qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/hw.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/dma.h"
  29#include "hw/boards.h"
  30#include "hw/isa/isa.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/sysbus.h"
  33#include "trace.h"
  34#include "qemu/error-report.h"
  35#include "qemu/option.h"
  36#include "qemu/config-file.h"
  37#include "qemu/cutils.h"
  38#include "qapi/error.h"
  39
  40#define FW_CFG_FILE_SLOTS_DFLT 0x20
  41
  42/* FW_CFG_VERSION bits */
  43#define FW_CFG_VERSION      0x01
  44#define FW_CFG_VERSION_DMA  0x02
  45
  46/* FW_CFG_DMA_CONTROL bits */
  47#define FW_CFG_DMA_CTL_ERROR   0x01
  48#define FW_CFG_DMA_CTL_READ    0x02
  49#define FW_CFG_DMA_CTL_SKIP    0x04
  50#define FW_CFG_DMA_CTL_SELECT  0x08
  51#define FW_CFG_DMA_CTL_WRITE   0x10
  52
  53#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  54
  55struct FWCfgEntry {
  56    uint32_t len;
  57    bool allow_write;
  58    uint8_t *data;
  59    void *callback_opaque;
  60    FWCfgCallback select_cb;
  61    FWCfgWriteCallback write_cb;
  62};
  63
  64#define JPG_FILE 0
  65#define BMP_FILE 1
  66
  67static char *read_splashfile(char *filename, gsize *file_sizep,
  68                             int *file_typep)
  69{
  70    GError *err = NULL;
  71    gboolean res;
  72    gchar *content;
  73    int file_type;
  74    unsigned int filehead;
  75    int bmp_bpp;
  76
  77    res = g_file_get_contents(filename, &content, file_sizep, &err);
  78    if (res == FALSE) {
  79        error_report("failed to read splash file '%s'", filename);
  80        g_error_free(err);
  81        return NULL;
  82    }
  83
  84    /* check file size */
  85    if (*file_sizep < 30) {
  86        goto error;
  87    }
  88
  89    /* check magic ID */
  90    filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
  91    if (filehead == 0xd8ff) {
  92        file_type = JPG_FILE;
  93    } else if (filehead == 0x4d42) {
  94        file_type = BMP_FILE;
  95    } else {
  96        goto error;
  97    }
  98
  99    /* check BMP bpp */
 100    if (file_type == BMP_FILE) {
 101        bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
 102        if (bmp_bpp != 24) {
 103            goto error;
 104        }
 105    }
 106
 107    /* return values */
 108    *file_typep = file_type;
 109
 110    return content;
 111
 112error:
 113    error_report("splash file '%s' format not recognized; must be JPEG "
 114                 "or 24 bit BMP", filename);
 115    g_free(content);
 116    return NULL;
 117}
 118
 119static void fw_cfg_bootsplash(FWCfgState *s)
 120{
 121    int boot_splash_time = -1;
 122    const char *boot_splash_filename = NULL;
 123    char *p;
 124    char *filename, *file_data;
 125    gsize file_size;
 126    int file_type;
 127    const char *temp;
 128
 129    /* get user configuration */
 130    QemuOptsList *plist = qemu_find_opts("boot-opts");
 131    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 132    if (opts != NULL) {
 133        temp = qemu_opt_get(opts, "splash");
 134        if (temp != NULL) {
 135            boot_splash_filename = temp;
 136        }
 137        temp = qemu_opt_get(opts, "splash-time");
 138        if (temp != NULL) {
 139            p = (char *)temp;
 140            boot_splash_time = strtol(p, &p, 10);
 141        }
 142    }
 143
 144    /* insert splash time if user configurated */
 145    if (boot_splash_time >= 0) {
 146        /* validate the input */
 147        if (boot_splash_time > 0xffff) {
 148            error_report("splash time is big than 65535, force it to 65535.");
 149            boot_splash_time = 0xffff;
 150        }
 151        /* use little endian format */
 152        qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
 153        qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
 154        fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
 155    }
 156
 157    /* insert splash file if user configurated */
 158    if (boot_splash_filename != NULL) {
