qemu/hw/net/ne2000.c
<<
>>
Prefs
   1/*
   2 * QEMU NE2000 emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "hw/pci/pci.h"
  26#include "net/eth.h"
  27#include "ne2000.h"
  28#include "sysemu/sysemu.h"
  29
  30/* debug NE2000 card */
  31//#define DEBUG_NE2000
  32
  33#define MAX_ETH_FRAME_SIZE 1514
  34
  35#define E8390_CMD       0x00  /* The command register (for all pages) */
  36/* Page 0 register offsets. */
  37#define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
  38#define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
  39#define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
  40#define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
  41#define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
  42#define EN0_TSR         0x04    /* Transmit status reg RD */
  43#define EN0_TPSR        0x04    /* Transmit starting page WR */
  44#define EN0_NCR         0x05    /* Number of collision reg RD */
  45#define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
  46#define EN0_FIFO        0x06    /* FIFO RD */
  47#define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
  48#define EN0_ISR         0x07    /* Interrupt status reg RD WR */
  49#define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
  50#define EN0_RSARLO      0x08    /* Remote start address reg 0 */
  51#define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
  52#define EN0_RSARHI      0x09    /* Remote start address reg 1 */
  53#define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
  54#define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
  55#define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
  56#define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
  57#define EN0_RSR         0x0c    /* rx status reg RD */
  58#define EN0_RXCR        0x0c    /* RX configuration reg WR */
  59#define EN0_TXCR        0x0d    /* TX configuration reg WR */
  60#define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
  61#define EN0_DCFG        0x0e    /* Data configuration reg WR */
  62#define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
  63#define EN0_IMR         0x0f    /* Interrupt mask reg WR */
  64#define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
  65
  66#define EN1_PHYS        0x11
  67#define EN1_CURPAG      0x17
  68#define EN1_MULT        0x18
  69
  70#define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
  71#define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
  72
  73#define EN3_CONFIG0     0x33
  74#define EN3_CONFIG1     0x34
  75#define EN3_CONFIG2     0x35
  76#define EN3_CONFIG3     0x36
  77
  78/*  Register accessed at EN_CMD, the 8390 base addr.  */
  79#define E8390_STOP      0x01    /* Stop and reset the chip */
  80#define E8390_START     0x02    /* Start the chip, clear reset */
  81#define E8390_TRANS     0x04    /* Transmit a frame */
  82#define E8390_RREAD     0x08    /* Remote read */
  83#define E8390_RWRITE    0x10    /* Remote write  */
  84#define E8390_NODMA     0x20    /* Remote DMA */
  85#define E8390_PAGE0     0x00    /* Select page chip registers */
  86#define E8390_PAGE1     0x40    /* using the two high-order bits */
  87#define E8390_PAGE2     0x80    /* Page 3 is invalid. */
  88
  89/* Bits in EN0_ISR - Interrupt status register */
  90#define ENISR_RX        0x01    /* Receiver, no error */
  91#define ENISR_TX        0x02    /* Transmitter, no error */
  92#define ENISR_RX_ERR    0x04    /* Receiver, with error */
  93#define ENISR_TX_ERR    0x08    /* Transmitter, with error */
  94#define ENISR_OVER      0x10    /* Receiver overwrote the ring */
  95#define ENISR_COUNTERS  0x20    /* Counters need emptying */
  96#define ENISR_RDC       0x40    /* remote dma complete */
  97#define ENISR_RESET     0x80    /* Reset completed */
  98#define ENISR_ALL       0x3f    /* Interrupts we will enable */
  99
 100/* Bits in received packet status byte and EN0_RSR*/
 101#define ENRSR_RXOK      0x01    /* Received a good packet */
 102#define ENRSR_CRC       0x02    /* CRC error */
 103#define ENRSR_FAE       0x04    /* frame alignment error */
 104#define ENRSR_FO        0x08    /* FIFO overrun */
 105#define ENRSR_MPA       0x10    /* missed pkt */
 106#define ENRSR_PHY       0x20    /* physical/multicast address */
 107#define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
