qemu/hw/acpi/nvdimm.c
<<
>>
Prefs
   1/*
   2 * NVDIMM ACPI Implementation
   3 *
   4 * Copyright(C) 2015 Intel Corporation.
   5 *
   6 * Author:
   7 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
   8 *
   9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  10 * and the DSM specification can be found at:
  11 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
  12 *
  13 * Currently, it only supports PMEM Virtualization.
  14 *
  15 * This library is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU Lesser General Public
  17 * License as published by the Free Software Foundation; either
  18 * version 2 of the License, or (at your option) any later version.
  19 *
  20 * This library is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * Lesser General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU Lesser General Public
  26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "hw/acpi/acpi.h"
  31#include "hw/acpi/aml-build.h"
  32#include "hw/acpi/bios-linker-loader.h"
  33#include "hw/nvram/fw_cfg.h"
  34#include "hw/mem/nvdimm.h"
  35
  36static int nvdimm_device_list(Object *obj, void *opaque)
  37{
  38    GSList **list = opaque;
  39
  40    if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
  41        *list = g_slist_append(*list, DEVICE(obj));
  42    }
  43
  44    object_child_foreach(obj, nvdimm_device_list, opaque);
  45    return 0;
  46}
  47
  48/*
  49 * inquire NVDIMM devices and link them into the list which is
  50 * returned to the caller.
  51 *
  52 * Note: it is the caller's responsibility to free the list to avoid
  53 * memory leak.
  54 */
  55static GSList *nvdimm_get_device_list(void)
  56{
  57    GSList *list = NULL;
  58
  59    object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
  60    return list;
  61}
  62
  63#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
  64   { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
  65     (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
  66     (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
  67
  68/*
  69 * define Byte Addressable Persistent Memory (PM) Region according to
  70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
  71 */
  72static const uint8_t nvdimm_nfit_spa_uuid[] =
  73      NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
  74                     0x18, 0xb7, 0x8c, 0xdb);
  75
  76/*
  77 * NVDIMM Firmware Interface Table
  78 * @signature: "NFIT"
  79 *
  80 * It provides information that allows OSPM to enumerate NVDIMM present in
  81 * the platform and associate system physical address ranges created by the
  82 * NVDIMMs.
  83 *
  84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  85 */
  86struct NvdimmNfitHeader {
  87    ACPI_TABLE_HEADER_DEF
  88    uint32_t reserved;
  89} QEMU_PACKED;
  90typedef struct NvdimmNfitHeader NvdimmNfitHeader;
  91
  92/*
  93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
  94 * Interface Table (NFIT).
  95 */
  96
  97/*
  98 * System Physical Address Range Structure
  99 *
 100 * It describes the system physical address ranges occupied by NVDIMMs and
 101 * the types of the regions.
 102 */
 103struct NvdimmNfitSpa {
 104    uint16_t type;
 105    uint16_t length;
 106    uint16_t spa_index;
 107    uint16_t flags;
 108    uint32_t reserved;
 109    uint32_t proximity_domain;
 110    uint8_t type_guid[16];
 111    uint64_t spa_base;
 112    uint64_t spa_length;
 113    uint64_t mem_attr;
 114} QEMU_PACKED;
 115typedef struct NvdimmNfitSpa NvdimmNfitSpa;
 116
 117/*
 118 * Memory Device to System Physical Address Range Mapping Structure
 119 *
 120 * It enables identifying each NVDIMM region and the corresponding SPA
 121 * describing the memory interleave
 122 */
 123struct NvdimmNfitMemDev {
 124    uint16_t type;
 125    uint16_t length;
 126    uint32_t nfit_handle;
 127    uint16_t phys_id;
 128    uint16_t region_id;
 129    uint16_t spa_index;
 130    uint16_t dcr_index;
 131    uint64_t region_len;
 132    uint64_t region_offset;
 133    uint64_t region_dpa;
 134    uint16_t interleave_index;
 135    uint16_t interleave_ways;
 136    uint16_t flags;
 137    uint16_t reserved;
 138} QEMU_PACKED;
 139typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
 140
 141#define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
 142
 143/*
 144 * NVDIMM Control Region Structure
 145 *
 146 * It describes the NVDIMM and if applicable, Block Control Window.
 147 */
 148struct NvdimmNfitControlRegion {
 149    uint16_t type;
 150    uint16_t length;
 151    uint16_t dcr_index;
 152    uint16_t vendor_id;
 153    uint16_t device_id;
 154    uint16_t revision_id;
 155    uint16_t sub_vendor_id;
 156    uint16_t sub_device_id;
 157    uint16_t sub_revision_id;
 158    uint8_t reserved[6];
 159    uint32_t serial_number;
 160    uint16_t fic;
 161    uint16_t num_bcw;
 162    uint64_t bcw_size;
 163    uint64_t cmd_offset;
 164    uint64_t cmd_size;
 165    uint64_t status_offset;
 166    uint64_t status_size;
 167    uint16_t flags;
 168    uint8_t reserved2[6];
 169} QEMU_PACKED;
 170typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
 171
 172/*
 173 * Module serial number is a unique number for each device. We use the
 174 * slot id of NVDIMM device to generate this number so that each device
 175 * associates with a different number.
