qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  31
  32#define MAX_PHYS_ADDR_SPACE_BITS 62
  33#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  34
  35#define TYPE_MEMORY_REGION "qemu:memory-region"
  36#define MEMORY_REGION(obj) \
  37        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  38
  39#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  40#define IOMMU_MEMORY_REGION(obj) \
  41        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  42#define IOMMU_MEMORY_REGION_CLASS(klass) \
  43        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  44                         TYPE_IOMMU_MEMORY_REGION)
  45#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  46        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  47                         TYPE_IOMMU_MEMORY_REGION)
  48
  49typedef struct MemoryRegionOps MemoryRegionOps;
  50typedef struct MemoryRegionMmio MemoryRegionMmio;
  51
  52struct MemoryRegionMmio {
  53    CPUReadMemoryFunc *read[3];
  54    CPUWriteMemoryFunc *write[3];
  55};
  56
  57typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  58
  59/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  60typedef enum {
  61    IOMMU_NONE = 0,
  62    IOMMU_RO   = 1,
  63    IOMMU_WO   = 2,
  64    IOMMU_RW   = 3,
  65} IOMMUAccessFlags;
  66
  67#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  68
  69struct IOMMUTLBEntry {
  70    AddressSpace    *target_as;
  71    hwaddr           iova;
  72    hwaddr           translated_addr;
  73    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  74    IOMMUAccessFlags perm;
  75};
  76
  77/*
  78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  79 * register with one or multiple IOMMU Notifier capability bit(s).
  80 */
  81typedef enum {
  82    IOMMU_NOTIFIER_NONE = 0,
  83    /* Notify cache invalidations */
  84    IOMMU_NOTIFIER_UNMAP = 0x1,
  85    /* Notify entry changes (newly created entries) */
  86    IOMMU_NOTIFIER_MAP = 0x2,
  87} IOMMUNotifierFlag;
  88
  89#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  90
  91struct IOMMUNotifier;
  92typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  93                            IOMMUTLBEntry *data);
  94
  95struct IOMMUNotifier {
  96    IOMMUNotify notify;
  97    IOMMUNotifierFlag notifier_flags;
  98    /* Notify for address space range start <= addr <= end */
  99    hwaddr start;
 100    hwaddr end;
 101    QLIST_ENTRY(IOMMUNotifier) node;
 102};
 103typedef struct IOMMUNotifier IOMMUNotifier;
 104
 105static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 106                                       IOMMUNotifierFlag flags,
 107                                       hwaddr start, hwaddr end)
 108{
 109    n->notify = fn;
 110    n->notifier_flags = flags;
 111    n->start = start;
 112    n->end = end;
 113}
 114
 115/*
 116 * Memory region callbacks
 117 */
 118struct MemoryRegionOps {
 119    /* Read from the memory region. @addr is relative to @mr; @size is
 120     * in bytes. */
 121    uint64_t (*read)(void *opaque,
 122                     hwaddr addr,
 123                     unsigned size);
 124    /* Write to the memory region. @addr is relative to @mr; @size is
 125     * in bytes. */
 126    void (*write)(void *opaque,
 127                  hwaddr addr,
 128                  uint64_t data,
 129                  unsigned size);
 130
 131    MemTxResult (*read_with_attrs)(void *opaque,
 132                                   hwaddr addr,
 133                                   uint64_t *data,
 134                                   unsigned size,
 135                                   MemTxAttrs attrs);
 136    MemTxResult (*write_with_attrs)(void *opaque,
 137                                    hwaddr addr,
 138                                    uint64_t data,
 139                                    unsigned size,
 140                                    MemTxAttrs attrs);
 141    /* Instruction execution pre-callback:
 142     * @addr is the address of the access relative to the @mr.
 143     * @size is the size of the area returned by the callback.
 144     * @offset is the location of the pointer inside @mr.
 145     *
 146     * Returns a pointer to a location which contains guest code.
 147     */
 148    void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
 149                         unsigned *offset);
 150
 151    enum device_endian endianness;
 152    /* Guest-visible constraints: */
 153    struct {
 154        /* If nonzero, specify bounds on access sizes beyond which a machine
 155         * check is thrown.
 156         */
 157        unsigned min_access_size;
 158        unsigned max_access_size;
 159        /* If true, unaligned accesses are supported.  Otherwise unaligned
 160         * accesses throw machine checks.
 161         */
 162         bool unaligned;
 163        /*
 164         * If present, and returns #false, the transaction is not accepted
 165         * by the device (and results in machine dependent behaviour such
 166         * as a machine check exception).
 167         */
 168        bool (*accepts)(void *opaque, hwaddr addr,
 169                        unsigned size, bool is_write);
 170    } valid;
 171    /* Internal implementation constraints: */
 172    struct {
 173        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 174         * will be rounded upwards and a partial result will be returned.
 175         */
 176        unsigned min_access_size;
 177        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 178         * will be done as a series of accesses with smaller sizes.
 179         */
 180        unsigned max_access_size;
 181        /* If true, unaligned accesses are supported.  Otherwise all accesses
 182         * are converted to (possibly multiple) naturally aligned accesses.
 183         */
 184        bool unaligned;
 185    } impl;
 186
 187    /* If .read and .write are not present, old_mmio may be used for
 188     * backwards compatibility with old mmio registration
 189     */
 190    const MemoryRegionMmio old_mmio;
 191};
 192
 193typedef struct IOMMUMemoryRegionClass {
 194    /* private */
 195    struct DeviceClass parent_class;
 196
 197    /*
 198     * Return a TLB entry that contains a given address. Flag should
 199     * be the access permission of this translation operation. We can
 200     * set flag to IOMMU_NONE to mean that we don't need any
 201     * read/write permission checks, like, when for region replay.
 202     */
 203    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 204                               IOMMUAccessFlags flag);
 205    /* Returns minimum supported page size */
 206    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 207    /* Called when IOMMU Notifier flag changed */
 208    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 209                                IOMMUNotifierFlag old_flags,
 210                                IOMMUNotifierFlag new_flags);
 211    /* Set this up to provide customized IOMMU replay function */
 212    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 213} IOMMUMemoryRegionClass;
 214
 215typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 216typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 217
 218struct MemoryRegion {
 219    Object parent_obj;
 220
 221    /* All fields are private - violators will be prosecuted */
 222
 223    /* The following fields should fit in a cache line */
 224    bool romd_mode;
 225    bool ram;
 226    bool subpage;
 227    bool readonly; /* For RAM regions */
 228    bool rom_device;
 229    bool flush_coalesced_mmio;
 230    bool global_locking;
 231    uint8_t dirty_log_mask;
 232    bool is_iommu;
 233    RAMBlock *ram_block;
 234    Object *owner;
 235
 236    const MemoryRegionOps *ops;
 237    void *opaque;
 238    MemoryRegion *container;
 239    Int128 size;
 240    hwaddr addr;
 241    void (*destructor)(MemoryRegion *mr);
 242    uint64_t align;
 243    bool terminates;
 244    bool ram_device;
 245    bool enabled;
 246    bool warning_printed; /* For reservations */
 247    uint8_t vga_logging_count;
 248    MemoryRegion *alias;
 249    hwaddr alias_offset;
 250    int32_t priority;
 251    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 252    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 253    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 254    const char *name;
 255    unsigned ioeventfd_nb;
 256    MemoryRegionIoeventfd *ioeventfds;
 257};
 258
 259struct IOMMUMemoryRegion {
 260    MemoryRegion parent_obj;
 261
 262    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 263    IOMMUNotifierFlag iommu_notify_flags;
 264};
 265
 266#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 267    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 268
 269/**
 270 * MemoryListener: callbacks structure for updates to the physical memory map
 271 *
 272 * Allows a component to adjust to changes in the guest-visible memory map.
 273 * Use with memory_listener_register() and memory_listener_unregister().
