qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qemu-common.h"
  30#include "block/block_int.h"
  31#include "block/qcow2.h"
  32#include "qemu/bswap.h"
  33#include "trace.h"
  34
  35int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  36{
  37    BDRVQcow2State *s = bs->opaque;
  38    int new_l1_size, i, ret;
  39
  40    if (exact_size >= s->l1_size) {
  41        return 0;
  42    }
  43
  44    new_l1_size = exact_size;
  45
  46#ifdef DEBUG_ALLOC2
  47    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  48#endif
  49
  50    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  51    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  52                                       new_l1_size * sizeof(uint64_t),
  53                             (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
  54    if (ret < 0) {
  55        goto fail;
  56    }
  57
  58    ret = bdrv_flush(bs->file->bs);
  59    if (ret < 0) {
  60        goto fail;
  61    }
  62
  63    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  64    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  65        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  66            continue;
  67        }
  68        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  69                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  70        s->l1_table[i] = 0;
  71    }
  72    return 0;
  73
  74fail:
  75    /*
  76     * If the write in the l1_table failed the image may contain a partially
  77     * overwritten l1_table. In this case it would be better to clear the
  78     * l1_table in memory to avoid possible image corruption.
  79     */
  80    memset(s->l1_table + new_l1_size, 0,
  81           (s->l1_size - new_l1_size) * sizeof(uint64_t));
  82    return ret;
  83}
  84
  85int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  86                        bool exact_size)
  87{
  88    BDRVQcow2State *s = bs->opaque;
  89    int new_l1_size2, ret, i;
  90    uint64_t *new_l1_table;
  91    int64_t old_l1_table_offset, old_l1_size;
  92    int64_t new_l1_table_offset, new_l1_size;
  93    uint8_t data[12];
  94
  95    if (min_size <= s->l1_size)
  96        return 0;
  97
  98    /* Do a sanity check on min_size before trying to calculate new_l1_size
  99     * (this prevents overflows during the while loop for the calculation of
 100     * new_l1_size) */
 101    if (min_size > INT_MAX / sizeof(uint64_t)) {
 102        return -EFBIG;
 103    }
 104
 105    if (exact_size) {
 106        new_l1_size = min_size;
 107    } else {
 108        /* Bump size up to reduce the number of times we have to grow */
 109        new_l1_size = s->l1_size;
 110        if (new_l1_size == 0) {
 111            new_l1_size = 1;
 112        }
 113        while (min_size > new_l1_size) {
 114            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 115        }
 116    }
 117
 118    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 119    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
 120        return -EFBIG;
 121    }
 122
 123#ifdef DEBUG_ALLOC2
 124    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 125            s->l1_size, new_l1_size);
 126#endif
 127
 128    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
 129    new_l1_table = qemu_try_blockalign(bs->file->bs,
 130                                       ROUND_UP(new_l1_size2, 512));
 131    if (new_l1_table == NULL) {
 132        return -ENOMEM;
 133    }
 134    memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
 135
 136    if (s->l1_size) {
 137        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
 138    }
 139
 140    /* write new table (align to cluster) */
 141    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 142    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 143    if (new_l1_table_offset < 0) {
 144        qemu_vfree(new_l1_table);
 145        return new_l1_table_offset;
 146    }
 147
 148    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 149    if (ret < 0) {
 150        goto fail;
 151    }
 152
 153    /* the L1 position has not yet been updated, so these clusters must
 154     * indeed be completely free */
 155    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 156                                        new_l1_size2);
 157    if (ret < 0) {
 158        goto fail;
 159    }
 160
 161    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 162    for(i = 0; i < s->l1_size; i++)
 163        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 164    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 165                           new_l1_table, new_l1_size2);
 166    if (ret < 0)
 167        goto fail;
 168    for(i = 0; i < s->l1_size; i++)
 169        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 170
 171    /* set new table */
 172    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 173    stl_be_p(data, new_l1_size);
 174    stq_be_p(data + 4, new_l1_table_offset);
 175    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 176                           data, sizeof(data));
 177    if (ret < 0) {
 178        goto fail;
 179    }
 180    qemu_vfree(s->l1_table);
 181    old_l1_table_offset = s->l1_table_offset;
 182    s->l1_table_offset = new_l1_table_offset;
 183    s->l1_table = new_l1_table;
 184    old_l1_size = s->l1_size;
 185    s->l1_size = new_l1_size;
 186    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 187                        QCOW2_DISCARD_OTHER);
 188    return 0;
 189 fail:
 190    qemu_vfree(new_l1_table);
 191    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 192                        QCOW2_DISCARD_OTHER);
 193    return ret;
 194}
 195
 196/*
 197 * l2_load
 198 *
 199 * @bs: The BlockDriverState
 200 * @offset: A guest offset, used to calculate what slice of the L2
 201 *          table to load.
 202 * @l2_offset: Offset to the L2 table in the image file.
 203 * @l2_slice: Location to store the pointer to the L2 slice.
 204 *
 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 206 * that are loaded by the qcow2 cache). If the slice is in the cache,
 207 * the cache is used; otherwise the L2 slice is loaded from the image
 208 * file.
 209 */
 210static int l2_load(BlockDriverState *bs, uint64_t offset,
 211                   uint64_t l2_offset, uint64_t **l2_slice)
 212{
 213    BDRVQcow2State *s = bs->opaque;
 214    int start_of_slice = sizeof(uint64_t) *
 215        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 216
 217    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 218                           (void **)l2_slice);
 219}
 220
 221/*
 222 * Writes one sector of the L1 table to the disk (can't update single entries
 223 * and we really don't want bdrv_pread to perform a read-modify-write)
 224 */
 225#define L1_ENTRIES_PER_SECTOR (512 / 8)
 226int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 227{
 228    BDRVQcow2State *s = bs->opaque;
 229    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 230    int l1_start_index;
 231    int i, ret;
 232
 233    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 234    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 235         i++)
 236    {
 237        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 238    }
 239
 240    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 241            s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
 242    if (ret < 0) {
 243        return ret;
 244    }
 245
 246    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 247    ret = bdrv_pwrite_sync(bs->file,
 248                           s->l1_table_offset + 8 * l1_start_index,
 249                           buf, sizeof(buf));
 250    if (ret < 0) {
 251        return ret;
 252    }
 253
 254    return 0;
 255}
 256
 257/*
 258 * l2_allocate
 259 *
 260 * Allocate a new l2 entry in the file. If l1_index points to an already
 261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 262 * table) copy the contents of the old L2 table into the newly allocated one.
 263 * Otherwise the new table is initialized with zeros.
