qemu/target/arm/kvm64.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 64 bit specific code
   3 *
   4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
   5 * Copyright Alex Bennée 2014, Linaro
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 */
  11
  12#include "qemu/osdep.h"
  13#include <sys/ioctl.h>
  14#include <sys/ptrace.h>
  15
  16#include <linux/elf.h>
  17#include <linux/kvm.h>
  18
  19#include "qemu-common.h"
  20#include "cpu.h"
  21#include "qemu/timer.h"
  22#include "qemu/error-report.h"
  23#include "qemu/host-utils.h"
  24#include "exec/gdbstub.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/kvm.h"
  27#include "kvm_arm.h"
  28#include "internals.h"
  29#include "hw/arm/arm.h"
  30
  31static bool have_guest_debug;
  32
  33/*
  34 * Although the ARM implementation of hardware assisted debugging
  35 * allows for different breakpoints per-core, the current GDB
  36 * interface treats them as a global pool of registers (which seems to
  37 * be the case for x86, ppc and s390). As a result we store one copy
  38 * of registers which is used for all active cores.
  39 *
  40 * Write access is serialised by virtue of the GDB protocol which
  41 * updates things. Read access (i.e. when the values are copied to the
  42 * vCPU) is also gated by GDB's run control.
  43 *
  44 * This is not unreasonable as most of the time debugging kernels you
  45 * never know which core will eventually execute your function.
  46 */
  47
  48typedef struct {
  49    uint64_t bcr;
  50    uint64_t bvr;
  51} HWBreakpoint;
  52
  53/* The watchpoint registers can cover more area than the requested
  54 * watchpoint so we need to store the additional information
  55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
  56 * when the watchpoint is hit.
  57 */
  58typedef struct {
  59    uint64_t wcr;
  60    uint64_t wvr;
  61    CPUWatchpoint details;
  62} HWWatchpoint;
  63
  64/* Maximum and current break/watch point counts */
  65int max_hw_bps, max_hw_wps;
  66GArray *hw_breakpoints, *hw_watchpoints;
  67
  68#define cur_hw_wps      (hw_watchpoints->len)
  69#define cur_hw_bps      (hw_breakpoints->len)
  70#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
  71#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
  72
  73/**
  74 * kvm_arm_init_debug() - check for guest debug capabilities
  75 * @cs: CPUState
  76 *
  77 * kvm_check_extension returns the number of debug registers we have
  78 * or 0 if we have none.
  79 *
  80 */
  81static void kvm_arm_init_debug(CPUState *cs)
  82{
  83    have_guest_debug = kvm_check_extension(cs->kvm_state,
  84                                           KVM_CAP_SET_GUEST_DEBUG);
  85
  86    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
  87    hw_watchpoints = g_array_sized_new(true, true,
  88                                       sizeof(HWWatchpoint), max_hw_wps);
  89
  90    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
  91    hw_breakpoints = g_array_sized_new(true, true,
  92                                       sizeof(HWBreakpoint), max_hw_bps);
  93    return;
  94}
  95
  96/**
  97 * insert_hw_breakpoint()
  98 * @addr: address of breakpoint
  99 *
 100 * See ARM ARM D2.9.1 for details but here we are only going to create
 101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 102 * together to match address and context or vmid). The hardware is
 103 * capable of fancier matching but that will require exposing that
 104 * fanciness to GDB's interface
 105 *
 106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 107 *
 108 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 109 * +------+------+-------+-----+----+------+-----+------+-----+---+
 110 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 111 * +------+------+-------+-----+----+------+-----+------+-----+---+
 112 *
 113 * BT: Breakpoint type (0 = unlinked address match)
 114 * LBN: Linked BP number (0 = unused)
 115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 116 * BAS: Byte Address Select (RES1 for AArch64)
 117 * E: Enable bit
 118 */
 119static int insert_hw_breakpoint(target_ulong addr)
 120{
 121    HWBreakpoint brk = {
 122        .bcr = 0x1,                             /* BCR E=1, enable */
 123        .bvr = addr
 124    };
 125
 126    if (cur_hw_bps >= max_hw_bps) {
 127        return -ENOBUFS;
 128    }
 129
 130    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 131    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 132
 133    g_array_append_val(hw_breakpoints, brk);
 134
 135    return 0;
 136}
 137
 138/**
 139 * delete_hw_breakpoint()
 140 * @pc: address of breakpoint
 141 *
 142 * Delete a breakpoint and shuffle any above down
 143 */
 144
 145static int delete_hw_breakpoint(target_ulong pc)
 146{
 147    int i;
 148    for (i = 0; i < hw_breakpoints->len; i++) {
 149        HWBreakpoint *brk = get_hw_bp(i);
 150        if (brk->bvr == pc) {
 151            g_array_remove_index(hw_breakpoints, i);
 152            return 0;
 153        }
 154    }
 155    return -ENOENT;
 156}
 157
 158/**
 159 * insert_hw_watchpoint()
 160 * @addr: address of watch point
 161 * @len: size of area
 162 * @type: type of watch point
 163 *
 164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 165 * stuff if we want to. The watch points can be linked with the break
 166 * points above to make them context aware. However for simplicity
 167 * currently we only deal with simple read/write watch points.
