)priv;
2778
2779    vma_add_mapping(mm, start, end, flags);
2780    return (0);
2781}
2782
2783static void fill_note(struct memelfnote *note, const char *name, int type,
2784                      unsigned int sz, void *data)
2785{
2786    unsigned int namesz;
2787
2788    namesz = strlen(name) + 1;
2789    note->name = name;
2790    note->namesz = namesz;
2791    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2792    note->type = type;
2793    note->datasz = sz;
2794    note->datasz_rounded = roundup(sz, sizeof (int32_t));
2795
2796    note->data = data;
2797
2798    /*
2799     * We calculate rounded up note size here as specified by
2800     * ELF document.
2801     */
2802    note->notesz = sizeof (struct elf_note) +
2803        note->namesz_rounded + note->datasz_rounded;
2804}
2805
2806static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2807                            uint32_t flags)
2808{
2809    (void) memset(elf, 0, sizeof(*elf));
2810
2811    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2812    elf->e_ident[EI_CLASS] = ELF_CLASS;
2813    elf->e_ident[EI_DATA] = ELF_DATA;
2814    elf->e_ident[EI_VERSION] = EV_CURRENT;
2815    elf->e_ident[EI_OSABI] = ELF_OSABI;
2816
2817    elf->e_type = ET_CORE;
2818    elf->e_machine = machine;
2819    elf->e_version = EV_CURRENT;
2820    elf->e_phoff = sizeof(struct elfhdr);
2821    elf->e_flags = flags;
2822    elf->e_ehsize = sizeof(struct elfhdr);
2823    elf->e_phentsize = sizeof(struct elf_phdr);
2824    elf->e_phnum = segs;
2825
2826    bswap_ehdr(elf);
2827}
2828
2829static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2830{
2831    phdr->p_type = PT_NOTE;
2832    phdr->p_offset = offset;
2833    phdr->p_vaddr = 0;
2834    phdr->p_paddr = 0;
2835    phdr->p_filesz = sz;
2836    phdr->p_memsz = 0;
2837    phdr->p_flags = 0;
2838    phdr->p_align = 0;
2839
2840    bswap_phdr(phdr, 1);
2841}
2842
2843static size_t note_size(const struct memelfnote *note)
2844{
2845    return (note->notesz);
2846}
2847
2848static void fill_prstatus(struct target_elf_prstatus *prstatus,
2849                          const TaskState *ts, int signr)
2850{
2851    (void) memset(prstatus, 0, sizeof (*prstatus));
2852    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2853    prstatus->pr_pid = ts->ts_tid;
2854    prstatus->pr_ppid = getppid();
2855    prstatus->pr_pgrp = getpgrp();
2856    prstatus->pr_sid = getsid(0);
2857
2858    bswap_prstatus(prstatus);
2859}
2860
2861static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2862{
2863    char *base_filename;
2864    unsigned int i, len;
2865
2866    (void) memset(psinfo, 0, sizeof (*psinfo));
2867
2868    len = ts->info->arg_end - ts->info->arg_start;
2869    if (len >= ELF_PRARGSZ)
2870        len = ELF_PRARGSZ - 1;
2871    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2872        return -EFAULT;
2873    for (i = 0; i < len; i++)
2874        if (psinfo->pr_psargs[i] == 0)
2875            psinfo->pr_psargs[i] = ' ';
2876    psinfo->pr_psargs[len] = 0;
2877
2878    psinfo->pr_pid = getpid();
2879    psinfo->pr_ppid = getppid();
2880    psinfo->pr_pgrp = getpgrp();
2881    psinfo->pr_sid = getsid(0);
2882    psinfo->pr_uid = getuid();
2883    psinfo->pr_gid = getgid();
2884
2885    base_filename = g_path_get_basename(ts->bprm->filename);
2886    /*
2887     * Using strncpy here is fine: at max-length,
2888     * this field is not NUL-terminated.
2889     */
2890    (void) strncpy(psinfo->pr_fname, base_filename,
2891                   sizeof(psinfo->pr_fname));
2892
2893    g_free(base_filename);
2894    bswap_psinfo(psinfo);
2895    return (0);
2896}
2897
2898static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2899{
2900    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2901    elf_addr_t orig_auxv = auxv;
2902    void *ptr;
2903    int len = ts->info->auxv_len;
2904
2905    /*
2906     * Auxiliary vector is stored in target process stack.  It contains
2907     * {type, value} pairs that we need to dump into note.  This is not
2908     * strictly necessary but we do it here for sake of completeness.