 264 *
 265 */
 266
 267static int l2_allocate(BlockDriverState *bs, int l1_index)
 268{
 269    BDRVQcow2State *s = bs->opaque;
 270    uint64_t old_l2_offset;
 271    uint64_t *l2_slice = NULL;
 272    unsigned slice, slice_size2, n_slices;
 273    int64_t l2_offset;
 274    int ret;
 275
 276    old_l2_offset = s->l1_table[l1_index];
 277
 278    trace_qcow2_l2_allocate(bs, l1_index);
 279
 280    /* allocate a new l2 entry */
 281
 282    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 283    if (l2_offset < 0) {
 284        ret = l2_offset;
 285        goto fail;
 286    }
 287
 288    /* If we're allocating the table at offset 0 then something is wrong */
 289    if (l2_offset == 0) {
 290        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 291                                "allocation of L2 table at offset 0");
 292        ret = -EIO;
 293        goto fail;
 294    }
 295
 296    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 297    if (ret < 0) {
 298        goto fail;
 299    }
 300
 301    /* allocate a new entry in the l2 cache */
 302
 303    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
 304    n_slices = s->cluster_size / slice_size2;
 305
 306    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 307    for (slice = 0; slice < n_slices; slice++) {
 308        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 309                                    l2_offset + slice * slice_size2,
 310                                    (void **) &l2_slice);
 311        if (ret < 0) {
 312            goto fail;
 313        }
 314
 315        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 316            /* if there was no old l2 table, clear the new slice */
 317            memset(l2_slice, 0, slice_size2);
 318        } else {
 319            uint64_t *old_slice;
 320            uint64_t old_l2_slice_offset =
 321                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 322
 323            /* if there was an old l2 table, read a slice from the disk */
 324            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 325            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 326                                  (void **) &old_slice);
 327            if (ret < 0) {
 328                goto fail;
 329            }
 330
 331            memcpy(l2_slice, old_slice, slice_size2);
 332
 333            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 334        }
 335
 336        /* write the l2 slice to the file */
 337        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 338
 339        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 340        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 341        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 342    }
 343
 344    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 345    if (ret < 0) {
 346        goto fail;
 347    }
 348
 349    /* update the L1 entry */
 350    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 351    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 352    ret = qcow2_write_l1_entry(bs, l1_index);
 353    if (ret < 0) {
 354        goto fail;
 355    }
 356
 357    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 358    return 0;
 359
 360fail:
 361    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 362    if (l2_slice != NULL) {
 363        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 364    }
 365    s->l1_table[l1_index] = old_l2_offset;
 366    if (l2_offset > 0) {
 367        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 368                            QCOW2_DISCARD_ALWAYS);
 369    }
 370    return ret;
 371}
 372
 373/*
 374 * Checks how many clusters in a given L2 slice are contiguous in the image
 375 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 376 * to the first cluster, the search is stopped and the cluster is not counted
 377 * as contiguous. (This allows it, for example, to stop at the first compressed
 378 * cluster which may require a different handling)
 379 */
 380static int count_contiguous_clusters(int nb_clusters, int cluster_size,
 381        uint64_t *l2_slice, uint64_t stop_flags)
 382{
 383    int i;
 384    QCow2ClusterType first_cluster_type;
 385    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 386    uint64_t first_entry = be64_to_cpu(l2_slice[0]);
 387    uint64_t offset = first_entry & mask;
 388
 389    if (!offset) {
 390        return 0;
 391    }
 392
 393    /* must be allocated */
 394    first_cluster_type = qcow2_get_cluster_type(first_entry);
 395    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 396           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 397
 398    for (i = 0; i < nb_clusters; i++) {
 399        uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
 400        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 401            break;
 402        }
 403    }
 404
 405        return i;
 406}
 407
 408/*
 409 * Checks how many consecutive unallocated clusters in a given L2
 410 * slice have the same cluster type.
 411 */
 412static int count_contiguous_clusters_unallocated(int nb_clusters,
 413                                                 uint64_t *l2_slice,
 414                                                 QCow2ClusterType wanted_type)
 415{
 416    int i;
 417
 418    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 419           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 420    for (i = 0; i < nb_clusters; i++) {
 421        uint64_t entry = be64_to_cpu(l2_slice[i]);
 422        QCow2ClusterType type = qcow2_get_cluster_type(entry);
 423
 424        if (type != wanted_type) {
 425            break;
 426        }
 427    }
 428
 429    return i;
 430}
 431
 432static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 433                                            uint64_t src_cluster_offset,
 434                                            unsigned offset_in_cluster,
 435                                            QEMUIOVector *qiov)
 436{
 437    int ret;
 438
 439    if (qiov->size == 0) {
 440        return 0;
 441    }
 442
 443    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 444
 445    if (!bs->drv) {
 446        return -ENOMEDIUM;
 447    }
 448
 449    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 450     * interface.  This avoids double I/O throttling and request tracking,
 451     * which can lead to deadlock when block layer copy-on-read is enabled.
 452     */
 453    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 454                                  qiov->size, qiov, 0);
 455    if (ret < 0) {
 456        return ret;
 457    }
 458
 459    return 0;
 460}
 461
 462static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
 463                                                uint64_t src_cluster_offset,
 464                                                uint64_t cluster_offset,
 465                                                unsigned offset_in_cluster,
 466                                                uint8_t *buffer,
 467                                                unsigned bytes)
 468{
 469    if (bytes && bs->encrypted) {
 470        BDRVQcow2State *s = bs->opaque;
 471        int64_t offset = (s->crypt_physical_offset ?
 472                          (cluster_offset + offset_in_cluster) :
 473                          (src_cluster_offset + offset_in_cluster));
 474        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 475        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 476        assert(s->crypto);
 477        if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
 478            return false;
 479        }
 480    }
 481    return true;
 482}
 483
 484static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 485                                             uint64_t cluster_offset,
 486                                             unsigned offset_in_cluster,
 487                                             QEMUIOVector *qiov)
 488{
 489    int ret;
 490
 491    if (qiov->size == 0) {
 492        return 0;
 493    }
 494
 495    ret = qcow2_pre_write_overlap_check(bs, 0,
 496            cluster_offset + offset_in_cluster, qiov->size);
 497    if (ret < 0) {
 498        return ret;
 499    }
 500
 501    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 502    ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
 503                          qiov->size, qiov, 0);
 504    if (ret < 0) {
 505        return ret;
 506    }
 507
 508    return 0;
 509}
 510
 511
 512/*
 513 * get_cluster_offset
 514 *
 515 * For a given offset of the virtual disk, find the cluster type and offset in
 516 * the qcow2 file. The offset is stored in *cluster_offset.
 517 *
 518 * On entry, *bytes is the maximum number of contiguous bytes starting at
 519 * offset that we are interested in.
 520 *
 521 * On exit, *bytes is the number of bytes starting at offset that have the same
 522 * cluster type and (if applicable) are stored contiguously in the image file.
 523 * Compressed clusters are always returned one by one.
 524 *
 525 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 526 * cases.
