qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/cutils.h"
  21#include "qemu/option.h"
  22#include "qemu/vfio-helpers.h"
  23#include "block/block_int.h"
  24#include "trace.h"
  25
  26#include "block/nvme.h"
  27
  28#define NVME_SQ_ENTRY_BYTES 64
  29#define NVME_CQ_ENTRY_BYTES 16
  30#define NVME_QUEUE_SIZE 128
  31#define NVME_BAR_SIZE 8192
  32
  33typedef struct {
  34    int32_t  head, tail;
  35    uint8_t  *queue;
  36    uint64_t iova;
  37    /* Hardware MMIO register */
  38    volatile uint32_t *doorbell;
  39} NVMeQueue;
  40
  41typedef struct {
  42    BlockCompletionFunc *cb;
  43    void *opaque;
  44    int cid;
  45    void *prp_list_page;
  46    uint64_t prp_list_iova;
  47    bool busy;
  48} NVMeRequest;
  49
  50typedef struct {
  51    CoQueue     free_req_queue;
  52    QemuMutex   lock;
  53
  54    /* Fields protected by BQL */
  55    int         index;
  56    uint8_t     *prp_list_pages;
  57
  58    /* Fields protected by @lock */
  59    NVMeQueue   sq, cq;
  60    int         cq_phase;
  61    NVMeRequest reqs[NVME_QUEUE_SIZE];
  62    bool        busy;
  63    int         need_kick;
  64    int         inflight;
  65} NVMeQueuePair;
  66
  67/* Memory mapped registers */
  68typedef volatile struct {
  69    uint64_t cap;
  70    uint32_t vs;
  71    uint32_t intms;
  72    uint32_t intmc;
  73    uint32_t cc;
  74    uint32_t reserved0;
  75    uint32_t csts;
  76    uint32_t nssr;
  77    uint32_t aqa;
  78    uint64_t asq;
  79    uint64_t acq;
  80    uint32_t cmbloc;
  81    uint32_t cmbsz;
  82    uint8_t  reserved1[0xec0];
  83    uint8_t  cmd_set_specfic[0x100];
  84    uint32_t doorbells[];
  85} QEMU_PACKED NVMeRegs;
  86
  87QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
  88
  89typedef struct {
  90    AioContext *aio_context;
  91    QEMUVFIOState *vfio;
  92    NVMeRegs *regs;
  93    /* The submission/completion queue pairs.
  94     * [0]: admin queue.
  95     * [1..]: io queues.
  96     */
  97    NVMeQueuePair **queues;
  98    int nr_queues;
  99    size_t page_size;
 100    /* How many uint32_t elements does each doorbell entry take. */
 101    size_t doorbell_scale;
 102    bool write_cache_supported;
 103    EventNotifier irq_notifier;
 104    uint64_t nsze; /* Namespace size reported by identify command */
 105    int nsid;      /* The namespace id to read/write data. */
 106    uint64_t max_transfer;
 107    int plugged;
 108
 109    CoMutex dma_map_lock;
 110    CoQueue dma_flush_queue;
 111
 112    /* Total size of mapped qiov, accessed under dma_map_lock */
 113    int dma_map_count;
 114} BDRVNVMeState;
 115
 116#define NVME_BLOCK_OPT_DEVICE "device"
 117#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 118
 119static QemuOptsList runtime_opts = {
 120    .name = "nvme",
 121    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 122    .desc = {
 123        {
 124            .name = NVME_BLOCK_OPT_DEVICE,
 125            .type = QEMU_OPT_STRING,
 126            .help = "NVMe PCI device address",
 127        },
 128        {
 129            .name = NVME_BLOCK_OPT_NAMESPACE,
 130            .type = QEMU_OPT_NUMBER,
 131            .help = "NVMe namespace",
 132        },
 133        { /* end of list */ }
 134    },
 135};
 136
 137static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
 138                            int nentries, int entry_bytes, Error **errp)
 139{
 140    BDRVNVMeState *s = bs->opaque;
 141    size_t bytes;
 142    int r;
 143
 144    bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
 145    q->head = q->tail = 0;
 146    q->queue = qemu_try_blockalign0(bs, bytes);
 147
 148    if (!q->queue) {
 149        error_setg(errp, "Cannot allocate queue");
 150        return;
 151    }
 152    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
 153    if (r) {
 154        error_setg(errp, "Cannot map queue");
 155    }
 156}
 157
 158static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
 159{
 160    qemu_vfree(q->prp_list_pages);
 161    qemu_vfree(q->sq.queue);
 162    qemu_vfree(q->cq.queue);
 163    qemu_mutex_destroy(&q->lock);
 164    g_free(q);
 165}
 166
 167static void nvme_free_req_queue_cb(void *opaque)
 168{
 169    NVMeQueuePair *q = opaque;
 170
 171    qemu_mutex_lock(&q->lock);
 172    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 173        /* Retry all pending requests */
 174    }
 175    qemu_mutex_unlock(&q->lock);
 176}
 177
 178static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
 179                                             int idx, int size,
 180                                             Error **errp)
 181{
 182    int i, r;
 183    BDRVNVMeState *s = bs->opaque;
 184    Error *local_err = NULL;
 185    NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
