qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63FIELD(V7M_CONTROL, SFPA, 3, 1)
  64
  65/* Bit definitions for v7M exception return payload */
  66FIELD(V7M_EXCRET, ES, 0, 1)
  67FIELD(V7M_EXCRET, RES0, 1, 1)
  68FIELD(V7M_EXCRET, SPSEL, 2, 1)
  69FIELD(V7M_EXCRET, MODE, 3, 1)
  70FIELD(V7M_EXCRET, FTYPE, 4, 1)
  71FIELD(V7M_EXCRET, DCRS, 5, 1)
  72FIELD(V7M_EXCRET, S, 6, 1)
  73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  74
  75/* Minimum value which is a magic number for exception return */
  76#define EXC_RETURN_MIN_MAGIC 0xff000000
  77/* Minimum number which is a magic number for function or exception return
  78 * when using v8M security extension
  79 */
  80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  81
  82/* We use a few fake FSR values for internal purposes in M profile.
  83 * M profile cores don't have A/R format FSRs, but currently our
  84 * get_phys_addr() code assumes A/R profile and reports failures via
  85 * an A/R format FSR value. We then translate that into the proper
  86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  87 * Mostly the FSR values we use for this are those defined for v7PMSA,
  88 * since we share some of that codepath. A few kinds of fault are
  89 * only for M profile and have no A/R equivalent, though, so we have
  90 * to pick a value from the reserved range (which we never otherwise
  91 * generate) to use for these.
  92 * These values will never be visible to the guest.
  93 */
  94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  96
  97/*
  98 * For AArch64, map a given EL to an index in the banked_spsr array.
  99 * Note that this mapping and the AArch32 mapping defined in bank_number()
 100 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 101 * mandated mapping between each other.
 102 */
 103static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 104{
 105    static const unsigned int map[4] = {
 106        [1] = BANK_SVC, /* EL1.  */
 107        [2] = BANK_HYP, /* EL2.  */
 108        [3] = BANK_MON, /* EL3.  */
 109    };
 110    assert(el >= 1 && el <= 3);
 111    return map[el];
 112}
 113
 114/* Map CPU modes onto saved register banks.  */
 115static inline int bank_number(int mode)
 116{
 117    switch (mode) {
 118    case ARM_CPU_MODE_USR:
 119    case ARM_CPU_MODE_SYS:
 120        return BANK_USRSYS;
 121    case ARM_CPU_MODE_SVC:
 122        return BANK_SVC;
 123    case ARM_CPU_MODE_ABT:
 124        return BANK_ABT;
 125    case ARM_CPU_MODE_UND:
 126        return BANK_UND;
 127    case ARM_CPU_MODE_IRQ:
 128        return BANK_IRQ;
 129    case ARM_CPU_MODE_FIQ:
 130        return BANK_FIQ;
 131    case ARM_CPU_MODE_HYP:
 132        return BANK_HYP;
 133    case ARM_CPU_MODE_MON:
 134        return BANK_MON;
 135    }
 136    g_assert_not_reached();
 137}
 138
 139void switch_mode(CPUARMState *, int);
 140void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 141void arm_translate_init(void);
 142
 143enum arm_fprounding {
 144    FPROUNDING_TIEEVEN,
 145    FPROUNDING_POSINF,
 146    FPROUNDING_NEGINF,
 147    FPROUNDING_ZERO,
 148    FPROUNDING_TIEAWAY,
 149    FPROUNDING_ODD
 150};
 151
 152int arm_rmode_to_sf(int rmode);
 153
 154static inline void aarch64_save_sp(CPUARMState *env, int el)
 155{
 156    if (env->pstate & PSTATE_SP) {
 157        env->sp_el[el] = env->xregs[31];
 158    } else {
 159        env->sp_el[0] = env->xregs[31];
 160    }
 161}
 162
 163static inline void aarch64_restore_sp(CPUARMState *env, int el)
 164{
 165    if (env->pstate & PSTATE_SP) {
 166        env->xregs[31] = env->sp_el[el];
 167    } else {
 168        env->xregs[31] = env->sp_el[0];
 169    }
 170}
 171
 172static inline void update_spsel(CPUARMState *env, uint32_t imm)
 173{
 174    unsigned int cur_el = arm_current_el(env);
 175    /* Update PSTATE SPSel bit; this requires us to update the
 176     * working stack pointer in xregs[31].