 176 *
 177 * 0x123456 is a magic number we arbitrarily chose.
 178 */
 179static uint32_t nvdimm_slot_to_sn(int slot)
 180{
 181    return 0x123456 + slot;
 182}
 183
 184/*
 185 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 186 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 187 * by ACPI device _ADR method.
 188 *
 189 * We generate the handle with the slot id of NVDIMM device and reserve
 190 * 0 for NVDIMM root device.
 191 */
 192static uint32_t nvdimm_slot_to_handle(int slot)
 193{
 194    return slot + 1;
 195}
 196
 197/*
 198 * index uniquely identifies the structure, 0 is reserved which indicates
 199 * that the structure is not valid or the associated structure is not
 200 * present.
 201 *
 202 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 203 * nfit_dc which are generated by the slot id of NVDIMM device.
 204 */
 205static uint16_t nvdimm_slot_to_spa_index(int slot)
 206{
 207    return (slot + 1) << 1;
 208}
 209
 210/* See the comments of nvdimm_slot_to_spa_index(). */
 211static uint32_t nvdimm_slot_to_dcr_index(int slot)
 212{
 213    return nvdimm_slot_to_spa_index(slot) + 1;
 214}
 215
 216static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
 217{
 218    NVDIMMDevice *nvdimm = NULL;
 219    GSList *list, *device_list = nvdimm_get_device_list();
 220
 221    for (list = device_list; list; list = list->next) {
 222        NVDIMMDevice *nvd = list->data;
 223        int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
 224                                           NULL);
 225
 226        if (nvdimm_slot_to_handle(slot) == handle) {
 227            nvdimm = nvd;
 228            break;
 229        }
 230    }
 231
 232    g_slist_free(device_list);
 233    return nvdimm;
 234}
 235
 236/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
 237static void
 238nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
 239{
 240    NvdimmNfitSpa *nfit_spa;
 241    uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
 242                                             NULL);
 243    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 244                                             NULL);
 245    uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
 246                                             NULL);
 247    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 248                                       NULL);
 249
 250    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
 251
 252    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
 253                                      Structure */);
 254    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
 255    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 256
 257    /*
 258     * Control region is strict as all the device info, such as SN, index,
 259     * is associated with slot id.
 260     */
 261    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
 262                                       management during hot add/online
 263                                       operation */ |
 264                                  2 /* Data in Proximity Domain field is
 265                                       valid*/);
 266
 267    /* NUMA node. */
 268    nfit_spa->proximity_domain = cpu_to_le32(node);
 269    /* the region reported as PMEM. */
 270    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
 271           sizeof(nvdimm_nfit_spa_uuid));
 272
 273    nfit_spa->spa_base = cpu_to_le64(addr);
 274    nfit_spa->spa_length = cpu_to_le64(size);
 275
 276    /* It is the PMEM and can be cached as writeback. */
 277    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
 278                                     0x8000ULL /* EFI_MEMORY_NV */);
 279}
 280
 281/*
 282 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 283 * Structure
 284 */
 285static void
 286nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
 287{
 288    NvdimmNfitMemDev *nfit_memdev;
 289    NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
 290    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 291                                             NULL);
 292    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 293                                            NULL);
 294    uint32_t handle = nvdimm_slot_to_handle(slot);
 295
 296    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
 297
 298    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
 299                                         Range Map Structure*/);
 300    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
 301    nfit_memdev->nfit_handle = cpu_to_le32(handle);
 302
 303    /*
 304     * associate memory device with System Physical Address Range
 305     * Structure.
 306     */
 307    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 308    /* associate memory device with Control Region Structure. */
 309    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 310
 311    /* The memory region on the device. */
 312    nfit_memdev->region_len = cpu_to_le64(size);
 313    /* The device address starts from 0. */
 314    nfit_memdev->region_dpa = cpu_to_le64(0);
 315
 316    /* Only one interleave for PMEM. */
 317    nfit_memdev->interleave_ways = cpu_to_le16(1);
 318
 319    if (nvdimm->unarmed) {
 320        nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
 321    }
 322}
 323
 324/*
 325 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 326 */
 327static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
 328{
 329    NvdimmNfitControlRegion *nfit_dcr;
 330    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 331                                       NULL);
 332    uint32_t sn = nvdimm_slot_to_sn(slot);
 333
 334    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
 335
 336    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
 337    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
 338    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 339
 340    /* vendor: Intel. */
 341    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
 342    nfit_dcr->device_id = cpu_to_le16(1);
 343
 344    /* The _DSM method is following Intel's DSM specification. */
 345    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
 346                                             in ACPI 6.0 is 1. */);
 347    nfit_dcr->serial_number = cpu_to_le32(sn);