 186    uint64_t prp_list_iova;
 187
 188    qemu_mutex_init(&q->lock);
 189    q->index = idx;
 190    qemu_co_queue_init(&q->free_req_queue);
 191    q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
 192    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
 193                          s->page_size * NVME_QUEUE_SIZE,
 194                          false, &prp_list_iova);
 195    if (r) {
 196        goto fail;
 197    }
 198    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 199        NVMeRequest *req = &q->reqs[i];
 200        req->cid = i + 1;
 201        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 202        req->prp_list_iova = prp_list_iova + i * s->page_size;
 203    }
 204    nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
 205    if (local_err) {
 206        error_propagate(errp, local_err);
 207        goto fail;
 208    }
 209    q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
 210
 211    nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
 212    if (local_err) {
 213        error_propagate(errp, local_err);
 214        goto fail;
 215    }
 216    q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
 217
 218    return q;
 219fail:
 220    nvme_free_queue_pair(bs, q);
 221    return NULL;
 222}
 223
 224/* With q->lock */
 225static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
 226{
 227    if (s->plugged || !q->need_kick) {
 228        return;
 229    }
 230    trace_nvme_kick(s, q->index);
 231    assert(!(q->sq.tail & 0xFF00));
 232    /* Fence the write to submission queue entry before notifying the device. */
 233    smp_wmb();
 234    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 235    q->inflight += q->need_kick;
 236    q->need_kick = 0;
 237}
 238
 239/* Find a free request element if any, otherwise:
 240 * a) if in coroutine context, try to wait for one to become available;
 241 * b) if not in coroutine, return NULL;
 242 */
 243static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 244{
 245    int i;
 246    NVMeRequest *req = NULL;
 247
 248    qemu_mutex_lock(&q->lock);
 249    while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
 250        /* We have to leave one slot empty as that is the full queue case (head
 251         * == tail + 1). */
 252        if (qemu_in_coroutine()) {
 253            trace_nvme_free_req_queue_wait(q);
 254            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 255        } else {
 256            qemu_mutex_unlock(&q->lock);
 257            return NULL;
 258        }
 259    }
 260    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 261        if (!q->reqs[i].busy) {
 262            q->reqs[i].busy = true;
 263            req = &q->reqs[i];
 264            break;
 265        }
 266    }
 267    /* We have checked inflight and need_kick while holding q->lock, so one
 268     * free req must be available. */
 269    assert(req);
 270    qemu_mutex_unlock(&q->lock);
 271    return req;
 272}
 273
 274static inline int nvme_translate_error(const NvmeCqe *c)
 275{
 276    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 277    if (status) {
 278        trace_nvme_error(le32_to_cpu(c->result),
 279                         le16_to_cpu(c->sq_head),
 280                         le16_to_cpu(c->sq_id),
 281                         le16_to_cpu(c->cid),
 282                         le16_to_cpu(status));
 283    }
 284    switch (status) {
 285    case 0:
 286        return 0;
 287    case 1:
 288        return -ENOSYS;
 289    case 2:
 290        return -EINVAL;
 291    default:
 292        return -EIO;
 293    }
 294}
 295
 296/* With q->lock */
 297static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
 298{
 299    bool progress = false;
 300    NVMeRequest *preq;
 301    NVMeRequest req;
 302    NvmeCqe *c;
 303
 304    trace_nvme_process_completion(s, q->index, q->inflight);
 305    if (q->busy || s->plugged) {
 306        trace_nvme_process_completion_queue_busy(s, q->index);
 307        return false;
 308    }
 309    q->busy = true;
 310    assert(q->inflight >= 0);
 311    while (q->inflight) {
 312        int16_t cid;
 313        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 314        if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 315            break;
 316        }
 317        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 318        if (!q->cq.head) {
 319            q->cq_phase = !q->cq_phase;
 320        }
 321        cid = le16_to_cpu(c->cid);
 322        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 323            fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
 324                    cid);
 325            continue;
 326        }
 327        assert(cid <= NVME_QUEUE_SIZE);
