qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "hw/hw.h"
  33#include "qemu/log.h"
  34#include "hw/fw-path-provider.h"
  35#include "elf.h"
  36#include "net/net.h"
  37#include "sysemu/device_tree.h"
  38#include "sysemu/block-backend.h"
  39#include "sysemu/cpus.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_ppc.h"
  42#include "migration/misc.h"
  43#include "migration/global_state.h"
  44#include "migration/register.h"
  45#include "mmu-hash64.h"
  46#include "mmu-book3s-v3.h"
  47#include "cpu-models.h"
  48#include "qom/cpu.h"
  49
  50#include "hw/boards.h"
  51#include "hw/ppc/ppc.h"
  52#include "hw/loader.h"
  53
  54#include "hw/ppc/fdt.h"
  55#include "hw/ppc/spapr.h"
  56#include "hw/ppc/spapr_vio.h"
  57#include "hw/pci-host/spapr.h"
  58#include "hw/ppc/xics.h"
  59#include "hw/pci/msi.h"
  60
  61#include "hw/pci/pci.h"
  62#include "hw/scsi/scsi.h"
  63#include "hw/virtio/virtio-scsi.h"
  64#include "hw/virtio/vhost-scsi-common.h"
  65
  66#include "exec/address-spaces.h"
  67#include "hw/usb.h"
  68#include "qemu/config-file.h"
  69#include "qemu/error-report.h"
  70#include "trace.h"
  71#include "hw/nmi.h"
  72#include "hw/intc/intc.h"
  73
  74#include "hw/compat.h"
  75#include "qemu/cutils.h"
  76#include "hw/ppc/spapr_cpu_core.h"
  77
  78#include <libfdt.h>
  79
  80/* SLOF memory layout:
  81 *
  82 * SLOF raw image loaded at 0, copies its romfs right below the flat
  83 * device-tree, then position SLOF itself 31M below that
  84 *
  85 * So we set FW_OVERHEAD to 40MB which should account for all of that
  86 * and more
  87 *
  88 * We load our kernel at 4M, leaving space for SLOF initial image
  89 */
  90#define FDT_MAX_SIZE            0x100000
  91#define RTAS_MAX_SIZE           0x10000
  92#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  93#define FW_MAX_SIZE             0x400000
  94#define FW_FILE_NAME            "slof.bin"
  95#define FW_OVERHEAD             0x2800000
  96#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  97
  98#define MIN_RMA_SLOF            128UL
  99
 100#define PHANDLE_XICP            0x00001111
 101
 102/* These two functions implement the VCPU id numbering: one to compute them
 103 * all and one to identify thread 0 of a VCORE. Any change to the first one
 104 * is likely to have an impact on the second one, so let's keep them close.
 105 */
 106static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
 107{
 108    assert(spapr->vsmt);
 109    return
 110        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 111}
 112static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
 113                                      PowerPCCPU *cpu)
 114{
 115    assert(spapr->vsmt);
 116    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 117}
 118
 119static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 120                                  const char *type_ics,
 121                                  int nr_irqs, Error **errp)
 122{
 123    Error *local_err = NULL;
 124    Object *obj;
 125
 126    obj = object_new(type_ics);
 127    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 128    object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 129                                   &error_abort);
 130    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 131    if (local_err) {
 132        goto error;
 133    }
 134    object_property_set_bool(obj, true, "realized", &local_err);
 135    if (local_err) {
 136        goto error;
 137    }
 138
 139    return ICS_SIMPLE(obj);
 140
 141error:
 142    error_propagate(errp, local_err);
 143    return NULL;
 144}
 145
 146static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 147{
 148    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 149     * and newer QEMUs don't even have them. In both cases, we don't want
 150     * to send anything on the wire.
