qemu/hw/ppc/pnv.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV machine model
   3 *
   4 * Copyright (c) 2016, IBM Corporation.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qapi/error.h"
  22#include "sysemu/sysemu.h"
  23#include "sysemu/numa.h"
  24#include "sysemu/cpus.h"
  25#include "hw/hw.h"
  26#include "target/ppc/cpu.h"
  27#include "qemu/log.h"
  28#include "hw/ppc/fdt.h"
  29#include "hw/ppc/ppc.h"
  30#include "hw/ppc/pnv.h"
  31#include "hw/ppc/pnv_core.h"
  32#include "hw/loader.h"
  33#include "exec/address-spaces.h"
  34#include "qemu/cutils.h"
  35#include "qapi/visitor.h"
  36#include "monitor/monitor.h"
  37#include "hw/intc/intc.h"
  38#include "hw/ipmi/ipmi.h"
  39
  40#include "hw/ppc/xics.h"
  41#include "hw/ppc/pnv_xscom.h"
  42
  43#include "hw/isa/isa.h"
  44#include "hw/char/serial.h"
  45#include "hw/timer/mc146818rtc.h"
  46
  47#include <libfdt.h>
  48
  49#define FDT_MAX_SIZE            0x00100000
  50
  51#define FW_FILE_NAME            "skiboot.lid"
  52#define FW_LOAD_ADDR            0x0
  53#define FW_MAX_SIZE             0x00400000
  54
  55#define KERNEL_LOAD_ADDR        0x20000000
  56#define INITRD_LOAD_ADDR        0x60000000
  57
  58static const char *pnv_chip_core_typename(const PnvChip *o)
  59{
  60    const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
  61    int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
  62    char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
  63    const char *core_type = object_class_get_name(object_class_by_name(s));
  64    g_free(s);
  65    return core_type;
  66}
  67
  68/*
  69 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
  70 *     4 * 4 sockets * 12 cores * 8 threads = 1536
  71 * Let's make it 2^11
  72 */
  73#define MAX_CPUS                2048
  74
  75/*
  76 * Memory nodes are created by hostboot, one for each range of memory
  77 * that has a different "affinity". In practice, it means one range
  78 * per chip.
  79 */
  80static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
  81{
  82    char *mem_name;
  83    uint64_t mem_reg_property[2];
  84    int off;
  85
  86    mem_reg_property[0] = cpu_to_be64(start);
  87    mem_reg_property[1] = cpu_to_be64(size);
  88
  89    mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
  90    off = fdt_add_subnode(fdt, 0, mem_name);
  91    g_free(mem_name);
  92
  93    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
  94    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
  95                       sizeof(mem_reg_property))));
  96    _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
  97}
  98
  99static int get_cpus_node(void *fdt)
 100{
 101    int cpus_offset = fdt_path_offset(fdt, "/cpus");
 102
 103    if (cpus_offset < 0) {
 104        cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 105        if (cpus_offset) {
 106            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 107            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 108        }
 109    }
 110    _FDT(cpus_offset);
 111    return cpus_offset;
 112}
 113
 114/*
 115 * The PowerNV cores (and threads) need to use real HW ids and not an
 116 * incremental index like it has been done on other platforms. This HW
 117 * id is stored in the CPU PIR, it is used to create cpu nodes in the
 118 * device tree, used in XSCOM to address cores and in interrupt
 119 * servers.