 108#define ENRSR_DEF       0x80    /* deferring */
 109
 110/* Transmitted packet status, EN0_TSR. */
 111#define ENTSR_PTX 0x01  /* Packet transmitted without error */
 112#define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
 113#define ENTSR_COL 0x04  /* The transmit collided at least once. */
 114#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
 115#define ENTSR_CRS 0x10  /* The carrier sense was lost. */
 116#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
 117#define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
 118#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
 119
 120typedef struct PCINE2000State {
 121    PCIDevice dev;
 122    NE2000State ne2000;
 123} PCINE2000State;
 124
 125void ne2000_reset(NE2000State *s)
 126{
 127    int i;
 128
 129    s->isr = ENISR_RESET;
 130    memcpy(s->mem, &s->c.macaddr, 6);
 131    s->mem[14] = 0x57;
 132    s->mem[15] = 0x57;
 133
 134    /* duplicate prom data */
 135    for(i = 15;i >= 0; i--) {
 136        s->mem[2 * i] = s->mem[i];
 137        s->mem[2 * i + 1] = s->mem[i];
 138    }
 139}
 140
 141static void ne2000_update_irq(NE2000State *s)
 142{
 143    int isr;
 144    isr = (s->isr & s->imr) & 0x7f;
 145#if defined(DEBUG_NE2000)
 146    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
 147           isr ? 1 : 0, s->isr, s->imr);
 148#endif
 149    qemu_set_irq(s->irq, (isr != 0));
 150}
 151
 152static int ne2000_buffer_full(NE2000State *s)
 153{
 154    int avail, index, boundary;
 155
 156    if (s->stop <= s->start) {
 157        return 1;
 158    }
 159
 160    index = s->curpag << 8;
 161    boundary = s->boundary << 8;
 162    if (index < boundary)
 163        avail = boundary - index;
 164    else
 165        avail = (s->stop - s->start) - (index - boundary);
 166    if (avail < (MAX_ETH_FRAME_SIZE + 4))
 167        return 1;
 168    return 0;
 169}
 170
 171#define MIN_BUF_SIZE 60
 172
 173ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
 174{
 175    NE2000State *s = qemu_get_nic_opaque(nc);
 176    int size = size_;
 177    uint8_t *p;
 178    unsigned int total_len, next, avail, len, index, mcast_idx;
 179    uint8_t buf1[60];
 180    static const uint8_t broadcast_macaddr[6] =
 181        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 182
 183#if defined(DEBUG_NE2000)
 184    printf("NE2000: received len=%d\n", size);
 185#endif
 186
 187    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
 188        return -1;
 189
 190    /* XXX: check this */
 191    if (s->rxcr & 0x10) {
 192        /* promiscuous: receive all */
 193    } else {
 194        if (!memcmp(buf,  broadcast_macaddr, 6)) {
 195            /* broadcast address */
 196            if (!(s->rxcr & 0x04))
 197                return size;
 198        } else if (buf[0] & 0x01) {
 199            /* multicast */
 200            if (!(s->rxcr & 0x08))
 201                return size;
 202            mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
 203            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 204                return size;
 205        } else if (s->mem[0] == buf[0] &&
 206                   s->mem[2] == buf[1] &&
 207                   s->mem[4] == buf[2] &&
 208                   s->mem[6] == buf[3] &&
 209                   s->mem[8] == buf[4] &&
 210                   s->mem[10] == buf[5]) {
 211            /* match */
 212        } else {
 213            return size;
 214        }
 215    }
 216
 217
 218    /* if too small buffer, then expand it */
 219    if (size < MIN_BUF_SIZE) {
 220        memcpy(buf1, buf, size);
 221        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
 222        buf = buf1;
 223        size = MIN_BUF_SIZE;
 224    }
 225
 226    index = s->curpag << 8;
 227    if (index >= NE2000_PMEM_END) {
 228        index = s->start;
 229    }
 230    /* 4 bytes for header */
 231    total_len = size + 4;
 232    /* address for next packet (4 bytes for CRC) */
 233    next = index + ((total_len + 4 + 255) & ~0xff);
 234    if (next >= s->stop)
 235        next -= (s->stop - s->start);
 236    /* prepare packet header */
 237    p = s->mem + index;
 238    s->rsr = ENRSR_RXOK; /* receive status */
 239    /* XXX: check this */
 240    if (buf[0] & 0x01)
 241        s->rsr |= ENRSR_PHY;
 242    p[0] = s->rsr;