 151     */
 152    return false;
 153}
 154
 155static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 156    .name = "icp/server",
 157    .version_id = 1,
 158    .minimum_version_id = 1,
 159    .needed = pre_2_10_vmstate_dummy_icp_needed,
 160    .fields = (VMStateField[]) {
 161        VMSTATE_UNUSED(4), /* uint32_t xirr */
 162        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 163        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 164        VMSTATE_END_OF_LIST()
 165    },
 166};
 167
 168static void pre_2_10_vmstate_register_dummy_icp(int i)
 169{
 170    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 171                     (void *)(uintptr_t) i);
 172}
 173
 174static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 175{
 176    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 177                       (void *)(uintptr_t) i);
 178}
 179
 180static int xics_max_server_number(sPAPRMachineState *spapr)
 181{
 182    assert(spapr->vsmt);
 183    return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
 184}
 185
 186static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 187{
 188    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 189
 190    if (kvm_enabled()) {
 191        if (machine_kernel_irqchip_allowed(machine) &&
 192            !xics_kvm_init(spapr, errp)) {
 193            spapr->icp_type = TYPE_KVM_ICP;
 194            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
 195        }
 196        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 197            error_prepend(errp, "kernel_irqchip requested but unavailable: ");
 198            return;
 199        }
 200    }
 201
 202    if (!spapr->ics) {
 203        xics_spapr_init(spapr);
 204        spapr->icp_type = TYPE_ICP;
 205        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
 206        if (!spapr->ics) {
 207            return;
 208        }
 209    }
 210}
 211
 212static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 213                                  int smt_threads)
 214{
 215    int i, ret = 0;
 216    uint32_t servers_prop[smt_threads];
 217    uint32_t gservers_prop[smt_threads * 2];
 218    int index = spapr_get_vcpu_id(cpu);
 219
 220    if (cpu->compat_pvr) {
 221        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 222        if (ret < 0) {
 223            return ret;
 224        }
 225    }
 226
 227    /* Build interrupt servers and gservers properties */
 228    for (i = 0; i < smt_threads; i++) {
 229        servers_prop[i] = cpu_to_be32(index + i);
 230        /* Hack, direct the group queues back to cpu 0 */
 231        gservers_prop[i*2] = cpu_to_be32(index + i);
 232        gservers_prop[i*2 + 1] = 0;
 233    }
 234    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 235                      servers_prop, sizeof(servers_prop));
 236    if (ret < 0) {
 237        return ret;
 238    }
 239    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 240                      gservers_prop, sizeof(gservers_prop));
 241
 242    return ret;
 243}
 244
 245static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 246{
 247    int index = spapr_get_vcpu_id(cpu);
 248    uint32_t associativity[] = {cpu_to_be32(0x5),
 249                                cpu_to_be32(0x0),
 250                                cpu_to_be32(0x0),
 251                                cpu_to_be32(0x0),
 252                                cpu_to_be32(cpu->node_id),
 253                                cpu_to_be32(index)};
 254
 255    /* Advertise NUMA via ibm,associativity */
 256    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 257                          sizeof(associativity));
 258}
 259
 260/* Populate the "ibm,pa-features" property */
 261static void spapr_populate_pa_features(sPAPRMachineState *spapr,
 262                                       PowerPCCPU *cpu,
 263                                       void *fdt, int offset,
 264                                       bool legacy_guest)
 265{
 266    CPUPPCState *env = &cpu->env;
 267    uint8_t pa_features_206[] = { 6, 0,
 268        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 269    uint8_t pa_features_207[] = { 24, 0,
 270        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 271        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 272        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 273        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 274    uint8_t pa_features_300[] = { 66, 0,
 275        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 276        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 277        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 278        /* 6: DS207 */
 279        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 280        /* 16: Vector */
 281        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 282        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 283        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 284        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 285        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 286        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 287        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 288        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 289        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 290        /* 42: PM, 44: PC RA, 46: SC vec'd */
 291        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 292        /* 48: SIMD, 50: QP BFP, 52: String */
 293        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 294        /* 54: DecFP, 56: DecI, 58: SHA */
 295        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 296        /* 60: NM atomic, 62: RNG */
 297        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 298    };
 299    uint8_t *pa_features = NULL;
 300    size_t pa_size;
 301
 302    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 303        pa_features = pa_features_206;
 304        pa_size = sizeof(pa_features_206);
 305    }
 306    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 307        pa_features = pa_features_207;
 308        pa_size = sizeof(pa_features_207);
 309    }
 310    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 311        pa_features = pa_features_300;
 312        pa_size = sizeof(pa_features_300);
 313    }
 314    if (!pa_features) {
 315        return;
 316    }
 317
 318    if (env->ci_large_pages) {
 319        /*
 320         * Note: we keep CI large pages off by default because a 64K capable
 321         * guest provisioned with large pages might otherwise try to map a qemu
 322         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 323         * even if that qemu runs on a 4k host.