 159        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 160        if (filename == NULL) {
 161            error_report("failed to find file '%s'.", boot_splash_filename);
 162            return;
 163        }
 164
 165        /* loading file data */
 166        file_data = read_splashfile(filename, &file_size, &file_type);
 167        if (file_data == NULL) {
 168            g_free(filename);
 169            return;
 170        }
 171        g_free(boot_splash_filedata);
 172        boot_splash_filedata = (uint8_t *)file_data;
 173        boot_splash_filedata_size = file_size;
 174
 175        /* insert data */
 176        if (file_type == JPG_FILE) {
 177            fw_cfg_add_file(s, "bootsplash.jpg",
 178                    boot_splash_filedata, boot_splash_filedata_size);
 179        } else {
 180            fw_cfg_add_file(s, "bootsplash.bmp",
 181                    boot_splash_filedata, boot_splash_filedata_size);
 182        }
 183        g_free(filename);
 184    }
 185}
 186
 187static void fw_cfg_reboot(FWCfgState *s)
 188{
 189    int reboot_timeout = -1;
 190    char *p;
 191    const char *temp;
 192
 193    /* get user configuration */
 194    QemuOptsList *plist = qemu_find_opts("boot-opts");
 195    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 196    if (opts != NULL) {
 197        temp = qemu_opt_get(opts, "reboot-timeout");
 198        if (temp != NULL) {
 199            p = (char *)temp;
 200            reboot_timeout = strtol(p, &p, 10);
 201        }
 202    }
 203    /* validate the input */
 204    if (reboot_timeout > 0xffff) {
 205        error_report("reboot timeout is larger than 65535, force it to 65535.");
 206        reboot_timeout = 0xffff;
 207    }
 208    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
 209}
 210
 211static void fw_cfg_write(FWCfgState *s, uint8_t value)
 212{
 213    /* nothing, write support removed in QEMU v2.4+ */
 214}
 215
 216static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 217{
 218    return s->file_slots;
 219}
 220
 221/* Note: this function returns an exclusive limit. */
 222static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 223{
 224    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 225}
 226
 227static int fw_cfg_select(FWCfgState *s, uint16_t key)
 228{
 229    int arch, ret;
 230    FWCfgEntry *e;
 231
 232    s->cur_offset = 0;
 233    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 234        s->cur_entry = FW_CFG_INVALID;
 235        ret = 0;
 236    } else {
 237        s->cur_entry = key;
 238        ret = 1;
 239        /* entry successfully selected, now run callback if present */
 240        arch = !!(key & FW_CFG_ARCH_LOCAL);
 241        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 242        if (e->select_cb) {
 243            e->select_cb(e->callback_opaque);
 244        }
 245    }
 246
 247    trace_fw_cfg_select(s, key, ret);
 248    return ret;
 249}
 250
 251static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 252{
 253    FWCfgState *s = opaque;
 254    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 255    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 256                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 257    uint64_t value = 0;
 258
 259    assert(size > 0 && size <= sizeof(value));
 260    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 261        /* The least significant 'size' bytes of the return value are
 262         * expected to contain a string preserving portion of the item
 263         * data, padded with zeros on the right in case we run out early.
 264         * In technical terms, we're composing the host-endian representation
 265         * of the big endian interpretation of the fw_cfg string.
 266         */
 267        do {
 268            value = (value << 8) | e->data[s->cur_offset++];
 269        } while (--size && s->cur_offset < e->len);
 270        /* If size is still not zero, we *did* run out early, so continue
 271         * left-shifting, to add the appropriate number of padding zeros
 272         * on the right.