2909     */
2910
2911    /* read in whole auxv vector and copy it to memelfnote */
2912    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2913    if (ptr != NULL) {
2914        fill_note(note, "CORE", NT_AUXV, len, ptr);
2915        unlock_user(ptr, auxv, len);
2916    }
2917}
2918
2919/*
2920 * Constructs name of coredump file.  We have following convention
2921 * for the name:
2922 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2923 *
2924 * Returns 0 in case of success, -1 otherwise (errno is set).
2925 */
2926static int core_dump_filename(const TaskState *ts, char *buf,
2927                              size_t bufsize)
2928{
2929    char timestamp[64];
2930    char *base_filename = NULL;
2931    struct timeval tv;
2932    struct tm tm;
2933
2934    assert(bufsize >= PATH_MAX);
2935
2936    if (gettimeofday(&tv, NULL) < 0) {
2937        (void) fprintf(stderr, "unable to get current timestamp: %s",
2938                       strerror(errno));
2939        return (-1);
2940    }
2941
2942    base_filename = g_path_get_basename(ts->bprm->filename);
2943    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2944                    localtime_r(&tv.tv_sec, &tm));
2945    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2946                    base_filename, timestamp, (int)getpid());
2947    g_free(base_filename);
2948
2949    return (0);
2950}
2951
2952static int dump_write(int fd, const void *ptr, size_t size)
2953{
2954    const char *bufp = (const char *)ptr;
2955    ssize_t bytes_written, bytes_left;
2956    struct rlimit dumpsize;
2957    off_t pos;
2958
2959    bytes_written = 0;
2960    getrlimit(RLIMIT_CORE, &dumpsize);
2961    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2962        if (errno == ESPIPE) { /* not a seekable stream */
2963            bytes_left = size;
2964        } else {
2965            return pos;
2966        }
2967    } else {
2968        if (dumpsize.rlim_cur <= pos) {
2969            return -1;
2970        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2971            bytes_left = size;
2972        } else {
2973            size_t limit_left=dumpsize.rlim_cur - pos;
2974            bytes_left = limit_left >= size ? size : limit_left ;
2975        }
2976    }
2977
2978    /*
2979     * In normal conditions, single write(2) should do but
2980     * in case of socket etc. this mechanism is more portable.
2981     */
2982    do {
2983        bytes_written = write(fd, bufp, bytes_left);
2984        if (bytes_written < 0) {
2985            if (errno == EINTR)
2986                continue;
2987            return (-1);
2988        } else if (bytes_written == 0) { /* eof */
2989            return (-1);
2990        }
2991        bufp += bytes_written;
2992        bytes_left -= bytes_written;
2993    } while (bytes_left > 0);
2994
2995    return (0);
2996}
2997
2998static int write_note(struct memelfnote *men, int fd)
2999{
3000    struct elf_note en;
3001
3002    en.n_namesz = men->namesz;
3003    en.n_type = men->type;
3004    en.n_descsz = men->datasz;
3005
3006    bswap_note(&en);
3007
3008    if (dump_write(fd, &en, sizeof(en)) != 0)
3009        return (-1);
3010    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3011        return (-1);
3012    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3013        return (-1);
3014
3015    return (0);
3016}
3017
3018static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3019{
3020    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3021    TaskState *ts = (TaskState *)cpu->opaque;
3022    struct elf_thread_status *ets;
3023
3024    ets = g_malloc0(sizeof (*ets));
3025    ets->num_notes = 1; /* only prstatus is dumped */
3026    fill_prstatus(&ets->prstatus, ts, 0);
3027    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3028    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3029              &ets->prstatus);
3030
3031    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3032
3033    info->notes_size += note_size(&ets->notes[0]);
3034}
3035
3036static void init_note_info(struct elf_note_info *info)
3037{
3038    /* Initialize the elf_note_info structure so that it is at
3039     * least safe to call free_note_info() on it. Must be
3040     * called before calling fill_note_info().