 324         * We dd this bit back here if we are confident this is not an issue
 325         */
 326        pa_features[3] |= 0x20;
 327    }
 328    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 329        pa_features[24] |= 0x80;    /* Transactional memory support */
 330    }
 331    if (legacy_guest && pa_size > 40) {
 332        /* Workaround for broken kernels that attempt (guest) radix
 333         * mode when they can't handle it, if they see the radix bit set
 334         * in pa-features. So hide it from them. */
 335        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 336    }
 337
 338    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 339}
 340
 341static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 342{
 343    int ret = 0, offset, cpus_offset;
 344    CPUState *cs;
 345    char cpu_model[32];
 346    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 347
 348    CPU_FOREACH(cs) {
 349        PowerPCCPU *cpu = POWERPC_CPU(cs);
 350        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 351        int index = spapr_get_vcpu_id(cpu);
 352        int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 353
 354        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 355            continue;
 356        }
 357
 358        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 359
 360        cpus_offset = fdt_path_offset(fdt, "/cpus");
 361        if (cpus_offset < 0) {
 362            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 363            if (cpus_offset < 0) {
 364                return cpus_offset;
 365            }
 366        }
 367        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 368        if (offset < 0) {
 369            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 370            if (offset < 0) {
 371                return offset;
 372            }
 373        }
 374
 375        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 376                          pft_size_prop, sizeof(pft_size_prop));
 377        if (ret < 0) {
 378            return ret;
 379        }
 380
 381        if (nb_numa_nodes > 1) {
 382            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 383            if (ret < 0) {
 384                return ret;
 385            }
 386        }
 387
 388        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 389        if (ret < 0) {
 390            return ret;
 391        }
 392
 393        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 394                                   spapr->cas_legacy_guest_workaround);
 395    }
 396    return ret;
 397}
 398
 399static hwaddr spapr_node0_size(MachineState *machine)
 400{
 401    if (nb_numa_nodes) {
 402        int i;
 403        for (i = 0; i < nb_numa_nodes; ++i) {
 404            if (numa_info[i].node_mem) {
 405                return MIN(pow2floor(numa_info[i].node_mem),
 406                           machine->ram_size);
 407            }
 408        }
 409    }
 410    return machine->ram_size;
 411}
 412
 413static void add_str(GString *s, const gchar *s1)
 414{
 415    g_string_append_len(s, s1, strlen(s1) + 1);
 416}
 417
 418static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 419                                       hwaddr size)
 420{
 421    uint32_t associativity[] = {
 422        cpu_to_be32(0x4), /* length */
 423        cpu_to_be32(0x0), cpu_to_be32(0x0),
 424        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 425    };
 426    char mem_name[32];
 427    uint64_t mem_reg_property[2];
 428    int off;
 429
 430    mem_reg_property[0] = cpu_to_be64(start);
 431    mem_reg_property[1] = cpu_to_be64(size);
 432
 433    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 434    off = fdt_add_subnode(fdt, 0, mem_name);
 435    _FDT(off);
 436    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 437    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 438                      sizeof(mem_reg_property))));
 439    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 440                      sizeof(associativity))));
 441    return off;
 442}
 443
 444static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 445{
 446    MachineState *machine = MACHINE(spapr);
 447    hwaddr mem_start, node_size;
 448    int i, nb_nodes = nb_numa_nodes;
 449    NodeInfo *nodes = numa_info;
 450    NodeInfo ramnode;
 451
 452    /* No NUMA nodes, assume there is just one node with whole RAM */
 453    if (!nb_numa_nodes) {
 454        nb_nodes = 1;
 455        ramnode.node_mem = machine->ram_size;
 456        nodes = &ramnode;
 457    }
 458
 459    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 460        if (!nodes[i].node_mem) {
 461            continue;
 462        }
 463        if (mem_start >= machine->ram_size) {
 464            node_size = 0;
 465        } else {
 466            node_size = nodes[i].node_mem;
 467            if (node_size > machine->ram_size - mem_start) {
 468                node_size = machine->ram_size - mem_start;
 469            }
 470        }
 471        if (!mem_start) {
 472            /* spapr_machine_init() checks for rma_size <= node0_size
 473             * already */
 474            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 475            mem_start += spapr->rma_size;
 476            node_size -= spapr->rma_size;
 477        }
 478        for ( ; node_size; ) {
 479            hwaddr sizetmp = pow2floor(node_size);
 480
 481            /* mem_start != 0 here */
 482            if (ctzl(mem_start) < ctzl(sizetmp)) {
 483                sizetmp = 1ULL << ctzl(mem_start);
 484            }
 485
 486            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 487            node_size -= sizetmp;
 488            mem_start += sizetmp;
 489        }
 490    }
 491
 492    return 0;
 493}
 494
 495static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 496                                  sPAPRMachineState *spapr)
 497{
 498    PowerPCCPU *cpu = POWERPC_CPU(cs);
 499    CPUPPCState *env = &cpu->env;
 500    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 501    int index = spapr_get_vcpu_id(cpu);
 502    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 503                       0xffffffff, 0xffffffff};
 504    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 505        : SPAPR_TIMEBASE_FREQ;
 506    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 507    uint32_t page_sizes_prop[64];
 508    size_t page_sizes_prop_size;
 509    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 510    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 511    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 512    sPAPRDRConnector *drc;
 513    int drc_index;
 514    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 515    int i;
 516
 517    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 518    if (drc) {
 519        drc_index = spapr_drc_index(drc);
 520        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 521    }
 522
 523    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 524    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 525
 526    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 527    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 528                           env->dcache_line_size)));
 529    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 530                           env->dcache_line_size)));
 531    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 532                           env->icache_line_size)));
 533    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 534                           env->icache_line_size)));
 535
 536    if (pcc->l1_dcache_size) {
 537        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 538                               pcc->l1_dcache_size)));
 539    } else {
 540        warn_report("Unknown L1 dcache size for cpu");
 541    }
 542    if (pcc->l1_icache_size) {