 243    p[1] = next >> 8;
 244    p[2] = total_len;
 245    p[3] = total_len >> 8;
 246    index += 4;
 247
 248    /* write packet data */
 249    while (size > 0) {
 250        if (index <= s->stop)
 251            avail = s->stop - index;
 252        else
 253            break;
 254        len = size;
 255        if (len > avail)
 256            len = avail;
 257        memcpy(s->mem + index, buf, len);
 258        buf += len;
 259        index += len;
 260        if (index == s->stop)
 261            index = s->start;
 262        size -= len;
 263    }
 264    s->curpag = next >> 8;
 265
 266    /* now we can signal we have received something */
 267    s->isr |= ENISR_RX;
 268    ne2000_update_irq(s);
 269
 270    return size_;
 271}
 272
 273static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 274{
 275    NE2000State *s = opaque;
 276    int offset, page, index;
 277
 278    addr &= 0xf;
 279#ifdef DEBUG_NE2000
 280    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
 281#endif
 282    if (addr == E8390_CMD) {
 283        /* control register */
 284        s->cmd = val;
 285        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
 286            s->isr &= ~ENISR_RESET;
 287            /* test specific case: zero length transfer */
 288            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
 289                s->rcnt == 0) {
 290                s->isr |= ENISR_RDC;
 291                ne2000_update_irq(s);
 292            }
 293            if (val & E8390_TRANS) {
 294                index = (s->tpsr << 8);
 295                /* XXX: next 2 lines are a hack to make netware 3.11 work */
 296                if (index >= NE2000_PMEM_END)
 297                    index -= NE2000_PMEM_SIZE;
 298                /* fail safe: check range on the transmitted length  */
 299                if (index + s->tcnt <= NE2000_PMEM_END) {
 300                    qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
 301                                     s->tcnt);
 302                }
 303                /* signal end of transfer */
 304                s->tsr = ENTSR_PTX;
 305                s->isr |= ENISR_TX;
 306                s->cmd &= ~E8390_TRANS;
 307                ne2000_update_irq(s);
 308            }
 309        }
 310    } else {
 311        page = s->cmd >> 6;
 312        offset = addr | (page << 4);
 313        switch(offset) {
 314        case EN0_STARTPG:
 315            if (val << 8 <= NE2000_PMEM_END) {
 316                s->start = val << 8;
 317            }
 318            break;
 319        case EN0_STOPPG:
 320            if (val << 8 <= NE2000_PMEM_END) {
 321                s->stop = val << 8;
 322            }
 323            break;
 324        case EN0_BOUNDARY:
 325            if (val << 8 < NE2000_PMEM_END) {
 326                s->boundary = val;
 327            }
 328            break;
 329        case EN0_IMR:
 330            s->imr = val;
 331            ne2000_update_irq(s);
 332            break;
 333        case EN0_TPSR:
 334            s->tpsr = val;
 335            break;
 336        case EN0_TCNTLO:
 337            s->tcnt = (s->tcnt & 0xff00) | val;
 338            break;
 339        case EN0_TCNTHI:
 340            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
 341            break;
 342        case EN0_RSARLO:
 343            s->rsar = (s->rsar & 0xff00) | val;
 344            break;
 345        case EN0_RSARHI:
 346            s->rsar = (s->rsar & 0x00ff) | (val << 8);
 347            break;
 348        case EN0_RCNTLO:
 349            s->rcnt = (s->rcnt & 0xff00) | val;
 350            break;
 351        case EN0_RCNTHI:
 352            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
 353            break;
 354        case EN0_RXCR:
 355            s->rxcr = val;
 356            break;
 357        case EN0_DCFG:
 358            s->dcfg = val;
 359            break;
 360        case EN0_ISR:
 361            s->isr &= ~(val & 0x7f);
 362            ne2000_update_irq(s);
 363            break;
 364        case EN1_PHYS ... EN1_PHYS + 5:
 365            s->phys[offset - EN1_PHYS] = val;
 366            break;
 367        case EN1_CURPAG:
 368            if (val << 8 < NE2000_PMEM_END) {
 369                s->curpag = val;
 370            }
 371            break;