 348    nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
 349                                         Byte addressable, no energy backed.
 350                                         See ACPI 6.2, sect 5.2.25.6 and
 351                                         JEDEC Annex L Release 3. */);
 352}
 353
 354static GArray *nvdimm_build_device_structure(void)
 355{
 356    GSList *device_list = nvdimm_get_device_list();
 357    GArray *structures = g_array_new(false, true /* clear */, 1);
 358
 359    for (; device_list; device_list = device_list->next) {
 360        DeviceState *dev = device_list->data;
 361
 362        /* build System Physical Address Range Structure. */
 363        nvdimm_build_structure_spa(structures, dev);
 364
 365        /*
 366         * build Memory Device to System Physical Address Range Mapping
 367         * Structure.
 368         */
 369        nvdimm_build_structure_memdev(structures, dev);
 370
 371        /* build NVDIMM Control Region Structure. */
 372        nvdimm_build_structure_dcr(structures, dev);
 373    }
 374    g_slist_free(device_list);
 375
 376    return structures;
 377}
 378
 379static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
 380{
 381    fit_buf->fit = g_array_new(false, true /* clear */, 1);
 382}
 383
 384static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
 385{
 386    g_array_free(fit_buf->fit, true);
 387    fit_buf->fit = nvdimm_build_device_structure();
 388    fit_buf->dirty = true;
 389}
 390
 391void nvdimm_plug(AcpiNVDIMMState *state)
 392{
 393    nvdimm_build_fit_buffer(&state->fit_buf);
 394}
 395
 396static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
 397                              GArray *table_data, BIOSLinker *linker)
 398{
 399    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 400    unsigned int header;
 401
 402    acpi_add_table(table_offsets, table_data);
 403
 404    /* NFIT header. */
 405    header = table_data->len;
 406    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
 407    /* NVDIMM device structures. */
 408    g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
 409
 410    build_header(linker, table_data,
 411                 (void *)(table_data->data + header), "NFIT",
 412                 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
 413}
 414
 415#define NVDIMM_DSM_MEMORY_SIZE      4096
 416
 417struct NvdimmDsmIn {
 418    uint32_t handle;
 419    uint32_t revision;
 420    uint32_t function;
 421    /* the remaining size in the page is used by arg3. */
 422    union {
 423        uint8_t arg3[4084];
 424    };
 425} QEMU_PACKED;
 426typedef struct NvdimmDsmIn NvdimmDsmIn;
 427QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
 428
 429struct NvdimmDsmOut {
 430    /* the size of buffer filled by QEMU. */
 431    uint32_t len;
 432    uint8_t data[4092];
 433} QEMU_PACKED;
 434typedef struct NvdimmDsmOut NvdimmDsmOut;
 435QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
 436
 437struct NvdimmDsmFunc0Out {
 438    /* the size of buffer filled by QEMU. */
 439     uint32_t len;
 440     uint32_t supported_func;
 441} QEMU_PACKED;
 442typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
 443
 444struct NvdimmDsmFuncNoPayloadOut {
 445    /* the size of buffer filled by QEMU. */
 446     uint32_t len;
 447     uint32_t func_ret_status;
 448} QEMU_PACKED;
 449typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
 450
 451struct NvdimmFuncGetLabelSizeOut {
 452    /* the size of buffer filled by QEMU. */
 453    uint32_t len;
 454    uint32_t func_ret_status; /* return status code. */
 455    uint32_t label_size; /* the size of label data area. */
 456    /*
 457     * Maximum size of the namespace label data length supported by
 458     * the platform in Get/Set Namespace Label Data functions.