 543        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 544                               pcc->l1_icache_size)));
 545    } else {
 546        warn_report("Unknown L1 icache size for cpu");
 547    }
 548
 549    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 550    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 551    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 552    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 553    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 554    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 555
 556    if (env->spr_cb[SPR_PURR].oea_read) {
 557        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 558    }
 559
 560    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 561        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 562                          segs, sizeof(segs))));
 563    }
 564
 565    /* Advertise VSX (vector extensions) if available
 566     *   1               == VMX / Altivec available
 567     *   2               == VSX available
 568     *
 569     * Only CPUs for which we create core types in spapr_cpu_core.c
 570     * are possible, and all of those have VMX */
 571    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 572        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 573    } else {
 574        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 575    }
 576
 577    /* Advertise DFP (Decimal Floating Point) if available
 578     *   0 / no property == no DFP
 579     *   1               == DFP available */
 580    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 581        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 582    }
 583
 584    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 585                                                  sizeof(page_sizes_prop));
 586    if (page_sizes_prop_size) {
 587        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 588                          page_sizes_prop, page_sizes_prop_size)));
 589    }
 590
 591    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 592
 593    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 594                           cs->cpu_index / vcpus_per_socket)));
 595
 596    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 597                      pft_size_prop, sizeof(pft_size_prop))));
 598
 599    if (nb_numa_nodes > 1) {
 600        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 601    }
 602
 603    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 604
 605    if (pcc->radix_page_info) {
 606        for (i = 0; i < pcc->radix_page_info->count; i++) {
 607            radix_AP_encodings[i] =
 608                cpu_to_be32(pcc->radix_page_info->entries[i]);
 609        }
 610        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 611                          radix_AP_encodings,
 612                          pcc->radix_page_info->count *
 613                          sizeof(radix_AP_encodings[0]))));
 614    }
 615}
 616
 617static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 618{
 619    CPUState *cs;
 620    int cpus_offset;
 621    char *nodename;
 622
 623    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 624    _FDT(cpus_offset);
 625    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 626    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 627
 628    /*
 629     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 630     * created by fdt_add_subnode() end up in the right order in FDT
 631     * for the guest kernel the enumerate the CPUs correctly.
 632     */
 633    CPU_FOREACH_REVERSE(cs) {
 634        PowerPCCPU *cpu = POWERPC_CPU(cs);
 635        int index = spapr_get_vcpu_id(cpu);
 636        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 637        int offset;
 638
 639        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 640            continue;
 641        }
 642
 643        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 644        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 645        g_free(nodename);
 646        _FDT(offset);
 647        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 648    }
 649
 650}
 651
 652static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 653{
 654    MemoryDeviceInfoList *info;
 655
 656    for (info = list; info; info = info->next) {
 657        MemoryDeviceInfo *value = info->value;
 658
 659        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 660            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 661
 662            if (pcdimm_info->addr >= addr &&
 663                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 664                return pcdimm_info->node;
 665            }
 666        }
 667    }
 668
 669    return -1;
 670}
 671
 672/*
 673 * Adds ibm,dynamic-reconfiguration-memory node.
 674 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 675 * of this device tree node.
 676 */
 677static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 678{
 679    MachineState *machine = MACHINE(spapr);
 680    int ret, i, offset;
 681    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 682    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 683    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 684    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 685                       memory_region_size(&spapr->hotplug_memory.mr)) /
 686                       lmb_size;
 687    uint32_t *int_buf, *cur_index, buf_len;
 688    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 689    MemoryDeviceInfoList *dimms = NULL;
 690
 691    /*
 692     * Don't create the node if there is no hotpluggable memory
 693     */
 694    if (machine->ram_size == machine->maxram_size) {
 695        return 0;
 696    }
 697
 698    /*
 699     * Allocate enough buffer size to fit in ibm,dynamic-memory
 700     * or ibm,associativity-lookup-arrays
 701     */
 702    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 703              * sizeof(uint32_t);
 704    cur_index = int_buf = g_malloc0(buf_len);
 705
 706    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 707
 708    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 709                    sizeof(prop_lmb_size));
 710    if (ret < 0) {
 711        goto out;
 712    }
 713
 714    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 715    if (ret < 0) {
 716        goto out;
 717    }
 718
 719    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 720    if (ret < 0) {
 721        goto out;
 722    }
 723
 724    if (hotplug_lmb_start) {
 725        dimms = qmp_pc_dimm_device_list();
 726    }
 727
 728    /* ibm,dynamic-memory */
 729    int_buf[0] = cpu_to_be32(nr_lmbs);
 730    cur_index++;
 731    for (i = 0; i < nr_lmbs; i++) {
 732        uint64_t addr = i * lmb_size;
 733        uint32_t *dynamic_memory = cur_index;
 734
 735        if (i >= hotplug_lmb_start) {
 736            sPAPRDRConnector *drc;
 737
 738            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 739            g_assert(drc);
 740
 741            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 742            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 743            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 744            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 745            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 746            if (memory_region_present(get_system_memory(), addr)) {
 747                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 748            } else {
 749                dynamic_memory[5] = cpu_to_be32(0);
 750            }
 751        } else {
 752            /*
 753             * LMB information for RMA, boot time RAM and gap b/n RAM and
 754             * hotplug memory region -- all these are marked as reserved
 755             * and as having no valid DRC.