 274 */
 275struct MemoryListener {
 276    void (*begin)(MemoryListener *listener);
 277    void (*commit)(MemoryListener *listener);
 278    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 279    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 280    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 281    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 282                      int old, int new);
 283    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 284                     int old, int new);
 285    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 286    void (*log_global_start)(MemoryListener *listener);
 287    void (*log_global_stop)(MemoryListener *listener);
 288    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 289                        bool match_data, uint64_t data, EventNotifier *e);
 290    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 291                        bool match_data, uint64_t data, EventNotifier *e);
 292    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 293                               hwaddr addr, hwaddr len);
 294    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 295                               hwaddr addr, hwaddr len);
 296    /* Lower = earlier (during add), later (during del) */
 297    unsigned priority;
 298    AddressSpace *address_space;
 299    QTAILQ_ENTRY(MemoryListener) link;
 300    QTAILQ_ENTRY(MemoryListener) link_as;
 301};
 302
 303/**
 304 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 305 */
 306struct AddressSpace {
 307    /* All fields are private. */
 308    struct rcu_head rcu;
 309    char *name;
 310    MemoryRegion *root;
 311
 312    /* Accessed via RCU.  */
 313    struct FlatView *current_map;
 314
 315    int ioeventfd_nb;
 316    struct MemoryRegionIoeventfd *ioeventfds;
 317    QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
 318    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 319};
 320
 321typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 322typedef struct FlatRange FlatRange;
 323
 324/* Flattened global view of current active memory hierarchy.  Kept in sorted
 325 * order.
 326 */
 327struct FlatView {
 328    struct rcu_head rcu;
 329    unsigned ref;
 330    FlatRange *ranges;
 331    unsigned nr;
 332    unsigned nr_allocated;
 333    struct AddressSpaceDispatch *dispatch;
 334    MemoryRegion *root;
 335};
 336
 337static inline FlatView *address_space_to_flatview(AddressSpace *as)
 338{
 339    return atomic_rcu_read(&as->current_map);
 340}
 341
 342
 343/**
 344 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 345 *
 346 * @mr: the region, or %NULL if empty
 347 * @address_space: the address space the region is mapped in
 348 * @offset_within_region: the beginning of the section, relative to @mr's start
 349 * @size: the size of the section; will not exceed @mr's boundaries
 350 * @offset_within_address_space: the address of the first byte of the section
 351 *     relative to the region's address space
 352 * @readonly: writes to this section are ignored
 353 */
 354struct MemoryRegionSection {
 355    MemoryRegion *mr;
 356    FlatView *fv;
 357    hwaddr offset_within_region;
 358    Int128 size;
 359    hwaddr offset_within_address_space;
 360    bool readonly;
 361};
 362
 363/**
 364 * memory_region_init: Initialize a memory region
 365 *
 366 * The region typically acts as a container for other memory regions.  Use
 367 * memory_region_add_subregion() to add subregions.
 368 *
 369 * @mr: the #MemoryRegion to be initialized
 370 * @owner: the object that tracks the region's reference count
 371 * @name: used for debugging; not visible to the user or ABI
 372 * @size: size of the region; any subregions beyond this size will be clipped
 373 */
 374void memory_region_init(MemoryRegion *mr,
 375                        struct Object *owner,
 376                        const char *name,
 377                        uint64_t size);
 378
 379/**
 380 * memory_region_ref: Add 1 to a memory region's reference count
 381 *
 382 * Whenever memory regions are accessed outside the BQL, they need to be
 383 * preserved against hot-unplug.  MemoryRegions actually do not have their
 384 * own reference count; they piggyback on a QOM object, their "owner".
 385 * This function adds a reference to the owner.
 386 *
 387 * All MemoryRegions must have an owner if they can disappear, even if the
 388 * device they belong to operates exclusively under the BQL.  This is because
 389 * the region could be returned at any time by memory_region_find, and this
 390 * is usually under guest control.
 391 *
 392 * @mr: the #MemoryRegion
 393 */
 394void memory_region_ref(MemoryRegion *mr);
 395
 396/**
 397 * memory_region_unref: Remove 1 to a memory region's reference count
 398 *
 399 * Whenever memory regions are accessed outside the BQL, they need to be
 400 * preserved against hot-unplug.  MemoryRegions actually do not have their
 401 * own reference count; they piggyback on a QOM object, their "owner".
 402 * This function removes a reference to the owner and possibly destroys it.
 403 *
 404 * @mr: the #MemoryRegion
 405 */
 406void memory_region_unref(MemoryRegion *mr);
 407
 408/**
 409 * memory_region_init_io: Initialize an I/O memory region.
 410 *
 411 * Accesses into the region will cause the callbacks in @ops to be called.
 412 * if @size is nonzero, subregions will be clipped to @size.
 413 *
 414 * @mr: the #MemoryRegion to be initialized.
 415 * @owner: the object that tracks the region's reference count
 416 * @ops: a structure containing read and write callbacks to be used when
 417 *       I/O is performed on the region.
 418 * @opaque: passed to the read and write callbacks of the @ops structure.
 419 * @name: used for debugging; not visible to the user or ABI
 420 * @size: size of the region.
 421 */
 422void memory_region_init_io(MemoryRegion *mr,
 423                           struct Object *owner,
 424                           const MemoryRegionOps *ops,
 425                           void *opaque,
 426                           const char *name,
 427                           uint64_t size);
 428
 429/**
 430 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 431 *                                    into the region will modify memory
 432 *                                    directly.
 433 *
 434 * @mr: the #MemoryRegion to be initialized.
 435 * @owner: the object that tracks the region's reference count
 436 * @name: Region name, becomes part of RAMBlock name used in migration stream
 437 *        must be unique within any device
 438 * @size: size of the region.
 439 * @errp: pointer to Error*, to store an error if it happens.
 440 *
 441 * Note that this function does not do anything to cause the data in the
 442 * RAM memory region to be migrated; that is the responsibility of the caller.
 443 */
 444void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 445                                      struct Object *owner,
 446                                      const char *name,
 447                                      uint64_t size,
 448                                      Error **errp);
 449
 450/**
 451 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 452 *                                     RAM.  Accesses into the region will
 453 *                                     modify memory directly.  Only an initial
 454 *                                     portion of this RAM is actually used.
 455 *                                     The used size can change across reboots.
 456 *
 457 * @mr: the #MemoryRegion to be initialized.
 458 * @owner: the object that tracks the region's reference count
 459 * @name: Region name, becomes part of RAMBlock name used in migration stream
 460 *        must be unique within any device
 461 * @size: used size of the region.
 462 * @max_size: max size of the region.
 463 * @resized: callback to notify owner about used size change.
 464 * @errp: pointer to Error*, to store an error if it happens.
 465 *
 466 * Note that this function does not do anything to cause the data in the
 467 * RAM memory region to be migrated; that is the responsibility of the caller.
 468 */
 469void memory_region_init_resizeable_ram(MemoryRegion *mr,
 470                                       struct Object *owner,
 471                                       const char *name,
 472                                       uint64_t size,
 473                                       uint64_t max_size,
 474                                       void (*resized)(const char*,
 475                                                       uint64_t length,
 476                                                       void *host),
 477                                       Error **errp);
 478#ifdef __linux__
 479/**
 480 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 481 *                                    mmap-ed backend.
 482 *
 483 * @mr: the #MemoryRegion to be initialized.
 484 * @owner: the object that tracks the region's reference count
 485 * @name: Region name, becomes part of RAMBlock name used in migration stream
 486 *        must be unique within any device
 487 * @size: size of the region.
 488 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 489 * @path: the path in which to allocate the RAM.
 490 * @errp: pointer to Error*, to store an error if it happens.
 491 *
 492 * Note that this function does not do anything to cause the data in the
 493 * RAM memory region to be migrated; that is the responsibility of the caller.
 494 */
 495void memory_region_init_ram_from_file(MemoryRegion *mr,
 496                                      struct Object *owner,
 497                                      const char *name,
 498                                      uint64_t size,
 499                                      bool share,
 500                                      const char *path,
 501                                      Error **errp);
 502
 503/**
 504 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 505 *                                  mmap-ed backend.
 506 *
 507 * @mr: the #MemoryRegion to be initialized.
 508 * @owner: the object that tracks the region's reference count
 509 * @name: the name of the region.
 510 * @size: size of the region.
 511 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 512 * @fd: the fd to mmap.
 513 * @errp: pointer to Error*, to store an error if it happens.
 514 *
 515 * Note that this function does not do anything to cause the data in the
 516 * RAM memory region to be migrated; that is the responsibility of the caller.