 168 *
 169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 170 *
 171 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 173 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 175 *
 176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 177 * WT: 0 - unlinked, 1 - linked (not currently used)
 178 * LBN: Linked BP number (not currently used)
 179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 180 * BAS: Byte Address Select
 181 * LSC: Load/Store control (01: load, 10: store, 11: both)
 182 * E: Enable
 183 *
 184 * The bottom 2 bits of the value register are masked. Therefore to
 185 * break on any sizes smaller than an unaligned word you need to set
 186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 187 * need to ensure you mask the address as required and set BAS=0xff
 188 */
 189
 190static int insert_hw_watchpoint(target_ulong addr,
 191                                target_ulong len, int type)
 192{
 193    HWWatchpoint wp = {
 194        .wcr = 1, /* E=1, enable */
 195        .wvr = addr & (~0x7ULL),
 196        .details = { .vaddr = addr, .len = len }
 197    };
 198
 199    if (cur_hw_wps >= max_hw_wps) {
 200        return -ENOBUFS;
 201    }
 202
 203    /*
 204     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 205     * valid whether EL3 is implemented or not
 206     */
 207    wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 208
 209    switch (type) {
 210    case GDB_WATCHPOINT_READ:
 211        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 212        wp.details.flags = BP_MEM_READ;
 213        break;
 214    case GDB_WATCHPOINT_WRITE:
 215        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 216        wp.details.flags = BP_MEM_WRITE;
 217        break;
 218    case GDB_WATCHPOINT_ACCESS:
 219        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 220        wp.details.flags = BP_MEM_ACCESS;
 221        break;
 222    default:
 223        g_assert_not_reached();
 224        break;
 225    }
 226    if (len <= 8) {
 227        /* we align the address and set the bits in BAS */
 228        int off = addr & 0x7;
 229        int bas = (1 << len) - 1;
 230
 231        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 232    } else {
 233        /* For ranges above 8 bytes we need to be a power of 2 */
 234        if (is_power_of_2(len)) {
 235            int bits = ctz64(len);
 236
 237            wp.wvr &= ~((1 << bits) - 1);
 238            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 239            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 240        } else {
 241            return -ENOBUFS;
 242        }
 243    }
 244
 245    g_array_append_val(hw_watchpoints, wp);
 246    return 0;
 247}
 248
 249
 250static bool check_watchpoint_in_range(int i, target_ulong addr)
 251{
 252    HWWatchpoint *wp = get_hw_wp(i);
 253    uint64_t addr_top, addr_bottom = wp->wvr;
 254    int bas = extract32(wp->wcr, 5, 8);
 255    int mask = extract32(wp->wcr, 24, 4);
 256
 257    if (mask) {
 258        addr_top = addr_bottom + (1 << mask);
 259    } else {
 260        /* BAS must be contiguous but can offset against the base
 261         * address in DBGWVR */
 262        addr_bottom = addr_bottom + ctz32(bas);
 263        addr_top = addr_bottom + clo32(bas);
 264    }
 265
 266    if (addr >= addr_bottom && addr <= addr_top) {
 267        return true;
 268    }
 269
 270    return false;
 271}
 272
 273/**
 274 * delete_hw_watchpoint()
 275 * @addr: address of breakpoint
 276 *
 277 * Delete a breakpoint and shuffle any above down
 278 */
 279
 280static int delete_hw_watchpoint(target_ulong addr,
 281                                target_ulong len, int type)
 282{
 283    int i;
 284    for (i = 0; i < cur_hw_wps; i++) {
 285        if (check_watchpoint_in_range(i, addr)) {
 286            g_array_remove_index(hw_watchpoints, i);
 287            return 0;
 288        }
 289    }
 290    return -ENOENT;
 291}
 292
 293
 294int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 295                                  target_ulong len, int type)
 296{
 297    switch (type) {
 298    case GDB_BREAKPOINT_HW:
 299        return insert_hw_breakpoint(addr);
 300        break;
 301    case GDB_WATCHPOINT_READ:
 302    case GDB_WATCHPOINT_WRITE:
 303    case GDB_WATCHPOINT_ACCESS:
 304        return insert_hw_watchpoint(addr, len, type);
 305    default:
 306        return -ENOSYS;
 307    }
 308}
 309
 310int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 311                                  target_ulong len, int type)
 312{
 313    switch (type) {
 314    case GDB_BREAKPOINT_HW:
 315        return delete_hw_breakpoint(addr);
 316        break;
 317    case GDB_WATCHPOINT_READ:
 318    case GDB_WATCHPOINT_WRITE:
 319    case GDB_WATCHPOINT_ACCESS:
 320        return delete_hw_watchpoint(addr, len, type);
 321    default:
 322        return -ENOSYS;
 323    }
 324}
 325
 326
 327void kvm_arch_remove_all_hw_breakpoints(void)
 328{
 329    if (cur_hw_wps > 0) {
 330        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 331    }
 332    if (cur_hw_bps > 0) {
 333        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 334    }
 335}
 336
 337void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 338{
 339    int i;
 340    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 341
 342    for (i = 0; i < max_hw_wps; i++) {
 343        HWWatchpoint *wp = get_hw_wp(i);
 344        ptr->dbg_wcr[i] = wp->wcr;
 345        ptr->dbg_wvr[i] = wp->wvr;
 346    }
 347    for (i = 0; i < max_hw_bps; i++) {
 348        HWBreakpoint *bp = get_hw_bp(i);
 349        ptr->dbg_bcr[i] = bp->bcr;
 350        ptr->dbg_bvr[i] = bp->bvr;
 351    }
 352}
 353
 354bool kvm_arm_hw_debug_active(CPUState *cs)
 355{
 356    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 357}
 358
 359static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 360{
 361    int i;
 362
 363    for (i = 0; i < cur_hw_bps; i++) {
 364        HWBreakpoint *bp = get_hw_bp(i);
 365        if (bp->bvr == pc) {
 366            return true;
 367        }
 368    }
 369    return false;
 370}
 371
 372static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 373{
 374    int i;
 375
 376    for (i = 0; i < cur_hw_wps; i++) {
 377        if (check_watchpoint_in_range(i, addr)) {
 378            return &get_hw_wp(i)->details;
 379        }
 380    }
 381    return NULL;
 382}
 383
 384static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
 385{
 386    int err;
 387
 388    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
 389    if (err != 0) {
 390        error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
 391        return false;
 392    }
 393
 394    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
 395    if (err != 0) {
 396        error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
 397        return false;
 398    }
 399
 400    return true;
 401}
 402
 403void kvm_arm_pmu_init(CPUState *cs)
 404{
 405    struct kvm_device_attr attr = {
 406        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 407        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
 408    };
 409
 410    if (!ARM_CPU(cs)->has_pmu) {
 411        return;
 412    }
 413    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
 414        error_report("failed to init PMU");
 415        abort();
 416    }
 417}
 418
 419void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
 420{
 421    struct kvm_device_attr attr = {
 422        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 423        .addr = (intptr_t)&irq,
 424        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
 425    };
 426
 427    if (!ARM_CPU(cs)->has_pmu) {
 428        return;
 429    }
 430    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
 431        error_report("failed to set irq for PMU");
 432        abort();
 433    }
 434}
 435
 436static inline void set_feature(uint64_t *features, int feature)
 437{
 438    *features |= 1ULL << feature;
 439}
 440
 441static inline void unset_feature(uint64_t *features, int feature)
 442{
 443    *features &= ~(1ULL << feature);
 444}
 445
 446bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 447{
 448    /* Identify the feature bits corresponding to the host CPU, and
 449     * fill out the ARMHostCPUClass fields accordingly. To do this
 450     * we have to create a scratch VM, create a single CPU inside it,
 451     * and then query that CPU for the relevant ID registers.