 527 */
 528int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 529                             unsigned int *bytes, uint64_t *cluster_offset)
 530{
 531    BDRVQcow2State *s = bs->opaque;
 532    unsigned int l2_index;
 533    uint64_t l1_index, l2_offset, *l2_slice;
 534    int c;
 535    unsigned int offset_in_cluster;
 536    uint64_t bytes_available, bytes_needed, nb_clusters;
 537    QCow2ClusterType type;
 538    int ret;
 539
 540    offset_in_cluster = offset_into_cluster(s, offset);
 541    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 542
 543    /* compute how many bytes there are between the start of the cluster
 544     * containing offset and the end of the l2 slice that contains
 545     * the entry pointing to it */
 546    bytes_available =
 547        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 548        << s->cluster_bits;
 549
 550    if (bytes_needed > bytes_available) {
 551        bytes_needed = bytes_available;
 552    }
 553
 554    *cluster_offset = 0;
 555
 556    /* seek to the l2 offset in the l1 table */
 557
 558    l1_index = offset_to_l1_index(s, offset);
 559    if (l1_index >= s->l1_size) {
 560        type = QCOW2_CLUSTER_UNALLOCATED;
 561        goto out;
 562    }
 563
 564    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 565    if (!l2_offset) {
 566        type = QCOW2_CLUSTER_UNALLOCATED;
 567        goto out;
 568    }
 569
 570    if (offset_into_cluster(s, l2_offset)) {
 571        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 572                                " unaligned (L1 index: %#" PRIx64 ")",
 573                                l2_offset, l1_index);
 574        return -EIO;
 575    }
 576
 577    /* load the l2 slice in memory */
 578
 579    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 580    if (ret < 0) {
 581        return ret;
 582    }
 583
 584    /* find the cluster offset for the given disk offset */
 585
 586    l2_index = offset_to_l2_slice_index(s, offset);
 587    *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 588
 589    nb_clusters = size_to_clusters(s, bytes_needed);
 590    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 591     * integers; the minimum cluster size is 512, so this assertion is always
 592     * true */
 593    assert(nb_clusters <= INT_MAX);
 594
 595    type = qcow2_get_cluster_type(*cluster_offset);
 596    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 597                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 598        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 599                                " in pre-v3 image (L2 offset: %#" PRIx64
 600                                ", L2 index: %#x)", l2_offset, l2_index);
 601        ret = -EIO;
 602        goto fail;
 603    }
 604    switch (type) {
 605    case QCOW2_CLUSTER_COMPRESSED:
 606        /* Compressed clusters can only be processed one by one */
 607        c = 1;
 608        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 609        break;
 610    case QCOW2_CLUSTER_ZERO_PLAIN:
 611    case QCOW2_CLUSTER_UNALLOCATED:
 612        /* how many empty clusters ? */
 613        c = count_contiguous_clusters_unallocated(nb_clusters,
 614                                                  &l2_slice[l2_index], type);
 615        *cluster_offset = 0;
 616        break;
 617    case QCOW2_CLUSTER_ZERO_ALLOC:
 618    case QCOW2_CLUSTER_NORMAL:
 619        /* how many allocated clusters ? */
 620        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
 621                                      &l2_slice[l2_index], QCOW_OFLAG_ZERO);
 622        *cluster_offset &= L2E_OFFSET_MASK;
 623        if (offset_into_cluster(s, *cluster_offset)) {
 624            qcow2_signal_corruption(bs, true, -1, -1,
 625                                    "Cluster allocation offset %#"
 626                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 627                                    ", L2 index: %#x)", *cluster_offset,
 628                                    l2_offset, l2_index);
 629            ret = -EIO;
 630            goto fail;
 631        }
 632        break;
 633    default:
 634        abort();
 635    }
 636
 637    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 638
 639    bytes_available = (int64_t)c * s->cluster_size;
 640
 641out:
 642    if (bytes_available > bytes_needed) {
 643        bytes_available = bytes_needed;
 644    }
 645
 646    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 647     * subtracting offset_in_cluster will therefore definitely yield something
 648     * not exceeding UINT_MAX */
 649    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 650    *bytes = bytes_available - offset_in_cluster;
 651
 652    return type;
 653
 654fail:
 655    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 656    return ret;
 657}
 658
 659/*
 660 * get_cluster_table
 661 *
 662 * for a given disk offset, load (and allocate if needed)
 663 * the appropriate slice of its l2 table.
 664 *
 665 * the cluster index in the l2 slice is given to the caller.
 666 *
 667 * Returns 0 on success, -errno in failure case
 668 */
 669static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 670                             uint64_t **new_l2_slice,
 671                             int *new_l2_index)
 672{
 673    BDRVQcow2State *s = bs->opaque;
 674    unsigned int l2_index;
 675    uint64_t l1_index, l2_offset;
 676    uint64_t *l2_slice = NULL;
 677    int ret;
 678
 679    /* seek to the l2 offset in the l1 table */
 680
 681    l1_index = offset_to_l1_index(s, offset);
 682    if (l1_index >= s->l1_size) {
 683        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 684        if (ret < 0) {
 685            return ret;
 686        }
 687    }
 688
 689    assert(l1_index < s->l1_size);
 690    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 691    if (offset_into_cluster(s, l2_offset)) {
 692        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 693                                " unaligned (L1 index: %#" PRIx64 ")",
 694                                l2_offset, l1_index);
 695        return -EIO;
 696    }
 697
 698    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 699        /* First allocate a new L2 table (and do COW if needed) */
 700        ret = l2_allocate(bs, l1_index);
 701        if (ret < 0) {
 702            return ret;
 703        }
 704
 705        /* Then decrease the refcount of the old table */
 706        if (l2_offset) {
 707            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 708                                QCOW2_DISCARD_OTHER);
 709        }
 710
 711        /* Get the offset of the newly-allocated l2 table */
 712        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 713        assert(offset_into_cluster(s, l2_offset) == 0);
 714    }
 715
 716    /* load the l2 slice in memory */
 717    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 718    if (ret < 0) {
 719        return ret;
 720    }
 721
 722    /* find the cluster offset for the given disk offset */
 723
 724    l2_index = offset_to_l2_slice_index(s, offset);
 725
 726    *new_l2_slice = l2_slice;
 727    *new_l2_index = l2_index;
 728
 729    return 0;
 730}
 731
 732/*
 733 * alloc_compressed_cluster_offset
 734 *
 735 * For a given offset of the disk image, return cluster offset in
 736 * qcow2 file.
 737 *
 738 * If the offset is not found, allocate a new compressed cluster.
 739 *
 740 * Return the cluster offset if successful,
 741 * Return 0, otherwise.
 742 *
 743 */
 744
 745uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 746                                               uint64_t offset,
 747                                               int compressed_size)
 748{
 749    BDRVQcow2State *s = bs->opaque;
 750    int l2_index, ret;
 751    uint64_t *l2_slice;
 752    int64_t cluster_offset;
 753    int nb_csectors;
 754
 755    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 756    if (ret < 0) {
 757        return 0;
 758    }
 759
 760    /* Compression can't overwrite anything. Fail if the cluster was already
 761     * allocated. */
 762    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 763    if (cluster_offset & L2E_OFFSET_MASK) {
 764        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 765        return 0;
 766    }
 767
 768    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 769    if (cluster_offset < 0) {
 770        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 771        return 0;
 772    }
 773
 774    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
 775                  (cluster_offset >> 9);
 776
 777    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 778                      ((uint64_t)nb_csectors << s->csize_shift);
 779
 780    /* update L2 table */
 781
 782    /* compressed clusters never have the copied flag */
 783
 784    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 785    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 786    l2_slice[l2_index] = cpu_to_be64(cluster_offset);
 787    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 788
 789    return cluster_offset;
 790}
 791
 792static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 793{
 794    BDRVQcow2State *s = bs->opaque;
 795    Qcow2COWRegion *start = &m->cow_start;
 796    Qcow2COWRegion *end = &m->cow_end;
 797    unsigned buffer_size;
 798    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 799    bool merge_reads;
 800    uint8_t *start_buffer, *end_buffer;
 801    QEMUIOVector qiov;
 802    int ret;
 803
 804    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 805    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 806    assert(start->offset + start->nb_bytes <= end->offset);
 807    assert(!m->data_qiov || m->data_qiov->size == data_bytes);
 808
 809    if (start->nb_bytes == 0 && end->nb_bytes == 0) {
 810        return 0;
 811    }
 812
 813    /* If we have to read both the start and end COW regions and the
 814     * middle region is not too large then perform just one read
 815     * operation */
 816    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 817    if (merge_reads) {
 818        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 819    } else {
 820        /* If we have to do two reads, add some padding in the middle
 821         * if necessary to make sure that the end region is optimally
 822         * aligned. */
 823        size_t align = bdrv_opt_mem_align(bs);
 824        assert(align > 0 && align <= UINT_MAX);
 825        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 826               UINT_MAX - end->nb_bytes);
 827        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 828    }
 829
 830    /* Reserve a buffer large enough to store all the data that we're
 831     * going to read */
 832    start_buffer = qemu_try_blockalign(bs, buffer_size);
 833    if (start_buffer == NULL) {
 834        return -ENOMEM;
 835    }
 836    /* The part of the buffer where the end region is located */
 837    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 838
 839    qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
 840
 841    qemu_co_mutex_unlock(&s->lock);
 842    /* First we read the existing data from both COW regions. We
 843     * either read the whole region in one go, or the start and end
 844     * regions separately. */
 845    if (merge_reads) {
 846        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 847        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 848    } else {
 849        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 850        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 851        if (ret < 0) {
 852            goto fail;
 853        }
 854
 855        qemu_iovec_reset(&qiov);
 856        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 857        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 858    }
 859    if (ret < 0) {
 860        goto fail;
 861    }
 862
 863    /* Encrypt the data if necessary before writing it */
 864    if (bs->encrypted) {
 865        if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 866                                    start->offset, start_buffer,
 867                                    start->nb_bytes) ||
 868            !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 869                                    end->offset, end_buffer, end->nb_bytes)) {
 870            ret = -EIO;
 871            goto fail;
 872        }
 873    }
 874
 875    /* And now we can write everything. If we have the guest data we
 876     * can write everything in one single operation */
 877    if (m->data_qiov) {
 878        qemu_iovec_reset(&qiov);
 879        if (start->nb_bytes) {
 880            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 881        }
 882        qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
 883        if (end->nb_bytes) {
 884            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 885        }
 886        /* NOTE: we have a write_aio blkdebug event here followed by
 887         * a cow_write one in do_perform_cow_write(), but there's only
 888         * one single I/O operation */
 889        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 890        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 891    } else {
 892        /* If there's no guest data then write both COW regions separately */
 893        qemu_iovec_reset(&qiov);
 894        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 895        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 896        if (ret < 0) {
 897            goto fail;
 898        }
 899
 900        qemu_iovec_reset(&qiov);
 901        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 902        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 903    }
 904
 905fail:
 906    qemu_co_mutex_lock(&s->lock);
 907
 908    /*
 909     * Before we update the L2 table to actually point to the new cluster, we
 910     * need to be sure that the refcounts have been increased and COW was
 911     * handled.