3041     */
3042    memset(info, 0, sizeof (*info));
3043    QTAILQ_INIT(&info->thread_list);
3044}
3045
3046static int fill_note_info(struct elf_note_info *info,
3047                          long signr, const CPUArchState *env)
3048{
3049#define NUMNOTES 3
3050    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3051    TaskState *ts = (TaskState *)cpu->opaque;
3052    int i;
3053
3054    info->notes = g_new0(struct memelfnote, NUMNOTES);
3055    if (info->notes == NULL)
3056        return (-ENOMEM);
3057    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3058    if (info->prstatus == NULL)
3059        return (-ENOMEM);
3060    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3061    if (info->prstatus == NULL)
3062        return (-ENOMEM);
3063
3064    /*
3065     * First fill in status (and registers) of current thread
3066     * including process info & aux vector.
3067     */
3068    fill_prstatus(info->prstatus, ts, signr);
3069    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3070    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3071              sizeof (*info->prstatus), info->prstatus);
3072    fill_psinfo(info->psinfo, ts);
3073    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3074              sizeof (*info->psinfo), info->psinfo);
3075    fill_auxv_note(&info->notes[2], ts);
3076    info->numnote = 3;
3077
3078    info->notes_size = 0;
3079    for (i = 0; i < info->numnote; i++)
3080        info->notes_size += note_size(&info->notes[i]);
3081
3082    /* read and fill status of all threads */
3083    cpu_list_lock();
3084    CPU_FOREACH(cpu) {
3085        if (cpu == thread_cpu) {
3086            continue;
3087        }
3088        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3089    }
3090    cpu_list_unlock();
3091
3092    return (0);
3093}
3094
3095static void free_note_info(struct elf_note_info *info)
3096{
3097    struct elf_thread_status *ets;
3098
3099    while (!QTAILQ_EMPTY(&info->thread_list)) {
3100        ets = QTAILQ_FIRST(&info->thread_list);
3101        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3102        g_free(ets);
3103    }
3104
3105    g_free(info->prstatus);
3106    g_free(info->psinfo);
3107    g_free(info->notes);
3108}
3109
3110static int write_note_info(struct elf_note_info *info, int fd)
3111{
3112    struct elf_thread_status *ets;
3113    int i, error = 0;
3114
3115    /* write prstatus, psinfo and auxv for current thread */
3116    for (i = 0; i < info->numnote; i++)
3117        if ((error = write_note(&info->notes[i], fd)) != 0)
3118            return (error);
3119
3120    /* write prstatus for each thread */
3121    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3122        if ((error = write_note(&ets->notes[0], fd)) != 0)
3123            return (error);
3124    }
3125
3126    return (0);
3127}
3128
3129/*
3130 * Write out ELF coredump.
3131 *
3132 * See documentation of ELF object file format in:
3133 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3134 *
3135 * Coredump format in linux is following:
3136 *
3137 * 0   +----------------------+         \
3138 *     | ELF header           | ET_CORE  |
3139 *     +----------------------+          |
3140 *     | ELF program headers  |          |--- headers
3141 *     | - NOTE section       |          |
3142 *     | - PT_LOAD sections   |          |
3143 *     +----------------------+         /
3144 *     | NOTEs:               |
3145 *     | - NT_PRSTATUS        |
3146 *     | - NT_PRSINFO         |
3147 *     | - NT_AUXV            |
3148 *     +----------------------+ <-- aligned to target page
3149 *     | Process memory dump  |
3150 *     :                      :
3151 *     .                      .
3152 *     :                      :
3153 *     |                      |
3154 *     +----------------------+
3155 *
3156 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3157 * NT_PRSINFO  -> struct elf_prpsinfo
3158 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3159 *
3160 * Format follows System V format as close as possible.  Current
3161 * version limitations are as follows:
3162 *     - no floating point registers are dumped
3163 *
3164 * Function returns 0 in case of success, negative errno otherwise.
3165 *
3166 * TODO: make this work also during runtime: it should be
3167 * possible to force coredump from running process and then
3168 * continue processing.  For example qemu could set up SIGUSR2
3169 * handler (provided that target process haven't registered
3170 * handler for that) that does the dump when signal is received.