 517 */
 518void memory_region_init_ram_from_fd(MemoryRegion *mr,
 519                                    struct Object *owner,
 520                                    const char *name,
 521                                    uint64_t size,
 522                                    bool share,
 523                                    int fd,
 524                                    Error **errp);
 525#endif
 526
 527/**
 528 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 529 *                              user-provided pointer.  Accesses into the
 530 *                              region will modify memory directly.
 531 *
 532 * @mr: the #MemoryRegion to be initialized.
 533 * @owner: the object that tracks the region's reference count
 534 * @name: Region name, becomes part of RAMBlock name used in migration stream
 535 *        must be unique within any device
 536 * @size: size of the region.
 537 * @ptr: memory to be mapped; must contain at least @size bytes.
 538 *
 539 * Note that this function does not do anything to cause the data in the
 540 * RAM memory region to be migrated; that is the responsibility of the caller.
 541 */
 542void memory_region_init_ram_ptr(MemoryRegion *mr,
 543                                struct Object *owner,
 544                                const char *name,
 545                                uint64_t size,
 546                                void *ptr);
 547
 548/**
 549 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 550 *                                     a user-provided pointer.
 551 *
 552 * A RAM device represents a mapping to a physical device, such as to a PCI
 553 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 554 * into the VM address space and access to the region will modify memory
 555 * directly.  However, the memory region should not be included in a memory
 556 * dump (device may not be enabled/mapped at the time of the dump), and
 557 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 558 * skip_dump flag.
 559 *
 560 * @mr: the #MemoryRegion to be initialized.
 561 * @owner: the object that tracks the region's reference count
 562 * @name: the name of the region.
 563 * @size: size of the region.
 564 * @ptr: memory to be mapped; must contain at least @size bytes.
 565 *
 566 * Note that this function does not do anything to cause the data in the
 567 * RAM memory region to be migrated; that is the responsibility of the caller.
 568 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 569 */
 570void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 571                                       struct Object *owner,
 572                                       const char *name,
 573                                       uint64_t size,
 574                                       void *ptr);
 575
 576/**
 577 * memory_region_init_alias: Initialize a memory region that aliases all or a
 578 *                           part of another memory region.
 579 *
 580 * @mr: the #MemoryRegion to be initialized.
 581 * @owner: the object that tracks the region's reference count
 582 * @name: used for debugging; not visible to the user or ABI
 583 * @orig: the region to be referenced; @mr will be equivalent to
 584 *        @orig between @offset and @offset + @size - 1.
 585 * @offset: start of the section in @orig to be referenced.
 586 * @size: size of the region.
 587 */
 588void memory_region_init_alias(MemoryRegion *mr,
 589                              struct Object *owner,
 590                              const char *name,
 591                              MemoryRegion *orig,
 592                              hwaddr offset,
 593                              uint64_t size);
 594
 595/**
 596 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 597 *
 598 * This has the same effect as calling memory_region_init_ram_nomigrate()
 599 * and then marking the resulting region read-only with
 600 * memory_region_set_readonly().
 601 *
 602 * Note that this function does not do anything to cause the data in the
 603 * RAM side of the memory region to be migrated; that is the responsibility
 604 * of the caller.
 605 *
 606 * @mr: the #MemoryRegion to be initialized.
 607 * @owner: the object that tracks the region's reference count
 608 * @name: Region name, becomes part of RAMBlock name used in migration stream
 609 *        must be unique within any device
 610 * @size: size of the region.
 611 * @errp: pointer to Error*, to store an error if it happens.
 612 */
 613void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 614                                      struct Object *owner,
 615                                      const char *name,
 616                                      uint64_t size,
 617                                      Error **errp);
 618
 619/**
 620 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 621 *                                 Writes are handled via callbacks.
 622 *
 623 * Note that this function does not do anything to cause the data in the
 624 * RAM side of the memory region to be migrated; that is the responsibility
 625 * of the caller.
 626 *
 627 * @mr: the #MemoryRegion to be initialized.
 628 * @owner: the object that tracks the region's reference count
 629 * @ops: callbacks for write access handling (must not be NULL).
 630 * @name: Region name, becomes part of RAMBlock name used in migration stream
 631 *        must be unique within any device
 632 * @size: size of the region.
 633 * @errp: pointer to Error*, to store an error if it happens.
 634 */
 635void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 636                                             struct Object *owner,
 637                                             const MemoryRegionOps *ops,
 638                                             void *opaque,
 639                                             const char *name,
 640                                             uint64_t size,
 641                                             Error **errp);
 642
 643/**
 644 * memory_region_init_reservation: Initialize a memory region that reserves
 645 *                                 I/O space.
 646 *
 647 * A reservation region primariy serves debugging purposes.  It claims I/O
 648 * space that is not supposed to be handled by QEMU itself.  Any access via
 649 * the memory API will cause an abort().
 650 * This function is deprecated. Use memory_region_init_io() with NULL
 651 * callbacks instead.
 652 *
 653 * @mr: the #MemoryRegion to be initialized
 654 * @owner: the object that tracks the region's reference count
 655 * @name: used for debugging; not visible to the user or ABI
 656 * @size: size of the region.
 657 */
 658static inline void memory_region_init_reservation(MemoryRegion *mr,
 659                                    Object *owner,
 660                                    const char *name,
 661                                    uint64_t size)
 662{
 663    memory_region_init_io(mr, owner, NULL, mr, name, size);
 664}
 665
 666/**
 667 * memory_region_init_iommu: Initialize a memory region of a custom type
 668 * that translates addresses
 669 *
 670 * An IOMMU region translates addresses and forwards accesses to a target
 671 * memory region.
 672 *
 673 * @typename: QOM class name
 674 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 675 * @instance_size: the IOMMUMemoryRegion subclass instance size
 676 * @owner: the object that tracks the region's reference count
 677 * @ops: a function that translates addresses into the @target region
 678 * @name: used for debugging; not visible to the user or ABI
 679 * @size: size of the region.
 680 */
 681void memory_region_init_iommu(void *_iommu_mr,
 682                              size_t instance_size,
 683                              const char *mrtypename,
 684                              Object *owner,
 685                              const char *name,
 686                              uint64_t size);
 687
 688/**
 689 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 690 *                          region will modify memory directly.
 691 *
 692 * @mr: the #MemoryRegion to be initialized
 693 * @owner: the object that tracks the region's reference count (must be
 694 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 695 * @name: name of the memory region
 696 * @size: size of the region in bytes
 697 * @errp: pointer to Error*, to store an error if it happens.
 698 *
 699 * This function allocates RAM for a board model or device, and
 700 * arranges for it to be migrated (by calling vmstate_register_ram()
 701 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 702 * @owner is NULL).
 703 *
 704 * TODO: Currently we restrict @owner to being either NULL (for
 705 * global RAM regions with no owner) or devices, so that we can
 706 * give the RAM block a unique name for migration purposes.
 707 * We should lift this restriction and allow arbitrary Objects.
 708 * If you pass a non-NULL non-device @owner then we will assert.
 709 */
 710void memory_region_init_ram(MemoryRegion *mr,
 711                            struct Object *owner,
 712                            const char *name,
 713                            uint64_t size,
 714                            Error **errp);
 715
 716/**
 717 * memory_region_init_rom: Initialize a ROM memory region.
 718 *
 719 * This has the same effect as calling memory_region_init_ram()
 720 * and then marking the resulting region read-only with
 721 * memory_region_set_readonly(). This includes arranging for the
 722 * contents to be migrated.
 723 *
 724 * TODO: Currently we restrict @owner to being either NULL (for
 725 * global RAM regions with no owner) or devices, so that we can
 726 * give the RAM block a unique name for migration purposes.
 727 * We should lift this restriction and allow arbitrary Objects.
 728 * If you pass a non-NULL non-device @owner then we will assert.
 729 *
 730 * @mr: the #MemoryRegion to be initialized.
 731 * @owner: the object that tracks the region's reference count
 732 * @name: Region name, becomes part of RAMBlock name used in migration stream
 733 *        must be unique within any device
 734 * @size: size of the region.
 735 * @errp: pointer to Error*, to store an error if it happens.
 736 */
 737void memory_region_init_rom(MemoryRegion *mr,
 738                            struct Object *owner,
 739                            const char *name,
 740                            uint64_t size,
 741                            Error **errp);
 742
 743/**
 744 * memory_region_init_rom_device:  Initialize a ROM memory region.