 459     */
 460    uint32_t max_xfer;
 461} QEMU_PACKED;
 462typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
 463QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
 464
 465struct NvdimmFuncGetLabelDataIn {
 466    uint32_t offset; /* the offset in the namespace label data area. */
 467    uint32_t length; /* the size of data is to be read via the function. */
 468} QEMU_PACKED;
 469typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
 470QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
 471                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 472
 473struct NvdimmFuncGetLabelDataOut {
 474    /* the size of buffer filled by QEMU. */
 475    uint32_t len;
 476    uint32_t func_ret_status; /* return status code. */
 477    uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
 478} QEMU_PACKED;
 479typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
 480QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
 481
 482struct NvdimmFuncSetLabelDataIn {
 483    uint32_t offset; /* the offset in the namespace label data area. */
 484    uint32_t length; /* the size of data is to be written via the function. */
 485    uint8_t in_buf[0]; /* the data written to label data area. */
 486} QEMU_PACKED;
 487typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
 488QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
 489                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 490
 491struct NvdimmFuncReadFITIn {
 492    uint32_t offset; /* the offset into FIT buffer. */
 493} QEMU_PACKED;
 494typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
 495QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
 496                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 497
 498struct NvdimmFuncReadFITOut {
 499    /* the size of buffer filled by QEMU. */
 500    uint32_t len;
 501    uint32_t func_ret_status; /* return status code. */
 502    uint8_t fit[0]; /* the FIT data. */
 503} QEMU_PACKED;
 504typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
 505QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
 506
 507static void
 508nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
 509{
 510    NvdimmDsmFunc0Out func0 = {
 511        .len = cpu_to_le32(sizeof(func0)),
 512        .supported_func = cpu_to_le32(supported_func),
 513    };
 514    cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
 515}
 516
 517static void
 518nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
 519{
 520    NvdimmDsmFuncNoPayloadOut out = {
 521        .len = cpu_to_le32(sizeof(out)),
 522        .func_ret_status = cpu_to_le32(func_ret_status),
 523    };
 524    cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
 525}
 526
 527#define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
 528#define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
 529#define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
 530#define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
 531#define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
 532
 533#define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
 534
 535/* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
 536static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
 537                                     hwaddr dsm_mem_addr)
 538{
 539    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 540    NvdimmFuncReadFITIn *read_fit;
 541    NvdimmFuncReadFITOut *read_fit_out;
 542    GArray *fit;
 543    uint32_t read_len = 0, func_ret_status;
 544    int size;
 545
 546    read_fit = (NvdimmFuncReadFITIn *)in->arg3;
 547    le32_to_cpus(&read_fit->offset);
 548
 549    fit = fit_buf->fit;
 550
 551    nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
 552                 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
 553
 554    if (read_fit->offset > fit->len) {
 555        func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
 556        goto exit;
 557    }
 558
 559    /* It is the first time to read FIT. */
 560    if (!read_fit->offset) {
 561        fit_buf->dirty = false;
 562    } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
 563        func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
 564        goto exit;
 565    }
 566
 567    func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
 568    read_len = MIN(fit->len - read_fit->offset,
 569                   NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
 570
 571exit:
 572    size = sizeof(NvdimmFuncReadFITOut) + read_len;
 573    read_fit_out = g_malloc(size);
 574
 575    read_fit_out->len = cpu_to_le32(size);
 576    read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
 577    memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
 578
 579    cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
 580
 581    g_free(read_fit_out);
 582}
 583
 584static void
 585nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
 586                                       NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 587{
 588    switch (in->function) {
 589    case 0x0:
 590        nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
 591        return;
 592    case 0x1 /* Read FIT */:
 593        nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
 594        return;
 595    }
 596
 597    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 598}
 599
 600static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 601{
 602    /*
 603     * function 0 is called to inquire which functions are supported by
 604     * OSPM
 605     */
 606    if (!in->function) {
 607        nvdimm_dsm_function0(0 /* No function supported other than
 608                                  function 0 */, dsm_mem_addr);
 609        return;
 610    }
 611
 612    /* No function except function 0 is supported yet. */
 613    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 614}
 615
 616/*
 617 * the max transfer size is the max size transferred by both a
 618 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
 619 * function.
 620 */
 621static uint32_t nvdimm_get_max_xfer_label_size(void)
 622{
 623    uint32_t max_get_size, max_set_size, dsm_memory_size;
 624
 625    dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
 626
 627    /*
 628     * the max data ACPI can read one time which is transferred by
 629     * the response of 'Get Namespace Label Data' function.
 630     */
 631    max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
 632
 633    /*
 634     * the max data ACPI can write one time which is transferred by
 635     * 'Set Namespace Label Data' function.
 636     */
 637    max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
 638                   sizeof(NvdimmFuncSetLabelDataIn);
 639
 640    return MIN(max_get_size, max_set_size);
 641}
 642
 643/*
 644 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
 645 *
 646 * It gets the size of Namespace Label data area and the max data size
 647 * that Get/Set Namespace Label Data functions can transfer.