 120 */
 121static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
 122{
 123    CPUState *cs = CPU(DEVICE(pc->threads));
 124    DeviceClass *dc = DEVICE_GET_CLASS(cs);
 125    PowerPCCPU *cpu = POWERPC_CPU(cs);
 126    int smt_threads = CPU_CORE(pc)->nr_threads;
 127    CPUPPCState *env = &cpu->env;
 128    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 129    uint32_t servers_prop[smt_threads];
 130    int i;
 131    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 132                       0xffffffff, 0xffffffff};
 133    uint32_t tbfreq = PNV_TIMEBASE_FREQ;
 134    uint32_t cpufreq = 1000000000;
 135    uint32_t page_sizes_prop[64];
 136    size_t page_sizes_prop_size;
 137    const uint8_t pa_features[] = { 24, 0,
 138                                    0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
 139                                    0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 140                                    0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 141                                    0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
 142    int offset;
 143    char *nodename;
 144    int cpus_offset = get_cpus_node(fdt);
 145
 146    nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
 147    offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 148    _FDT(offset);
 149    g_free(nodename);
 150
 151    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
 152
 153    _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
 154    _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
 155    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 156
 157    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 158    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 159                            env->dcache_line_size)));
 160    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 161                            env->dcache_line_size)));
 162    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 163                            env->icache_line_size)));
 164    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 165                            env->icache_line_size)));
 166
 167    if (pcc->l1_dcache_size) {
 168        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 169                               pcc->l1_dcache_size)));
 170    } else {
 171        warn_report("Unknown L1 dcache size for cpu");
 172    }
 173    if (pcc->l1_icache_size) {
 174        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 175                               pcc->l1_icache_size)));
 176    } else {
 177        warn_report("Unknown L1 icache size for cpu");
 178    }
 179
 180    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 181    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 182    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 183    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 184    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 185
 186    if (env->spr_cb[SPR_PURR].oea_read) {
 187        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 188    }
 189
 190    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 191        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 192                           segs, sizeof(segs))));
 193    }
 194
 195    /* Advertise VMX/VSX (vector extensions) if available
 196     *   0 / no property == no vector extensions
 197     *   1               == VMX / Altivec available
 198     *   2               == VSX available */
 199    if (env->insns_flags & PPC_ALTIVEC) {
 200        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 201
 202        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 203    }
 204
 205    /* Advertise DFP (Decimal Floating Point) if available
 206     *   0 / no property == no DFP
 207     *   1               == DFP available */
 208    if (env->insns_flags2 & PPC2_DFP) {
 209        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 210    }
 211
 212    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 213                                                  sizeof(page_sizes_prop));
 214    if (page_sizes_prop_size) {
 215        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 216                           page_sizes_prop, page_sizes_prop_size)));
 217    }
 218
 219    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
 220                       pa_features, sizeof(pa_features))));
 221
 222    /* Build interrupt servers properties */
 223    for (i = 0; i < smt_threads; i++) {
 224        servers_prop[i] = cpu_to_be32(pc->pir + i);
 225    }
 226    _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 227                       servers_prop, sizeof(servers_prop))));
 228}
 229
 230static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
 231                       uint32_t nr_threads)
 232{
 233    uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
 234    char *name;
 235    const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
 236    uint32_t irange[2], i, rsize;
 237    uint64_t *reg;
 238    int offset;
 239
 240    irange[0] = cpu_to_be32(pir);
 241    irange[1] = cpu_to_be32(nr_threads);
 242
 243    rsize = sizeof(uint64_t) * 2 * nr_threads;
 244    reg = g_malloc(rsize);
 245    for (i = 0; i < nr_threads; i++) {
 246        reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
 247        reg[i * 2 + 1] = cpu_to_be64(0x1000);
 248    }
 249
 250    name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
 251    offset = fdt_add_subnode(fdt, 0, name);
 252    _FDT(offset);
 253    g_free(name);
 254
 255    _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
 256    _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
 257    _FDT((fdt_setprop_string(fdt, offset, "device_type",
 258                              "PowerPC-External-Interrupt-Presentation")));
 259    _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
 260    _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
 261                       irange, sizeof(irange))));
 262    _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
 263    _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
 264    g_free(reg);
 265}
 266
 267static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt)
 268{
 269    char *name;
 270    int offset;
 271
 272    name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
 273                           (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
 274    offset = fdt_path_offset(fdt, name);
 275    g_free(name);
 276    return offset;
 277}
 278
 279static void pnv_dt_chip(PnvChip *chip, void *fdt)
 280{
 281    const char *typename = pnv_chip_core_typename(chip);
 282    size_t typesize = object_type_get_instance_size(typename);
 283    int i;
 284
 285    pnv_dt_xscom(chip, fdt, 0);
 286
 287    /* The default LPC bus of a multichip system is on chip 0. It's
 288     * recognized by the firmware (skiboot) using a "primary"
 289     * property.