 328        trace_nvme_complete_command(s, q->index, cid);
 329        preq = &q->reqs[cid - 1];
 330        req = *preq;
 331        assert(req.cid == cid);
 332        assert(req.cb);
 333        preq->busy = false;
 334        preq->cb = preq->opaque = NULL;
 335        qemu_mutex_unlock(&q->lock);
 336        req.cb(req.opaque, nvme_translate_error(c));
 337        qemu_mutex_lock(&q->lock);
 338        c->cid = cpu_to_le16(0);
 339        q->inflight--;
 340        /* Flip Phase Tag bit. */
 341        c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
 342        progress = true;
 343    }
 344    if (progress) {
 345        /* Notify the device so it can post more completions. */
 346        smp_mb_release();
 347        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 348        if (!qemu_co_queue_empty(&q->free_req_queue)) {
 349            aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
 350        }
 351    }
 352    q->busy = false;
 353    return progress;
 354}
 355
 356static void nvme_trace_command(const NvmeCmd *cmd)
 357{
 358    int i;
 359
 360    for (i = 0; i < 8; ++i) {
 361        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 362        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 363                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 364    }
 365}
 366
 367static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
 368                                NVMeRequest *req,
 369                                NvmeCmd *cmd, BlockCompletionFunc cb,
 370                                void *opaque)
 371{
 372    assert(!req->cb);
 373    req->cb = cb;
 374    req->opaque = opaque;
 375    cmd->cid = cpu_to_le32(req->cid);
 376
 377    trace_nvme_submit_command(s, q->index, req->cid);
 378    nvme_trace_command(cmd);
 379    qemu_mutex_lock(&q->lock);
 380    memcpy((uint8_t *)q->sq.queue +
 381           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 382    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 383    q->need_kick++;
 384    nvme_kick(s, q);
 385    nvme_process_completion(s, q);
 386    qemu_mutex_unlock(&q->lock);
 387}
 388
 389static void nvme_cmd_sync_cb(void *opaque, int ret)
 390{
 391    int *pret = opaque;
 392    *pret = ret;
 393}
 394
 395static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
 396                         NvmeCmd *cmd)
 397{
 398    NVMeRequest *req;
 399    BDRVNVMeState *s = bs->opaque;
 400    int ret = -EINPROGRESS;
 401    req = nvme_get_free_req(q);
 402    if (!req) {
 403        return -EBUSY;
 404    }
 405    nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
 406
 407    BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
 408    return ret;
 409}
 410
 411static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 412{
 413    BDRVNVMeState *s = bs->opaque;
 414    NvmeIdCtrl *idctrl;
 415    NvmeIdNs *idns;
 416    uint8_t *resp;
 417    int r;
 418    uint64_t iova;
 419    NvmeCmd cmd = {
 420        .opcode = NVME_ADM_CMD_IDENTIFY,
 421        .cdw10 = cpu_to_le32(0x1),
 422    };
 423
 424    resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
 425    if (!resp) {
 426        error_setg(errp, "Cannot allocate buffer for identify response");
 427        goto out;
 428    }
 429    idctrl = (NvmeIdCtrl *)resp;
 430    idns = (NvmeIdNs *)resp;
 431    r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
 432    if (r) {
 433        error_setg(errp, "Cannot map buffer for DMA");
 434        goto out;
 435    }
 436    cmd.prp1 = cpu_to_le64(iova);
 437
 438    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 439        error_setg(errp, "Failed to identify controller");
 440        goto out;
 441    }
 442
 443    if (le32_to_cpu(idctrl->nn) < namespace) {
 444        error_setg(errp, "Invalid namespace");
 445        goto out;
 446    }
 447    s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
 448    s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
 449    /* For now the page list buffer per command is one page, to hold at most
 450     * s->page_size / sizeof(uint64_t) entries. */
 451    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 452                          s->page_size / sizeof(uint64_t) * s->page_size);
 453
 454    memset(resp, 0, 4096);
 455
 456    cmd.cdw10 = 0;
 457    cmd.nsid = cpu_to_le32(namespace);
 458    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 459        error_setg(errp, "Failed to identify namespace");
 460        goto out;
 461    }
 462
 463    s->nsze = le64_to_cpu(idns->nsze);
 464
 465out:
 466    qemu_vfio_dma_unmap(s->vfio, resp);
 467    qemu_vfree(resp);
 468}
 469
 470static bool nvme_poll_queues(BDRVNVMeState *s)
 471{
 472    bool progress = false;
 473    int i;
 474
 475    for (i = 0; i < s->nr_queues; i++) {