 648 */
 649static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
 650{
 651    NvdimmFuncGetLabelSizeOut label_size_out = {
 652        .len = cpu_to_le32(sizeof(label_size_out)),
 653    };
 654    uint32_t label_size, mxfer;
 655
 656    label_size = nvdimm->label_size;
 657    mxfer = nvdimm_get_max_xfer_label_size();
 658
 659    nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
 660
 661    label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 662    label_size_out.label_size = cpu_to_le32(label_size);
 663    label_size_out.max_xfer = cpu_to_le32(mxfer);
 664
 665    cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
 666                              sizeof(label_size_out));
 667}
 668
 669static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
 670                                           uint32_t offset, uint32_t length)
 671{
 672    uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
 673
 674    if (offset + length < offset) {
 675        nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
 676                     length);
 677        return ret;
 678    }
 679
 680    if (nvdimm->label_size < offset + length) {
 681        nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
 682                     offset + length, nvdimm->label_size);
 683        return ret;
 684    }
 685
 686    if (length > nvdimm_get_max_xfer_label_size()) {
 687        nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
 688                     length, nvdimm_get_max_xfer_label_size());
 689        return ret;
 690    }
 691
 692    return NVDIMM_DSM_RET_STATUS_SUCCESS;
 693}
 694
 695/*
 696 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
 697 */
 698static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 699                                      hwaddr dsm_mem_addr)
 700{
 701    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 702    NvdimmFuncGetLabelDataIn *get_label_data;
 703    NvdimmFuncGetLabelDataOut *get_label_data_out;
 704    uint32_t status;
 705    int size;
 706
 707    get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
 708    le32_to_cpus(&get_label_data->offset);
 709    le32_to_cpus(&get_label_data->length);
 710
 711    nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
 712                 get_label_data->offset, get_label_data->length);
 713
 714    status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
 715                                        get_label_data->length);
 716    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 717        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 718        return;
 719    }
 720
 721    size = sizeof(*get_label_data_out) + get_label_data->length;
 722    assert(size <= NVDIMM_DSM_MEMORY_SIZE);
 723    get_label_data_out = g_malloc(size);
 724
 725    get_label_data_out->len = cpu_to_le32(size);
 726    get_label_data_out->func_ret_status =
 727                            cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 728    nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
 729                         get_label_data->length, get_label_data->offset);
 730
 731    cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
 732    g_free(get_label_data_out);
 733}
 734
 735/*
 736 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
 737 */
 738static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 739                                      hwaddr dsm_mem_addr)
 740{
 741    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 742    NvdimmFuncSetLabelDataIn *set_label_data;
 743    uint32_t status;
 744
 745    set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
 746
 747    le32_to_cpus(&set_label_data->offset);
 748    le32_to_cpus(&set_label_data->length);
 749
 750    nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
 751                 set_label_data->offset, set_label_data->length);
 752
 753    status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
 754                                        set_label_data->length);
 755    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 756        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 757        return;
 758    }
 759
 760    assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
 761                    set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
 762
 763    nvc->write_label_data(nvdimm, set_label_data->in_buf,
 764                          set_label_data->length, set_label_data->offset);
 765    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
 766}
 767
 768static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 769{
 770    NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
 771
 772    /* See the comments in nvdimm_dsm_root(). */
 773    if (!in->function) {
 774        uint32_t supported_func = 0;
 775
 776        if (nvdimm && nvdimm->label_size) {
 777            supported_func |= 0x1 /* Bit 0 indicates whether there is
 778                                     support for any functions other
 779                                     than function 0. */ |
 780                              1 << 4 /* Get Namespace Label Size */ |
 781                              1 << 5 /* Get Namespace Label Data */ |
 782                              1 << 6 /* Set Namespace Label Data */;
 783        }
 784        nvdimm_dsm_function0(supported_func, dsm_mem_addr);
 785        return;
 786    }
 787
 788    if (!nvdimm) {
 789        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
 790                              dsm_mem_addr);
 791        return;
 792    }
 793
 794    /* Encode DSM function according to DSM Spec Rev1. */
 795    switch (in->function) {
 796    case 4 /* Get Namespace Label Size */:
 797        if (nvdimm->label_size) {
 798            nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
 799            return;
 800        }
 801        break;
 802    case 5 /* Get Namespace Label Data */:
 803        if (nvdimm->label_size) {
 804            nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
 805            return;
 806        }
 807        break;
 808    case 0x6 /* Set Namespace Label Data */:
 809        if (nvdimm->label_size) {
 810            nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
 811            return;
 812        }
 813        break;
 814    }
 815
 816    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 817}
 818
 819static uint64_t
 820nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
 821{
 822    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
 823    return 0;
 824}
 825
 826static void
 827nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
 828{
 829    AcpiNVDIMMState *state = opaque;
 830    NvdimmDsmIn *in;
 831    hwaddr dsm_mem_addr = val;
 832
 833    nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
 834
 835    /*
 836     * The DSM memory is mapped to guest address space so an evil guest
 837     * can change its content while we are doing DSM emulation. Avoid
 838     * this by copying DSM memory to QEMU local memory.