 912     */
 913    if (ret == 0) {
 914        qcow2_cache_depends_on_flush(s->l2_table_cache);
 915    }
 916
 917    qemu_vfree(start_buffer);
 918    qemu_iovec_destroy(&qiov);
 919    return ret;
 920}
 921
 922int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 923{
 924    BDRVQcow2State *s = bs->opaque;
 925    int i, j = 0, l2_index, ret;
 926    uint64_t *old_cluster, *l2_slice;
 927    uint64_t cluster_offset = m->alloc_offset;
 928
 929    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 930    assert(m->nb_clusters > 0);
 931
 932    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 933    if (old_cluster == NULL) {
 934        ret = -ENOMEM;
 935        goto err;
 936    }
 937
 938    /* copy content of unmodified sectors */
 939    ret = perform_cow(bs, m);
 940    if (ret < 0) {
 941        goto err;
 942    }
 943
 944    /* Update L2 table. */
 945    if (s->use_lazy_refcounts) {
 946        qcow2_mark_dirty(bs);
 947    }
 948    if (qcow2_need_accurate_refcounts(s)) {
 949        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 950                                   s->refcount_block_cache);
 951    }
 952
 953    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
 954    if (ret < 0) {
 955        goto err;
 956    }
 957    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 958
 959    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
 960    for (i = 0; i < m->nb_clusters; i++) {
 961        /* if two concurrent writes happen to the same unallocated cluster
 962         * each write allocates separate cluster and writes data concurrently.
 963         * The first one to complete updates l2 table with pointer to its
 964         * cluster the second one has to do RMW (which is done above by
 965         * perform_cow()), update l2 table with its cluster pointer and free
 966         * old cluster. This is what this loop does */
 967        if (l2_slice[l2_index + i] != 0) {
 968            old_cluster[j++] = l2_slice[l2_index + i];
 969        }
 970
 971        l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
 972                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 973     }
 974
 975
 976    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 977
 978    /*
 979     * If this was a COW, we need to decrease the refcount of the old cluster.
 980     *
 981     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
 982     * clusters), the next write will reuse them anyway.
 983     */
 984    if (!m->keep_old_clusters && j != 0) {
 985        for (i = 0; i < j; i++) {
 986            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
 987                                    QCOW2_DISCARD_NEVER);
 988        }
 989    }
 990
 991    ret = 0;
 992err:
 993    g_free(old_cluster);
 994    return ret;
 995 }
 996
 997/*
 998 * Returns the number of contiguous clusters that can be used for an allocating
 999 * write, but require COW to be performed (this includes yet unallocated space,
1000 * which must copy from the backing file)
1001 */
1002static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
1003    uint64_t *l2_slice, int l2_index)
1004{
1005    int i;
1006
1007    for (i = 0; i < nb_clusters; i++) {
1008        uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1009        QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1010
1011        switch(cluster_type) {
1012        case QCOW2_CLUSTER_NORMAL:
1013            if (l2_entry & QCOW_OFLAG_COPIED) {
1014                goto out;
1015            }
1016            break;
1017        case QCOW2_CLUSTER_UNALLOCATED:
1018        case QCOW2_CLUSTER_COMPRESSED:
1019        case QCOW2_CLUSTER_ZERO_PLAIN:
1020        case QCOW2_CLUSTER_ZERO_ALLOC:
1021            break;
1022        default:
1023            abort();
1024        }
1025    }
1026
1027out:
1028    assert(i <= nb_clusters);
1029    return i;
1030}
1031
1032/*
1033 * Check if there already is an AIO write request in flight which allocates
1034 * the same cluster. In this case we need to wait until the previous
1035 * request has completed and updated the L2 table accordingly.
1036 *
1037 * Returns:
1038 *   0       if there was no dependency. *cur_bytes indicates the number of
1039 *           bytes from guest_offset that can be read before the next
1040 *           dependency must be processed (or the request is complete)
1041 *
1042 *   -EAGAIN if we had to wait for another request, previously gathered
1043 *           information on cluster allocation may be invalid now. The caller
1044 *           must start over anyway, so consider *cur_bytes undefined.
1045 */
1046static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1047    uint64_t *cur_bytes, QCowL2Meta **m)
1048{
1049    BDRVQcow2State *s = bs->opaque;
1050    QCowL2Meta *old_alloc;
1051    uint64_t bytes = *cur_bytes;
1052
1053    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1054
1055        uint64_t start = guest_offset;
1056        uint64_t end = start + bytes;
1057        uint64_t old_start = l2meta_cow_start(old_alloc);
1058        uint64_t old_end = l2meta_cow_end(old_alloc);
1059
1060        if (end <= old_start || start >= old_end) {
1061            /* No intersection */
1062        } else {
1063            if (start < old_start) {
1064                /* Stop at the start of a running allocation */
1065                bytes = old_start - start;
1066            } else {
1067                bytes = 0;
1068            }
1069
1070            /* Stop if already an l2meta exists. After yielding, it wouldn't
1071             * be valid any more, so we'd have to clean up the old L2Metas
1072             * and deal with requests depending on them before starting to
1073             * gather new ones. Not worth the trouble. */
1074            if (bytes == 0 && *m) {
1075                *cur_bytes = 0;
1076                return 0;
1077            }
1078
1079            if (bytes == 0) {
1080                /* Wait for the dependency to complete. We need to recheck
1081                 * the free/allocated clusters when we continue. */
1082                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1083                return -EAGAIN;
1084            }
1085        }
1086    }
1087
1088    /* Make sure that existing clusters and new allocations are only used up to
1089     * the next dependency if we shortened the request above */
1090    *cur_bytes = bytes;
1091
1092    return 0;
1093}
1094
1095/*
1096 * Checks how many already allocated clusters that don't require a copy on
1097 * write there are at the given guest_offset (up to *bytes). If
1098 * *host_offset is not zero, only physically contiguous clusters beginning at
1099 * this host offset are counted.
1100 *
1101 * Note that guest_offset may not be cluster aligned. In this case, the
1102 * returned *host_offset points to exact byte referenced by guest_offset and
1103 * therefore isn't cluster aligned as well.