 756             */
 757            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 758            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 759            dynamic_memory[2] = cpu_to_be32(0);
 760            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 761            dynamic_memory[4] = cpu_to_be32(-1);
 762            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 763                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 764        }
 765
 766        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 767    }
 768    qapi_free_MemoryDeviceInfoList(dimms);
 769    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 770    if (ret < 0) {
 771        goto out;
 772    }
 773
 774    /* ibm,associativity-lookup-arrays */
 775    cur_index = int_buf;
 776    int_buf[0] = cpu_to_be32(nr_nodes);
 777    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 778    cur_index += 2;
 779    for (i = 0; i < nr_nodes; i++) {
 780        uint32_t associativity[] = {
 781            cpu_to_be32(0x0),
 782            cpu_to_be32(0x0),
 783            cpu_to_be32(0x0),
 784            cpu_to_be32(i)
 785        };
 786        memcpy(cur_index, associativity, sizeof(associativity));
 787        cur_index += 4;
 788    }
 789    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 790            (cur_index - int_buf) * sizeof(uint32_t));
 791out:
 792    g_free(int_buf);
 793    return ret;
 794}
 795
 796static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 797                                sPAPROptionVector *ov5_updates)
 798{
 799    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 800    int ret = 0, offset;
 801
 802    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 803    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 804        g_assert(smc->dr_lmb_enabled);
 805        ret = spapr_populate_drconf_memory(spapr, fdt);
 806        if (ret) {
 807            goto out;
 808        }
 809    }
 810
 811    offset = fdt_path_offset(fdt, "/chosen");
 812    if (offset < 0) {
 813        offset = fdt_add_subnode(fdt, 0, "chosen");
 814        if (offset < 0) {
 815            return offset;
 816        }
 817    }
 818    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 819                                 "ibm,architecture-vec-5");
 820
 821out:
 822    return ret;
 823}
 824
 825static bool spapr_hotplugged_dev_before_cas(void)
 826{
 827    Object *drc_container, *obj;
 828    ObjectProperty *prop;
 829    ObjectPropertyIterator iter;
 830
 831    drc_container = container_get(object_get_root(), "/dr-connector");
 832    object_property_iter_init(&iter, drc_container);
 833    while ((prop = object_property_iter_next(&iter))) {
 834        if (!strstart(prop->type, "link<", NULL)) {
 835            continue;
 836        }
 837        obj = object_property_get_link(drc_container, prop->name, NULL);
 838        if (spapr_drc_needed(obj)) {
 839            return true;
 840        }
 841    }
 842    return false;
 843}
 844
 845int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 846                                 target_ulong addr, target_ulong size,
 847                                 sPAPROptionVector *ov5_updates)
 848{
 849    void *fdt, *fdt_skel;
 850    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 851
 852    if (spapr_hotplugged_dev_before_cas()) {
 853        return 1;
 854    }
 855
 856    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 857        error_report("SLOF provided an unexpected CAS buffer size "
 858                     TARGET_FMT_lu " (min: %zu, max: %u)",
 859                     size, sizeof(hdr), FW_MAX_SIZE);
 860        exit(EXIT_FAILURE);
 861    }
 862
 863    size -= sizeof(hdr);
 864
 865    /* Create skeleton */
 866    fdt_skel = g_malloc0(size);
 867    _FDT((fdt_create(fdt_skel, size)));
 868    _FDT((fdt_finish_reservemap(fdt_skel)));
 869    _FDT((fdt_begin_node(fdt_skel, "")));
 870    _FDT((fdt_end_node(fdt_skel)));
 871    _FDT((fdt_finish(fdt_skel)));
 872    fdt = g_malloc0(size);
 873    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 874    g_free(fdt_skel);
 875
 876    /* Fixup cpu nodes */
 877    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 878
 879    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 880        return -1;
 881    }
 882
 883    /* Pack resulting tree */
 884    _FDT((fdt_pack(fdt)));
 885
 886    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 887        trace_spapr_cas_failed(size);
 888        return -1;
 889    }
 890
 891    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 892    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 893    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 894    g_free(fdt);
 895
 896    return 0;
 897}
 898
 899static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 900{
 901    int rtas;
 902    GString *hypertas = g_string_sized_new(256);
 903    GString *qemu_hypertas = g_string_sized_new(256);
 904    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 905    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 906        memory_region_size(&spapr->hotplug_memory.mr);
 907    uint32_t lrdr_capacity[] = {
 908        cpu_to_be32(max_hotplug_addr >> 32),
 909        cpu_to_be32(max_hotplug_addr & 0xffffffff),
 910        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 911        cpu_to_be32(max_cpus / smp_threads),
 912    };
 913
 914    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 915
 916    /* hypertas */
 917    add_str(hypertas, "hcall-pft");
 918    add_str(hypertas, "hcall-term");