 290     */
 291    if (chip->chip_id == 0x0) {
 292        int lpc_offset = pnv_chip_lpc_offset(chip, fdt);
 293
 294        _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0)));
 295    }
 296
 297    for (i = 0; i < chip->nr_cores; i++) {
 298        PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
 299
 300        pnv_dt_core(chip, pnv_core, fdt);
 301
 302        /* Interrupt Control Presenters (ICP). One per core. */
 303        pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
 304    }
 305
 306    if (chip->ram_size) {
 307        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 308    }
 309}
 310
 311static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
 312{
 313    uint32_t io_base = d->ioport_id;
 314    uint32_t io_regs[] = {
 315        cpu_to_be32(1),
 316        cpu_to_be32(io_base),
 317        cpu_to_be32(2)
 318    };
 319    char *name;
 320    int node;
 321
 322    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 323    node = fdt_add_subnode(fdt, lpc_off, name);
 324    _FDT(node);
 325    g_free(name);
 326
 327    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 328    _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
 329}
 330
 331static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
 332{
 333    const char compatible[] = "ns16550\0pnpPNP,501";
 334    uint32_t io_base = d->ioport_id;
 335    uint32_t io_regs[] = {
 336        cpu_to_be32(1),
 337        cpu_to_be32(io_base),
 338        cpu_to_be32(8)
 339    };
 340    char *name;
 341    int node;
 342
 343    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 344    node = fdt_add_subnode(fdt, lpc_off, name);
 345    _FDT(node);
 346    g_free(name);
 347
 348    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 349    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 350                      sizeof(compatible))));
 351
 352    _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
 353    _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
 354    _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
 355    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 356                           fdt_get_phandle(fdt, lpc_off))));
 357
 358    /* This is needed by Linux */
 359    _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
 360}
 361
 362static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
 363{
 364    const char compatible[] = "bt\0ipmi-bt";
 365    uint32_t io_base;
 366    uint32_t io_regs[] = {
 367        cpu_to_be32(1),
 368        0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
 369        cpu_to_be32(3)
 370    };
 371    uint32_t irq;
 372    char *name;
 373    int node;
 374
 375    io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
 376    io_regs[1] = cpu_to_be32(io_base);
 377
 378    irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
 379
 380    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 381    node = fdt_add_subnode(fdt, lpc_off, name);
 382    _FDT(node);
 383    g_free(name);
 384
 385    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 386    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 387                      sizeof(compatible))));
 388
 389    /* Mark it as reserved to avoid Linux trying to claim it */
 390    _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
 391    _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
 392    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 393                           fdt_get_phandle(fdt, lpc_off))));
 394}
 395
 396typedef struct ForeachPopulateArgs {
 397    void *fdt;
 398    int offset;
 399} ForeachPopulateArgs;
 400
 401static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
 402{
 403    ForeachPopulateArgs *args = opaque;
 404    ISADevice *d = ISA_DEVICE(dev);
 405
 406    if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
 407        pnv_dt_rtc(d, args->fdt, args->offset);
 408    } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
 409        pnv_dt_serial(d, args->fdt, args->offset);
 410    } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
 411        pnv_dt_ipmi_bt(d, args->fdt, args->offset);
 412    } else {
 413        error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
 414                     d->ioport_id);
 415    }
 416
 417    return 0;
 418}
 419
 420static void pnv_dt_isa(ISABus *bus, void *fdt, int lpc_offset)
 421{
 422    ForeachPopulateArgs args = {
 423        .fdt = fdt,
 424        .offset = lpc_offset,
 425    };
 426
 427    /* ISA devices are not necessarily parented to the ISA bus so we
 428     * can not use object_child_foreach() */
 429    qbus_walk_children(BUS(bus), pnv_dt_isa_device, NULL, NULL, NULL, &args);
 430}
 431
 432static void *pnv_dt_create(MachineState *machine)
 433{
 434    const char plat_compat[] = "qemu,powernv\0ibm,powernv";
 435    PnvMachineState *pnv = PNV_MACHINE(machine);
 436    void *fdt;
