qemu/target/arm/arm-powerctl.c
<<
>>
Prefs
   1/*
   2 * QEMU support -- ARM Power Control specific functions.
   3 *
   4 * Copyright (c) 2016 Jean-Christophe Dubois
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include "cpu.h"
  13#include "cpu-qom.h"
  14#include "internals.h"
  15#include "arm-powerctl.h"
  16#include "qemu/log.h"
  17#include "qemu/main-loop.h"
  18#include "exec/exec-all.h"
  19
  20#ifndef DEBUG_ARM_POWERCTL
  21#define DEBUG_ARM_POWERCTL 0
  22#endif
  23
  24#define DPRINTF(fmt, args...) \
  25    do { \
  26        if (DEBUG_ARM_POWERCTL) { \
  27            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
  28        } \
  29    } while (0)
  30
  31CPUState *arm_get_cpu_by_id(uint64_t id)
  32{
  33    CPUState *cpu;
  34
  35    DPRINTF("cpu %" PRId64 "\n", id);
  36
  37    CPU_FOREACH(cpu) {
  38        ARMCPU *armcpu = ARM_CPU(cpu);
  39
  40        if (armcpu->mp_affinity == id) {
  41            return cpu;
  42        }
  43    }
  44
  45    qemu_log_mask(LOG_GUEST_ERROR,
  46                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
  47                  __func__, id);
  48
  49    return NULL;
  50}
  51
  52struct CpuOnInfo {
  53    uint64_t entry;
  54    uint64_t context_id;
  55    uint32_t target_el;
  56    bool target_aa64;
  57};
  58
  59
  60static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
  61                                      run_on_cpu_data data)
  62{
  63    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
  64    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
  65
  66    /* Initialize the cpu we are turning on */
  67    cpu_reset(target_cpu_state);
  68    target_cpu_state->halted = 0;
  69
  70    if (info->target_aa64) {
  71        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
  72                                                 ARM_FEATURE_EL3)) {
  73            /*
  74             * As target mode is AArch64, we need to set lower
  75             * exception level (the requested level 2) to AArch64
  76             */
  77            target_cpu->env.cp15.scr_el3 |= SCR_RW;
  78        }
  79
  80        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
  81                                                 ARM_FEATURE_EL2)) {
  82            /*
  83             * As target mode is AArch64, we need to set lower
  84             * exception level (the requested level 1) to AArch64
  85             */
  86            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
  87        }
  88
  89        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
  90    } else {
  91        /* We are requested to boot in AArch32 mode */
  92        static const uint32_t mode_for_el[] = { 0,
  93                                                ARM_CPU_MODE_SVC,
  94                                                ARM_CPU_MODE_HYP,
  95                                                ARM_CPU_MODE_SVC };
  96
  97        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
  98                   CPSRWriteRaw);
  99    }
 100
 101    if (info->target_el == 3) {
 102        /* Processor is in secure mode */
 103        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 104    } else {
 105        /* Processor is not in secure mode */
 106        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 107    }
 108
 109    /* We check if the started CPU is now at the correct level */
 110    assert(info->target_el == arm_current_el(&target_cpu->env));
 111
 112    if (info->target_aa64) {
 113        target_cpu->env.xregs[0] = info->context_id;
 114        target_cpu->env.thumb = false;
 115    } else {
 116        target_cpu->env.regs[0] = info->context_id;
 117        target_cpu->env.thumb = info->entry & 1;
 118        info->entry &= 0xfffffffe;
 119    }
 120
 121    /* Start the new CPU at the requested address */
 122    cpu_set_pc(target_cpu_state, info->entry);
 123
 124    g_free(info);
 125
 126    /* Finally set the power status */
 127    assert(qemu_mutex_iothread_locked());
 128    target_cpu->power_state = PSCI_ON;
 129}
 130
 131int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 132                   uint32_t target_el, bool target_aa64)
 133{
 134    CPUState *target_cpu_state;
 135    ARMCPU *target_cpu;
 136    struct CpuOnInfo *info;
 137
 138    assert(qemu_mutex_iothread_locked());
 139
 140    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 141            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 142            context_id);
 143
 144    /* requested EL level need to be in the 1 to 3 range */
 145    assert((target_el > 0) && (target_el < 4));
 146
 147    if (target_aa64 && (entry & 3)) {
 148        /*
 149         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 150         * aligned.