 919    add_str(hypertas, "hcall-dabr");
 920    add_str(hypertas, "hcall-interrupt");
 921    add_str(hypertas, "hcall-tce");
 922    add_str(hypertas, "hcall-vio");
 923    add_str(hypertas, "hcall-splpar");
 924    add_str(hypertas, "hcall-bulk");
 925    add_str(hypertas, "hcall-set-mode");
 926    add_str(hypertas, "hcall-sprg0");
 927    add_str(hypertas, "hcall-copy");
 928    add_str(hypertas, "hcall-debug");
 929    add_str(qemu_hypertas, "hcall-memop1");
 930
 931    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 932        add_str(hypertas, "hcall-multi-tce");
 933    }
 934
 935    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 936        add_str(hypertas, "hcall-hpt-resize");
 937    }
 938
 939    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 940                     hypertas->str, hypertas->len));
 941    g_string_free(hypertas, TRUE);
 942    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 943                     qemu_hypertas->str, qemu_hypertas->len));
 944    g_string_free(qemu_hypertas, TRUE);
 945
 946    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 947                     refpoints, sizeof(refpoints)));
 948
 949    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 950                          RTAS_ERROR_LOG_MAX));
 951    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 952                          RTAS_EVENT_SCAN_RATE));
 953
 954    g_assert(msi_nonbroken);
 955    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 956
 957    /*
 958     * According to PAPR, rtas ibm,os-term does not guarantee a return
 959     * back to the guest cpu.
 960     *
 961     * While an additional ibm,extended-os-term property indicates
 962     * that rtas call return will always occur. Set this property.
 963     */
 964    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 965
 966    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 967                     lrdr_capacity, sizeof(lrdr_capacity)));
 968
 969    spapr_dt_rtas_tokens(fdt, rtas);
 970}
 971
 972/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 973 * that the guest may request and thus the valid values for bytes 24..26 of
 974 * option vector 5: */
 975static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
 976{
 977    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 978
 979    char val[2 * 4] = {
 980        23, 0x00, /* Xive mode, filled in below. */
 981        24, 0x00, /* Hash/Radix, filled in below. */
 982        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 983        26, 0x40, /* Radix options: GTSE == yes. */
 984    };
 985
 986    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 987                          first_ppc_cpu->compat_pvr)) {
 988        /* If we're in a pre POWER9 compat mode then the guest should do hash */
 989        val[3] = 0x00; /* Hash */
 990    } else if (kvm_enabled()) {
 991        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 992            val[3] = 0x80; /* OV5_MMU_BOTH */
 993        } else if (kvmppc_has_cap_mmu_radix()) {
 994            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 995        } else {
 996            val[3] = 0x00; /* Hash */
 997        }
 998    } else {
 999        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1000        val[3] = 0xC0;
1001    }
1002    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1003                     val, sizeof(val)));
1004}
1005
1006static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1007{
1008    MachineState *machine = MACHINE(spapr);
1009    int chosen;
1010    const char *boot_device = machine->boot_order;
1011    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1012    size_t cb = 0;
1013    char *bootlist = get_boot_devices_list(&cb, true);
1014
1015    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016
1017    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1018    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019                          spapr->initrd_base));
1020    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021                          spapr->initrd_base + spapr->initrd_size));
1022
1023    if (spapr->kernel_size) {
1024        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1025                              cpu_to_be64(spapr->kernel_size) };
1026
1027        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1028                         &kprop, sizeof(kprop)));
1029        if (spapr->kernel_le) {
1030            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1031        }
1032    }
1033    if (boot_menu) {
1034        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1035    }
1036    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1037    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1038    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1039
1040    if (cb && bootlist) {
1041        int i;
1042
1043        for (i = 0; i < cb; i++) {
1044            if (bootlist[i] == '\n') {
1045                bootlist[i] = ' ';
1046            }
1047        }
1048        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1049    }
1050
1051    if (boot_device && strlen(boot_device)) {
1052        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1053    }
1054
1055    if (!spapr->has_graphics && stdout_path) {
1056        /*
1057         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1058         * kernel. New platforms should only use the "stdout-path" property. Set
1059         * the new property and continue using older property to remain
1060         * compatible with the existing firmware.