 372        case EN1_MULT ... EN1_MULT + 7:
 373            s->mult[offset - EN1_MULT] = val;
 374            break;
 375        }
 376    }
 377}
 378
 379static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
 380{
 381    NE2000State *s = opaque;
 382    int offset, page, ret;
 383
 384    addr &= 0xf;
 385    if (addr == E8390_CMD) {
 386        ret = s->cmd;
 387    } else {
 388        page = s->cmd >> 6;
 389        offset = addr | (page << 4);
 390        switch(offset) {
 391        case EN0_TSR:
 392            ret = s->tsr;
 393            break;
 394        case EN0_BOUNDARY:
 395            ret = s->boundary;
 396            break;
 397        case EN0_ISR:
 398            ret = s->isr;
 399            break;
 400        case EN0_RSARLO:
 401            ret = s->rsar & 0x00ff;
 402            break;
 403        case EN0_RSARHI:
 404            ret = s->rsar >> 8;
 405            break;
 406        case EN1_PHYS ... EN1_PHYS + 5:
 407            ret = s->phys[offset - EN1_PHYS];
 408            break;
 409        case EN1_CURPAG:
 410            ret = s->curpag;
 411            break;
 412        case EN1_MULT ... EN1_MULT + 7:
 413            ret = s->mult[offset - EN1_MULT];
 414            break;
 415        case EN0_RSR:
 416            ret = s->rsr;
 417            break;
 418        case EN2_STARTPG:
 419            ret = s->start >> 8;
 420            break;
 421        case EN2_STOPPG:
 422            ret = s->stop >> 8;
 423            break;
 424        case EN0_RTL8029ID0:
 425            ret = 0x50;
 426            break;
 427        case EN0_RTL8029ID1:
 428            ret = 0x43;
 429            break;
 430        case EN3_CONFIG0:
 431            ret = 0;            /* 10baseT media */
 432            break;
 433        case EN3_CONFIG2:
 434            ret = 0x40;         /* 10baseT active */
 435            break;
 436        case EN3_CONFIG3:
 437            ret = 0x40;         /* Full duplex */
 438            break;
 439        default:
 440            ret = 0x00;
 441            break;
 442        }
 443    }
 444#ifdef DEBUG_NE2000
 445    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
 446#endif
 447    return ret;
 448}
 449
 450static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
 451                                     uint32_t val)
 452{
 453    if (addr < 32 ||
 454        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 455        s->mem[addr] = val;
 456    }
 457}
 458
 459static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
 460                                     uint32_t val)
 461{
 462    addr &= ~1; /* XXX: check exact behaviour if not even */
 463    if (addr < 32 ||
 464        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 465        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
 466    }
 467}
 468
 469static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
 470                                     uint32_t val)
 471{
 472    addr &= ~1; /* XXX: check exact behaviour if not even */
 473    if (addr < 32
 474        || (addr >= NE2000_PMEM_START
 475            && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
 476        stl_le_p(s->mem + addr, val);
 477    }
 478}
 479
 480static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
 481{
 482    if (addr < 32 ||
 483        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 484        return s->mem[addr];
 485    } else {
 486        return 0xff;
 487    }
 488}
 489
 490static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
 491{
 492    addr &= ~1; /* XXX: check exact behaviour if not even */
 493    if (addr < 32 ||
 494        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 495        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
 496    } else {
 497        return 0xffff;
 498    }
 499}
 500
 501static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
 502{
 503    addr &= ~1; /* XXX: check exact behaviour if not even */
 504    if (addr < 32
 505        || (addr >= NE2000_PMEM_START
 506            && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
 507        return ldl_le_p(s->mem + addr);
 508    } else {
 509        return 0xffffffff;
 510    }
 511}
 512
 513static inline void ne2000_dma_update(NE2000State *s, int len)
 514{
 515    s->rsar += len;
 516    /* wrap */