1104 *
1105 * Returns:
1106 *   0:     if no allocated clusters are available at the given offset.
1107 *          *bytes is normally unchanged. It is set to 0 if the cluster
1108 *          is allocated and doesn't need COW, but doesn't have the right
1109 *          physical offset.
1110 *
1111 *   1:     if allocated clusters that don't require a COW are available at
1112 *          the requested offset. *bytes may have decreased and describes
1113 *          the length of the area that can be written to.
1114 *
1115 *  -errno: in error cases
1116 */
1117static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1118    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1119{
1120    BDRVQcow2State *s = bs->opaque;
1121    int l2_index;
1122    uint64_t cluster_offset;
1123    uint64_t *l2_slice;
1124    uint64_t nb_clusters;
1125    unsigned int keep_clusters;
1126    int ret;
1127
1128    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1129                              *bytes);
1130
1131    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
1132                                == offset_into_cluster(s, *host_offset));
1133
1134    /*
1135     * Calculate the number of clusters to look for. We stop at L2 slice
1136     * boundaries to keep things simple.
1137     */
1138    nb_clusters =
1139        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1140
1141    l2_index = offset_to_l2_slice_index(s, guest_offset);
1142    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1143    assert(nb_clusters <= INT_MAX);
1144
1145    /* Find L2 entry for the first involved cluster */
1146    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1147    if (ret < 0) {
1148        return ret;
1149    }
1150
1151    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1152
1153    /* Check how many clusters are already allocated and don't need COW */
1154    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1155        && (cluster_offset & QCOW_OFLAG_COPIED))
1156    {
1157        /* If a specific host_offset is required, check it */
1158        bool offset_matches =
1159            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1160
1161        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1162            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1163                                    "%#llx unaligned (guest offset: %#" PRIx64
1164                                    ")", cluster_offset & L2E_OFFSET_MASK,
1165                                    guest_offset);
1166            ret = -EIO;
1167            goto out;
1168        }
1169
1170        if (*host_offset != 0 && !offset_matches) {
1171            *bytes = 0;
1172            ret = 0;
1173            goto out;
1174        }
1175
1176        /* We keep all QCOW_OFLAG_COPIED clusters */
1177        keep_clusters =
1178            count_contiguous_clusters(nb_clusters, s->cluster_size,
1179                                      &l2_slice[l2_index],
1180                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1181        assert(keep_clusters <= nb_clusters);
1182
1183        *bytes = MIN(*bytes,
1184                 keep_clusters * s->cluster_size
1185                 - offset_into_cluster(s, guest_offset));
1186
1187        ret = 1;
1188    } else {
1189        ret = 0;
1190    }
1191
1192    /* Cleanup */
1193out:
1194    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1195
1196    /* Only return a host offset if we actually made progress. Otherwise we
1197     * would make requirements for handle_alloc() that it can't fulfill */
1198    if (ret > 0) {
1199        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1200                     + offset_into_cluster(s, guest_offset);
1201    }
1202
1203    return ret;
1204}
1205
1206/*
1207 * Allocates new clusters for the given guest_offset.
1208 *
1209 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1210 * contain the number of clusters that have been allocated and are contiguous
1211 * in the image file.
1212 *
1213 * If *host_offset is non-zero, it specifies the offset in the image file at
1214 * which the new clusters must start. *nb_clusters can be 0 on return in this
1215 * case if the cluster at host_offset is already in use. If *host_offset is
1216 * zero, the clusters can be allocated anywhere in the image file.
1217 *
1218 * *host_offset is updated to contain the offset into the image file at which
1219 * the first allocated cluster starts.
1220 *
1221 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1222 * function has been waiting for another request and the allocation must be
1223 * restarted, but the whole request should not be failed.
1224 */
1225static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1226                                   uint64_t *host_offset, uint64_t *nb_clusters)
1227{
1228    BDRVQcow2State *s = bs->opaque;
1229
1230    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1231                                         *host_offset, *nb_clusters);
1232
1233    /* Allocate new clusters */
1234    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1235    if (*host_offset == 0) {
1236        int64_t cluster_offset =
1237            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1238        if (cluster_offset < 0) {
1239            return cluster_offset;
1240        }
1241        *host_offset = cluster_offset;
1242        return 0;
1243    } else {
1244        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1245        if (ret < 0) {
1246            return ret;
1247        }
1248        *nb_clusters = ret;
1249        return 0;
1250    }
1251}
1252
1253/*
1254 * Allocates new clusters for an area that either is yet unallocated or needs a
1255 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1256 * the new allocation can match the specified host offset.
1257 *
1258 * Note that guest_offset may not be cluster aligned. In this case, the
1259 * returned *host_offset points to exact byte referenced by guest_offset and
1260 * therefore isn't cluster aligned as well.
1261 *
1262 * Returns:
1263 *   0:     if no clusters could be allocated. *bytes is set to 0,
1264 *          *host_offset is left unchanged.
1265 *
1266 *   1:     if new clusters were allocated. *bytes may be decreased if the
1267 *          new allocation doesn't cover all of the requested area.
1268 *          *host_offset is updated to contain the host offset of the first
1269 *          newly allocated cluster.
1270 *
1271 *  -errno: in error cases
1272 */
1273static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1274    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1275{
1276    BDRVQcow2State *s = bs->opaque;
1277    int l2_index;
1278    uint64_t *l2_slice;
1279    uint64_t entry;
1280    uint64_t nb_clusters;
1281    int ret;
1282    bool keep_old_clusters = false;
1283
1284    uint64_t alloc_cluster_offset = 0;
1285
1286    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1287                             *bytes);
1288    assert(*bytes > 0);
1289
1290    /*
1291     * Calculate the number of clusters to look for. We stop at L2 slice
1292     * boundaries to keep things simple.
1293     */
1294    nb_clusters =
1295        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1296
1297    l2_index = offset_to_l2_slice_index(s, guest_offset);
1298    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1299    assert(nb_clusters <= INT_MAX);
1300
1301    /* Find L2 entry for the first involved cluster */
1302    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1303    if (ret < 0) {
1304        return ret;
1305    }
1306
1307    entry = be64_to_cpu(l2_slice[l2_index]);
1308
1309    /* For the moment, overwrite compressed clusters one by one */
1310    if (entry & QCOW_OFLAG_COMPRESSED) {
1311        nb_clusters = 1;
1312    } else {
1313        nb_clusters = count_cow_clusters(s, nb_clusters, l2_slice, l2_index);
1314    }
1315
1316    /* This function is only called when there were no non-COW clusters, so if
1317     * we can't find any unallocated or COW clusters either, something is
1318     * wrong with our code. */
1319    assert(nb_clusters > 0);
1320
1321    if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1322        (entry & QCOW_OFLAG_COPIED) &&
1323        (!*host_offset ||
1324         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1325    {
1326        int preallocated_nb_clusters;
1327
1328        if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1329            qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1330                                    "cluster offset %#llx unaligned (guest "
1331                                    "offset: %#" PRIx64 ")",
1332                                    entry & L2E_OFFSET_MASK, guest_offset);
1333            ret = -EIO;
1334            goto fail;
1335        }
1336
1337        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1338         * would be fine, too, but count_cow_clusters() above has limited
1339         * nb_clusters already to a range of COW clusters */
1340        preallocated_nb_clusters =
1341            count_contiguous_clusters(nb_clusters, s->cluster_size,
1342                                      &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1343        assert(preallocated_nb_clusters > 0);
1344
1345        nb_clusters = preallocated_nb_clusters;
1346        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1347
1348        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1349         * should not free them. */
1350        keep_old_clusters = true;
1351    }
1352
1353    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1354
1355    if (!alloc_cluster_offset) {
1356        /* Allocate, if necessary at a given offset in the image file */
1357        alloc_cluster_offset = start_of_cluster(s, *host_offset);
1358        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1359                                      &nb_clusters);
1360        if (ret < 0) {
1361            goto fail;
1362        }
1363
1364        /* Can't extend contiguous allocation */
1365        if (nb_clusters == 0) {
1366            *bytes = 0;
1367            return 0;
1368        }
1369
1370        /* !*host_offset would overwrite the image header and is reserved for
1371         * "no host offset preferred". If 0 was a valid host offset, it'd
1372         * trigger the following overlap check; do that now to avoid having an
1373         * invalid value in *host_offset. */
1374        if (!alloc_cluster_offset) {
1375            ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1376                                                nb_clusters * s->cluster_size);
1377            assert(ret < 0);
1378            goto fail;
1379        }
1380    }
1381
1382    /*
1383     * Save info needed for meta data update.