1061         */
1062        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1063        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1064    }
1065
1066    spapr_dt_ov5_platform_support(fdt, chosen);
1067
1068    g_free(stdout_path);
1069    g_free(bootlist);
1070}
1071
1072static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1073{
1074    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1075     * KVM to work under pHyp with some guest co-operation */
1076    int hypervisor;
1077    uint8_t hypercall[16];
1078
1079    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1080    /* indicate KVM hypercall interface */
1081    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1082    if (kvmppc_has_cap_fixup_hcalls()) {
1083        /*
1084         * Older KVM versions with older guest kernels were broken
1085         * with the magic page, don't allow the guest to map it.
1086         */
1087        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1088                                  sizeof(hypercall))) {
1089            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1090                             hypercall, sizeof(hypercall)));
1091        }
1092    }
1093}
1094
1095static void *spapr_build_fdt(sPAPRMachineState *spapr,
1096                             hwaddr rtas_addr,
1097                             hwaddr rtas_size)
1098{
1099    MachineState *machine = MACHINE(spapr);
1100    MachineClass *mc = MACHINE_GET_CLASS(machine);
1101    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1102    int ret;
1103    void *fdt;
1104    sPAPRPHBState *phb;
1105    char *buf;
1106
1107    fdt = g_malloc0(FDT_MAX_SIZE);
1108    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1109
1110    /* Root node */
1111    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1112    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1113    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1114
1115    /*
1116     * Add info to guest to indentify which host is it being run on
1117     * and what is the uuid of the guest
1118     */
1119    if (kvmppc_get_host_model(&buf)) {
1120        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1121        g_free(buf);
1122    }
1123    if (kvmppc_get_host_serial(&buf)) {
1124        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1125        g_free(buf);
1126    }
1127
1128    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129
1130    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131    if (qemu_uuid_set) {
1132        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133    }
1134    g_free(buf);
1135
1136    if (qemu_get_vm_name()) {
1137        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138                                qemu_get_vm_name()));
1139    }
1140
1141    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1142    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1143
1144    /* /interrupt controller */
1145    spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1146
1147    ret = spapr_populate_memory(spapr, fdt);
1148    if (ret < 0) {
1149        error_report("couldn't setup memory nodes in fdt");
1150        exit(1);
1151    }
1152
1153    /* /vdevice */
1154    spapr_dt_vdevice(spapr->vio_bus, fdt);
1155
1156    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1157        ret = spapr_rng_populate_dt(fdt);
1158        if (ret < 0) {
1159            error_report("could not set up rng device in the fdt");
1160            exit(1);
1161        }
1162    }
1163
1164    QLIST_FOREACH(phb, &spapr->phbs, list) {
1165        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1166        if (ret < 0) {
1167            error_report("couldn't setup PCI devices in fdt");
1168            exit(1);
1169        }
1170    }
1171
1172    /* cpus */
1173    spapr_populate_cpus_dt_node(fdt, spapr);
1174
1175    if (smc->dr_lmb_enabled) {
1176        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1177    }
1178
1179    if (mc->has_hotpluggable_cpus) {
1180        int offset = fdt_path_offset(fdt, "/cpus");
1181        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1182                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1183        if (ret < 0) {
1184            error_report("Couldn't set up CPU DR device tree properties");
1185            exit(1);
1186        }
1187    }
1188
1189    /* /event-sources */
1190    spapr_dt_events(spapr, fdt);
1191
1192    /* /rtas */
1193    spapr_dt_rtas(spapr, fdt);
1194
1195    /* /chosen */
1196    spapr_dt_chosen(spapr, fdt);
1197
1198    /* /hypervisor */
1199    if (kvm_enabled()) {
1200        spapr_dt_hypervisor(spapr, fdt);
1201    }
1202
1203    /* Build memory reserve map */
1204    if (spapr->kernel_size) {
1205        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1206    }
1207    if (spapr->initrd_size) {
1208        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1209    }
1210
1211    /* ibm,client-architecture-support updates */
1212    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1213    if (ret < 0) {
1214        error_report("couldn't setup CAS properties fdt");
1215        exit(1);
1216    }
1217
1218    return fdt;
1219}
1220
1221static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1222{
1223    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1224}
1225
1226static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1227                                    PowerPCCPU *cpu)
1228{
1229    CPUPPCState *env = &cpu->env;
1230
1231    /* The TCG path should also be holding the BQL at this point */
1232    g_assert(qemu_mutex_iothread_locked());
1233
1234    if (msr_pr) {
1235        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1236        env->gpr[3] = H_PRIVILEGE;
1237    } else {
1238        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1239    }
1240}
1241
1242static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1243{
1244    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245
1246    return spapr->patb_entry;
1247}
1248
1249#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1250#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1251#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1252#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1253#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1254
1255/*
1256 * Get the fd to access the kernel htab, re-opening it if necessary
1257 */
1258static int get_htab_fd(sPAPRMachineState *spapr)
1259{
1260    Error *local_err = NULL;
1261
1262    if (spapr->htab_fd >= 0) {
1263        return spapr->htab_fd;
1264    }
1265
1266    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1267    if (spapr->htab_fd < 0) {
1268        error_report_err(local_err);
1269    }
1270
1271    return spapr->htab_fd;
1272}
1273
1274void close_htab_fd(sPAPRMachineState *spapr)
1275{
1276    if (spapr->htab_fd >= 0) {
1277        close(spapr->htab_fd);
1278    }
1279    spapr->htab_fd = -1;
1280}
1281
1282static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1283{
1284    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1285
1286    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1287}
1288
1289static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1290{
1291    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292
1293    assert(kvm_enabled());
1294
1295    if (!spapr->htab) {
1296        return 0;
1297    }
1298
1299    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1300}
1301
1302static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1303                                                hwaddr ptex, int n)
1304{
1305    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1306    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1307
1308    if (!spapr->htab) {
1309        /*
1310         * HTAB is controlled by KVM. Fetch into temporary buffer
1311         */
1312        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1313        kvmppc_read_hptes(hptes, ptex, n);
1314        return hptes;
1315    }
1316
1317    /*
1318     * HTAB is controlled by QEMU. Just point to the internally
1319     * accessible PTEG.