 437    char *buf;
 438    int off;
 439    int i;
 440    int lpc_offset;
 441
 442    fdt = g_malloc0(FDT_MAX_SIZE);
 443    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
 444
 445    /* Root node */
 446    _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
 447    _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
 448    _FDT((fdt_setprop_string(fdt, 0, "model",
 449                             "IBM PowerNV (emulated by qemu)")));
 450    _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
 451                      sizeof(plat_compat))));
 452
 453    buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
 454    _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
 455    if (qemu_uuid_set) {
 456        _FDT((fdt_property_string(fdt, "system-id", buf)));
 457    }
 458    g_free(buf);
 459
 460    off = fdt_add_subnode(fdt, 0, "chosen");
 461    if (machine->kernel_cmdline) {
 462        _FDT((fdt_setprop_string(fdt, off, "bootargs",
 463                                 machine->kernel_cmdline)));
 464    }
 465
 466    if (pnv->initrd_size) {
 467        uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
 468        uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
 469
 470        _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
 471                               &start_prop, sizeof(start_prop))));
 472        _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
 473                               &end_prop, sizeof(end_prop))));
 474    }
 475
 476    /* Populate device tree for each chip */
 477    for (i = 0; i < pnv->num_chips; i++) {
 478        pnv_dt_chip(pnv->chips[i], fdt);
 479    }
 480
 481    /* Populate ISA devices on chip 0 */
 482    lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt);
 483    pnv_dt_isa(pnv->isa_bus, fdt, lpc_offset);
 484
 485    if (pnv->bmc) {
 486        pnv_dt_bmc_sensors(pnv->bmc, fdt);
 487    }
 488
 489    return fdt;
 490}
 491
 492static void pnv_powerdown_notify(Notifier *n, void *opaque)
 493{
 494    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
 495
 496    if (pnv->bmc) {
 497        pnv_bmc_powerdown(pnv->bmc);
 498    }
 499}
 500
 501static void pnv_reset(void)
 502{
 503    MachineState *machine = MACHINE(qdev_get_machine());
 504    PnvMachineState *pnv = PNV_MACHINE(machine);
 505    void *fdt;
 506    Object *obj;
 507
 508    qemu_devices_reset();
 509
 510    /* OpenPOWER systems have a BMC, which can be defined on the
 511     * command line with:
 512     *
 513     *   -device ipmi-bmc-sim,id=bmc0
 514     *
 515     * This is the internal simulator but it could also be an external
 516     * BMC.
 517     */
 518    obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
 519    if (obj) {
 520        pnv->bmc = IPMI_BMC(obj);
 521    }
 522
 523    fdt = pnv_dt_create(machine);
 524
 525    /* Pack resulting tree */
 526    _FDT((fdt_pack(fdt)));
 527
 528    cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
 529}
 530
 531static ISABus *pnv_isa_create(PnvChip *chip)
 532{
 533    PnvLpcController *lpc = &chip->lpc;
 534    ISABus *isa_bus;
 535    qemu_irq *irqs;
 536    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 537
 538    /* let isa_bus_new() create its own bridge on SysBus otherwise
 539     * devices speficied on the command line won't find the bus and
 540     * will fail to create.
 541     */
 542    isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
 543                          &error_fatal);
 544
 545    irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS);
 546
 547    isa_bus_irqs(isa_bus, irqs);
 548    return isa_bus;
 549}
 550
 551static void pnv_init(MachineState *machine)
 552{
 553    PnvMachineState *pnv = PNV_MACHINE(machine);
 554    MemoryRegion *ram;
 555    char *fw_filename;
 556    long fw_size;
 557    int i;
 558    char *chip_typename;
 559
 560    /* allocate RAM */
 561    if (machine->ram_size < (1 * G_BYTE)) {
 562        warn_report("skiboot may not work with < 1GB of RAM");
 563    }
 564
 565    ram = g_new(MemoryRegion, 1);
 566    memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
 567                                         machine->ram_size);
 568    memory_region_add_subregion(get_system_memory(), 0, ram);
 569
 570    /* load skiboot firmware  */
 571    if (bios_name == NULL) {
 572        bios_name = FW_FILE_NAME;
 573    }
 574
 575    fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 576    if (!fw_filename) {
 577        error_report("Could not find OPAL firmware '%s'", bios_name);
 578        exit(1);
 579    }
 580
 581    fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
 582    if (fw_size < 0) {
 583        error_report("Could not load OPAL firmware '%s'", fw_filename);
 584        exit(1);
 585    }
 586    g_free(fw_filename);
 587
 588    /* load kernel */
 589    if (machine->kernel_filename) {
 590        long kernel_size;