 745 *                                 Writes are handled via callbacks.
 746 *
 747 * This function initializes a memory region backed by RAM for reads
 748 * and callbacks for writes, and arranges for the RAM backing to
 749 * be migrated (by calling vmstate_register_ram()
 750 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 751 * @owner is NULL).
 752 *
 753 * TODO: Currently we restrict @owner to being either NULL (for
 754 * global RAM regions with no owner) or devices, so that we can
 755 * give the RAM block a unique name for migration purposes.
 756 * We should lift this restriction and allow arbitrary Objects.
 757 * If you pass a non-NULL non-device @owner then we will assert.
 758 *
 759 * @mr: the #MemoryRegion to be initialized.
 760 * @owner: the object that tracks the region's reference count
 761 * @ops: callbacks for write access handling (must not be NULL).
 762 * @name: Region name, becomes part of RAMBlock name used in migration stream
 763 *        must be unique within any device
 764 * @size: size of the region.
 765 * @errp: pointer to Error*, to store an error if it happens.
 766 */
 767void memory_region_init_rom_device(MemoryRegion *mr,
 768                                   struct Object *owner,
 769                                   const MemoryRegionOps *ops,
 770                                   void *opaque,
 771                                   const char *name,
 772                                   uint64_t size,
 773                                   Error **errp);
 774
 775
 776/**
 777 * memory_region_owner: get a memory region's owner.
 778 *
 779 * @mr: the memory region being queried.
 780 */
 781struct Object *memory_region_owner(MemoryRegion *mr);
 782
 783/**
 784 * memory_region_size: get a memory region's size.
 785 *
 786 * @mr: the memory region being queried.
 787 */
 788uint64_t memory_region_size(MemoryRegion *mr);
 789
 790/**
 791 * memory_region_is_ram: check whether a memory region is random access
 792 *
 793 * Returns %true is a memory region is random access.
 794 *
 795 * @mr: the memory region being queried
 796 */
 797static inline bool memory_region_is_ram(MemoryRegion *mr)
 798{
 799    return mr->ram;
 800}
 801
 802/**
 803 * memory_region_is_ram_device: check whether a memory region is a ram device
 804 *
 805 * Returns %true is a memory region is a device backed ram region
 806 *
 807 * @mr: the memory region being queried
 808 */
 809bool memory_region_is_ram_device(MemoryRegion *mr);
 810
 811/**
 812 * memory_region_is_romd: check whether a memory region is in ROMD mode
 813 *
 814 * Returns %true if a memory region is a ROM device and currently set to allow
 815 * direct reads.
 816 *
 817 * @mr: the memory region being queried
 818 */
 819static inline bool memory_region_is_romd(MemoryRegion *mr)
 820{
 821    return mr->rom_device && mr->romd_mode;
 822}
 823
 824/**
 825 * memory_region_get_iommu: check whether a memory region is an iommu
 826 *
 827 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 828 * otherwise NULL.
 829 *
 830 * @mr: the memory region being queried
 831 */
 832static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 833{
 834    if (mr->alias) {
 835        return memory_region_get_iommu(mr->alias);
 836    }
 837    if (mr->is_iommu) {
 838        return (IOMMUMemoryRegion *) mr;
 839    }
 840    return NULL;
 841}
 842
 843/**
 844 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
 845 *   if an iommu or NULL if not
 846 *
 847 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
 848 * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
 849 *
 850 * @mr: the memory region being queried
 851 */
 852static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
 853        IOMMUMemoryRegion *iommu_mr)
 854{
 855    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
 856}
 857
 858#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
 859
 860/**
 861 * memory_region_iommu_get_min_page_size: get minimum supported page size
 862 * for an iommu
 863 *
 864 * Returns minimum supported page size for an iommu.
 865 *
 866 * @iommu_mr: the memory region being queried
 867 */
 868uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
 869
 870/**
 871 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 872 *
 873 * The notification type will be decided by entry.perm bits:
 874 *
 875 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
 876 * - For MAP (newly added entry) notifies: set entry.perm to the
 877 *   permission of the page (which is definitely !IOMMU_NONE).
 878 *
 879 * Note: for any IOMMU implementation, an in-place mapping change
 880 * should be notified with an UNMAP followed by a MAP.
 881 *
 882 * @iommu_mr: the memory region that was changed
 883 * @entry: the new entry in the IOMMU translation table.  The entry
 884 *         replaces all old entries for the same virtual I/O address range.
 885 *         Deleted entries have .@perm == 0.
 886 */
 887void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
 888                                IOMMUTLBEntry entry);
 889
 890/**
 891 * memory_region_notify_one: notify a change in an IOMMU translation
 892 *                           entry to a single notifier
 893 *
 894 * This works just like memory_region_notify_iommu(), but it only
 895 * notifies a specific notifier, not all of them.
 896 *
 897 * @notifier: the notifier to be notified
 898 * @entry: the new entry in the IOMMU translation table.  The entry
 899 *         replaces all old entries for the same virtual I/O address range.
 900 *         Deleted entries have .@perm == 0.
 901 */
 902void memory_region_notify_one(IOMMUNotifier *notifier,
 903                              IOMMUTLBEntry *entry);
 904
 905/**
 906 * memory_region_register_iommu_notifier: register a notifier for changes to
 907 * IOMMU translation entries.
 908 *
 909 * @mr: the memory region to observe
 910 * @n: the IOMMUNotifier to be added; the notify callback receives a
 911 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
 912 *     ceases to be valid on exit from the notifier.
 913 */
 914void memory_region_register_iommu_notifier(MemoryRegion *mr,
 915                                           IOMMUNotifier *n);
 916
 917/**
 918 * memory_region_iommu_replay: replay existing IOMMU translations to
 919 * a notifier with the minimum page granularity returned by
 920 * mr->iommu_ops->get_page_size().
 921 *
 922 * @iommu_mr: the memory region to observe
 923 * @n: the notifier to which to replay iommu mappings
 924 */
 925void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
 926
 927/**
 928 * memory_region_iommu_replay_all: replay existing IOMMU translations
 929 * to all the notifiers registered.
 930 *
 931 * @iommu_mr: the memory region to observe
 932 */
 933void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
 934
 935/**
 936 * memory_region_unregister_iommu_notifier: unregister a notifier for
 937 * changes to IOMMU translation entries.
 938 *
 939 * @mr: the memory region which was observed and for which notity_stopped()
 940 *      needs to be called
 941 * @n: the notifier to be removed.
 942 */
 943void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
 944                                             IOMMUNotifier *n);
 945
 946/**
 947 * memory_region_name: get a memory region's name
 948 *
 949 * Returns the string that was used to initialize the memory region.
 950 *
 951 * @mr: the memory region being queried
 952 */
 953const char *memory_region_name(const MemoryRegion *mr);
 954
 955/**
 956 * memory_region_is_logging: return whether a memory region is logging writes
 957 *
 958 * Returns %true if the memory region is logging writes for the given client
 959 *
 960 * @mr: the memory region being queried
 961 * @client: the client being queried
 962 */
 963bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
 964
 965/**
 966 * memory_region_get_dirty_log_mask: return the clients for which a
 967 * memory region is logging writes.
 968 *
 969 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
 970 * are the bit indices.
 971 *
 972 * @mr: the memory region being queried
 973 */
 974uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
 975
 976/**
 977 * memory_region_is_rom: check whether a memory region is ROM
 978 *
 979 * Returns %true is a memory region is read-only memory.
 980 *
 981 * @mr: the memory region being queried
 982 */
 983static inline bool memory_region_is_rom(MemoryRegion *mr)
 984{
 985    return mr->ram && mr->readonly;
 986}
 987
 988
 989/**
 990 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
 991 *
 992 * Returns a file descriptor backing a file-based RAM memory region,
 993 * or -1 if the region is not a file-based RAM memory region.
 994 *
 995 * @mr: the RAM or alias memory region being queried.
 996 */
 997int memory_region_get_fd(MemoryRegion *mr);
 998
 999/**
1000 * memory_region_from_host: Convert a pointer into a RAM memory region
1001 * and an offset within it.
1002 *
1003 * Given a host pointer inside a RAM memory region (created with
1004 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1005 * the MemoryRegion and the offset within it.