 273         */
 274        value <<= 8 * size;
 275    }
 276
 277    trace_fw_cfg_read(s, value);
 278    return value;
 279}
 280
 281static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 282                                  uint64_t value, unsigned size)
 283{
 284    FWCfgState *s = opaque;
 285    unsigned i = size;
 286
 287    do {
 288        fw_cfg_write(s, value >> (8 * --i));
 289    } while (i);
 290}
 291
 292static void fw_cfg_dma_transfer(FWCfgState *s)
 293{
 294    dma_addr_t len;
 295    FWCfgDmaAccess dma;
 296    int arch;
 297    FWCfgEntry *e;
 298    int read = 0, write = 0;
 299    dma_addr_t dma_addr;
 300
 301    /* Reset the address before the next access */
 302    dma_addr = s->dma_addr;
 303    s->dma_addr = 0;
 304
 305    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 306        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 307                   FW_CFG_DMA_CTL_ERROR);
 308        return;
 309    }
 310
 311    dma.address = be64_to_cpu(dma.address);
 312    dma.length = be32_to_cpu(dma.length);
 313    dma.control = be32_to_cpu(dma.control);
 314
 315    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 316        fw_cfg_select(s, dma.control >> 16);
 317    }
 318
 319    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 320    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 321        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 322
 323    if (dma.control & FW_CFG_DMA_CTL_READ) {
 324        read = 1;
 325        write = 0;
 326    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 327        read = 0;
 328        write = 1;
 329    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 330        read = 0;
 331        write = 0;
 332    } else {
 333        dma.length = 0;
 334    }
 335
 336    dma.control = 0;
 337
 338    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 339        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 340                                s->cur_offset >= e->len) {
 341            len = dma.length;
 342
 343            /* If the access is not a read access, it will be a skip access,
 344             * tested before.
 345             */
 346            if (read) {
 347                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 348                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 349                }
 350            }
 351            if (write) {
 352                dma.control |= FW_CFG_DMA_CTL_ERROR;
 353            }
 354        } else {
 355            if (dma.length <= (e->len - s->cur_offset)) {
 356                len = dma.length;
 357            } else {
 358                len = (e->len - s->cur_offset);
 359            }
 360
 361            /* If the access is not a read access, it will be a skip access,
 362             * tested before.
 363             */
 364            if (read) {
 365                if (dma_memory_write(s->dma_as, dma.address,
 366                                    &e->data[s->cur_offset], len)) {
 367                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 368                }
 369            }
 370            if (write) {
 371                if (!e->allow_write ||
 372                    len != dma.length ||
 373                    dma_memory_read(s->dma_as, dma.address,
 374                                    &e->data[s->cur_offset], len)) {
 375                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 376                } else if (e->write_cb) {
 377                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 378                }
 379            }
 380
 381            s->cur_offset += len;
 382        }
 383
 384        dma.address += len;
 385        dma.length  -= len;
 386
 387    }
 388
 389    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 390                dma.control);
 391
 392    trace_fw_cfg_read(s, 0);
 393}
 394
 395static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 396                                    unsigned size)
 397{
 398    /* Return a signature value (and handle various read sizes) */
 399    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 400}
 401
 402static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 403                                 uint64_t value, unsigned size)
 404{
 405    FWCfgState *s = opaque;
 406
 407    if (size == 4) {
 408        if (addr == 0) {
 409            /* FWCfgDmaAccess high address */
 410            s->dma_addr = value << 32;
 411        } else if (addr == 4) {
 412            /* FWCfgDmaAccess low address */
 413            s->dma_addr |= value;
 414            fw_cfg_dma_transfer(s);
 415        }
 416    } else if (size == 8 && addr == 0) {
 417        s->dma_addr = value;
 418        fw_cfg_dma_transfer(s);
 419    }
 420}
 421
 422static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 423                                  unsigned size, bool is_write)
 424{
 425    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 426                         (size == 8 && addr == 0));
 427}
 428
 429static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 430                                  unsigned size, bool is_write)
 431{
 432    return addr == 0;
 433}
 434
 435static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 436                                 uint64_t value, unsigned size)