 517    /* XXX: check what to do if rsar > stop */
 518    if (s->rsar == s->stop)
 519        s->rsar = s->start;
 520
 521    if (s->rcnt <= len) {
 522        s->rcnt = 0;
 523        /* signal end of transfer */
 524        s->isr |= ENISR_RDC;
 525        ne2000_update_irq(s);
 526    } else {
 527        s->rcnt -= len;
 528    }
 529}
 530
 531static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 532{
 533    NE2000State *s = opaque;
 534
 535#ifdef DEBUG_NE2000
 536    printf("NE2000: asic write val=0x%04x\n", val);
 537#endif
 538    if (s->rcnt == 0)
 539        return;
 540    if (s->dcfg & 0x01) {
 541        /* 16 bit access */
 542        ne2000_mem_writew(s, s->rsar, val);
 543        ne2000_dma_update(s, 2);
 544    } else {
 545        /* 8 bit access */
 546        ne2000_mem_writeb(s, s->rsar, val);
 547        ne2000_dma_update(s, 1);
 548    }
 549}
 550
 551static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
 552{
 553    NE2000State *s = opaque;
 554    int ret;
 555
 556    if (s->dcfg & 0x01) {
 557        /* 16 bit access */
 558        ret = ne2000_mem_readw(s, s->rsar);
 559        ne2000_dma_update(s, 2);
 560    } else {
 561        /* 8 bit access */
 562        ret = ne2000_mem_readb(s, s->rsar);
 563        ne2000_dma_update(s, 1);
 564    }
 565#ifdef DEBUG_NE2000
 566    printf("NE2000: asic read val=0x%04x\n", ret);
 567#endif
 568    return ret;
 569}
 570
 571static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
 572{
 573    NE2000State *s = opaque;
 574
 575#ifdef DEBUG_NE2000
 576    printf("NE2000: asic writel val=0x%04x\n", val);
 577#endif
 578    if (s->rcnt == 0)
 579        return;
 580    /* 32 bit access */
 581    ne2000_mem_writel(s, s->rsar, val);
 582    ne2000_dma_update(s, 4);
 583}
 584
 585static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
 586{
 587    NE2000State *s = opaque;
 588    int ret;
 589
 590    /* 32 bit access */
 591    ret = ne2000_mem_readl(s, s->rsar);
 592    ne2000_dma_update(s, 4);
 593#ifdef DEBUG_NE2000
 594    printf("NE2000: asic readl val=0x%04x\n", ret);
 595#endif
 596    return ret;
 597}
 598
 599static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 600{
 601    /* nothing to do (end of reset pulse) */
 602}
 603
 604static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
 605{
 606    NE2000State *s = opaque;
 607    ne2000_reset(s);
 608    return 0;
 609}
 610
 611static int ne2000_post_load(void* opaque, int version_id)
 612{
 613    NE2000State* s = opaque;
 614
 615    if (version_id < 2) {
 616        s->rxcr = 0x0c;
 617    }
 618    return 0;
 619}
 620
 621const VMStateDescription vmstate_ne2000 = {
 622    .name = "ne2000",
 623    .version_id = 2,
 624    .minimum_version_id = 0,
 625    .post_load = ne2000_post_load,
 626    .fields = (VMStateField[]) {
 627        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
 628        VMSTATE_UINT8(cmd, NE2000State),
 629        VMSTATE_UINT32(start, NE2000State),
 630        VMSTATE_UINT32(stop, NE2000State),
 631        VMSTATE_UINT8(boundary, NE2000State),
 632        VMSTATE_UINT8(tsr, NE2000State),
 633        VMSTATE_UINT8(tpsr, NE2000State),
 634        VMSTATE_UINT16(tcnt, NE2000State),
 635        VMSTATE_UINT16(rcnt, NE2000State),
 636        VMSTATE_UINT32(rsar, NE2000State),
 637        VMSTATE_UINT8(rsr, NE2000State),
 638        VMSTATE_UINT8(isr, NE2000State),
 639        VMSTATE_UINT8(dcfg, NE2000State),
 640        VMSTATE_UINT8(imr, NE2000State),
 641        VMSTATE_BUFFER(phys, NE2000State),
 642        VMSTATE_UINT8(curpag, NE2000State),
 643        VMSTATE_BUFFER(mult, NE2000State),
 644        VMSTATE_UNUSED(4), /* was irq */
 645        VMSTATE_BUFFER(mem, NE2000State),
 646        VMSTATE_END_OF_LIST()
 647    }
 648};
 649
 650static const VMStateDescription vmstate_pci_ne2000 = {
 651    .name = "ne2000",
 652    .version_id = 3,
 653    .minimum_version_id = 3,
 654    .fields = (VMStateField[]) {
 655        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
 656        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
 657        VMSTATE_END_OF_LIST()
 658    }
 659};
 660
 661static uint64_t ne2000_read(void *opaque, hwaddr addr,
 662                            unsigned size)
 663{
 664    NE2000State *s = opaque;
 665
 666    if (addr < 0x10 && size == 1) {