1006 *
1007 * Use with care; by the time this function returns, the returned pointer is
1008 * not protected by RCU anymore.  If the caller is not within an RCU critical
1009 * section and does not hold the iothread lock, it must have other means of
1010 * protecting the pointer, such as a reference to the region that includes
1011 * the incoming ram_addr_t.
1012 *
1013 * @mr: the memory region being queried.
1014 */
1015MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1016
1017/**
1018 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1019 *
1020 * Returns a host pointer to a RAM memory region (created with
1021 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1022 *
1023 * Use with care; by the time this function returns, the returned pointer is
1024 * not protected by RCU anymore.  If the caller is not within an RCU critical
1025 * section and does not hold the iothread lock, it must have other means of
1026 * protecting the pointer, such as a reference to the region that includes
1027 * the incoming ram_addr_t.
1028 *
1029 * @mr: the memory region being queried.
1030 */
1031void *memory_region_get_ram_ptr(MemoryRegion *mr);
1032
1033/* memory_region_ram_resize: Resize a RAM region.
1034 *
1035 * Only legal before guest might have detected the memory size: e.g. on
1036 * incoming migration, or right after reset.
1037 *
1038 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1039 * @newsize: the new size the region
1040 * @errp: pointer to Error*, to store an error if it happens.
1041 */
1042void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1043                              Error **errp);
1044
1045/**
1046 * memory_region_set_log: Turn dirty logging on or off for a region.
1047 *
1048 * Turns dirty logging on or off for a specified client (display, migration).
1049 * Only meaningful for RAM regions.
1050 *
1051 * @mr: the memory region being updated.
1052 * @log: whether dirty logging is to be enabled or disabled.
1053 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1054 */
1055void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1056
1057/**
1058 * memory_region_get_dirty: Check whether a range of bytes is dirty
1059 *                          for a specified client.
1060 *
1061 * Checks whether a range of bytes has been written to since the last
1062 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1063 * must be enabled.
1064 *
1065 * @mr: the memory region being queried.
1066 * @addr: the address (relative to the start of the region) being queried.
1067 * @size: the size of the range being queried.
1068 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1069 *          %DIRTY_MEMORY_VGA.
1070 */
1071bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1072                             hwaddr size, unsigned client);
1073
1074/**
1075 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1076 *
1077 * Marks a range of bytes as dirty, after it has been dirtied outside
1078 * guest code.
1079 *
1080 * @mr: the memory region being dirtied.
1081 * @addr: the address (relative to the start of the region) being dirtied.
1082 * @size: size of the range being dirtied.
1083 */
1084void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1085                             hwaddr size);
1086
1087/**
1088 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1089 *                                     for a specified client. It clears them.
1090 *
1091 * Checks whether a range of bytes has been written to since the last
1092 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1093 * must be enabled.
1094 *
1095 * @mr: the memory region being queried.
1096 * @addr: the address (relative to the start of the region) being queried.
1097 * @size: the size of the range being queried.
1098 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1099 *          %DIRTY_MEMORY_VGA.
1100 */
1101bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1102                                        hwaddr size, unsigned client);
1103
1104/**
1105 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1106 *                                         bitmap and clear it.
1107 *
1108 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1109 * returns the snapshot.  The snapshot can then be used to query dirty
1110 * status, using memory_region_snapshot_get_dirty.  Unlike
1111 * memory_region_test_and_clear_dirty this allows to query the same
1112 * page multiple times, which is especially useful for display updates
1113 * where the scanlines often are not page aligned.
1114 *
1115 * The dirty bitmap region which gets copyed into the snapshot (and
1116 * cleared afterwards) can be larger than requested.  The boundaries
1117 * are rounded up/down so complete bitmap longs (covering 64 pages on
1118 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1119 * isn't a problem for display updates as the extra pages are outside
1120 * the visible area, and in case the visible area changes a full
1121 * display redraw is due anyway.  Should other use cases for this
1122 * function emerge we might have to revisit this implementation
1123 * detail.
1124 *
1125 * Use g_free to release DirtyBitmapSnapshot.
1126 *
1127 * @mr: the memory region being queried.
1128 * @addr: the address (relative to the start of the region) being queried.
1129 * @size: the size of the range being queried.
1130 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1131 */
1132DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1133                                                            hwaddr addr,
1134                                                            hwaddr size,
1135                                                            unsigned client);
1136
1137/**
1138 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1139 *                                   in the specified dirty bitmap snapshot.
1140 *
1141 * @mr: the memory region being queried.
1142 * @snap: the dirty bitmap snapshot
1143 * @addr: the address (relative to the start of the region) being queried.
1144 * @size: the size of the range being queried.
1145 */
1146bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1147                                      DirtyBitmapSnapshot *snap,
1148                                      hwaddr addr, hwaddr size);
1149
1150/**
1151 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1152 *                                  any external TLBs (e.g. kvm)
1153 *
1154 * Flushes dirty information from accelerators such as kvm and vhost-net
1155 * and makes it available to users of the memory API.
1156 *
1157 * @mr: the region being flushed.
1158 */
1159void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1160
1161/**
1162 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1163 *                            client.
1164 *
1165 * Marks a range of pages as no longer dirty.
1166 *
1167 * @mr: the region being updated.
1168 * @addr: the start of the subrange being cleaned.
1169 * @size: the size of the subrange being cleaned.
1170 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1171 *          %DIRTY_MEMORY_VGA.
1172 */
1173void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1174                               hwaddr size, unsigned client);
1175
1176/**
1177 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1178 *
1179 * Allows a memory region to be marked as read-only (turning it into a ROM).
1180 * only useful on RAM regions.
1181 *
1182 * @mr: the region being updated.
1183 * @readonly: whether rhe region is to be ROM or RAM.
1184 */
1185void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1186
1187/**
1188 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1189 *
1190 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1191 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1192 * device is mapped to guest memory and satisfies read access directly.
1193 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1194 * Writes are always handled by the #MemoryRegion.write function.
1195 *
1196 * @mr: the memory region to be updated
1197 * @romd_mode: %true to put the region into ROMD mode
1198 */
1199void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1200
1201/**
1202 * memory_region_set_coalescing: Enable memory coalescing for the region.
1203 *
1204 * Enabled writes to a region to be queued for later processing. MMIO ->write
1205 * callbacks may be delayed until a non-coalesced MMIO is issued.
1206 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1207 *
1208 * @mr: the memory region to be write coalesced
1209 */
1210void memory_region_set_coalescing(MemoryRegion *mr);
1211
1212/**
1213 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1214 *                               a region.
1215 *
1216 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1217 * Multiple calls can be issued coalesced disjoint ranges.
1218 *
1219 * @mr: the memory region to be updated.
1220 * @offset: the start of the range within the region to be coalesced.
1221 * @size: the size of the subrange to be coalesced.
1222 */
1223void memory_region_add_coalescing(MemoryRegion *mr,
1224                                  hwaddr offset,
1225                                  uint64_t size);
1226
1227/**
1228 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1229 *
1230 * Disables any coalescing caused by memory_region_set_coalescing() or
1231 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1232 * hardware.
1233 *
1234 * @mr: the memory region to be updated.
1235 */
1236void memory_region_clear_coalescing(MemoryRegion *mr);
1237
1238/**
1239 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1240 *                                    accesses.
1241 *
1242 * Ensure that pending coalesced MMIO request are flushed before the memory
1243 * region is accessed. This property is automatically enabled for all regions
1244 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1245 *
1246 * @mr: the memory region to be updated.
1247 */
1248void memory_region_set_flush_coalesced(MemoryRegion *mr);
1249
1250/**
1251 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1252 *                                      accesses.
1253 *
1254 * Clear the automatic coalesced MMIO flushing enabled via
1255 * memory_region_set_flush_coalesced. Note that this service has no effect on
1256 * memory regions that have MMIO coalescing enabled for themselves. For them,
1257 * automatic flushing will stop once coalescing is disabled.
1258 *
1259 * @mr: the memory region to be updated.
1260 */
1261void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1262
1263/**
1264 * memory_region_set_global_locking: Declares the access processing requires
1265 *                                   QEMU's global lock.
1266 *
1267 * When this is invoked, accesses to the memory region will be processed while
1268 * holding the global lock of QEMU. This is the default behavior of memory
1269 * regions.
1270 *
1271 * @mr: the memory region to be updated.