 839     */
 840    in = g_new(NvdimmDsmIn, 1);
 841    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
 842
 843    le32_to_cpus(&in->revision);
 844    le32_to_cpus(&in->function);
 845    le32_to_cpus(&in->handle);
 846
 847    nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
 848                 in->handle, in->function);
 849
 850    if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
 851        nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
 852                     in->revision, 0x1);
 853        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 854        goto exit;
 855    }
 856
 857    if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
 858        nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
 859        goto exit;
 860    }
 861
 862     /* Handle 0 is reserved for NVDIMM Root Device. */
 863    if (!in->handle) {
 864        nvdimm_dsm_root(in, dsm_mem_addr);
 865        goto exit;
 866    }
 867
 868    nvdimm_dsm_device(in, dsm_mem_addr);
 869
 870exit:
 871    g_free(in);
 872}
 873
 874static const MemoryRegionOps nvdimm_dsm_ops = {
 875    .read = nvdimm_dsm_read,
 876    .write = nvdimm_dsm_write,
 877    .endianness = DEVICE_LITTLE_ENDIAN,
 878    .valid = {
 879        .min_access_size = 4,
 880        .max_access_size = 4,
 881    },
 882};
 883
 884void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
 885{
 886    if (dev->hotplugged) {
 887        acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
 888    }
 889}
 890
 891void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
 892                            FWCfgState *fw_cfg, Object *owner)
 893{
 894    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
 895                          "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
 896    memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
 897
 898    state->dsm_mem = g_array_new(false, true /* clear */, 1);
 899    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
 900    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
 901                    state->dsm_mem->len);
 902
 903    nvdimm_init_fit_buffer(&state->fit_buf);
 904}
 905
 906#define NVDIMM_COMMON_DSM       "NCAL"
 907#define NVDIMM_ACPI_MEM_ADDR    "MEMA"
 908
 909#define NVDIMM_DSM_MEMORY       "NRAM"
 910#define NVDIMM_DSM_IOPORT       "NPIO"
 911
 912#define NVDIMM_DSM_NOTIFY       "NTFI"
 913#define NVDIMM_DSM_HANDLE       "HDLE"
 914#define NVDIMM_DSM_REVISION     "REVS"
 915#define NVDIMM_DSM_FUNCTION     "FUNC"
 916#define NVDIMM_DSM_ARG3         "FARG"
 917
 918#define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
 919#define NVDIMM_DSM_OUT_BUF      "ODAT"
 920
 921#define NVDIMM_DSM_RFIT_STATUS  "RSTA"
 922
 923#define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
 924
 925static void nvdimm_build_common_dsm(Aml *dev)
 926{
 927    Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
 928    Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
 929    Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
 930    uint8_t byte_list[1];
 931
 932    method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
 933    uuid = aml_arg(0);
 934    function = aml_arg(2);
 935    handle = aml_arg(4);
 936    dsm_mem = aml_local(6);
 937    dsm_out_buf = aml_local(7);
 938
 939    aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
 940
 941    /* map DSM memory and IO into ACPI namespace. */
 942    aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
 943               aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
 944    aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
 945               AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
 946
 947    /*
 948     * DSM notifier:
 949     * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
 950     *                    emulate the access.
 951     *
 952     * It is the IO port so that accessing them will cause VM-exit, the
 953     * control will be transferred to QEMU.
 954     */
 955    field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
 956                      AML_PRESERVE);
 957    aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
 958               sizeof(uint32_t) * BITS_PER_BYTE));
 959    aml_append(method, field);
 960
 961    /*
 962     * DSM input:
 963     * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
 964     *                    happens on NVDIMM Root Device.
 965     * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
 966     * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
 967     * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
 968     *                  containing function-specific arguments.
 969     *
 970     * They are RAM mapping on host so that these accesses never cause
 971     * VM-EXIT.
 972     */
 973    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
 974                      AML_PRESERVE);
 975    aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
 976               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
 977    aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
 978               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
 979    aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
 980               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
 981    aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
 982         (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
 983    aml_append(method, field);
 984
 985    /*
 986     * DSM output:
 987     * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
 988     * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
 989     *
 990     * Since the page is reused by both input and out, the input data
 991     * will be lost after storing new result into ODAT so we should fetch
 992     * all the input data before writing the result.
 993     */
 994    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
 995                      AML_PRESERVE);
 996    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
 997               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
 998    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
 999       (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1000    aml_append(method, field);
1001
1002    /*
1003     * do not support any method if DSM memory address has not been
1004     * patched.