 591
 592        kernel_size = load_image_targphys(machine->kernel_filename,
 593                                          KERNEL_LOAD_ADDR, 0x2000000);
 594        if (kernel_size < 0) {
 595            error_report("Could not load kernel '%s'",
 596                         machine->kernel_filename);
 597            exit(1);
 598        }
 599    }
 600
 601    /* load initrd */
 602    if (machine->initrd_filename) {
 603        pnv->initrd_base = INITRD_LOAD_ADDR;
 604        pnv->initrd_size = load_image_targphys(machine->initrd_filename,
 605                                  pnv->initrd_base, 0x10000000); /* 128MB max */
 606        if (pnv->initrd_size < 0) {
 607            error_report("Could not load initial ram disk '%s'",
 608                         machine->initrd_filename);
 609            exit(1);
 610        }
 611    }
 612
 613    /* Create the processor chips */
 614    i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
 615    chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
 616                                    i, machine->cpu_type);
 617    if (!object_class_by_name(chip_typename)) {
 618        error_report("invalid CPU model '%.*s' for %s machine",
 619                     i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
 620        exit(1);
 621    }
 622
 623    pnv->chips = g_new0(PnvChip *, pnv->num_chips);
 624    for (i = 0; i < pnv->num_chips; i++) {
 625        char chip_name[32];
 626        Object *chip = object_new(chip_typename);
 627
 628        pnv->chips[i] = PNV_CHIP(chip);
 629
 630        /* TODO: put all the memory in one node on chip 0 until we find a
 631         * way to specify different ranges for each chip
 632         */
 633        if (i == 0) {
 634            object_property_set_int(chip, machine->ram_size, "ram-size",
 635                                    &error_fatal);
 636        }
 637
 638        snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
 639        object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
 640        object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
 641                                &error_fatal);
 642        object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
 643        object_property_set_bool(chip, true, "realized", &error_fatal);
 644    }
 645    g_free(chip_typename);
 646
 647    /* Instantiate ISA bus on chip 0 */
 648    pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
 649
 650    /* Create serial port */
 651    serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
 652
 653    /* Create an RTC ISA device too */
 654    mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
 655
 656    /* OpenPOWER systems use a IPMI SEL Event message to notify the
 657     * host to powerdown */
 658    pnv->powerdown_notifier.notify = pnv_powerdown_notify;
 659    qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
 660}
 661
 662/*
 663 *    0:21  Reserved - Read as zeros
 664 *   22:24  Chip ID
 665 *   25:28  Core number
 666 *   29:31  Thread ID
 667 */
 668static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
 669{
 670    return (chip->chip_id << 7) | (core_id << 3);
 671}
 672
 673/*
 674 *    0:48  Reserved - Read as zeroes
 675 *   49:52  Node ID
 676 *   53:55  Chip ID
 677 *   56     Reserved - Read as zero
 678 *   57:61  Core number
 679 *   62:63  Thread ID
 680 *
 681 * We only care about the lower bits. uint32_t is fine for the moment.
 682 */
 683static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
 684{
 685    return (chip->chip_id << 8) | (core_id << 2);
 686}
 687
 688/* Allowed core identifiers on a POWER8 Processor Chip :
 689 *
 690 * <EX0 reserved>
 691 *  EX1  - Venice only
 692 *  EX2  - Venice only
 693 *  EX3  - Venice only
 694 *  EX4
 695 *  EX5
 696 *  EX6
 697 * <EX7,8 reserved> <reserved>
 698 *  EX9  - Venice only
 699 *  EX10 - Venice only
 700 *  EX11 - Venice only
 701 *  EX12
 702 *  EX13
 703 *  EX14
 704 * <EX15 reserved>
 705 */
 706#define POWER8E_CORE_MASK  (0x7070ull)
 707#define POWER8_CORE_MASK   (0x7e7eull)
 708
 709/*
 710 * POWER9 has 24 cores, ids starting at 0x0
 711 */
 712#define POWER9_CORE_MASK   (0xffffffffffffffull)
 713
 714static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
 715{
 716    DeviceClass *dc = DEVICE_CLASS(klass);
 717    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 718
 719    k->chip_type = PNV_CHIP_POWER8E;
 720    k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
 721    k->cores_mask = POWER8E_CORE_MASK;
 722    k->core_pir = pnv_chip_core_pir_p8;
 723    k->xscom_base = 0x003fc0000000000ull;
 724    dc->desc = "PowerNV Chip POWER8E";
 725}
 726
 727static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
 728{
 729    DeviceClass *dc = DEVICE_CLASS(klass);
 730    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 731
 732    k->chip_type = PNV_CHIP_POWER8;
 733    k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