1384     *
1385     * requested_bytes: Number of bytes from the start of the first
1386     * newly allocated cluster to the end of the (possibly shortened
1387     * before) write request.
1388     *
1389     * avail_bytes: Number of bytes from the start of the first
1390     * newly allocated to the end of the last newly allocated cluster.
1391     *
1392     * nb_bytes: The number of bytes from the start of the first
1393     * newly allocated cluster to the end of the area that the write
1394     * request actually writes to (excluding COW at the end)
1395     */
1396    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1397    int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1398    int nb_bytes = MIN(requested_bytes, avail_bytes);
1399    QCowL2Meta *old_m = *m;
1400
1401    *m = g_malloc0(sizeof(**m));
1402
1403    **m = (QCowL2Meta) {
1404        .next           = old_m,
1405
1406        .alloc_offset   = alloc_cluster_offset,
1407        .offset         = start_of_cluster(s, guest_offset),
1408        .nb_clusters    = nb_clusters,
1409
1410        .keep_old_clusters  = keep_old_clusters,
1411
1412        .cow_start = {
1413            .offset     = 0,
1414            .nb_bytes   = offset_into_cluster(s, guest_offset),
1415        },
1416        .cow_end = {
1417            .offset     = nb_bytes,
1418            .nb_bytes   = avail_bytes - nb_bytes,
1419        },
1420    };
1421    qemu_co_queue_init(&(*m)->dependent_requests);
1422    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1423
1424    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1425    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1426    assert(*bytes != 0);
1427
1428    return 1;
1429
1430fail:
1431    if (*m && (*m)->nb_clusters > 0) {
1432        QLIST_REMOVE(*m, next_in_flight);
1433    }
1434    return ret;
1435}
1436
1437/*
1438 * alloc_cluster_offset
1439 *
1440 * For a given offset on the virtual disk, find the cluster offset in qcow2
1441 * file. If the offset is not found, allocate a new cluster.
1442 *
1443 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1444 * other fields in m are meaningless.
1445 *
1446 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1447 * contiguous clusters that have been allocated. In this case, the other
1448 * fields of m are valid and contain information about the first allocated
1449 * cluster.
1450 *
1451 * If the request conflicts with another write request in flight, the coroutine
1452 * is queued and will be reentered when the dependency has completed.
1453 *
1454 * Return 0 on success and -errno in error cases
1455 */
1456int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1457                               unsigned int *bytes, uint64_t *host_offset,
1458                               QCowL2Meta **m)
1459{
1460    BDRVQcow2State *s = bs->opaque;
1461    uint64_t start, remaining;
1462    uint64_t cluster_offset;
1463    uint64_t cur_bytes;
1464    int ret;
1465
1466    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1467
1468again:
1469    start = offset;
1470    remaining = *bytes;
1471    cluster_offset = 0;
1472    *host_offset = 0;
1473    cur_bytes = 0;
1474    *m = NULL;
1475
1476    while (true) {
1477
1478        if (!*host_offset) {
1479            *host_offset = start_of_cluster(s, cluster_offset);
1480        }
1481
1482        assert(remaining >= cur_bytes);
1483
1484        start           += cur_bytes;
1485        remaining       -= cur_bytes;
1486        cluster_offset  += cur_bytes;
1487
1488        if (remaining == 0) {
1489            break;
1490        }
1491
1492        cur_bytes = remaining;
1493
1494        /*
1495         * Now start gathering as many contiguous clusters as possible:
1496         *
1497         * 1. Check for overlaps with in-flight allocations
1498         *
1499         *      a) Overlap not in the first cluster -> shorten this request and
1500         *         let the caller handle the rest in its next loop iteration.
1501         *
1502         *      b) Real overlaps of two requests. Yield and restart the search
1503         *         for contiguous clusters (the situation could have changed
1504         *         while we were sleeping)
1505         *
1506         *      c) TODO: Request starts in the same cluster as the in-flight
1507         *         allocation ends. Shorten the COW of the in-fight allocation,
1508         *         set cluster_offset to write to the same cluster and set up
1509         *         the right synchronisation between the in-flight request and
1510         *         the new one.
1511         */
1512        ret = handle_dependencies(bs, start, &cur_bytes, m);
1513        if (ret == -EAGAIN) {
1514            /* Currently handle_dependencies() doesn't yield if we already had
1515             * an allocation. If it did, we would have to clean up the L2Meta
1516             * structs before starting over. */
1517            assert(*m == NULL);
1518            goto again;
1519        } else if (ret < 0) {
1520            return ret;
1521        } else if (cur_bytes == 0) {
1522            break;
1523        } else {
1524            /* handle_dependencies() may have decreased cur_bytes (shortened
1525             * the allocations below) so that the next dependency is processed
1526             * correctly during the next loop iteration. */
1527        }
1528
1529        /*
1530         * 2. Count contiguous COPIED clusters.
1531         */
1532        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1533        if (ret < 0) {
1534            return ret;
1535        } else if (ret) {
1536            continue;
1537        } else if (cur_bytes == 0) {
1538            break;
1539        }
1540
1541        /*
1542         * 3. If the request still hasn't completed, allocate new clusters,
1543         *    considering any cluster_offset of steps 1c or 2.
1544         */
1545        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1546        if (ret < 0) {
1547            return ret;
1548        } else if (ret) {
1549            continue;
1550        } else {
1551            assert(cur_bytes == 0);
1552            break;
1553        }
1554    }
1555
1556    *bytes -= remaining;
1557    assert(*bytes > 0);
1558    assert(*host_offset != 0);
1559
1560    return 0;
1561}
1562
1563static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1564                             const uint8_t *buf, int buf_size)
1565{
1566    z_stream strm1, *strm = &strm1;
1567    int ret, out_len;
1568
1569    memset(strm, 0, sizeof(*strm));
1570
1571    strm->next_in = (uint8_t *)buf;
1572    strm->avail_in = buf_size;
1573    strm->next_out = out_buf;
1574    strm->avail_out = out_buf_size;
1575
1576    ret = inflateInit2(strm, -12);
1577    if (ret != Z_OK)
1578        return -1;
1579    ret = inflate(strm, Z_FINISH);
1580    out_len = strm->next_out - out_buf;
1581    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1582        out_len != out_buf_size) {
1583        inflateEnd(strm);
1584        return -1;
1585    }
1586    inflateEnd(strm);
1587    return 0;
1588}
1589
1590int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1591{
1592    BDRVQcow2State *s = bs->opaque;
1593    int ret, csize, nb_csectors, sector_offset;
1594    uint64_t coffset;
1595
1596    coffset = cluster_offset & s->cluster_offset_mask;
1597    if (s->cluster_cache_offset != coffset) {
1598        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1599        sector_offset = coffset & 511;
1600        csize = nb_csectors * 512 - sector_offset;
1601
1602        /* Allocate buffers on first decompress operation, most images are
1603         * uncompressed and the memory overhead can be avoided.  The buffers
1604         * are freed in .bdrv_close().