 452     * For AArch64 we currently don't care about ID registers at
 453     * all; we just want to know the CPU type.
 454     */
 455    int fdarray[3];
 456    uint64_t features = 0;
 457    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 458     * we know these will only support creating one kind of guest CPU,
 459     * which is its preferred CPU type. Fortunately these old kernels
 460     * support only a very limited number of CPUs.
 461     */
 462    static const uint32_t cpus_to_try[] = {
 463        KVM_ARM_TARGET_AEM_V8,
 464        KVM_ARM_TARGET_FOUNDATION_V8,
 465        KVM_ARM_TARGET_CORTEX_A57,
 466        QEMU_KVM_ARM_TARGET_NONE
 467    };
 468    struct kvm_vcpu_init init;
 469
 470    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 471        return false;
 472    }
 473
 474    ahcc->target = init.target;
 475    ahcc->dtb_compatible = "arm,arm-v8";
 476
 477    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 478
 479   /* We can assume any KVM supporting CPU is at least a v8
 480     * with VFPv4+Neon; this in turn implies most of the other
 481     * feature bits.
 482     */
 483    set_feature(&features, ARM_FEATURE_V8);
 484    set_feature(&features, ARM_FEATURE_VFP4);
 485    set_feature(&features, ARM_FEATURE_NEON);
 486    set_feature(&features, ARM_FEATURE_AARCH64);
 487    set_feature(&features, ARM_FEATURE_PMU);
 488
 489    ahcc->features = features;
 490
 491    return true;
 492}
 493
 494#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 495
 496int kvm_arch_init_vcpu(CPUState *cs)
 497{
 498    int ret;
 499    uint64_t mpidr;
 500    ARMCPU *cpu = ARM_CPU(cs);
 501    CPUARMState *env = &cpu->env;
 502
 503    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 504        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 505        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 506        return -EINVAL;
 507    }
 508
 509    /* Determine init features for this CPU */
 510    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 511    if (cpu->start_powered_off) {
 512        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 513    }
 514    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 515        cpu->psci_version = 2;
 516        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 517    }
 518    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 519        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 520    }
 521    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
 522            cpu->has_pmu = false;
 523    }
 524    if (cpu->has_pmu) {
 525        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
 526    } else {
 527        unset_feature(&env->features, ARM_FEATURE_PMU);
 528    }
 529
 530    /* Do KVM_ARM_VCPU_INIT ioctl */
 531    ret = kvm_arm_vcpu_init(cs);
 532    if (ret) {
 533        return ret;
 534    }
 535
 536    /*
 537     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 538     * Currently KVM has its own idea about MPIDR assignment, so we
 539     * override our defaults with what we get from KVM.