1005     */
1006    unpatched = aml_equal(dsm_mem, aml_int(0x0));
1007
1008    expected_uuid = aml_local(0);
1009
1010    ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1011    aml_append(ifctx, aml_store(
1012               aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1013               /* UUID for NVDIMM Root Device */, expected_uuid));
1014    aml_append(method, ifctx);
1015    elsectx = aml_else();
1016    ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1017    aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1018               /* UUID for QEMU internal use */), expected_uuid));
1019    aml_append(elsectx, ifctx);
1020    elsectx2 = aml_else();
1021    aml_append(elsectx2, aml_store(
1022               aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1023               /* UUID for NVDIMM Devices */, expected_uuid));
1024    aml_append(elsectx, elsectx2);
1025    aml_append(method, elsectx);
1026
1027    uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1028
1029    unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1030
1031    /*
1032     * function 0 is called to inquire what functions are supported by
1033     * OSPM
1034     */
1035    ifctx = aml_if(aml_equal(function, aml_int(0)));
1036    byte_list[0] = 0 /* No function Supported */;
1037    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1038    aml_append(unsupport, ifctx);
1039
1040    /* No function is supported yet. */
1041    byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1042    aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1043    aml_append(method, unsupport);
1044
1045    /*
1046     * The HDLE indicates the DSM function is issued from which device,
1047     * it reserves 0 for root device and is the handle for NVDIMM devices.
1048     * See the comments in nvdimm_slot_to_handle().
1049     */
1050    aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1051    aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1052    aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1053
1054    /*
1055     * The fourth parameter (Arg3) of _DSM is a package which contains
1056     * a buffer, the layout of the buffer is specified by UUID (Arg0),
1057     * Revision ID (Arg1) and Function Index (Arg2) which are documented
1058     * in the DSM Spec.
1059     */
1060    pckg = aml_arg(3);
1061    ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1062                   aml_int(4 /* Package */)) /* It is a Package? */,
1063                   aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1064                   NULL));
1065
1066    pckg_index = aml_local(2);
1067    pckg_buf = aml_local(3);
1068    aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1069    aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1070    aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1071    aml_append(method, ifctx);
1072
1073    /*
1074     * tell QEMU about the real address of DSM memory, then QEMU
1075     * gets the control and fills the result in DSM memory.
1076     */
1077    aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1078
1079    dsm_out_buf_size = aml_local(1);
1080    /* RLEN is not included in the payload returned to guest. */
1081    aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1082               aml_int(4), dsm_out_buf_size));
1083    aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1084                                 dsm_out_buf_size));
1085    aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1086               aml_int(0), dsm_out_buf_size, "OBUF"));
1087    aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1088                                       dsm_out_buf));
1089    aml_append(method, aml_return(dsm_out_buf));
1090    aml_append(dev, method);
1091}
1092
1093static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1094{
1095    Aml *method;
1096
1097    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1098    aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1099                                  aml_arg(1), aml_arg(2), aml_arg(3),
1100                                  aml_int(handle))));
1101    aml_append(dev, method);
1102}
1103
1104static void nvdimm_build_fit(Aml *dev)
1105{
1106    Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1107    Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1108
1109    buf = aml_local(0);
1110    buf_size = aml_local(1);
1111    fit = aml_local(2);
1112
1113    aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1114
1115    /* build helper function, RFIT. */
1116    method = aml_method("RFIT", 1, AML_SERIALIZED);
1117    aml_append(method, aml_name_decl("OFST", aml_int(0)));
1118
1119    /* prepare input package. */
1120    pkg = aml_package(1);
1121    aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1122    aml_append(pkg, aml_name("OFST"));
1123
1124    /* call Read_FIT function. */
1125    call_result = aml_call5(NVDIMM_COMMON_DSM,
1126                            aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1127                            aml_int(1) /* Revision 1 */,
1128                            aml_int(0x1) /* Read FIT */,
1129                            pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1130    aml_append(method, aml_store(call_result, buf));
1131
1132    /* handle _DSM result. */
1133    aml_append(method, aml_create_dword_field(buf,
1134               aml_int(0) /* offset at byte 0 */, "STAU"));
1135
1136    aml_append(method, aml_store(aml_name("STAU"),
1137                                 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1138
1139     /* if something is wrong during _DSM. */
1140    ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1141                       aml_name("STAU"));
1142    ifctx = aml_if(aml_lnot(ifcond));
1143    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1144    aml_append(method, ifctx);
1145
1146    aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1147    aml_append(method, aml_subtract(buf_size,
1148                                    aml_int(4) /* the size of "STAU" */,
1149                                    buf_size));
1150
1151    /* if we read the end of fit. */
1152    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1153    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1154    aml_append(method, ifctx);
1155
1156    aml_append(method, aml_create_field(buf,
1157                            aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1158                            aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1159    aml_append(method, aml_return(aml_name("BUFF")));
1160    aml_append(dev, method);
1161
1162    /* build _FIT. */
1163    method = aml_method("_FIT", 0, AML_SERIALIZED);
1164    offset = aml_local(3);
1165
1166    aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1167    aml_append(method, aml_store(aml_int(0), offset));
1168
1169    whilectx = aml_while(aml_int(1));
1170    aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1171    aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1172
1173    /*
1174     * if fit buffer was changed during RFIT, read from the beginning
1175     * again.