1605         */
1606        if (!s->cluster_data) {
1607            /* one more sector for decompressed data alignment */
1608            s->cluster_data = qemu_try_blockalign(bs->file->bs,
1609                    QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1610            if (!s->cluster_data) {
1611                return -ENOMEM;
1612            }
1613        }
1614        if (!s->cluster_cache) {
1615            s->cluster_cache = g_malloc(s->cluster_size);
1616        }
1617
1618        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1619        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1620                        nb_csectors);
1621        if (ret < 0) {
1622            return ret;
1623        }
1624        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1625                              s->cluster_data + sector_offset, csize) < 0) {
1626            return -EIO;
1627        }
1628        s->cluster_cache_offset = coffset;
1629    }
1630    return 0;
1631}
1632
1633/*
1634 * This discards as many clusters of nb_clusters as possible at once (i.e.
1635 * all clusters in the same L2 slice) and returns the number of discarded
1636 * clusters.
1637 */
1638static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1639                               uint64_t nb_clusters,
1640                               enum qcow2_discard_type type, bool full_discard)
1641{
1642    BDRVQcow2State *s = bs->opaque;
1643    uint64_t *l2_slice;
1644    int l2_index;
1645    int ret;
1646    int i;
1647
1648    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1649    if (ret < 0) {
1650        return ret;
1651    }
1652
1653    /* Limit nb_clusters to one L2 slice */
1654    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1655    assert(nb_clusters <= INT_MAX);
1656
1657    for (i = 0; i < nb_clusters; i++) {
1658        uint64_t old_l2_entry;
1659
1660        old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1661
1662        /*
1663         * If full_discard is false, make sure that a discarded area reads back
1664         * as zeroes for v3 images (we cannot do it for v2 without actually
1665         * writing a zero-filled buffer). We can skip the operation if the
1666         * cluster is already marked as zero, or if it's unallocated and we
1667         * don't have a backing file.
1668         *
1669         * TODO We might want to use bdrv_block_status(bs) here, but we're
1670         * holding s->lock, so that doesn't work today.
1671         *
1672         * If full_discard is true, the sector should not read back as zeroes,
1673         * but rather fall through to the backing file.
1674         */
1675        switch (qcow2_get_cluster_type(old_l2_entry)) {
1676        case QCOW2_CLUSTER_UNALLOCATED:
1677            if (full_discard || !bs->backing) {
1678                continue;
1679            }
1680            break;
1681
1682        case QCOW2_CLUSTER_ZERO_PLAIN:
1683            if (!full_discard) {
1684                continue;
1685            }
1686            break;
1687
1688        case QCOW2_CLUSTER_ZERO_ALLOC:
1689        case QCOW2_CLUSTER_NORMAL:
1690        case QCOW2_CLUSTER_COMPRESSED:
1691            break;
1692
1693        default:
1694            abort();
1695        }
1696
1697        /* First remove L2 entries */
1698        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1699        if (!full_discard && s->qcow_version >= 3) {
1700            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1701        } else {
1702            l2_slice[l2_index + i] = cpu_to_be64(0);
1703        }
1704
1705        /* Then decrease the refcount */
1706        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1707    }
1708
1709    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1710
1711    return nb_clusters;
1712}
1713
1714int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1715                          uint64_t bytes, enum qcow2_discard_type type,
1716                          bool full_discard)
1717{
1718    BDRVQcow2State *s = bs->opaque;
1719    uint64_t end_offset = offset + bytes;
1720    uint64_t nb_clusters;
1721    int64_t cleared;
1722    int ret;
1723
1724    /* Caller must pass aligned values, except at image end */
1725    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1726    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1727           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1728
1729    nb_clusters = size_to_clusters(s, bytes);
1730
1731    s->cache_discards = true;
1732
1733    /* Each L2 slice is handled by its own loop iteration */
1734    while (nb_clusters > 0) {
1735        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1736                                      full_discard);
1737        if (cleared < 0) {
1738            ret = cleared;
1739            goto fail;
1740        }
1741
1742        nb_clusters -= cleared;
1743        offset += (cleared * s->cluster_size);
1744    }
1745
1746    ret = 0;
1747fail:
1748    s->cache_discards = false;
1749    qcow2_process_discards(bs, ret);
1750
1751    return ret;
1752}
1753
1754/*
1755 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1756 * all clusters in the same L2 slice) and returns the number of zeroed
1757 * clusters.
1758 */
1759static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1760                            uint64_t nb_clusters, int flags)
1761{
1762    BDRVQcow2State *s = bs->opaque;
1763    uint64_t *l2_slice;
1764    int l2_index;
1765    int ret;
1766    int i;
1767    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1768
1769    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1770    if (ret < 0) {
1771        return ret;
1772    }
1773
1774    /* Limit nb_clusters to one L2 slice */
1775    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1776    assert(nb_clusters <= INT_MAX);
1777
1778    for (i = 0; i < nb_clusters; i++) {
1779        uint64_t old_offset;
1780        QCow2ClusterType cluster_type;
1781
1782        old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1783
1784        /*
1785         * Minimize L2 changes if the cluster already reads back as
1786         * zeroes with correct allocation.
1787         */
1788        cluster_type = qcow2_get_cluster_type(old_offset);
1789        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1790            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1791            continue;
1792        }
1793
1794        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1795        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1796            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1797            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1798        } else {
1799            l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1800        }
1801    }
1802
1803    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1804
1805    return nb_clusters;
1806}
1807
1808int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1809                          uint64_t bytes, int flags)
1810{
1811    BDRVQcow2State *s = bs->opaque;
1812    uint64_t end_offset = offset + bytes;
1813    uint64_t nb_clusters;
1814    int64_t cleared;
1815    int ret;
1816
1817    /* Caller must pass aligned values, except at image end */
1818    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1819    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1820           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1821
1822    /* The zero flag is only supported by version 3 and newer */
1823    if (s->qcow_version < 3) {
1824        return -ENOTSUP;
1825    }
1826
1827    /* Each L2 slice is handled by its own loop iteration */
1828    nb_clusters = size_to_clusters(s, bytes);
1829
1830    s->cache_discards = true;
1831
1832    while (nb_clusters > 0) {
1833        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1834        if (cleared < 0) {
1835            ret = cleared;
1836            goto fail;
1837        }
1838
1839        nb_clusters -= cleared;
1840        offset += (cleared * s->cluster_size);
1841    }
1842
1843    ret = 0;
1844fail:
1845    s->cache_discards = false;
1846    qcow2_process_discards(bs, ret);
1847
1848    return ret;
1849}
1850
1851/*
1852 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1853 * non-backed non-pre-allocated zero clusters).
1854 *
1855 * l1_entries and *visited_l1_entries are used to keep track of progress for
1856 * status_cb(). l1_entries contains the total number of L1 entries and
1857 * *visited_l1_entries counts all visited L1 entries.