 734    k->cores_mask = POWER8_CORE_MASK;
 735    k->core_pir = pnv_chip_core_pir_p8;
 736    k->xscom_base = 0x003fc0000000000ull;
 737    dc->desc = "PowerNV Chip POWER8";
 738}
 739
 740static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
 741{
 742    DeviceClass *dc = DEVICE_CLASS(klass);
 743    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 744
 745    k->chip_type = PNV_CHIP_POWER8NVL;
 746    k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
 747    k->cores_mask = POWER8_CORE_MASK;
 748    k->core_pir = pnv_chip_core_pir_p8;
 749    k->xscom_base = 0x003fc0000000000ull;
 750    dc->desc = "PowerNV Chip POWER8NVL";
 751}
 752
 753static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
 754{
 755    DeviceClass *dc = DEVICE_CLASS(klass);
 756    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 757
 758    k->chip_type = PNV_CHIP_POWER9;
 759    k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
 760    k->cores_mask = POWER9_CORE_MASK;
 761    k->core_pir = pnv_chip_core_pir_p9;
 762    k->xscom_base = 0x00603fc00000000ull;
 763    dc->desc = "PowerNV Chip POWER9";
 764}
 765
 766static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
 767{
 768    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 769    int cores_max;
 770
 771    /*
 772     * No custom mask for this chip, let's use the default one from *
 773     * the chip class
 774     */
 775    if (!chip->cores_mask) {
 776        chip->cores_mask = pcc->cores_mask;
 777    }
 778
 779    /* filter alien core ids ! some are reserved */
 780    if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
 781        error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
 782                   chip->cores_mask);
 783        return;
 784    }
 785    chip->cores_mask &= pcc->cores_mask;
 786
 787    /* now that we have a sane layout, let check the number of cores */
 788    cores_max = ctpop64(chip->cores_mask);
 789    if (chip->nr_cores > cores_max) {
 790        error_setg(errp, "warning: too many cores for chip ! Limit is %d",
 791                   cores_max);
 792        return;
 793    }
 794}
 795
 796static void pnv_chip_init(Object *obj)
 797{
 798    PnvChip *chip = PNV_CHIP(obj);
 799    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 800
 801    chip->xscom_base = pcc->xscom_base;
 802
 803    object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
 804    object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
 805
 806    object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI);
 807    object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL);
 808    object_property_add_const_link(OBJECT(&chip->psi), "xics",
 809                                   OBJECT(qdev_get_machine()), &error_abort);
 810
 811    object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC);
 812    object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL);
 813    object_property_add_const_link(OBJECT(&chip->occ), "psi",
 814                                   OBJECT(&chip->psi), &error_abort);
 815
 816    /* The LPC controller needs PSI to generate interrupts */
 817    object_property_add_const_link(OBJECT(&chip->lpc), "psi",
 818                                   OBJECT(&chip->psi), &error_abort);
 819}
 820
 821static void pnv_chip_icp_realize(PnvChip *chip, Error **errp)
 822{
 823    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 824    const char *typename = pnv_chip_core_typename(chip);
 825    size_t typesize = object_type_get_instance_size(typename);
 826    int i, j;
 827    char *name;
 828    XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
 829
 830    name = g_strdup_printf("icp-%x", chip->chip_id);
 831    memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
 832    sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio);
 833    g_free(name);
 834
 835    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
 836
 837    /* Map the ICP registers for each thread */
 838    for (i = 0; i < chip->nr_cores; i++) {
 839        PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
 840        int core_hwid = CPU_CORE(pnv_core)->core_id;
 841
 842        for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
 843            uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
 844            PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
 845
 846            memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio);
 847        }
 848    }
 849}
 850
 851static void pnv_chip_realize(DeviceState *dev, Error **errp)
 852{
 853    PnvChip *chip = PNV_CHIP(dev);
 854    Error *error = NULL;
 855    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 856    const char *typename = pnv_chip_core_typename(chip);
 857    size_t typesize = object_type_get_instance_size(typename);
 858    int i, core_hwid;
 859
 860    if (!object_class_by_name(typename)) {