 476        NVMeQueuePair *q = s->queues[i];
 477        qemu_mutex_lock(&q->lock);
 478        while (nvme_process_completion(s, q)) {
 479            /* Keep polling */
 480            progress = true;
 481        }
 482        qemu_mutex_unlock(&q->lock);
 483    }
 484    return progress;
 485}
 486
 487static void nvme_handle_event(EventNotifier *n)
 488{
 489    BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
 490
 491    trace_nvme_handle_event(s);
 492    aio_context_acquire(s->aio_context);
 493    event_notifier_test_and_clear(n);
 494    nvme_poll_queues(s);
 495    aio_context_release(s->aio_context);
 496}
 497
 498static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 499{
 500    BDRVNVMeState *s = bs->opaque;
 501    int n = s->nr_queues;
 502    NVMeQueuePair *q;
 503    NvmeCmd cmd;
 504    int queue_size = NVME_QUEUE_SIZE;
 505
 506    q = nvme_create_queue_pair(bs, n, queue_size, errp);
 507    if (!q) {
 508        return false;
 509    }
 510    cmd = (NvmeCmd) {
 511        .opcode = NVME_ADM_CMD_CREATE_CQ,
 512        .prp1 = cpu_to_le64(q->cq.iova),
 513        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 514        .cdw11 = cpu_to_le32(0x3),
 515    };
 516    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 517        error_setg(errp, "Failed to create io queue [%d]", n);
 518        nvme_free_queue_pair(bs, q);
 519        return false;
 520    }
 521    cmd = (NvmeCmd) {
 522        .opcode = NVME_ADM_CMD_CREATE_SQ,
 523        .prp1 = cpu_to_le64(q->sq.iova),
 524        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 525        .cdw11 = cpu_to_le32(0x1 | (n << 16)),
 526    };
 527    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 528        error_setg(errp, "Failed to create io queue [%d]", n);
 529        nvme_free_queue_pair(bs, q);
 530        return false;
 531    }
 532    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 533    s->queues[n] = q;
 534    s->nr_queues++;
 535    return true;
 536}
 537
 538static bool nvme_poll_cb(void *opaque)
 539{
 540    EventNotifier *e = opaque;
 541    BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
 542    bool progress = false;
 543
 544    trace_nvme_poll_cb(s);
 545    progress = nvme_poll_queues(s);
 546    return progress;
 547}
 548
 549static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 550                     Error **errp)
 551{
 552    BDRVNVMeState *s = bs->opaque;
 553    int ret;
 554    uint64_t cap;
 555    uint64_t timeout_ms;
 556    uint64_t deadline, now;
 557    Error *local_err = NULL;
 558
 559    qemu_co_mutex_init(&s->dma_map_lock);
 560    qemu_co_queue_init(&s->dma_flush_queue);
 561    s->nsid = namespace;
 562    s->aio_context = bdrv_get_aio_context(bs);
 563    ret = event_notifier_init(&s->irq_notifier, 0);
 564    if (ret) {
 565        error_setg(errp, "Failed to init event notifier");
 566        return ret;
 567    }
 568
 569    s->vfio = qemu_vfio_open_pci(device, errp);
 570    if (!s->vfio) {
 571        ret = -EINVAL;
 572        goto fail;
 573    }
 574
 575    s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
 576    if (!s->regs) {
 577        ret = -EINVAL;
 578        goto fail;
 579    }
 580
 581    /* Perform initialize sequence as described in NVMe spec "7.6.1
 582     * Initialization". */
 583
 584    cap = le64_to_cpu(s->regs->cap);
 585    if (!(cap & (1ULL << 37))) {
 586        error_setg(errp, "Device doesn't support NVMe command set");
 587        ret = -EINVAL;
 588        goto fail;
 589    }
 590
 591    s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
 592    s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
 593    bs->bl.opt_mem_alignment = s->page_size;
 594    timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
 595
 596    /* Reset device to get a clean state. */
 597    s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
 598    /* Wait for CSTS.RDY = 0. */
 599    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
 600    while (le32_to_cpu(s->regs->csts) & 0x1) {
 601        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 602            error_setg(errp, "Timeout while waiting for device to reset (%"
 603                             PRId64 " ms)",
 604                       timeout_ms);
 605            ret = -ETIMEDOUT;
 606            goto fail;
 607        }
 608    }
 609
 610    /* Set up admin queue. */
 611    s->queues = g_new(NVMeQueuePair *, 1);
 612    s->nr_queues = 1;
 613    s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
 614    if (!s->queues[0]) {
 615        ret = -EINVAL;
 616        goto fail;
 617    }
 618    QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
 619    s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