 437{
 438    fw_cfg_select(opaque, (uint16_t)value);
 439}
 440
 441static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 442                                 unsigned size, bool is_write)
 443{
 444    return is_write && size == 2;
 445}
 446
 447static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 448                              uint64_t value, unsigned size)
 449{
 450    switch (size) {
 451    case 1:
 452        fw_cfg_write(opaque, (uint8_t)value);
 453        break;
 454    case 2:
 455        fw_cfg_select(opaque, (uint16_t)value);
 456        break;
 457    }
 458}
 459
 460static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 461                                  unsigned size, bool is_write)
 462{
 463    return (size == 1) || (is_write && size == 2);
 464}
 465
 466static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 467    .write = fw_cfg_ctl_mem_write,
 468    .endianness = DEVICE_BIG_ENDIAN,
 469    .valid.accepts = fw_cfg_ctl_mem_valid,
 470};
 471
 472static const MemoryRegionOps fw_cfg_data_mem_ops = {
 473    .read = fw_cfg_data_read,
 474    .write = fw_cfg_data_mem_write,
 475    .endianness = DEVICE_BIG_ENDIAN,
 476    .valid = {
 477        .min_access_size = 1,
 478        .max_access_size = 1,
 479        .accepts = fw_cfg_data_mem_valid,
 480    },
 481};
 482
 483static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 484    .read = fw_cfg_data_read,
 485    .write = fw_cfg_comb_write,
 486    .endianness = DEVICE_LITTLE_ENDIAN,
 487    .valid.accepts = fw_cfg_comb_valid,
 488};
 489
 490static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 491    .read = fw_cfg_dma_mem_read,
 492    .write = fw_cfg_dma_mem_write,
 493    .endianness = DEVICE_BIG_ENDIAN,
 494    .valid.accepts = fw_cfg_dma_mem_valid,
 495    .valid.max_access_size = 8,
 496    .impl.max_access_size = 8,
 497};
 498
 499static void fw_cfg_reset(DeviceState *d)
 500{
 501    FWCfgState *s = FW_CFG(d);
 502
 503    /* we never register a read callback for FW_CFG_SIGNATURE */
 504    fw_cfg_select(s, FW_CFG_SIGNATURE);
 505}
 506
 507/* Save restore 32 bit int as uint16_t
 508   This is a Big hack, but it is how the old state did it.
 509   Or we broke compatibility in the state, or we can't use struct tm
 510 */
 511
 512static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 513                                VMStateField *field)
 514{
 515    uint32_t *v = pv;
 516    *v = qemu_get_be16(f);
 517    return 0;
 518}
 519
 520static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field,
 521                      QJSON *vmdesc)
 522{
 523    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 524    fprintf(stderr, "This functions shouldn't be called.\n");
 525
 526    return 0;
 527}
 528
 529static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 530    .name = "int32_as_uint16",
 531    .get  = get_uint32_as_uint16,
 532    .put  = put_unused,
 533};
 534
 535#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 536    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 537
 538
 539static bool is_version_1(void *opaque, int version_id)
 540{
 541    return version_id == 1;
 542}
 543
 544bool fw_cfg_dma_enabled(void *opaque)
 545{
 546    FWCfgState *s = opaque;
 547
 548    return s->dma_enabled;
 549}
 550
 551static const VMStateDescription vmstate_fw_cfg_dma = {
 552    .name = "fw_cfg/dma",
 553    .needed = fw_cfg_dma_enabled,
 554    .fields = (VMStateField[]) {
 555        VMSTATE_UINT64(dma_addr, FWCfgState),
 556        VMSTATE_END_OF_LIST()
 557    },
 558};
 559
 560static const VMStateDescription vmstate_fw_cfg = {
 561    .name = "fw_cfg",
 562    .version_id = 2,
 563    .minimum_version_id = 1,
 564    .fields = (VMStateField[]) {
 565        VMSTATE_UINT16(cur_entry, FWCfgState),
 566        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 567        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 568        VMSTATE_END_OF_LIST()
 569    },
 570    .subsections = (const VMStateDescription*[]) {
 571        &vmstate_fw_cfg_dma,
 572        NULL,
 573    }
 574};
 575
 576static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 577                                      FWCfgCallback select_cb,
 578                                      FWCfgWriteCallback write_cb,
 579                                      void *callback_opaque,
 580                                      void *data, size_t len,
 581                                      bool read_only)
 582{
 583    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 584
 585    key &= FW_CFG_ENTRY_MASK;
 586
 587    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 588    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 589
 590    s->entries[arch][key].data = data;
 591    s->entries[arch][key].len = (uint32_t)len;
 592    s->entries[arch][key].select_cb = select_cb;
 593    s->entries[arch][key].write_cb = write_cb;
 594    s->entries[arch][key].callback_opaque = callback_opaque;
 595    s->entries[arch][key].allow_write = !read_only;
 596}
 597
 598static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 599                                              void *data, size_t len)
 600{
 601    void *ptr;
 602    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 603
 604    key &= FW_CFG_ENTRY_MASK;
 605