 177     */
 178    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 179        return;
 180    }
 181    aarch64_save_sp(env, cur_el);
 182    env->pstate = deposit32(env->pstate, 0, 1, imm);
 183
 184    /* We rely on illegal updates to SPsel from EL0 to get trapped
 185     * at translation time.
 186     */
 187    assert(cur_el >= 1 && cur_el <= 3);
 188    aarch64_restore_sp(env, cur_el);
 189}
 190
 191/*
 192 * arm_pamax
 193 * @cpu: ARMCPU
 194 *
 195 * Returns the implementation defined bit-width of physical addresses.
 196 * The ARMv8 reference manuals refer to this as PAMax().
 197 */
 198static inline unsigned int arm_pamax(ARMCPU *cpu)
 199{
 200    static const unsigned int pamax_map[] = {
 201        [0] = 32,
 202        [1] = 36,
 203        [2] = 40,
 204        [3] = 42,
 205        [4] = 44,
 206        [5] = 48,
 207    };
 208    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 209
 210    /* id_aa64mmfr0 is a read-only register so values outside of the
 211     * supported mappings can be considered an implementation error.  */
 212    assert(parange < ARRAY_SIZE(pamax_map));
 213    return pamax_map[parange];
 214}
 215
 216/* Return true if extended addresses are enabled.
 217 * This is always the case if our translation regime is 64 bit,
 218 * but depends on TTBCR.EAE for 32 bit.
 219 */
 220static inline bool extended_addresses_enabled(CPUARMState *env)
 221{
 222    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 223    return arm_el_is_aa64(env, 1) ||
 224           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 225}
 226
 227/* Valid Syndrome Register EC field values */
 228enum arm_exception_class {
 229    EC_UNCATEGORIZED          = 0x00,
 230    EC_WFX_TRAP               = 0x01,
 231    EC_CP15RTTRAP             = 0x03,
 232    EC_CP15RRTTRAP            = 0x04,
 233    EC_CP14RTTRAP             = 0x05,
 234    EC_CP14DTTRAP             = 0x06,
 235    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 236    EC_FPIDTRAP               = 0x08,
 237    EC_CP14RRTTRAP            = 0x0c,
 238    EC_ILLEGALSTATE           = 0x0e,
 239    EC_AA32_SVC               = 0x11,
 240    EC_AA32_HVC               = 0x12,
 241    EC_AA32_SMC               = 0x13,
 242    EC_AA64_SVC               = 0x15,
 243    EC_AA64_HVC               = 0x16,
 244    EC_AA64_SMC               = 0x17,
 245    EC_SYSTEMREGISTERTRAP     = 0x18,
 246    EC_INSNABORT              = 0x20,
 247    EC_INSNABORT_SAME_EL      = 0x21,
 248    EC_PCALIGNMENT            = 0x22,
 249    EC_DATAABORT              = 0x24,
 250    EC_DATAABORT_SAME_EL      = 0x25,
 251    EC_SPALIGNMENT            = 0x26,
 252    EC_AA32_FPTRAP            = 0x28,
 253    EC_AA64_FPTRAP            = 0x2c,
 254    EC_SERROR                 = 0x2f,
 255    EC_BREAKPOINT             = 0x30,
 256    EC_BREAKPOINT_SAME_EL     = 0x31,
 257    EC_SOFTWARESTEP           = 0x32,
 258    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 259    EC_WATCHPOINT             = 0x34,
 260    EC_WATCHPOINT_SAME_EL     = 0x35,
 261    EC_AA32_BKPT              = 0x38,
 262    EC_VECTORCATCH            = 0x3a,
 263    EC_AA64_BKPT              = 0x3c,
 264};
 265
 266#define ARM_EL_EC_SHIFT 26
 267#define ARM_EL_IL_SHIFT 25
 268#define ARM_EL_ISV_SHIFT 24
 269#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 270#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 271
 272/* Utility functions for constructing various kinds of syndrome value.