 151         */
 152        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 153    }
 154
 155    /* Retrieve the cpu we are powering up */
 156    target_cpu_state = arm_get_cpu_by_id(cpuid);
 157    if (!target_cpu_state) {
 158        /* The cpu was not found */
 159        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 160    }
 161
 162    target_cpu = ARM_CPU(target_cpu_state);
 163    if (target_cpu->power_state == PSCI_ON) {
 164        qemu_log_mask(LOG_GUEST_ERROR,
 165                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 166                      __func__, cpuid);
 167        return QEMU_ARM_POWERCTL_ALREADY_ON;
 168    }
 169
 170    /*
 171     * The newly brought CPU is requested to enter the exception level
 172     * "target_el" and be in the requested mode (AArch64 or AArch32).
 173     */
 174
 175    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 176        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 177        /*
 178         * The CPU does not support requested level
 179         */
 180        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 181    }
 182
 183    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 184        /*
 185         * For now we don't support booting an AArch64 CPU in AArch32 mode
 186         * TODO: We should add this support later
 187         */
 188        qemu_log_mask(LOG_UNIMP,
 189                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 190                      " in AArch32 mode is not supported yet\n",
 191                      __func__, cpuid);
 192        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 193    }
 194
 195    /*
 196     * If another CPU has powered the target on we are in the state
 197     * ON_PENDING and additional attempts to power on the CPU should
 198     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 199     * spec)
 200     */
 201    if (target_cpu->power_state == PSCI_ON_PENDING) {
 202        qemu_log_mask(LOG_GUEST_ERROR,
 203                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 204                      __func__, cpuid);
 205        return QEMU_ARM_POWERCTL_ON_PENDING;
 206    }
 207
 208    /* To avoid racing with a CPU we are just kicking off we do the
 209     * final bit of preparation for the work in the target CPUs
 210     * context.
 211     */
 212    info = g_new(struct CpuOnInfo, 1);
 213    info->entry = entry;
 214    info->context_id = context_id;
 215    info->target_el = target_el;
 216    info->target_aa64 = target_aa64;
 217
 218    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 219                     RUN_ON_CPU_HOST_PTR(info));
 220
 221    /* We are good to go */
 222    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 223}
 224
 225static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 226                                       run_on_cpu_data data)
 227{
 228    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 229
 230    assert(qemu_mutex_iothread_locked());
 231    target_cpu->power_state = PSCI_OFF;
 232    target_cpu_state->halted = 1;
 233    target_cpu_state->exception_index = EXCP_HLT;
 234}
 235
 236int arm_set_cpu_off(uint64_t cpuid)
 237{
 238    CPUState *target_cpu_state;
 239    ARMCPU *target_cpu;
 240
 241    assert(qemu_mutex_iothread_locked());
 242
 243    DPRINTF("cpu %" PRId64 "\n", cpuid);
 244
 245    /* change to the cpu we are powering up */
 246    target_cpu_state = arm_get_cpu_by_id(cpuid);
 247    if (!target_cpu_state) {
 248        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 249    }
 250    target_cpu = ARM_CPU(target_cpu_state);
 251    if (target_cpu->power_state == PSCI_OFF) {
 252        qemu_log_mask(LOG_GUEST_ERROR,
 253                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 254                      __func__, cpuid);
 255        return QEMU_ARM_POWERCTL_IS_OFF;
 256    }
 257
 258    /* Queue work to run under the target vCPUs context */
 259    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 260                     RUN_ON_CPU_NULL);
 261
 262    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 263}
 264
 265static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 266                                     run_on_cpu_data data)
 267{
 268    /* Reset the cpu */
 269    cpu_reset(target_cpu_state);
 270}
 271
 272int arm_reset_cpu(uint64_t cpuid)
 273{
 274    CPUState *target_cpu_state;
 275    ARMCPU *target_cpu;
 276
 277    assert(qemu_mutex_iothread_locked());
 278
 279    DPRINTF("cpu %" PRId64 "\n", cpuid);
 280
 281    /* change to the cpu we are resetting */
 282    target_cpu_state = arm_get_cpu_by_id(cpuid);
 283    if (!target_cpu_state) {
 284        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 285    }
 286    target_cpu = ARM_CPU(target_cpu_state);
 287
 288    if (target_cpu->power_state == PSCI_OFF) {
 289        qemu_log_mask(LOG_GUEST_ERROR,
 290                      "[ARM]%s: CPU %" PRId64 " is off\n",
 291                      __func__, cpuid);
 292        return QEMU_ARM_POWERCTL_IS_OFF;
 293    }
 294
 295    /* Queue work to run under the target vCPUs context */
 296    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 297                     RUN_ON_CPU_NULL);
 298
 299    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 300}
 301