 606    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 607
 608    /* return the old data to the function caller, avoid memory leak */
 609    ptr = s->entries[arch][key].data;
 610    s->entries[arch][key].data = data;
 611    s->entries[arch][key].len = len;
 612    s->entries[arch][key].callback_opaque = NULL;
 613    s->entries[arch][key].allow_write = false;
 614
 615    return ptr;
 616}
 617
 618void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 619{
 620    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 621}
 622
 623void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 624{
 625    size_t sz = strlen(value) + 1;
 626
 627    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 628}
 629
 630void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 631{
 632    uint16_t *copy;
 633
 634    copy = g_malloc(sizeof(value));
 635    *copy = cpu_to_le16(value);
 636    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 637}
 638
 639void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 640{
 641    uint16_t *copy, *old;
 642
 643    copy = g_malloc(sizeof(value));
 644    *copy = cpu_to_le16(value);
 645    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 646    g_free(old);
 647}
 648
 649void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 650{
 651    uint32_t *copy;
 652
 653    copy = g_malloc(sizeof(value));
 654    *copy = cpu_to_le32(value);
 655    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 656}
 657
 658void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 659{
 660    uint64_t *copy;
 661
 662    copy = g_malloc(sizeof(value));
 663    *copy = cpu_to_le64(value);
 664    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 665}
 666
 667void fw_cfg_set_order_override(FWCfgState *s, int order)
 668{
 669    assert(s->fw_cfg_order_override == 0);
 670    s->fw_cfg_order_override = order;
 671}
 672
 673void fw_cfg_reset_order_override(FWCfgState *s)
 674{
 675    assert(s->fw_cfg_order_override != 0);
 676    s->fw_cfg_order_override = 0;
 677}
 678
 679/*
 680 * This is the legacy order list.  For legacy systems, files are in
 681 * the fw_cfg in the order defined below, by the "order" value.  Note
 682 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 683 * specific area, but there may be more than one and they occur in the
 684 * order that the user specifies them on the command line.  Those are
 685 * handled in a special manner, using the order override above.
 686 *
 687 * For non-legacy, the files are sorted by filename to avoid this kind
 688 * of complexity in the future.
 689 *
 690 * This is only for x86, other arches don't implement versioning so
 691 * they won't set legacy mode.
 692 */
 693static struct {
 694    const char *name;
 695    int order;
 696} fw_cfg_order[] = {
 697    { "etc/boot-menu-wait", 10 },
 698    { "bootsplash.jpg", 11 },
 699    { "bootsplash.bmp", 12 },
 700    { "etc/boot-fail-wait", 15 },
 701    { "etc/smbios/smbios-tables", 20 },
 702    { "etc/smbios/smbios-anchor", 30 },
 703    { "etc/e820", 40 },
 704    { "etc/reserved-memory-end", 50 },
 705    { "genroms/kvmvapic.bin", 55 },
 706    { "genroms/linuxboot.bin", 60 },
 707    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 708    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 709    { "etc/system-states", 90 },
 710    { }, /* User ROMs come here, 100. */
 711    { }, /* Device FW comes here, 110. */
 712    { "etc/extra-pci-roots", 120 },
 713    { "etc/acpi/tables", 130 },
 714    { "etc/table-loader", 140 },
 715    { "etc/tpm/log", 150 },
 716    { "etc/acpi/rsdp", 160 },
 717    { "bootorder", 170 },
 718
 719#define FW_CFG_ORDER_OVERRIDE_LAST 200
 720};
 721
 722static int get_fw_cfg_order(FWCfgState *s, const char *name)
 723{
 724    int i;
 725
 726    if (s->fw_cfg_order_override > 0) {
 727        return s->fw_cfg_order_override;
 728    }
 729
 730    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 731        if (fw_cfg_order[i].name == NULL) {
 732            continue;
 733        }
 734
 735        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 736            return fw_cfg_order[i].order;
 737        }
 738    }
 739
 740    /* Stick unknown stuff at the end. */
 741    warn_report("Unknown firmware file in legacy mode: %s", name);
 742    return FW_CFG_ORDER_OVERRIDE_LAST;
 743}
 744
 745void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 746                              FWCfgCallback select_cb,
 747                              FWCfgWriteCallback write_cb,
 748                              void *callback_opaque,
 749                              void *data, size_t len, bool read_only)
 750{
 751    int i, index, count;
 752    size_t dsize;
 753    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 754    int order = 0;
 755
 756    if (!s->files) {
 757        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 758        s->files = g_malloc0(dsize);
 759        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 760    }
 761
 762    count = be32_to_cpu(s->files->count);
 763    assert(count < fw_cfg_file_slots(s));
 764
 765    /* Find the insertion point. */
 766    if (mc->legacy_fw_cfg_order) {
 767        /*
 768         * Sort by order. For files with the same order, we keep them
 769         * in the sequence in which they were added.