 540     */
 541    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 542    if (ret) {
 543        return ret;
 544    }
 545    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 546
 547    kvm_arm_init_debug(cs);
 548
 549    return kvm_arm_init_cpreg_list(cpu);
 550}
 551
 552bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 553{
 554    /* Return true if the regidx is a register we should synchronize
 555     * via the cpreg_tuples array (ie is not a core reg we sync by
 556     * hand in kvm_arch_get/put_registers())
 557     */
 558    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 559    case KVM_REG_ARM_CORE:
 560        return false;
 561    default:
 562        return true;
 563    }
 564}
 565
 566typedef struct CPRegStateLevel {
 567    uint64_t regidx;
 568    int level;
 569} CPRegStateLevel;
 570
 571/* All system registers not listed in the following table are assumed to be
 572 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 573 * often, you must add it to this table with a state of either
 574 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 575 */
 576static const CPRegStateLevel non_runtime_cpregs[] = {
 577    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 578};
 579
 580int kvm_arm_cpreg_level(uint64_t regidx)
 581{
 582    int i;
 583
 584    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 585        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 586        if (l->regidx == regidx) {
 587            return l->level;
 588        }
 589    }
 590
 591    return KVM_PUT_RUNTIME_STATE;
 592}
 593
 594#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 595                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 596
 597#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 598                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 599
 600#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 601                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 602
 603int kvm_arch_put_registers(CPUState *cs, int level)
 604{
 605    struct kvm_one_reg reg;
 606    uint32_t fpr;
 607    uint64_t val;
 608    int i;
 609    int ret;
 610    unsigned int el;
 611
 612    ARMCPU *cpu = ARM_CPU(cs);
 613    CPUARMState *env = &cpu->env;
 614
 615    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 616     * AArch64 registers before pushing them out to 64-bit KVM.
 617     */
 618    if (!is_a64(env)) {
 619        aarch64_sync_32_to_64(env);
 620    }
 621
 622    for (i = 0; i < 31; i++) {
 623        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 624        reg.addr = (uintptr_t) &env->xregs[i];
 625        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 626        if (ret) {
 627            return ret;
 628        }
 629    }
 630
 631    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 632     * QEMU side we keep the current SP in xregs[31] as well.
 633     */
 634    aarch64_save_sp(env, 1);
 635
 636    reg.id = AARCH64_CORE_REG(regs.sp);
 637    reg.addr = (uintptr_t) &env->sp_el[0];
 638    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 639    if (ret) {
 640        return ret;
 641    }
 642
 643    reg.id = AARCH64_CORE_REG(sp_el1);
 644    reg.addr = (uintptr_t) &env->sp_el[1];
 645    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 646    if (ret) {
 647        return ret;
 648    }
 649
 650    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 651    if (is_a64(env)) {
 652        val = pstate_read(env);
 653    } else {
 654        val = cpsr_read(env);
 655    }
 656    reg.id = AARCH64_CORE_REG(regs.pstate);
 657    reg.addr = (uintptr_t) &val;
 658    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 659    if (ret) {
 660        return ret;
 661    }
 662
 663    reg.id = AARCH64_CORE_REG(regs.pc);
 664    reg.addr = (uintptr_t) &env->pc;
 665    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 666    if (ret) {
 667        return ret;
 668    }
 669
 670    reg.id = AARCH64_CORE_REG(elr_el1);
 671    reg.addr = (uintptr_t) &env->elr_el[1];
 672    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 673    if (ret) {
 674        return ret;
 675    }
 676
 677    /* Saved Program State Registers
 678     *
 679     * Before we restore from the banked_spsr[] array we need to
 680     * ensure that any modifications to env->spsr are correctly
 681     * reflected in the banks.