 620    s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
 621    s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
 622
 623    /* After setting up all control registers we can enable device now. */
 624    s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
 625                              (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
 626                              0x1);
 627    /* Wait for CSTS.RDY = 1. */
 628    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 629    deadline = now + timeout_ms * 1000000;
 630    while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
 631        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 632            error_setg(errp, "Timeout while waiting for device to start (%"
 633                             PRId64 " ms)",
 634                       timeout_ms);
 635            ret = -ETIMEDOUT;
 636            goto fail_queue;
 637        }
 638    }
 639
 640    ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
 641                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 642    if (ret) {
 643        goto fail_queue;
 644    }
 645    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 646                           false, nvme_handle_event, nvme_poll_cb);
 647
 648    nvme_identify(bs, namespace, &local_err);
 649    if (local_err) {
 650        error_propagate(errp, local_err);
 651        ret = -EIO;
 652        goto fail_handler;
 653    }
 654
 655    /* Set up command queues. */
 656    if (!nvme_add_io_queue(bs, errp)) {
 657        ret = -EIO;
 658        goto fail_handler;
 659    }
 660    return 0;
 661
 662fail_handler:
 663    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 664                           false, NULL, NULL);
 665fail_queue:
 666    nvme_free_queue_pair(bs, s->queues[0]);
 667fail:
 668    g_free(s->queues);
 669    if (s->regs) {
 670        qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
 671    }
 672    if (s->vfio) {
 673        qemu_vfio_close(s->vfio);
 674    }
 675    event_notifier_cleanup(&s->irq_notifier);
 676    return ret;
 677}
 678
 679/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 680 *
 681 *     nvme://0000:44:00.0/1
 682 *
 683 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 684 * is the PCI address, and the last part is the namespace number starting from
 685 * 1 according to the NVMe spec. */
 686static void nvme_parse_filename(const char *filename, QDict *options,
 687                                Error **errp)
 688{
 689    int pref = strlen("nvme://");
 690
 691    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 692        const char *tmp = filename + pref;
 693        char *device;
 694        const char *namespace;
 695        unsigned long ns;
 696        const char *slash = strchr(tmp, '/');
 697        if (!slash) {
 698            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 699            return;
 700        }
 701        device = g_strndup(tmp, slash - tmp);
 702        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 703        g_free(device);
 704        namespace = slash + 1;
 705        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 706            error_setg(errp, "Invalid namespace '%s', positive number expected",
 707                       namespace);
 708            return;
 709        }
 710        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 711                      *namespace ? namespace : "1");
 712    }
 713}
 714
 715static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 716                                           Error **errp)
 717{
 718    int ret;
 719    BDRVNVMeState *s = bs->opaque;
 720    NvmeCmd cmd = {
 721        .opcode = NVME_ADM_CMD_SET_FEATURES,
 722        .nsid = cpu_to_le32(s->nsid),
 723        .cdw10 = cpu_to_le32(0x06),
 724        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 725    };
 726
 727    ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
 728    if (ret) {
 729        error_setg(errp, "Failed to configure NVMe write cache");
 730    }
 731    return ret;
 732}
 733
 734static void nvme_close(BlockDriverState *bs)
 735{
 736    int i;
 737    BDRVNVMeState *s = bs->opaque;
 738
 739    for (i = 0; i < s->nr_queues; ++i) {
 740        nvme_free_queue_pair(bs, s->queues[i]);
 741    }
 742    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 743                           false, NULL, NULL);
 744    qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
 745    qemu_vfio_close(s->vfio);
 746}
 747
 748static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 749                          Error **errp)
 750{
 751    const char *device;
 752    QemuOpts *opts;
 753    int namespace;
 754    int ret;
 755    BDRVNVMeState *s = bs->opaque;
 756