 770         */
 771        order = get_fw_cfg_order(s, filename);
 772        for (index = count;
 773             index > 0 && order < s->entry_order[index - 1];
 774             index--);
 775    } else {
 776        /* Sort by file name. */
 777        for (index = count;
 778             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 779             index--);
 780    }
 781
 782    /*
 783     * Move all the entries from the index point and after down one
 784     * to create a slot for the new entry.  Because calculations are
 785     * being done with the index, make it so that "i" is the current
 786     * index and "i - 1" is the one being copied from, thus the
 787     * unusual start and end in the for statement.
 788     */
 789    for (i = count; i > index; i--) {
 790        s->files->f[i] = s->files->f[i - 1];
 791        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 792        s->entries[0][FW_CFG_FILE_FIRST + i] =
 793            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 794        s->entry_order[i] = s->entry_order[i - 1];
 795    }
 796
 797    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 798    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 799
 800    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 801    for (i = 0; i <= count; i++) {
 802        if (i != index &&
 803            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 804            error_report("duplicate fw_cfg file name: %s",
 805                         s->files->f[index].name);
 806            exit(1);
 807        }
 808    }
 809
 810    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 811                              select_cb, write_cb,
 812                              callback_opaque, data, len,
 813                              read_only);
 814
 815    s->files->f[index].size   = cpu_to_be32(len);
 816    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 817    s->entry_order[index] = order;
 818    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 819
 820    s->files->count = cpu_to_be32(count+1);
 821}
 822
 823void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 824                     void *data, size_t len)
 825{
 826    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 827}
 828
 829void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
 830                        void *data, size_t len)
 831{
 832    int i, index;
 833    void *ptr = NULL;
 834
 835    assert(s->files);
 836
 837    index = be32_to_cpu(s->files->count);
 838
 839    for (i = 0; i < index; i++) {
 840        if (strcmp(filename, s->files->f[i].name) == 0) {
 841            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
 842                                           data, len);
 843            s->files->f[i].size   = cpu_to_be32(len);
 844            return ptr;
 845        }
 846    }
 847
 848    assert(index < fw_cfg_file_slots(s));
 849
 850    /* add new one */
 851    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 852    return NULL;
 853}
 854
 855static void fw_cfg_machine_reset(void *opaque)
 856{
 857    void *ptr;
 858    size_t len;
 859    FWCfgState *s = opaque;
 860    char *bootindex = get_boot_devices_list(&len, false);
 861
 862    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
 863    g_free(ptr);
 864}
 865
 866static void fw_cfg_machine_ready(struct Notifier *n, void *data)
 867{
 868    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
 869    qemu_register_reset(fw_cfg_machine_reset, s);
 870}
 871
 872
 873
 874static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
 875{
 876    FWCfgState *s = FW_CFG(dev);
 877    MachineState *machine = MACHINE(qdev_get_machine());
 878    uint32_t version = FW_CFG_VERSION;
 879
 880    if (!fw_cfg_find()) {
 881        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
 882        return;
 883    }
 884
 885    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
 886    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
 887    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
 888    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
 889    fw_cfg_bootsplash(s);
 890    fw_cfg_reboot(s);
 891
 892    if (s->dma_enabled) {
 893        version |= FW_CFG_VERSION_DMA;
 894    }
 895
 896    fw_cfg_add_i32(s, FW_CFG_ID, version);
 897