1272 */
1273void memory_region_set_global_locking(MemoryRegion *mr);
1274
1275/**
1276 * memory_region_clear_global_locking: Declares that access processing does
1277 *                                     not depend on the QEMU global lock.
1278 *
1279 * By clearing this property, accesses to the memory region will be processed
1280 * outside of QEMU's global lock (unless the lock is held on when issuing the
1281 * access request). In this case, the device model implementing the access
1282 * handlers is responsible for synchronization of concurrency.
1283 *
1284 * @mr: the memory region to be updated.
1285 */
1286void memory_region_clear_global_locking(MemoryRegion *mr);
1287
1288/**
1289 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1290 *                            is written to a location.
1291 *
1292 * Marks a word in an IO region (initialized with memory_region_init_io())
1293 * as a trigger for an eventfd event.  The I/O callback will not be called.
1294 * The caller must be prepared to handle failure (that is, take the required
1295 * action if the callback _is_ called).
1296 *
1297 * @mr: the memory region being updated.
1298 * @addr: the address within @mr that is to be monitored
1299 * @size: the size of the access to trigger the eventfd
1300 * @match_data: whether to match against @data, instead of just @addr
1301 * @data: the data to match against the guest write
1302 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1303 **/
1304void memory_region_add_eventfd(MemoryRegion *mr,
1305                               hwaddr addr,
1306                               unsigned size,
1307                               bool match_data,
1308                               uint64_t data,
1309                               EventNotifier *e);
1310
1311/**
1312 * memory_region_del_eventfd: Cancel an eventfd.
1313 *
1314 * Cancels an eventfd trigger requested by a previous
1315 * memory_region_add_eventfd() call.
1316 *
1317 * @mr: the memory region being updated.
1318 * @addr: the address within @mr that is to be monitored
1319 * @size: the size of the access to trigger the eventfd
1320 * @match_data: whether to match against @data, instead of just @addr
1321 * @data: the data to match against the guest write
1322 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1323 */
1324void memory_region_del_eventfd(MemoryRegion *mr,
1325                               hwaddr addr,
1326                               unsigned size,
1327                               bool match_data,
1328                               uint64_t data,
1329                               EventNotifier *e);
1330
1331/**
1332 * memory_region_add_subregion: Add a subregion to a container.
1333 *
1334 * Adds a subregion at @offset.  The subregion may not overlap with other
1335 * subregions (except for those explicitly marked as overlapping).  A region
1336 * may only be added once as a subregion (unless removed with
1337 * memory_region_del_subregion()); use memory_region_init_alias() if you
1338 * want a region to be a subregion in multiple locations.
1339 *
1340 * @mr: the region to contain the new subregion; must be a container
1341 *      initialized with memory_region_init().
1342 * @offset: the offset relative to @mr where @subregion is added.
1343 * @subregion: the subregion to be added.
1344 */
1345void memory_region_add_subregion(MemoryRegion *mr,
1346                                 hwaddr offset,
1347                                 MemoryRegion *subregion);
1348/**
1349 * memory_region_add_subregion_overlap: Add a subregion to a container
1350 *                                      with overlap.
1351 *
1352 * Adds a subregion at @offset.  The subregion may overlap with other
1353 * subregions.  Conflicts are resolved by having a higher @priority hide a
1354 * lower @priority. Subregions without priority are taken as @priority 0.
1355 * A region may only be added once as a subregion (unless removed with
1356 * memory_region_del_subregion()); use memory_region_init_alias() if you
1357 * want a region to be a subregion in multiple locations.
1358 *
1359 * @mr: the region to contain the new subregion; must be a container
1360 *      initialized with memory_region_init().
1361 * @offset: the offset relative to @mr where @subregion is added.
1362 * @subregion: the subregion to be added.
1363 * @priority: used for resolving overlaps; highest priority wins.
1364 */
1365void memory_region_add_subregion_overlap(MemoryRegion *mr,
1366                                         hwaddr offset,
1367                                         MemoryRegion *subregion,
1368                                         int priority);
1369
1370/**
1371 * memory_region_get_ram_addr: Get the ram address associated with a memory
1372 *                             region
1373 */
1374ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1375
1376uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1377/**
1378 * memory_region_del_subregion: Remove a subregion.
1379 *
1380 * Removes a subregion from its container.
1381 *
1382 * @mr: the container to be updated.
1383 * @subregion: the region being removed; must be a current subregion of @mr.
1384 */
1385void memory_region_del_subregion(MemoryRegion *mr,
1386                                 MemoryRegion *subregion);
1387
1388/*
1389 * memory_region_set_enabled: dynamically enable or disable a region
1390 *
1391 * Enables or disables a memory region.  A disabled memory region
1392 * ignores all accesses to itself and its subregions.  It does not
1393 * obscure sibling subregions with lower priority - it simply behaves as
1394 * if it was removed from the hierarchy.
1395 *
1396 * Regions default to being enabled.
1397 *
1398 * @mr: the region to be updated
1399 * @enabled: whether to enable or disable the region
1400 */
1401void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1402
1403/*
1404 * memory_region_set_address: dynamically update the address of a region
1405 *
1406 * Dynamically updates the address of a region, relative to its container.
1407 * May be used on regions are currently part of a memory hierarchy.
1408 *
1409 * @mr: the region to be updated
1410 * @addr: new address, relative to container region
1411 */
1412void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1413
1414/*
1415 * memory_region_set_size: dynamically update the size of a region.
1416 *
1417 * Dynamically updates the size of a region.
1418 *
1419 * @mr: the region to be updated
1420 * @size: used size of the region.
1421 */
1422void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1423
1424/*
1425 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1426 *
1427 * Dynamically updates the offset into the target region that an alias points
1428 * to, as if the fourth argument to memory_region_init_alias() has changed.
1429 *
1430 * @mr: the #MemoryRegion to be updated; should be an alias.
1431 * @offset: the new offset into the target memory region
1432 */
1433void memory_region_set_alias_offset(MemoryRegion *mr,
1434                                    hwaddr offset);
1435
1436/**
1437 * memory_region_present: checks if an address relative to a @container
1438 * translates into #MemoryRegion within @container
1439 *
1440 * Answer whether a #MemoryRegion within @container covers the address
1441 * @addr.
1442 *
1443 * @container: a #MemoryRegion within which @addr is a relative address
1444 * @addr: the area within @container to be searched
1445 */
1446bool memory_region_present(MemoryRegion *container, hwaddr addr);
1447
1448/**
1449 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1450 * into any address space.
1451 *
1452 * @mr: a #MemoryRegion which should be checked if it's mapped
1453 */
1454bool memory_region_is_mapped(MemoryRegion *mr);
1455
1456/**
1457 * memory_region_find: translate an address/size relative to a
1458 * MemoryRegion into a #MemoryRegionSection.
1459 *
1460 * Locates the first #MemoryRegion within @mr that overlaps the range
1461 * given by @addr and @size.
1462 *
1463 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1464 * It will have the following characteristics:
1465 *    .@size = 0 iff no overlap was found
1466 *    .@mr is non-%NULL iff an overlap was found
1467 *
1468 * Remember that in the return value the @offset_within_region is
1469 * relative to the returned region (in the .@mr field), not to the
1470 * @mr argument.
1471 *
1472 * Similarly, the .@offset_within_address_space is relative to the
1473 * address space that contains both regions, the passed and the
1474 * returned one.  However, in the special case where the @mr argument
1475 * has no container (and thus is the root of the address space), the
1476 * following will hold:
1477 *    .@offset_within_address_space >= @addr
1478 *    .@offset_within_address_space + .@size <= @addr + @size
1479 *
1480 * @mr: a MemoryRegion within which @addr is a relative address
1481 * @addr: start of the area within @as to be searched
1482 * @size: size of the area to be searched
1483 */
1484MemoryRegionSection memory_region_find(MemoryRegion *mr,
1485                                       hwaddr addr, uint64_t size);
1486
1487/**
1488 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1489 *
1490 * Synchronizes the dirty page log for all address spaces.
1491 */
1492void memory_global_dirty_log_sync(void);
1493
1494/**
1495 * memory_region_transaction_begin: Start a transaction.
1496 *
1497 * During a transaction, changes will be accumulated and made visible
1498 * only when the transaction ends (is committed).