 757    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 758    qemu_opts_absorb_qdict(opts, options, &error_abort);
 759    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 760    if (!device) {
 761        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 762        qemu_opts_del(opts);
 763        return -EINVAL;
 764    }
 765
 766    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 767    ret = nvme_init(bs, device, namespace, errp);
 768    qemu_opts_del(opts);
 769    if (ret) {
 770        goto fail;
 771    }
 772    if (flags & BDRV_O_NOCACHE) {
 773        if (!s->write_cache_supported) {
 774            error_setg(errp,
 775                       "NVMe controller doesn't support write cache configuration");
 776            ret = -EINVAL;
 777        } else {
 778            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 779                                                  errp);
 780        }
 781        if (ret) {
 782            goto fail;
 783        }
 784    }
 785    bs->supported_write_flags = BDRV_REQ_FUA;
 786    return 0;
 787fail:
 788    nvme_close(bs);
 789    return ret;
 790}
 791
 792static int64_t nvme_getlength(BlockDriverState *bs)
 793{
 794    BDRVNVMeState *s = bs->opaque;
 795
 796    return s->nsze << BDRV_SECTOR_BITS;
 797}
 798
 799/* Called with s->dma_map_lock */
 800static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
 801                                            QEMUIOVector *qiov)
 802{
 803    int r = 0;
 804    BDRVNVMeState *s = bs->opaque;
 805
 806    s->dma_map_count -= qiov->size;
 807    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
 808        r = qemu_vfio_dma_reset_temporary(s->vfio);
 809        if (!r) {
 810            qemu_co_queue_restart_all(&s->dma_flush_queue);
 811        }
 812    }
 813    return r;
 814}
 815
 816/* Called with s->dma_map_lock */
 817static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
 818                                          NVMeRequest *req, QEMUIOVector *qiov)
 819{
 820    BDRVNVMeState *s = bs->opaque;
 821    uint64_t *pagelist = req->prp_list_page;
 822    int i, j, r;
 823    int entries = 0;
 824
 825    assert(qiov->size);
 826    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
 827    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
 828    for (i = 0; i < qiov->niov; ++i) {
 829        bool retry = true;
 830        uint64_t iova;
 831try_map:
 832        r = qemu_vfio_dma_map(s->vfio,
 833                              qiov->iov[i].iov_base,
 834                              qiov->iov[i].iov_len,
 835                              true, &iova);
 836        if (r == -ENOMEM && retry) {
 837            retry = false;
 838            trace_nvme_dma_flush_queue_wait(s);
 839            if (s->dma_map_count) {
 840                trace_nvme_dma_map_flush(s);
 841                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
 842            } else {
 843                r = qemu_vfio_dma_reset_temporary(s->vfio);
 844                if (r) {
 845                    goto fail;
 846                }
 847            }
 848            goto try_map;
 849        }
 850        if (r) {
 851            goto fail;
 852        }
 853
 854        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
 855            pagelist[entries++] = iova + j * s->page_size;
 856        }
 857        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
 858                                    qiov->iov[i].iov_len / s->page_size);
 859    }
 860
 861    s->dma_map_count += qiov->size;
 862
 863    assert(entries <= s->page_size / sizeof(uint64_t));
 864    switch (entries) {
 865    case 0:
 866        abort();
 867    case 1:
 868        cmd->prp1 = cpu_to_le64(pagelist[0]);
 869        cmd->prp2 = 0;
 870        break;
 871    case 2:
 872        cmd->prp1 = cpu_to_le64(pagelist[0]);
 873        cmd->prp2 = cpu_to_le64(pagelist[1]);;
 874        break;
 875    default:
 876        cmd->prp1 = cpu_to_le64(pagelist[0]);
 877        cmd->prp2 = cpu_to_le64(req->prp_list_iova);
 878        for (i = 0; i < entries - 1; ++i) {
 879            pagelist[i] = cpu_to_le64(pagelist[i + 1]);
 880        }
 881        pagelist[entries - 1] = 0;
 882        break;
 883    }
 884    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
 885    for (i = 0; i < entries; ++i) {
 886        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
 887    }
 888    return 0;
 889fail:
 890    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
 891     * increment s->dma_map_count. This is okay for fixed mapping memory areas
 892     * because they are already mapped before calling this function; for
 893     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
 894     * calling qemu_vfio_dma_reset_temporary when necessary. */