 667        return ne2000_ioport_read(s, addr);
 668    } else if (addr == 0x10) {
 669        if (size <= 2) {
 670            return ne2000_asic_ioport_read(s, addr);
 671        } else {
 672            return ne2000_asic_ioport_readl(s, addr);
 673        }
 674    } else if (addr == 0x1f && size == 1) {
 675        return ne2000_reset_ioport_read(s, addr);
 676    }
 677    return ((uint64_t)1 << (size * 8)) - 1;
 678}
 679
 680static void ne2000_write(void *opaque, hwaddr addr,
 681                         uint64_t data, unsigned size)
 682{
 683    NE2000State *s = opaque;
 684
 685    if (addr < 0x10 && size == 1) {
 686        ne2000_ioport_write(s, addr, data);
 687    } else if (addr == 0x10) {
 688        if (size <= 2) {
 689            ne2000_asic_ioport_write(s, addr, data);
 690        } else {
 691            ne2000_asic_ioport_writel(s, addr, data);
 692        }
 693    } else if (addr == 0x1f && size == 1) {
 694        ne2000_reset_ioport_write(s, addr, data);
 695    }
 696}
 697
 698static const MemoryRegionOps ne2000_ops = {
 699    .read = ne2000_read,
 700    .write = ne2000_write,
 701    .endianness = DEVICE_LITTLE_ENDIAN,
 702};
 703
 704/***********************************************************/
 705/* PCI NE2000 definitions */
 706
 707void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
 708{
 709    memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
 710}
 711
 712static NetClientInfo net_ne2000_info = {
 713    .type = NET_CLIENT_DRIVER_NIC,
 714    .size = sizeof(NICState),
 715    .receive = ne2000_receive,
 716};
 717
 718static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
 719{
 720    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 721    NE2000State *s;
 722    uint8_t *pci_conf;
 723
 724    pci_conf = d->dev.config;
 725    pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
 726
 727    s = &d->ne2000;
 728    ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
 729    pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
 730    s->irq = pci_allocate_irq(&d->dev);
 731
 732    qemu_macaddr_default_if_unset(&s->c.macaddr);
 733    ne2000_reset(s);
 734
 735    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
 736                          object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
 737    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
 738}
 739
 740static void pci_ne2000_exit(PCIDevice *pci_dev)
 741{
 742    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 743    NE2000State *s = &d->ne2000;
 744
 745    qemu_del_nic(s->nic);
 746    qemu_free_irq(s->irq);
 747}
 748
 749static void ne2000_instance_init(Object *obj)
 750{
 751    PCIDevice *pci_dev = PCI_DEVICE(obj);
 752    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 753    NE2000State *s = &d->ne2000;
 754
 755    device_add_bootindex_property(obj, &s->c.bootindex,
 756                                  "bootindex", "/ethernet-phy@0",
 757                                  &pci_dev->qdev, NULL);
 758}
 759
 760static Property ne2000_properties[] = {
 761    DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
 762    DEFINE_PROP_END_OF_LIST(),
 763};
 764
 765static void ne2000_class_init(ObjectClass *klass, void *data)
 766{
 767    DeviceClass *dc = DEVICE_CLASS(klass);
 768    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 769
 770    k->realize = pci_ne2000_realize;
 771    k->exit = pci_ne2000_exit;
 772    k->romfile = "efi-ne2k_pci.rom",
 773    k->vendor_id = PCI_VENDOR_ID_REALTEK;
 774    k->device_id = PCI_DEVICE_ID_REALTEK_8029;
 775    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
 776    dc->vmsd = &vmstate_pci_ne2000;
 777    dc->props = ne2000_properties;
 778    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
 779}
 780
 781static const TypeInfo ne2000_info = {
 782    .name          = "ne2k_pci",
 783    .parent        = TYPE_PCI_DEVICE,
 784    .instance_size = sizeof(PCINE2000State),
 785    .class_init    = ne2000_class_init,
 786    .instance_init = ne2000_instance_init,
 787    .interfaces = (InterfaceInfo[]) {
 788        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
 789        { },
 790    },
 791};
 792
 793static void ne2000_register_types(void)
 794{
 795    type_register_static(&ne2000_info);
 796}
 797
 798type_init(ne2000_register_types)
 799