1176     */
1177    ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1178                             aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1179    aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1180    aml_append(ifctx, aml_store(aml_int(0), offset));
1181    aml_append(whilectx, ifctx);
1182
1183    elsectx = aml_else();
1184
1185    /* finish fit read if no data is read out. */
1186    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1187    aml_append(ifctx, aml_return(fit));
1188    aml_append(elsectx, ifctx);
1189
1190    /* update the offset. */
1191    aml_append(elsectx, aml_add(offset, buf_size, offset));
1192    /* append the data we read out to the fit buffer. */
1193    aml_append(elsectx, aml_concatenate(fit, buf, fit));
1194    aml_append(whilectx, elsectx);
1195    aml_append(method, whilectx);
1196
1197    aml_append(dev, method);
1198}
1199
1200static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1201{
1202    uint32_t slot;
1203
1204    for (slot = 0; slot < ram_slots; slot++) {
1205        uint32_t handle = nvdimm_slot_to_handle(slot);
1206        Aml *nvdimm_dev;
1207
1208        nvdimm_dev = aml_device("NV%02X", slot);
1209
1210        /*
1211         * ACPI 6.0: 9.20 NVDIMM Devices:
1212         *
1213         * _ADR object that is used to supply OSPM with unique address
1214         * of the NVDIMM device. This is done by returning the NFIT Device
1215         * handle that is used to identify the associated entries in ACPI
1216         * table NFIT or _FIT.
1217         */
1218        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1219
1220        nvdimm_build_device_dsm(nvdimm_dev, handle);
1221        aml_append(root_dev, nvdimm_dev);
1222    }
1223}
1224
1225static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1226                              BIOSLinker *linker, GArray *dsm_dma_arrea,
1227                              uint32_t ram_slots)
1228{
1229    Aml *ssdt, *sb_scope, *dev;
1230    int mem_addr_offset, nvdimm_ssdt;
1231
1232    acpi_add_table(table_offsets, table_data);
1233
1234    ssdt = init_aml_allocator();
1235    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1236
1237    sb_scope = aml_scope("\\_SB");
1238
1239    dev = aml_device("NVDR");
1240
1241    /*
1242     * ACPI 6.0: 9.20 NVDIMM Devices:
1243     *
1244     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1245     * NVDIMM interface device. Platform firmware is required to contain one
1246     * such device in _SB scope if NVDIMMs support is exposed by platform to
1247     * OSPM.
1248     * For each NVDIMM present or intended to be supported by platform,
1249     * platform firmware also exposes an ACPI Namespace Device under the
1250     * root device.
1251     */
1252    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1253
1254    nvdimm_build_common_dsm(dev);
1255
1256    /* 0 is reserved for root device. */
1257    nvdimm_build_device_dsm(dev, 0);
1258    nvdimm_build_fit(dev);
1259
1260    nvdimm_build_nvdimm_devices(dev, ram_slots);
1261
1262    aml_append(sb_scope, dev);
1263    aml_append(ssdt, sb_scope);
1264
1265    nvdimm_ssdt = table_data->len;
1266
1267    /* copy AML table into ACPI tables blob and patch header there */
1268    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1269    mem_addr_offset = build_append_named_dword(table_data,
1270                                               NVDIMM_ACPI_MEM_ADDR);
1271
1272    bios_linker_loader_alloc(linker,
1273                             NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1274                             sizeof(NvdimmDsmIn), false /* high memory */);
1275    bios_linker_loader_add_pointer(linker,
1276        ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1277        NVDIMM_DSM_MEM_FILE, 0);
1278    build_header(linker, table_data,
1279        (void *)(table_data->data + nvdimm_ssdt),
1280        "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1281    free_aml_allocator();
1282}
1283
1284void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1285                       BIOSLinker *linker, AcpiNVDIMMState *state,
1286                       uint32_t ram_slots)
1287{
1288    GSList *device_list;
1289
1290    /* no nvdimm device can be plugged. */
1291    if (!ram_slots) {
1292        return;
1293    }
1294
1295    nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1296                      ram_slots);
1297
1298    device_list = nvdimm_get_device_list();
1299    /* no NVDIMM device is plugged. */
1300    if (!device_list) {
1301        return;
1302    }
1303
1304    nvdimm_build_nfit(state, table_offsets, table_data, linker);
1305    g_slist_free(device_list);
1306}
1307