 898    s->machine_ready.notify = fw_cfg_machine_ready;
 899    qemu_add_machine_init_done_notifier(&s->machine_ready);
 900}
 901
 902FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
 903                                AddressSpace *dma_as)
 904{
 905    DeviceState *dev;
 906    SysBusDevice *sbd;
 907    FWCfgIoState *ios;
 908    FWCfgState *s;
 909    bool dma_requested = dma_iobase && dma_as;
 910
 911    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
 912    if (!dma_requested) {
 913        qdev_prop_set_bit(dev, "dma_enabled", false);
 914    }
 915
 916    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 917                              OBJECT(dev), NULL);
 918    qdev_init_nofail(dev);
 919
 920    sbd = SYS_BUS_DEVICE(dev);
 921    ios = FW_CFG_IO(dev);
 922    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
 923
 924    s = FW_CFG(dev);
 925
 926    if (s->dma_enabled) {
 927        /* 64 bits for the address field */
 928        s->dma_as = dma_as;
 929        s->dma_addr = 0;
 930        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
 931    }
 932
 933    return s;
 934}
 935
 936FWCfgState *fw_cfg_init_io(uint32_t iobase)
 937{
 938    return fw_cfg_init_io_dma(iobase, 0, NULL);
 939}
 940
 941FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
 942                                 hwaddr data_addr, uint32_t data_width,
 943                                 hwaddr dma_addr, AddressSpace *dma_as)
 944{
 945    DeviceState *dev;
 946    SysBusDevice *sbd;
 947    FWCfgState *s;
 948    bool dma_requested = dma_addr && dma_as;
 949
 950    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
 951    qdev_prop_set_uint32(dev, "data_width", data_width);
 952    if (!dma_requested) {
 953        qdev_prop_set_bit(dev, "dma_enabled", false);
 954    }
 955
 956    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 957                              OBJECT(dev), NULL);
 958    qdev_init_nofail(dev);
 959
 960    sbd = SYS_BUS_DEVICE(dev);
 961    sysbus_mmio_map(sbd, 0, ctl_addr);
 962    sysbus_mmio_map(sbd, 1, data_addr);
 963
 964    s = FW_CFG(dev);
 965
 966    if (s->dma_enabled) {
 967        s->dma_as = dma_as;
 968        s->dma_addr = 0;
 969        sysbus_mmio_map(sbd, 2, dma_addr);
 970    }
 971
 972    return s;
 973}
 974
 975FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
 976{
 977    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
 978                                fw_cfg_data_mem_ops.valid.max_access_size,
 979                                0, NULL);
 980}
 981
 982
 983FWCfgState *fw_cfg_find(void)
 984{
 985    /* Returns NULL unless there is exactly one fw_cfg device */
 986    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
 987}
 988
 989
 990static void fw_cfg_class_init(ObjectClass *klass, void *data)
 991{
 992    DeviceClass *dc = DEVICE_CLASS(klass);
 993
 994    dc->reset = fw_cfg_reset;
 995    dc->vmsd = &vmstate_fw_cfg;
 996}
 997
 998static const TypeInfo fw_cfg_info = {
 999    .name          = TYPE_FW_CFG,
1000    .parent        = TYPE_SYS_BUS_DEVICE,
1001    .abstract      = true,
1002    .instance_size = sizeof(FWCfgState),
1003    .class_init    = fw_cfg_class_init,
1004};
1005
1006static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1007{
1008    uint16_t file_slots_max;
1009
1010    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1011        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1012                   FW_CFG_FILE_SLOTS_MIN);
1013        return;
1014    }
1015
1016    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1017     * that we permit. The actual (exclusive) value coming from the
1018     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1019    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1020    if (fw_cfg_file_slots(s) > file_slots_max) {
1021        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1022                   file_slots_max);
1023        return;
1024    }
1025
1026    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1027    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1028    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1029}
1030
1031static Property fw_cfg_io_properties[] = {
1032    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1033                     true),