 861        error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
 862        return;
 863    }
 864
 865    /* XSCOM bridge */
 866    pnv_xscom_realize(chip, &error);
 867    if (error) {
 868        error_propagate(errp, error);
 869        return;
 870    }
 871    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
 872
 873    /* Cores */
 874    pnv_chip_core_sanitize(chip, &error);
 875    if (error) {
 876        error_propagate(errp, error);
 877        return;
 878    }
 879
 880    chip->cores = g_malloc0(typesize * chip->nr_cores);
 881
 882    for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
 883             && (i < chip->nr_cores); core_hwid++) {
 884        char core_name[32];
 885        void *pnv_core = chip->cores + i * typesize;
 886        uint64_t xscom_core_base;
 887
 888        if (!(chip->cores_mask & (1ull << core_hwid))) {
 889            continue;
 890        }
 891
 892        object_initialize(pnv_core, typesize, typename);
 893        snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
 894        object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
 895                                  &error_fatal);
 896        object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
 897                                &error_fatal);
 898        object_property_set_int(OBJECT(pnv_core), core_hwid,
 899                                CPU_CORE_PROP_CORE_ID, &error_fatal);
 900        object_property_set_int(OBJECT(pnv_core),
 901                                pcc->core_pir(chip, core_hwid),
 902                                "pir", &error_fatal);
 903        object_property_add_const_link(OBJECT(pnv_core), "xics",
 904                                       qdev_get_machine(), &error_fatal);
 905        object_property_set_bool(OBJECT(pnv_core), true, "realized",
 906                                 &error_fatal);
 907        object_unref(OBJECT(pnv_core));
 908
 909        /* Each core has an XSCOM MMIO region */
 910        if (!pnv_chip_is_power9(chip)) {
 911            xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
 912        } else {
 913            xscom_core_base = PNV_XSCOM_P9_EC_BASE(core_hwid);
 914        }
 915
 916        pnv_xscom_add_subregion(chip, xscom_core_base,
 917                                &PNV_CORE(pnv_core)->xscom_regs);
 918        i++;
 919    }
 920
 921    /* Create LPC controller */
 922    object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
 923                             &error_fatal);
 924    pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
 925
 926    /* Interrupt Management Area. This is the memory region holding
 927     * all the Interrupt Control Presenter (ICP) registers */
 928    pnv_chip_icp_realize(chip, &error);
 929    if (error) {
 930        error_propagate(errp, error);
 931        return;
 932    }
 933
 934    /* Processor Service Interface (PSI) Host Bridge */
 935    object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip),
 936                            "bar", &error_fatal);
 937    object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error);
 938    if (error) {
 939        error_propagate(errp, error);
 940        return;
 941    }
 942    pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs);
 943
 944    /* Create the simplified OCC model */
 945    object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error);
 946    if (error) {
 947        error_propagate(errp, error);
 948        return;
 949    }
 950    pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs);
 951}
 952
 953static Property pnv_chip_properties[] = {
 954    DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
 955    DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
 956    DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
 957    DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
 958    DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
 959    DEFINE_PROP_END_OF_LIST(),
 960};
 961
 962static void pnv_chip_class_init(ObjectClass *klass, void *data)
 963{
 964    DeviceClass *dc = DEVICE_CLASS(klass);
 965
 966    set_bit(DEVICE_CATEGORY_CPU, dc->categories);
 967    dc->realize = pnv_chip_realize;
 968    dc->props = pnv_chip_properties;
 969    dc->desc = "PowerNV Chip";
 970}
 971
 972static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
 973{
 974    PnvMachineState *pnv = PNV_MACHINE(xi);
 975    int i;
 976
 977    for (i = 0; i < pnv->num_chips; i++) {
 978        if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) {
 979            return &pnv->chips[i]->psi.ics;
 980        }
 981    }
 982    return NULL;
 983}
 984
 985static void pnv_ics_resend(XICSFabric *xi)
 986{
 987    PnvMachineState *pnv = PNV_MACHINE(xi);
 988    int i;
 989
 990    for (i = 0; i < pnv->num_chips; i++) {
 991        ics_resend(&pnv->chips[i]->psi.ics);
 992    }
 993}
 994
 995static PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