 682     */
 683    el = arm_current_el(env);
 684    if (el > 0 && !is_a64(env)) {
 685        i = bank_number(env->uncached_cpsr & CPSR_M);
 686        env->banked_spsr[i] = env->spsr;
 687    }
 688
 689    /* KVM 0-4 map to QEMU banks 1-5 */
 690    for (i = 0; i < KVM_NR_SPSR; i++) {
 691        reg.id = AARCH64_CORE_REG(spsr[i]);
 692        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 693        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 694        if (ret) {
 695            return ret;
 696        }
 697    }
 698
 699    /* Advanced SIMD and FP registers
 700     * We map Qn = regs[2n+1]:regs[2n]
 701     */
 702    for (i = 0; i < 32; i++) {
 703        int rd = i << 1;
 704        uint64_t fp_val[2];
 705#ifdef HOST_WORDS_BIGENDIAN
 706        fp_val[0] = env->vfp.regs[rd + 1];
 707        fp_val[1] = env->vfp.regs[rd];
 708#else
 709        fp_val[1] = env->vfp.regs[rd + 1];
 710        fp_val[0] = env->vfp.regs[rd];
 711#endif
 712        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 713        reg.addr = (uintptr_t)(&fp_val);
 714        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 715        if (ret) {
 716            return ret;
 717        }
 718    }
 719
 720    reg.addr = (uintptr_t)(&fpr);
 721    fpr = vfp_get_fpsr(env);
 722    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 723    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 724    if (ret) {
 725        return ret;
 726    }
 727
 728    fpr = vfp_get_fpcr(env);
 729    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 730    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 731    if (ret) {
 732        return ret;
 733    }
 734
 735    if (!write_list_to_kvmstate(cpu, level)) {
 736        return EINVAL;
 737    }
 738
 739    kvm_arm_sync_mpstate_to_kvm(cpu);
 740
 741    return ret;
 742}
 743
 744int kvm_arch_get_registers(CPUState *cs)
 745{
 746    struct kvm_one_reg reg;
 747    uint64_t val;
 748    uint32_t fpr;
 749    unsigned int el;
 750    int i;
 751    int ret;
 752
 753    ARMCPU *cpu = ARM_CPU(cs);
 754    CPUARMState *env = &cpu->env;
 755
 756    for (i = 0; i < 31; i++) {
 757        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 758        reg.addr = (uintptr_t) &env->xregs[i];
 759        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 760        if (ret) {
 761            return ret;
 762        }
 763    }
 764
 765    reg.id = AARCH64_CORE_REG(regs.sp);
 766    reg.addr = (uintptr_t) &env->sp_el[0];
 767    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 768    if (ret) {
 769        return ret;
 770    }
 771
 772    reg.id = AARCH64_CORE_REG(sp_el1);
 773    reg.addr = (uintptr_t) &env->sp_el[1];
 774    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 775    if (ret) {
 776        return ret;
 777    }
 778
 779    reg.id = AARCH64_CORE_REG(regs.pstate);
 780    reg.addr = (uintptr_t) &val;
 781    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 782    if (ret) {
 783        return ret;
 784    }
 785
 786    env->aarch64 = ((val & PSTATE_nRW) == 0);
 787    if (is_a64(env)) {
 788        pstate_write(env, val);
 789    } else {
 790        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
 791    }
 792
 793    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 794     * QEMU side we keep the current SP in xregs[31] as well.
 795     */
 796    aarch64_restore_sp(env, 1);
 797
 798    reg.id = AARCH64_CORE_REG(regs.pc);
 799    reg.addr = (uintptr_t) &env->pc;
 800    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 801    if (ret) {
 802        return ret;
 803    }
 804
 805    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 806     * incoming AArch64 regs received from 64-bit KVM.
 807     * We must perform this after all of the registers have been acquired from
 808     * the kernel.
 809     */
 810    if (!is_a64(env)) {
 811        aarch64_sync_64_to_32(env);
 812    }
 813
 814    reg.id = AARCH64_CORE_REG(elr_el1);
 815    reg.addr = (uintptr_t) &env->elr_el[1];
 816    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 817    if (ret) {
 818        return ret;
 819    }
 820
 821    /* Fetch the SPSR registers
 822     *
 823     * KVM SPSRs 0-4 map to QEMU banks 1-5
 824     */
 825    for (i = 0; i < KVM_NR_SPSR; i++) {
 826        reg.id = AARCH64_CORE_REG(spsr[i]);
 827        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 828        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 829        if (ret) {
 830            return ret;
 831        }
 832    }
 833
 834    el = arm_current_el(env);
 835    if (el > 0 && !is_a64(env)) {
 836        i = bank_number(env->uncached_cpsr & CPSR_M);
 837        env->spsr = env->banked_spsr[i];
 838    }
 839
 840    /* Advanced SIMD and FP registers
 841     * We map Qn = regs[2n+1]:regs[2n]
 842     */
 843    for (i = 0; i < 32; i++) {
 844        uint64_t fp_val[2];
 845        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 846        reg.addr = (uintptr_t)(&fp_val);
 847        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 848        if (ret) {
 849            return ret;
 850        } else {
 851            int rd = i << 1;
 852#ifdef HOST_WORDS_BIGENDIAN
 853            env->vfp.regs[rd + 1] = fp_val[0];
 854            env->vfp.regs[rd] = fp_val[1];
 855#else
 856            env->vfp.regs[rd + 1] = fp_val[1];
 857            env->vfp.regs[rd] = fp_val[0];
 858#endif
 859        }
 860    }
 861
 862    reg.addr = (uintptr_t)(&fpr);
 863    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 864    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 865    if (ret) {
 866        return ret;
 867    }
 868    vfp_set_fpsr(env, fpr);
 869
 870    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 871    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 872    if (ret) {
 873        return ret;
 874    }
 875    vfp_set_fpcr(env, fpr);
 876
 877    if (!write_kvmstate_to_list(cpu)) {
 878        return EINVAL;
 879    }
 880    /* Note that it's OK to have registers which aren't in CPUState,
 881     * so we can ignore a failure return here.