1034    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1035                       FW_CFG_FILE_SLOTS_DFLT),
1036    DEFINE_PROP_END_OF_LIST(),
1037};
1038
1039static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1040{
1041    FWCfgIoState *s = FW_CFG_IO(dev);
1042    Error *local_err = NULL;
1043
1044    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1045    if (local_err) {
1046        error_propagate(errp, local_err);
1047        return;
1048    }
1049
1050    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1051     * with half of the 16-bit control register. Hence, the total size
1052     * of the i/o region used is FW_CFG_CTL_SIZE */
1053    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1054                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1055
1056    if (FW_CFG(s)->dma_enabled) {
1057        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1058                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1059                              sizeof(dma_addr_t));
1060    }
1061
1062    fw_cfg_common_realize(dev, errp);
1063}
1064
1065static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1066{
1067    DeviceClass *dc = DEVICE_CLASS(klass);
1068
1069    dc->realize = fw_cfg_io_realize;
1070    dc->props = fw_cfg_io_properties;
1071}
1072
1073static const TypeInfo fw_cfg_io_info = {
1074    .name          = TYPE_FW_CFG_IO,
1075    .parent        = TYPE_FW_CFG,
1076    .instance_size = sizeof(FWCfgIoState),
1077    .class_init    = fw_cfg_io_class_init,
1078};
1079
1080
1081static Property fw_cfg_mem_properties[] = {
1082    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1083    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1084                     true),
1085    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1086                       FW_CFG_FILE_SLOTS_DFLT),
1087    DEFINE_PROP_END_OF_LIST(),
1088};
1089
1090static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1091{
1092    FWCfgMemState *s = FW_CFG_MEM(dev);
1093    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1094    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1095    Error *local_err = NULL;
1096
1097    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1098    if (local_err) {
1099        error_propagate(errp, local_err);
1100        return;
1101    }
1102
1103    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1104                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1105    sysbus_init_mmio(sbd, &s->ctl_iomem);
1106
1107    if (s->data_width > data_ops->valid.max_access_size) {
1108        /* memberwise copy because the "old_mmio" member is const */
1109        s->wide_data_ops.read       = data_ops->read;
1110        s->wide_data_ops.write      = data_ops->write;
1111        s->wide_data_ops.endianness = data_ops->endianness;
1112        s->wide_data_ops.valid      = data_ops->valid;
1113        s->wide_data_ops.impl       = data_ops->impl;
1114
1115        s->wide_data_ops.valid.max_access_size = s->data_width;
1116        s->wide_data_ops.impl.max_access_size  = s->data_width;
1117        data_ops = &s->wide_data_ops;
1118    }
1119    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1120                          "fwcfg.data", data_ops->valid.max_access_size);
1121    sysbus_init_mmio(sbd, &s->data_iomem);
1122
1123    if (FW_CFG(s)->dma_enabled) {
1124        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1125                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1126                              sizeof(dma_addr_t));
1127        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1128    }
1129
1130    fw_cfg_common_realize(dev, errp);
1131}
1132
1133static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1134{
1135    DeviceClass *dc = DEVICE_CLASS(klass);
1136
1137    dc->realize = fw_cfg_mem_realize;
1138    dc->props = fw_cfg_mem_properties;
1139}
1140
1141static const TypeInfo fw_cfg_mem_info = {
1142    .name          = TYPE_FW_CFG_MEM,
1143    .parent        = TYPE_FW_CFG,
1144    .instance_size = sizeof(FWCfgMemState),
1145    .class_init    = fw_cfg_mem_class_init,
1146};
1147
1148
1149static void fw_cfg_register_types(void)
1150{
1151    type_register_static(&fw_cfg_info);
1152    type_register_static(&fw_cfg_io_info);
1153    type_register_static(&fw_cfg_mem_info);
1154}
1155
1156type_init(fw_cfg_register_types)
1157