 895    return r;
 896}
 897
 898typedef struct {
 899    Coroutine *co;
 900    int ret;
 901    AioContext *ctx;
 902} NVMeCoData;
 903
 904static void nvme_rw_cb_bh(void *opaque)
 905{
 906    NVMeCoData *data = opaque;
 907    qemu_coroutine_enter(data->co);
 908}
 909
 910static void nvme_rw_cb(void *opaque, int ret)
 911{
 912    NVMeCoData *data = opaque;
 913    data->ret = ret;
 914    if (!data->co) {
 915        /* The rw coroutine hasn't yielded, don't try to enter. */
 916        return;
 917    }
 918    aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
 919}
 920
 921static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
 922                                            uint64_t offset, uint64_t bytes,
 923                                            QEMUIOVector *qiov,
 924                                            bool is_write,
 925                                            int flags)
 926{
 927    int r;
 928    BDRVNVMeState *s = bs->opaque;
 929    NVMeQueuePair *ioq = s->queues[1];
 930    NVMeRequest *req;
 931    uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
 932                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
 933    NvmeCmd cmd = {
 934        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
 935        .nsid = cpu_to_le32(s->nsid),
 936        .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
 937        .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
 938        .cdw12 = cpu_to_le32(cdw12),
 939    };
 940    NVMeCoData data = {
 941        .ctx = bdrv_get_aio_context(bs),
 942        .ret = -EINPROGRESS,
 943    };
 944
 945    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
 946    assert(s->nr_queues > 1);
 947    req = nvme_get_free_req(ioq);
 948    assert(req);
 949
 950    qemu_co_mutex_lock(&s->dma_map_lock);
 951    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
 952    qemu_co_mutex_unlock(&s->dma_map_lock);
 953    if (r) {
 954        req->busy = false;
 955        return r;
 956    }
 957    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
 958
 959    data.co = qemu_coroutine_self();
 960    while (data.ret == -EINPROGRESS) {
 961        qemu_coroutine_yield();
 962    }
 963
 964    qemu_co_mutex_lock(&s->dma_map_lock);
 965    r = nvme_cmd_unmap_qiov(bs, qiov);
 966    qemu_co_mutex_unlock(&s->dma_map_lock);
 967    if (r) {
 968        return r;
 969    }
 970
 971    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
 972    return data.ret;
 973}
 974
 975static inline bool nvme_qiov_aligned(BlockDriverState *bs,
 976                                     const QEMUIOVector *qiov)
 977{
 978    int i;
 979    BDRVNVMeState *s = bs->opaque;
 980
 981    for (i = 0; i < qiov->niov; ++i) {
 982        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
 983            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
 984            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
 985                                      qiov->iov[i].iov_len, s->page_size);
 986            return false;
 987        }
 988    }
 989    return true;
 990}
 991
 992static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
 993                       QEMUIOVector *qiov, bool is_write, int flags)
 994{
 995    BDRVNVMeState *s = bs->opaque;
 996    int r;
 997    uint8_t *buf = NULL;
 998    QEMUIOVector local_qiov;
 999
1000    assert(QEMU_IS_ALIGNED(offset, s->page_size));
1001    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1002    assert(bytes <= s->max_transfer);
1003    if (nvme_qiov_aligned(bs, qiov)) {
1004        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1005    }
1006    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1007    buf = qemu_try_blockalign(bs, bytes);
1008
1009    if (!buf) {
1010        return -ENOMEM;
1011    }
1012    qemu_iovec_init(&local_qiov, 1);
1013    if (is_write) {
1014        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1015    }
1016    qemu_iovec_add(&local_qiov, buf, bytes);
1017    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1018    qemu_iovec_destroy(&local_qiov);
1019    if (!r && !is_write) {
1020        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1021    }
1022    qemu_vfree(buf);
1023    return r;
1024}
1025
1026static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1027                                       uint64_t offset, uint64_t bytes,
1028                                       QEMUIOVector *qiov, int flags)
1029{
1030    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1031}
1032
1033static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1034                                        uint64_t offset, uint64_t bytes,
1035                                        QEMUIOVector *qiov, int flags)