1858 */
1859static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1860                                      int l1_size, int64_t *visited_l1_entries,
1861                                      int64_t l1_entries,
1862                                      BlockDriverAmendStatusCB *status_cb,
1863                                      void *cb_opaque)
1864{
1865    BDRVQcow2State *s = bs->opaque;
1866    bool is_active_l1 = (l1_table == s->l1_table);
1867    uint64_t *l2_slice = NULL;
1868    unsigned slice, slice_size2, n_slices;
1869    int ret;
1870    int i, j;
1871
1872    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1873    n_slices = s->cluster_size / slice_size2;
1874
1875    if (!is_active_l1) {
1876        /* inactive L2 tables require a buffer to be stored in when loading
1877         * them from disk */
1878        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1879        if (l2_slice == NULL) {
1880            return -ENOMEM;
1881        }
1882    }
1883
1884    for (i = 0; i < l1_size; i++) {
1885        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1886        uint64_t l2_refcount;
1887
1888        if (!l2_offset) {
1889            /* unallocated */
1890            (*visited_l1_entries)++;
1891            if (status_cb) {
1892                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1893            }
1894            continue;
1895        }
1896
1897        if (offset_into_cluster(s, l2_offset)) {
1898            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1899                                    PRIx64 " unaligned (L1 index: %#x)",
1900                                    l2_offset, i);
1901            ret = -EIO;
1902            goto fail;
1903        }
1904
1905        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1906                                 &l2_refcount);
1907        if (ret < 0) {
1908            goto fail;
1909        }
1910
1911        for (slice = 0; slice < n_slices; slice++) {
1912            uint64_t slice_offset = l2_offset + slice * slice_size2;
1913            bool l2_dirty = false;
1914            if (is_active_l1) {
1915                /* get active L2 tables from cache */
1916                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1917                                      (void **)&l2_slice);
1918            } else {
1919                /* load inactive L2 tables from disk */
1920                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1921            }
1922            if (ret < 0) {
1923                goto fail;
1924            }
1925
1926            for (j = 0; j < s->l2_slice_size; j++) {
1927                uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1928                int64_t offset = l2_entry & L2E_OFFSET_MASK;
1929                QCow2ClusterType cluster_type =
1930                    qcow2_get_cluster_type(l2_entry);
1931
1932                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1933                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1934                    continue;
1935                }
1936
1937                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1938                    if (!bs->backing) {
1939                        /* not backed; therefore we can simply deallocate the
1940                         * cluster */
1941                        l2_slice[j] = 0;
1942                        l2_dirty = true;
1943                        continue;
1944                    }
1945
1946                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
1947                    if (offset < 0) {
1948                        ret = offset;
1949                        goto fail;
1950                    }
1951
1952                    if (l2_refcount > 1) {
1953                        /* For shared L2 tables, set the refcount accordingly
1954                         * (it is already 1 and needs to be l2_refcount) */
1955                        ret = qcow2_update_cluster_refcount(
1956                            bs, offset >> s->cluster_bits,
1957                            refcount_diff(1, l2_refcount), false,
1958                            QCOW2_DISCARD_OTHER);
1959                        if (ret < 0) {
1960                            qcow2_free_clusters(bs, offset, s->cluster_size,
1961                                                QCOW2_DISCARD_OTHER);
1962                            goto fail;
1963                        }
1964                    }
1965                }
1966
1967                if (offset_into_cluster(s, offset)) {
1968                    int l2_index = slice * s->l2_slice_size + j;
1969                    qcow2_signal_corruption(
1970                        bs, true, -1, -1,
1971                        "Cluster allocation offset "
1972                        "%#" PRIx64 " unaligned (L2 offset: %#"
1973                        PRIx64 ", L2 index: %#x)", offset,
1974                        l2_offset, l2_index);
1975                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976                        qcow2_free_clusters(bs, offset, s->cluster_size,
1977                                            QCOW2_DISCARD_ALWAYS);
1978                    }
1979                    ret = -EIO;
1980                    goto fail;
1981                }
1982
1983                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1984                                                    s->cluster_size);
1985                if (ret < 0) {
1986                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1987                        qcow2_free_clusters(bs, offset, s->cluster_size,
1988                                            QCOW2_DISCARD_ALWAYS);
1989                    }
1990                    goto fail;
1991                }
1992
1993                ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1994                if (ret < 0) {
1995                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1996                        qcow2_free_clusters(bs, offset, s->cluster_size,
1997                                            QCOW2_DISCARD_ALWAYS);
1998                    }
1999                    goto fail;
2000                }
2001
2002                if (l2_refcount == 1) {
2003                    l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
2004                } else {
2005                    l2_slice[j] = cpu_to_be64(offset);
2006                }
2007                l2_dirty = true;
2008            }
2009
2010            if (is_active_l1) {
2011                if (l2_dirty) {
2012                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2013                    qcow2_cache_depends_on_flush(s->l2_table_cache);
2014                }
2015                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2016            } else {
2017                if (l2_dirty) {
2018                    ret = qcow2_pre_write_overlap_check(
2019                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2020                        slice_offset, slice_size2);
2021                    if (ret < 0) {
2022                        goto fail;
2023                    }
2024
2025                    ret = bdrv_pwrite(bs->file, slice_offset,
2026                                      l2_slice, slice_size2);
2027                    if (ret < 0) {
2028                        goto fail;
2029                    }
2030                }
2031            }
2032        }
2033
2034        (*visited_l1_entries)++;
2035        if (status_cb) {
2036            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2037        }
2038    }
2039
2040    ret = 0;
2041
2042fail:
2043    if (l2_slice) {
2044        if (!is_active_l1) {
2045            qemu_vfree(l2_slice);
2046        } else {
2047            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2048        }
2049    }
2050    return ret;
2051}
2052
2053/*
2054 * For backed images, expands all zero clusters on the image. For non-backed
2055 * images, deallocates all non-pre-allocated zero clusters (and claims the
2056 * allocation for pre-allocated ones). This is important for downgrading to a
2057 * qcow2 version which doesn't yet support metadata zero clusters.
2058 */
2059int qcow2_expand_zero_clusters(BlockDriverState *bs,
2060                               BlockDriverAmendStatusCB *status_cb,
2061                               void *cb_opaque)
2062{
2063    BDRVQcow2State *s = bs->opaque;
2064    uint64_t *l1_table = NULL;
2065    int64_t l1_entries = 0, visited_l1_entries = 0;
2066    int ret;
2067    int i, j;
2068
2069    if (status_cb) {
2070        l1_entries = s->l1_size;
2071        for (i = 0; i < s->nb_snapshots; i++) {
2072            l1_entries += s->snapshots[i].l1_size;
2073        }
2074    }
2075
2076    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2077                                     &visited_l1_entries, l1_entries,
2078                                     status_cb, cb_opaque);
2079    if (ret < 0) {
2080        goto fail;
2081    }
2082
2083    /* Inactive L1 tables may point to active L2 tables - therefore it is
2084     * necessary to flush the L2 table cache before trying to access the L2
2085     * tables pointed to by inactive L1 entries (else we might try to expand
2086     * zero clusters that have already been expanded); furthermore, it is also
2087     * necessary to empty the L2 table cache, since it may contain tables which
2088     * are now going to be modified directly on disk, bypassing the cache.
2089     * qcow2_cache_empty() does both for us. */
2090    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2091    if (ret < 0) {
2092        goto fail;
2093    }
2094
2095    for (i = 0; i < s->nb_snapshots; i++) {
2096        int l1_size2;
2097        uint64_t *new_l1_table;
2098        Error *local_err = NULL;
2099
2100        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2101                                   s->snapshots[i].l1_size, sizeof(uint64_t),
2102                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2103                                   &local_err);
2104        if (ret < 0) {
2105            error_report_err(local_err);
2106            goto fail;
2107        }
2108
2109        l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2110        new_l1_table = g_try_realloc(l1_table, l1_size2);
2111
2112        if (!new_l1_table) {
2113            ret = -ENOMEM;
2114            goto fail;
2115        }
2116
2117        l1_table = new_l1_table;
2118
2119        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2120                         l1_table, l1_size2);
2121        if (ret < 0) {
2122            goto fail;
2123        }
2124
2125        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2126            be64_to_cpus(&l1_table[j]);
2127        }
2128
2129        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2130                                         &visited_l1_entries, l1_entries,
2131                                         status_cb, cb_opaque);
2132        if (ret < 0) {
2133            goto fail;
2134        }
2135    }
2136
2137    ret = 0;
2138
2139fail:
2140    g_free(l1_table);
2141    return ret;
2142}
2143