 273 * Note that in general we follow the AArch64 syndrome values; in a
 274 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 275 * mode differs slightly, so if we ever implemented Hyp mode then the
 276 * syndrome value would need some massaging on exception entry.
 277 * (One example of this is that AArch64 defaults to IL bit set for
 278 * exceptions which don't specifically indicate information about the
 279 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 280 */
 281static inline uint32_t syn_uncategorized(void)
 282{
 283    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 284}
 285
 286static inline uint32_t syn_aa64_svc(uint32_t imm16)
 287{
 288    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 289}
 290
 291static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 292{
 293    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 294}
 295
 296static inline uint32_t syn_aa64_smc(uint32_t imm16)
 297{
 298    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 299}
 300
 301static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 302{
 303    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 304        | (is_16bit ? 0 : ARM_EL_IL);
 305}
 306
 307static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 308{
 309    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 310}
 311
 312static inline uint32_t syn_aa32_smc(void)
 313{
 314    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 315}
 316
 317static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 318{
 319    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 320}
 321
 322static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 323{
 324    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 325        | (is_16bit ? 0 : ARM_EL_IL);
 326}
 327
 328static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 329                                           int crn, int crm, int rt,
 330                                           int isread)
 331{
 332    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 333        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 334        | (crm << 1) | isread;
 335}
 336
 337static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 338                                        int crn, int crm, int rt, int isread,
 339                                        bool is_16bit)
 340{
 341    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 342        | (is_16bit ? 0 : ARM_EL_IL)
 343        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 344        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 345}
 346
 347static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 348                                        int crn, int crm, int rt, int isread,
 349                                        bool is_16bit)
 350{
 351    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 352        | (is_16bit ? 0 : ARM_EL_IL)
 353        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 354        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 355}
 356
 357static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 358                                         int rt, int rt2, int isread,
 359                                         bool is_16bit)
 360{
 361    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 362        | (is_16bit ? 0 : ARM_EL_IL)
 363        | (cv << 24) | (cond << 20) | (opc1 << 16)
 364        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 365}
 366
 367static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 368                                         int rt, int rt2, int isread,
 369                                         bool is_16bit)
 370{
 371    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 372        | (is_16bit ? 0 : ARM_EL_IL)
 373        | (cv << 24) | (cond << 20) | (opc1 << 16)
 374        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 375}
 376
 377static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 378{
 379    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 380        | (is_16bit ? 0 : ARM_EL_IL)
 381        | (cv << 24) | (cond << 20);
 382}
 383
 384static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 385{
 386    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 387        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 388}
 389
 390static inline uint32_t syn_data_abort_no_iss(int same_el,
 391                                             int ea, int cm, int s1ptw,
 392                                             int wnr, int fsc)
 393{
 394    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 395           | ARM_EL_IL
 396           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 397}
 398
 399static inline uint32_t syn_data_abort_with_iss(int same_el,
 400                                               int sas, int sse, int srt,
 401                                               int sf, int ar,
 402                                               int ea, int cm, int s1ptw,
 403                                               int wnr, int fsc,
 404                                               bool is_16bit)
 405{
 406    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 407           | (is_16bit ? 0 : ARM_EL_IL)
 408           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 409           | (sf << 15) | (ar << 14)
 410           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 411}
 412
 413static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 414{
 415    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 416        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 417}
 418
 419static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 420{
 421    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 422        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 423}
 424
 425static inline uint32_t syn_breakpoint(int same_el)
 426{
 427    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 428        | ARM_EL_IL | 0x22;
 429}
 430
 431static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
 432{
 433    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 434           (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
 435           (cv << 24) | (cond << 20) | ti;
 436}
 437
 438/* Update a QEMU watchpoint based on the information the guest has set in the
 439 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 440 */
 441void hw_watchpoint_update(ARMCPU *cpu, int n);
 442/* Update the QEMU watchpoints for every guest watchpoint. This does a
 443 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 444 * suitable for use after migration or on reset.