1036{
1037    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1038}
1039
1040static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1041{
1042    BDRVNVMeState *s = bs->opaque;
1043    NVMeQueuePair *ioq = s->queues[1];
1044    NVMeRequest *req;
1045    NvmeCmd cmd = {
1046        .opcode = NVME_CMD_FLUSH,
1047        .nsid = cpu_to_le32(s->nsid),
1048    };
1049    NVMeCoData data = {
1050        .ctx = bdrv_get_aio_context(bs),
1051        .ret = -EINPROGRESS,
1052    };
1053
1054    assert(s->nr_queues > 1);
1055    req = nvme_get_free_req(ioq);
1056    assert(req);
1057    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1058
1059    data.co = qemu_coroutine_self();
1060    if (data.ret == -EINPROGRESS) {
1061        qemu_coroutine_yield();
1062    }
1063
1064    return data.ret;
1065}
1066
1067
1068static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1069                               BlockReopenQueue *queue, Error **errp)
1070{
1071    return 0;
1072}
1073
1074static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1075{
1076    QINCREF(opts);
1077    qdict_del(opts, "filename");
1078
1079    if (!qdict_size(opts)) {
1080        snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1081                 bs->drv->format_name);
1082    }
1083
1084    qdict_put_str(opts, "driver", bs->drv->format_name);
1085    bs->full_open_options = opts;
1086}
1087
1088static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1089{
1090    BDRVNVMeState *s = bs->opaque;
1091
1092    bs->bl.opt_mem_alignment = s->page_size;
1093    bs->bl.request_alignment = s->page_size;
1094    bs->bl.max_transfer = s->max_transfer;
1095}
1096
1097static void nvme_detach_aio_context(BlockDriverState *bs)
1098{
1099    BDRVNVMeState *s = bs->opaque;
1100
1101    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1102                           false, NULL, NULL);
1103}
1104
1105static void nvme_attach_aio_context(BlockDriverState *bs,
1106                                    AioContext *new_context)
1107{
1108    BDRVNVMeState *s = bs->opaque;
1109
1110    s->aio_context = new_context;
1111    aio_set_event_notifier(new_context, &s->irq_notifier,
1112                           false, nvme_handle_event, nvme_poll_cb);
1113}
1114
1115static void nvme_aio_plug(BlockDriverState *bs)
1116{
1117    BDRVNVMeState *s = bs->opaque;
1118    s->plugged++;
1119}
1120
1121static void nvme_aio_unplug(BlockDriverState *bs)
1122{
1123    int i;
1124    BDRVNVMeState *s = bs->opaque;
1125    assert(s->plugged);
1126    if (!--s->plugged) {
1127        for (i = 1; i < s->nr_queues; i++) {
1128            NVMeQueuePair *q = s->queues[i];
1129            qemu_mutex_lock(&q->lock);
1130            nvme_kick(s, q);
1131            nvme_process_completion(s, q);
1132            qemu_mutex_unlock(&q->lock);
1133        }
1134    }
1135}
1136
1137static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1138{
1139    int ret;
1140    BDRVNVMeState *s = bs->opaque;
1141
1142    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1143    if (ret) {
1144        /* FIXME: we may run out of IOVA addresses after repeated
1145         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1146         * doesn't reclaim addresses for fixed mappings. */
1147        error_report("nvme_register_buf failed: %s", strerror(-ret));
1148    }
1149}
1150
1151static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1152{
1153    BDRVNVMeState *s = bs->opaque;
1154
1155    qemu_vfio_dma_unmap(s->vfio, host);
1156}
1157
1158static BlockDriver bdrv_nvme = {
1159    .format_name              = "nvme",
1160    .protocol_name            = "nvme",
1161    .instance_size            = sizeof(BDRVNVMeState),
1162
1163    .bdrv_parse_filename      = nvme_parse_filename,
1164    .bdrv_file_open           = nvme_file_open,
1165    .bdrv_close               = nvme_close,
1166    .bdrv_getlength           = nvme_getlength,
1167
1168    .bdrv_co_preadv           = nvme_co_preadv,
1169    .bdrv_co_pwritev          = nvme_co_pwritev,
1170    .bdrv_co_flush_to_disk    = nvme_co_flush,
1171    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1172
1173    .bdrv_refresh_filename    = nvme_refresh_filename,
1174    .bdrv_refresh_limits      = nvme_refresh_limits,
1175
1176    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1177    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1178
1179    .bdrv_io_plug             = nvme_aio_plug,
1180    .bdrv_io_unplug           = nvme_aio_unplug,
1181
1182    .bdrv_register_buf        = nvme_register_buf,
1183    .bdrv_unregister_buf      = nvme_unregister_buf,
1184};
1185
1186static void bdrv_nvme_init(void)
1187{
1188    bdrv_register(&bdrv_nvme);
1189}
1190
1191block_init(bdrv_nvme_init);
1192