1499 */
1500void memory_region_transaction_begin(void);
1501
1502/**
1503 * memory_region_transaction_commit: Commit a transaction and make changes
1504 *                                   visible to the guest.
1505 */
1506void memory_region_transaction_commit(void);
1507
1508/**
1509 * memory_listener_register: register callbacks to be called when memory
1510 *                           sections are mapped or unmapped into an address
1511 *                           space
1512 *
1513 * @listener: an object containing the callbacks to be called
1514 * @filter: if non-%NULL, only regions in this address space will be observed
1515 */
1516void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1517
1518/**
1519 * memory_listener_unregister: undo the effect of memory_listener_register()
1520 *
1521 * @listener: an object containing the callbacks to be removed
1522 */
1523void memory_listener_unregister(MemoryListener *listener);
1524
1525/**
1526 * memory_global_dirty_log_start: begin dirty logging for all regions
1527 */
1528void memory_global_dirty_log_start(void);
1529
1530/**
1531 * memory_global_dirty_log_stop: end dirty logging for all regions
1532 */
1533void memory_global_dirty_log_stop(void);
1534
1535void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1536                bool dispatch_tree);
1537
1538/**
1539 * memory_region_request_mmio_ptr: request a pointer to an mmio
1540 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1541 * When the device wants to invalidate the pointer it will call
1542 * memory_region_invalidate_mmio_ptr.
1543 *
1544 * @mr: #MemoryRegion to check
1545 * @addr: address within that region
1546 *
1547 * Returns true on success, false otherwise.
1548 */
1549bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1550
1551/**
1552 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1553 * previously requested.
1554 * In the end that means that if something wants to execute from this area it
1555 * will need to request the pointer again.
1556 *
1557 * @mr: #MemoryRegion associated to the pointer.
1558 * @addr: address within that region
1559 * @size: size of that area.
1560 */
1561void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1562                                       unsigned size);
1563
1564/**
1565 * memory_region_dispatch_read: perform a read directly to the specified
1566 * MemoryRegion.
1567 *
1568 * @mr: #MemoryRegion to access
1569 * @addr: address within that region
1570 * @pval: pointer to uint64_t which the data is written to
1571 * @size: size of the access in bytes
1572 * @attrs: memory transaction attributes to use for the access
1573 */
1574MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1575                                        hwaddr addr,
1576                                        uint64_t *pval,
1577                                        unsigned size,
1578                                        MemTxAttrs attrs);
1579/**
1580 * memory_region_dispatch_write: perform a write directly to the specified
1581 * MemoryRegion.
1582 *
1583 * @mr: #MemoryRegion to access
1584 * @addr: address within that region
1585 * @data: data to write
1586 * @size: size of the access in bytes
1587 * @attrs: memory transaction attributes to use for the access
1588 */
1589MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1590                                         hwaddr addr,
1591                                         uint64_t data,
1592                                         unsigned size,
1593                                         MemTxAttrs attrs);
1594
1595/**
1596 * address_space_init: initializes an address space
1597 *
1598 * @as: an uninitialized #AddressSpace
1599 * @root: a #MemoryRegion that routes addresses for the address space
1600 * @name: an address space name.  The name is only used for debugging
1601 *        output.
1602 */
1603void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1604
1605/**
1606 * address_space_destroy: destroy an address space
1607 *
1608 * Releases all resources associated with an address space.  After an address space
1609 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1610 * as well.
1611 *
1612 * @as: address space to be destroyed
1613 */
1614void address_space_destroy(AddressSpace *as);
1615
1616/**
1617 * address_space_rw: read from or write to an address space.
1618 *
1619 * Return a MemTxResult indicating whether the operation succeeded
1620 * or failed (eg unassigned memory, device rejected the transaction,
1621 * IOMMU fault).
1622 *
1623 * @as: #AddressSpace to be accessed
1624 * @addr: address within that address space
1625 * @attrs: memory transaction attributes
1626 * @buf: buffer with the data transferred
1627 * @is_write: indicates the transfer direction
1628 */
1629MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1630                             MemTxAttrs attrs, uint8_t *buf,
1631                             int len, bool is_write);
1632
1633/**
1634 * address_space_write: write to address space.
1635 *
1636 * Return a MemTxResult indicating whether the operation succeeded
1637 * or failed (eg unassigned memory, device rejected the transaction,
1638 * IOMMU fault).
1639 *
1640 * @as: #AddressSpace to be accessed
1641 * @addr: address within that address space
1642 * @attrs: memory transaction attributes
1643 * @buf: buffer with the data transferred
1644 */
1645MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1646                                MemTxAttrs attrs,
1647                                const uint8_t *buf, int len);
1648
1649/* address_space_ld*: load from an address space
1650 * address_space_st*: store to an address space
1651 *
1652 * These functions perform a load or store of the byte, word,
1653 * longword or quad to the specified address within the AddressSpace.
1654 * The _le suffixed functions treat the data as little endian;
1655 * _be indicates big endian; no suffix indicates "same endianness
1656 * as guest CPU".
1657 *
1658 * The "guest CPU endianness" accessors are deprecated for use outside
1659 * target-* code; devices should be CPU-agnostic and use either the LE
1660 * or the BE accessors.
1661 *
1662 * @as #AddressSpace to be accessed
1663 * @addr: address within that address space
1664 * @val: data value, for stores
1665 * @attrs: memory transaction attributes
1666 * @result: location to write the success/failure of the transaction;
1667 *   if NULL, this information is discarded
1668 */
1669uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1670                            MemTxAttrs attrs, MemTxResult *result);
1671uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1672                            MemTxAttrs attrs, MemTxResult *result);
1673uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1674                            MemTxAttrs attrs, MemTxResult *result);
1675uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1676                            MemTxAttrs attrs, MemTxResult *result);
1677uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1678                            MemTxAttrs attrs, MemTxResult *result);
1679uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1680                            MemTxAttrs attrs, MemTxResult *result);
1681uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1682                            MemTxAttrs attrs, MemTxResult *result);
1683void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1684                            MemTxAttrs attrs, MemTxResult *result);
1685void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1686                            MemTxAttrs attrs, MemTxResult *result);
1687void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1688                            MemTxAttrs attrs, MemTxResult *result);
1689void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1690                            MemTxAttrs attrs, MemTxResult *result);
1691void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1692                            MemTxAttrs attrs, MemTxResult *result);
1693void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1694                            MemTxAttrs attrs, MemTxResult *result);
1695void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1696                            MemTxAttrs attrs, MemTxResult *result);
1697
1698uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1699uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1700uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1701uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1702uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1703uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1704uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1705void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1706void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1707void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1708void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1709void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1710void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1711void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1712
1713struct MemoryRegionCache {
1714    hwaddr xlat;
1715    hwaddr len;
1716    AddressSpace *as;
1717};
1718
1719#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1720
1721/* address_space_cache_init: prepare for repeated access to a physical
1722 * memory region
1723 *
1724 * @cache: #MemoryRegionCache to be filled
1725 * @as: #AddressSpace to be accessed
1726 * @addr: address within that address space
1727 * @len: length of buffer
1728 * @is_write: indicates the transfer direction
1729 *
1730 * Will only work with RAM, and may map a subset of the requested range by
1731 * returning a value that is less than @len.  On failure, return a negative
1732 * errno value.
1733 *
1734 * Because it only works with RAM, this function can be used for
1735 * read-modify-write operations.  In this case, is_write should be %true.
1736 *
1737 * Note that addresses passed to the address_space_*_cached functions
1738 * are relative to @addr.
1739 */
1740int64_t address_space_cache_init(MemoryRegionCache *cache,
1741                                 AddressSpace *as,
1742                                 hwaddr addr,
1743                                 hwaddr len,
1744                                 bool is_write);
1745
1746/**
1747 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1748 *
1749 * @cache: The #MemoryRegionCache to operate on.
1750 * @addr: The first physical address that was written, relative to the
1751 * address that was passed to @address_space_cache_init.
1752 * @access_len: The number of bytes that were written starting at @addr.
1753 */
1754void address_space_cache_invalidate(MemoryRegionCache *cache,
1755                                    hwaddr addr,
1756                                    hwaddr access_len);
1757
1758/**
1759 * address_space_cache_destroy: free a #MemoryRegionCache
1760 *
1761 * @cache: The #MemoryRegionCache whose memory should be released.