 445 */
 446void hw_watchpoint_update_all(ARMCPU *cpu);
 447/* Update a QEMU breakpoint based on the information the guest has set in the
 448 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 449 */
 450void hw_breakpoint_update(ARMCPU *cpu, int n);
 451/* Update the QEMU breakpoints for every guest breakpoint. This does a
 452 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 453 * suitable for use after migration or on reset.
 454 */
 455void hw_breakpoint_update_all(ARMCPU *cpu);
 456
 457/* Callback function for checking if a watchpoint should trigger. */
 458bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 459
 460/* Adjust addresses (in BE32 mode) before testing against watchpoint
 461 * addresses.
 462 */
 463vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 464
 465/* Callback function for when a watchpoint or breakpoint triggers. */
 466void arm_debug_excp_handler(CPUState *cs);
 467
 468#ifdef CONFIG_USER_ONLY
 469static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 470{
 471    return false;
 472}
 473#else
 474/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 475bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 476/* Actually handle a PSCI call */
 477void arm_handle_psci_call(ARMCPU *cpu);
 478#endif
 479
 480/**
 481 * arm_clear_exclusive: clear the exclusive monitor
 482 * @env: CPU env
 483 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 484 */
 485static inline void arm_clear_exclusive(CPUARMState *env)
 486{
 487    env->exclusive_addr = -1;
 488}
 489
 490/**
 491 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 492 * @s2addr: Address that caused a fault at stage 2
 493 * @stage2: True if we faulted at stage 2
 494 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 495 * @ea: True if we should set the EA (external abort type) bit in syndrome
 496 */
 497typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 498struct ARMMMUFaultInfo {
 499    target_ulong s2addr;
 500    bool stage2;
 501    bool s1ptw;
 502    bool ea;
 503};
 504
 505/* Do a page table walk and add page to TLB if possible */
 506bool arm_tlb_fill(CPUState *cpu, vaddr address,
 507                  MMUAccessType access_type, int mmu_idx,
 508                  uint32_t *fsr, ARMMMUFaultInfo *fi);
 509
 510/* Return true if the stage 1 translation regime is using LPAE format page
 511 * tables */
 512bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 513
 514/* Raise a data fault alignment exception for the specified virtual address */
 515void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 516                                 MMUAccessType access_type,
 517                                 int mmu_idx, uintptr_t retaddr);
 518
 519/* arm_cpu_do_transaction_failed: handle a memory system error response
 520 * (eg "no device/memory present at address") by raising an external abort
 521 * exception
 522 */
 523void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 524                                   vaddr addr, unsigned size,
 525                                   MMUAccessType access_type,
 526                                   int mmu_idx, MemTxAttrs attrs,
 527                                   MemTxResult response, uintptr_t retaddr);
 528
 529/* Call the EL change hook if one has been registered */
 530static inline void arm_call_el_change_hook(ARMCPU *cpu)
 531{
 532    if (cpu->el_change_hook) {
 533        cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
 534    }
 535}
 536
 537/* Return true if this address translation regime is secure */
 538static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 539{
 540    switch (mmu_idx) {
 541    case ARMMMUIdx_S12NSE0:
 542    case ARMMMUIdx_S12NSE1:
 543    case ARMMMUIdx_S1NSE0:
 544    case ARMMMUIdx_S1NSE1:
 545    case ARMMMUIdx_S1E2:
 546    case ARMMMUIdx_S2NS:
 547    case ARMMMUIdx_MPriv:
 548    case ARMMMUIdx_MNegPri:
 549    case ARMMMUIdx_MUser:
 550        return false;
 551    case ARMMMUIdx_S1E3:
 552    case ARMMMUIdx_S1SE0:
 553    case ARMMMUIdx_S1SE1:
 554    case ARMMMUIdx_MSPriv:
 555    case ARMMMUIdx_MSNegPri:
 556    case ARMMMUIdx_MSUser:
 557        return true;
 558    default:
 559        g_assert_not_reached();
 560    }
 561}
 562
 563#endif
 564