 996{
 997    CPUState *cs;
 998
 999    CPU_FOREACH(cs) {
1000        PowerPCCPU *cpu = POWERPC_CPU(cs);
1001        CPUPPCState *env = &cpu->env;
1002
1003        if (env->spr_cb[SPR_PIR].default_value == pir) {
1004            return cpu;
1005        }
1006    }
1007
1008    return NULL;
1009}
1010
1011static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1012{
1013    PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1014
1015    return cpu ? ICP(cpu->intc) : NULL;
1016}
1017
1018static void pnv_pic_print_info(InterruptStatsProvider *obj,
1019                               Monitor *mon)
1020{
1021    PnvMachineState *pnv = PNV_MACHINE(obj);
1022    int i;
1023    CPUState *cs;
1024
1025    CPU_FOREACH(cs) {
1026        PowerPCCPU *cpu = POWERPC_CPU(cs);
1027
1028        icp_pic_print_info(ICP(cpu->intc), mon);
1029    }
1030
1031    for (i = 0; i < pnv->num_chips; i++) {
1032        ics_pic_print_info(&pnv->chips[i]->psi.ics, mon);
1033    }
1034}
1035
1036static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1037                              void *opaque, Error **errp)
1038{
1039    visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1040}
1041
1042static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1043                              void *opaque, Error **errp)
1044{
1045    PnvMachineState *pnv = PNV_MACHINE(obj);
1046    uint32_t num_chips;
1047    Error *local_err = NULL;
1048
1049    visit_type_uint32(v, name, &num_chips, &local_err);
1050    if (local_err) {
1051        error_propagate(errp, local_err);
1052        return;
1053    }
1054
1055    /*
1056     * TODO: should we decide on how many chips we can create based
1057     * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1058     */
1059    if (!is_power_of_2(num_chips) || num_chips > 4) {
1060        error_setg(errp, "invalid number of chips: '%d'", num_chips);
1061        return;
1062    }
1063
1064    pnv->num_chips = num_chips;
1065}
1066
1067static void pnv_machine_initfn(Object *obj)
1068{
1069    PnvMachineState *pnv = PNV_MACHINE(obj);
1070    pnv->num_chips = 1;
1071}
1072
1073static void pnv_machine_class_props_init(ObjectClass *oc)
1074{
1075    object_class_property_add(oc, "num-chips", "uint32",
1076                              pnv_get_num_chips, pnv_set_num_chips,
1077                              NULL, NULL, NULL);
1078    object_class_property_set_description(oc, "num-chips",
1079                              "Specifies the number of processor chips",
1080                              NULL);
1081}
1082
1083static void pnv_machine_class_init(ObjectClass *oc, void *data)
1084{
1085    MachineClass *mc = MACHINE_CLASS(oc);
1086    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1087    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1088
1089    mc->desc = "IBM PowerNV (Non-Virtualized)";
1090    mc->init = pnv_init;
1091    mc->reset = pnv_reset;
1092    mc->max_cpus = MAX_CPUS;
1093    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1094    mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1095                                      * storage */
1096    mc->no_parallel = 1;
1097    mc->default_boot_order = NULL;
1098    mc->default_ram_size = 1 * G_BYTE;
1099    xic->icp_get = pnv_icp_get;
1100    xic->ics_get = pnv_ics_get;
1101    xic->ics_resend = pnv_ics_resend;
1102    ispc->print_info = pnv_pic_print_info;
1103
1104    pnv_machine_class_props_init(oc);
1105}
1106
1107#define DEFINE_PNV_CHIP_TYPE(type, class_initfn) \
1108    {                                            \
1109        .name          = type,                   \
1110        .class_init    = class_initfn,           \
1111        .parent        = TYPE_PNV_CHIP,          \
1112    }
1113
1114static const TypeInfo types[] = {
1115    {
1116        .name          = TYPE_PNV_MACHINE,
1117        .parent        = TYPE_MACHINE,
1118        .instance_size = sizeof(PnvMachineState),
1119        .instance_init = pnv_machine_initfn,
1120        .class_init    = pnv_machine_class_init,
1121        .interfaces = (InterfaceInfo[]) {
1122            { TYPE_XICS_FABRIC },
1123            { TYPE_INTERRUPT_STATS_PROVIDER },
1124            { },
1125        },
1126    },
1127    {
1128        .name          = TYPE_PNV_CHIP,
1129        .parent        = TYPE_SYS_BUS_DEVICE,
1130        .class_init    = pnv_chip_class_init,
1131        .instance_init = pnv_chip_init,
1132        .instance_size = sizeof(PnvChip),
1133        .class_size    = sizeof(PnvChipClass),
1134        .abstract      = true,
1135    },
1136    DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1137    DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1138    DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1139    DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1140                         pnv_chip_power8nvl_class_init),
1141};
1142
1143DEFINE_TYPES(types)
1144