1762 */
1763void address_space_cache_destroy(MemoryRegionCache *cache);
1764
1765/* address_space_ld*_cached: load from a cached #MemoryRegion
1766 * address_space_st*_cached: store into a cached #MemoryRegion
1767 *
1768 * These functions perform a load or store of the byte, word,
1769 * longword or quad to the specified address.  The address is
1770 * a physical address in the AddressSpace, but it must lie within
1771 * a #MemoryRegion that was mapped with address_space_cache_init.
1772 *
1773 * The _le suffixed functions treat the data as little endian;
1774 * _be indicates big endian; no suffix indicates "same endianness
1775 * as guest CPU".
1776 *
1777 * The "guest CPU endianness" accessors are deprecated for use outside
1778 * target-* code; devices should be CPU-agnostic and use either the LE
1779 * or the BE accessors.
1780 *
1781 * @cache: previously initialized #MemoryRegionCache to be accessed
1782 * @addr: address within the address space
1783 * @val: data value, for stores
1784 * @attrs: memory transaction attributes
1785 * @result: location to write the success/failure of the transaction;
1786 *   if NULL, this information is discarded
1787 */
1788uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1789                            MemTxAttrs attrs, MemTxResult *result);
1790uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1791                            MemTxAttrs attrs, MemTxResult *result);
1792uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1793                            MemTxAttrs attrs, MemTxResult *result);
1794uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1795                            MemTxAttrs attrs, MemTxResult *result);
1796uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1797                            MemTxAttrs attrs, MemTxResult *result);
1798uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1799                            MemTxAttrs attrs, MemTxResult *result);
1800uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1801                            MemTxAttrs attrs, MemTxResult *result);
1802void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1803                            MemTxAttrs attrs, MemTxResult *result);
1804void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1805                            MemTxAttrs attrs, MemTxResult *result);
1806void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1807                            MemTxAttrs attrs, MemTxResult *result);
1808void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1809                            MemTxAttrs attrs, MemTxResult *result);
1810void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1811                            MemTxAttrs attrs, MemTxResult *result);
1812void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1813                            MemTxAttrs attrs, MemTxResult *result);
1814void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1815                            MemTxAttrs attrs, MemTxResult *result);
1816
1817uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1818uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1819uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1820uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1821uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1822uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1823uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1824void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1825void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1826void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1827void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1828void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1829void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1830void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1831/* address_space_get_iotlb_entry: translate an address into an IOTLB
1832 * entry. Should be called from an RCU critical section.
1833 */
1834IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1835                                            bool is_write);
1836
1837/* address_space_translate: translate an address range into an address space
1838 * into a MemoryRegion and an address range into that section.  Should be
1839 * called from an RCU critical section, to avoid that the last reference
1840 * to the returned region disappears after address_space_translate returns.
1841 *
1842 * @as: #AddressSpace to be accessed
1843 * @addr: address within that address space
1844 * @xlat: pointer to address within the returned memory region section's
1845 * #MemoryRegion.
1846 * @len: pointer to length
1847 * @is_write: indicates the transfer direction
1848 */
1849MemoryRegion *flatview_translate(FlatView *fv,
1850                                 hwaddr addr, hwaddr *xlat,
1851                                 hwaddr *len, bool is_write);
1852
1853static inline MemoryRegion *address_space_translate(AddressSpace *as,
1854                                                    hwaddr addr, hwaddr *xlat,
1855                                                    hwaddr *len, bool is_write)
1856{
1857    return flatview_translate(address_space_to_flatview(as),
1858                              addr, xlat, len, is_write);
1859}
1860
1861/* address_space_access_valid: check for validity of accessing an address
1862 * space range
1863 *
1864 * Check whether memory is assigned to the given address space range, and
1865 * access is permitted by any IOMMU regions that are active for the address
1866 * space.
1867 *
1868 * For now, addr and len should be aligned to a page size.  This limitation
1869 * will be lifted in the future.
1870 *
1871 * @as: #AddressSpace to be accessed
1872 * @addr: address within that address space
1873 * @len: length of the area to be checked
1874 * @is_write: indicates the transfer direction
1875 */
1876bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1877
1878/* address_space_map: map a physical memory region into a host virtual address
1879 *
1880 * May map a subset of the requested range, given by and returned in @plen.
1881 * May return %NULL if resources needed to perform the mapping are exhausted.
1882 * Use only for reads OR writes - not for read-modify-write operations.
1883 * Use cpu_register_map_client() to know when retrying the map operation is
1884 * likely to succeed.
1885 *
1886 * @as: #AddressSpace to be accessed
1887 * @addr: address within that address space
1888 * @plen: pointer to length of buffer; updated on return
1889 * @is_write: indicates the transfer direction
1890 */
1891void *address_space_map(AddressSpace *as, hwaddr addr,
1892                        hwaddr *plen, bool is_write);
1893
1894/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1895 *
1896 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1897 * the amount of memory that was actually read or written by the caller.
1898 *
1899 * @as: #AddressSpace used
1900 * @addr: address within that address space
1901 * @len: buffer length as returned by address_space_map()
1902 * @access_len: amount of data actually transferred
1903 * @is_write: indicates the transfer direction
1904 */
1905void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1906                         int is_write, hwaddr access_len);
1907
1908
1909/* Internal functions, part of the implementation of address_space_read.  */
1910MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1911                                    MemTxAttrs attrs, uint8_t *buf, int len);
1912MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1913                                   MemTxAttrs attrs, uint8_t *buf,
1914                                   int len, hwaddr addr1, hwaddr l,
1915                                   MemoryRegion *mr);
1916void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1917
1918static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1919{
1920    if (is_write) {
1921        return memory_region_is_ram(mr) &&
1922               !mr->readonly && !memory_region_is_ram_device(mr);
1923    } else {
1924        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1925               memory_region_is_romd(mr);
1926    }
1927}
1928
1929/**
1930 * address_space_read: read from an address space.
1931 *
1932 * Return a MemTxResult indicating whether the operation succeeded
1933 * or failed (eg unassigned memory, device rejected the transaction,
1934 * IOMMU fault).  Called within RCU critical section.
1935 *
1936 * @as: #AddressSpace to be accessed
1937 * @addr: address within that address space
1938 * @attrs: memory transaction attributes
1939 * @buf: buffer with the data transferred
1940 */
1941static inline __attribute__((__always_inline__))
1942MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1943                               MemTxAttrs attrs, uint8_t *buf,
1944                               int len)
1945{
1946    MemTxResult result = MEMTX_OK;
1947    hwaddr l, addr1;
1948    void *ptr;
1949    MemoryRegion *mr;
1950    FlatView *fv;
1951
1952    if (__builtin_constant_p(len)) {
1953        if (len) {
1954            rcu_read_lock();
1955            fv = address_space_to_flatview(as);
1956            l = len;
1957            mr = flatview_translate(fv, addr, &addr1, &l, false);
1958            if (len == l && memory_access_is_direct(mr, false)) {
1959                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1960                memcpy(buf, ptr, len);
1961            } else {
1962                result = flatview_read_continue(fv, addr, attrs, buf, len,
1963                                                addr1, l, mr);
1964            }
1965            rcu_read_unlock();
1966        }
1967    } else {
1968        result = address_space_read_full(as, addr, attrs, buf, len);
1969    }
1970    return result;
1971}
1972
1973/**
1974 * address_space_read_cached: read from a cached RAM region
1975 *
1976 * @cache: Cached region to be addressed
1977 * @addr: address relative to the base of the RAM region
1978 * @buf: buffer with the data transferred
1979 * @len: length of the data transferred
1980 */
1981static inline void
1982address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1983                          void *buf, int len)
1984{
1985    assert(addr < cache->len && len <= cache->len - addr);
1986    address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1987}
1988
1989/**
1990 * address_space_write_cached: write to a cached RAM region
1991 *
1992 * @cache: Cached region to be addressed
1993 * @addr: address relative to the base of the RAM region
1994 * @buf: buffer with the data transferred
1995 * @len: length of the data transferred
1996 */
1997static inline void
1998address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1999                           void *buf, int len)
2000{
2001    assert(addr < cache->len && len <= cache->len - addr);
2002    address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2003}
2004
2005#endif
2006
2007#endif
2008