3171 */
3172static int elf_core_dump(int signr, const CPUArchState *env)
3173{
3174    const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3175    const TaskState *ts = (const TaskState *)cpu->opaque;
3176    struct vm_area_struct *vma = NULL;
3177    char corefile[PATH_MAX];
3178    struct elf_note_info info;
3179    struct elfhdr elf;
3180    struct elf_phdr phdr;
3181    struct rlimit dumpsize;
3182    struct mm_struct *mm = NULL;
3183    off_t offset = 0, data_offset = 0;
3184    int segs = 0;
3185    int fd = -1;
3186
3187    init_note_info(&info);
3188
3189    errno = 0;
3190    getrlimit(RLIMIT_CORE, &dumpsize);
3191    if (dumpsize.rlim_cur == 0)
3192        return 0;
3193
3194    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3195        return (-errno);
3196
3197    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3198                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3199        return (-errno);
3200
3201    /*
3202     * Walk through target process memory mappings and
3203     * set up structure containing this information.  After
3204     * this point vma_xxx functions can be used.
3205     */
3206    if ((mm = vma_init()) == NULL)
3207        goto out;
3208
3209    walk_memory_regions(mm, vma_walker);
3210    segs = vma_get_mapping_count(mm);
3211
3212    /*
3213     * Construct valid coredump ELF header.  We also
3214     * add one more segment for notes.
3215     */
3216    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3217    if (dump_write(fd, &elf, sizeof (elf)) != 0)
3218        goto out;
3219
3220    /* fill in the in-memory version of notes */
3221    if (fill_note_info(&info, signr, env) < 0)
3222        goto out;
3223
3224    offset += sizeof (elf);                             /* elf header */
3225    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3226
3227    /* write out notes program header */
3228    fill_elf_note_phdr(&phdr, info.notes_size, offset);
3229
3230    offset += info.notes_size;
3231    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3232        goto out;
3233
3234    /*
3235     * ELF specification wants data to start at page boundary so
3236     * we align it here.
3237     */
3238    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3239
3240    /*
3241     * Write program headers for memory regions mapped in
3242     * the target process.
3243     */
3244    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3245        (void) memset(&phdr, 0, sizeof (phdr));
3246
3247        phdr.p_type = PT_LOAD;
3248        phdr.p_offset = offset;
3249        phdr.p_vaddr = vma->vma_start;
3250        phdr.p_paddr = 0;
3251        phdr.p_filesz = vma_dump_size(vma);
3252        offset += phdr.p_filesz;
3253        phdr.p_memsz = vma->vma_end - vma->vma_start;
3254        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3255        if (vma->vma_flags & PROT_WRITE)
3256            phdr.p_flags |= PF_W;
3257        if (vma->vma_flags & PROT_EXEC)
3258            phdr.p_flags |= PF_X;
3259        phdr.p_align = ELF_EXEC_PAGESIZE;
3260
3261        bswap_phdr(&phdr, 1);
3262        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3263            goto out;
3264        }
3265    }
3266
3267    /*
3268     * Next we write notes just after program headers.  No
3269     * alignment needed here.
3270     */
3271    if (write_note_info(&info, fd) < 0)
3272        goto out;
3273
3274    /* align data to page boundary */
3275    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3276        goto out;
3277
3278    /*
3279     * Finally we can dump process memory into corefile as well.
3280     */
3281    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3282        abi_ulong addr;
3283        abi_ulong end;
3284
3285        end = vma->vma_start + vma_dump_size(vma);
3286
3287        for (addr = vma->vma_start; addr < end;
3288             addr += TARGET_PAGE_SIZE) {
3289            char page[TARGET_PAGE_SIZE];
3290            int error;
3291
3292            /*
3293             *  Read in page from target process memory and
3294             *  write it to coredump file.
3295             */
3296            error = copy_from_user(page, addr, sizeof (page));
3297            if (error != 0) {
3298                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3299                               addr);
3300                errno = -error;
3301                goto out;
3302            }
3303            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3304                goto out;
3305        }
3306    }
3307
3308 out:
3309    free_note_info(&info);
3310    if (mm != NULL)
3311        vma_delete(mm);
3312    (void) close(fd);
3313
3314    if (errno != 0)
3315        return (-errno);
3316    return (0);
3317}
3318#endif /* USE_ELF_CORE_DUMP */
3319
3320void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3321{
3322    init_thread(regs, infop);
3323}
3324