 882     */
 883    write_list_to_cpustate(cpu);
 884
 885    kvm_arm_sync_mpstate_to_qemu(cpu);
 886
 887    /* TODO: other registers */
 888    return ret;
 889}
 890
 891/* C6.6.29 BRK instruction */
 892static const uint32_t brk_insn = 0xd4200000;
 893
 894int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 895{
 896    if (have_guest_debug) {
 897        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
 898            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
 899            return -EINVAL;
 900        }
 901        return 0;
 902    } else {
 903        error_report("guest debug not supported on this kernel");
 904        return -EINVAL;
 905    }
 906}
 907
 908int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 909{
 910    static uint32_t brk;
 911
 912    if (have_guest_debug) {
 913        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
 914            brk != brk_insn ||
 915            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
 916            return -EINVAL;
 917        }
 918        return 0;
 919    } else {
 920        error_report("guest debug not supported on this kernel");
 921        return -EINVAL;
 922    }
 923}
 924
 925/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 926 *
 927 * To minimise translating between kernel and user-space the kernel
 928 * ABI just provides user-space with the full exception syndrome
 929 * register value to be decoded in QEMU.
 930 */
 931
 932bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 933{
 934    int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
 935    ARMCPU *cpu = ARM_CPU(cs);
 936    CPUClass *cc = CPU_GET_CLASS(cs);
 937    CPUARMState *env = &cpu->env;
 938
 939    /* Ensure PC is synchronised */
 940    kvm_cpu_synchronize_state(cs);
 941
 942    switch (hsr_ec) {
 943    case EC_SOFTWARESTEP:
 944        if (cs->singlestep_enabled) {
 945            return true;
 946        } else {
 947            /*
 948             * The kernel should have suppressed the guest's ability to
 949             * single step at this point so something has gone wrong.
 950             */
 951            error_report("%s: guest single-step while debugging unsupported"
 952                         " (%"PRIx64", %"PRIx32")",
 953                         __func__, env->pc, debug_exit->hsr);
 954            return false;
 955        }
 956        break;
 957    case EC_AA64_BKPT:
 958        if (kvm_find_sw_breakpoint(cs, env->pc)) {
 959            return true;
 960        }
 961        break;
 962    case EC_BREAKPOINT:
 963        if (find_hw_breakpoint(cs, env->pc)) {
 964            return true;
 965        }
 966        break;
 967    case EC_WATCHPOINT:
 968    {
 969        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
 970        if (wp) {
 971            cs->watchpoint_hit = wp;
 972            return true;
 973        }
 974        break;
 975    }
 976    default:
 977        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
 978                     __func__, debug_exit->hsr, env->pc);
 979    }
 980
 981    /* If we are not handling the debug exception it must belong to
 982     * the guest. Let's re-use the existing TCG interrupt code to set
 983     * everything up properly.
 984     */
 985    cs->exception_index = EXCP_BKPT;
 986    env->exception.syndrome = debug_exit->hsr;
 987    env->exception.vaddress = debug_exit->far;
 988    cc->do_interrupt(cs);
 989
 990    return false;
 991}
 992