1320     */
1321    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1322}
1323
1324static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1325                              const ppc_hash_pte64_t *hptes,
1326                              hwaddr ptex, int n)
1327{
1328    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1329
1330    if (!spapr->htab) {
1331        g_free((void *)hptes);
1332    }
1333
1334    /* Nothing to do for qemu managed HPT */
1335}
1336
1337static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1338                             uint64_t pte0, uint64_t pte1)
1339{
1340    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1341    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1342
1343    if (!spapr->htab) {
1344        kvmppc_write_hpte(ptex, pte0, pte1);
1345    } else {
1346        stq_p(spapr->htab + offset, pte0);
1347        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1348    }
1349}
1350
1351int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1352{
1353    int shift;
1354
1355    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1356     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1357     * that's much more than is needed for Linux guests */
1358    shift = ctz64(pow2ceil(ramsize)) - 7;
1359    shift = MAX(shift, 18); /* Minimum architected size */
1360    shift = MIN(shift, 46); /* Maximum architected size */
1361    return shift;
1362}
1363
1364void spapr_free_hpt(sPAPRMachineState *spapr)
1365{
1366    g_free(spapr->htab);
1367    spapr->htab = NULL;
1368    spapr->htab_shift = 0;
1369    close_htab_fd(spapr);
1370}
1371
1372void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1373                          Error **errp)
1374{
1375    long rc;
1376
1377    /* Clean up any HPT info from a previous boot */
1378    spapr_free_hpt(spapr);
1379
1380    rc = kvmppc_reset_htab(shift);
1381    if (rc < 0) {
1382        /* kernel-side HPT needed, but couldn't allocate one */
1383        error_setg_errno(errp, errno,
1384                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1385                         shift);
1386        /* This is almost certainly fatal, but if the caller really
1387         * wants to carry on with shift == 0, it's welcome to try */
1388    } else if (rc > 0) {
1389        /* kernel-side HPT allocated */
1390        if (rc != shift) {
1391            error_setg(errp,
1392                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1393                       shift, rc);
1394        }
1395
1396        spapr->htab_shift = shift;
1397        spapr->htab = NULL;
1398    } else {
1399        /* kernel-side HPT not needed, allocate in userspace instead */
1400        size_t size = 1ULL << shift;
1401        int i;
1402
1403        spapr->htab = qemu_memalign(size, size);
1404        if (!spapr->htab) {
1405            error_setg_errno(errp, errno,
1406                             "Could not allocate HPT of order %d", shift);
1407            return;
1408        }
1409
1410        memset(spapr->htab, 0, size);
1411        spapr->htab_shift = shift;
1412
1413        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1414            DIRTY_HPTE(HPTE(spapr->htab, i));
1415        }
1416    }
1417    /* We're setting up a hash table, so that means we're not radix */
1418    spapr->patb_entry = 0;
1419}
1420
1421void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1422{
1423    int hpt_shift;
1424
1425    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1426        || (spapr->cas_reboot
1427            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1428        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1429    } else {
1430        uint64_t current_ram_size;
1431
1432        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1433        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1434    }
1435    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1436
1437    if (spapr->vrma_adjust) {
1438        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1439                                          spapr->htab_shift);
1440    }
1441}
1442
1443static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1444{
1445    bool matched = false;
1446
1447    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1448        matched = true;
1449    }
1450
1451    if (!matched) {
1452        error_report("Device %s is not supported by this machine yet.",
1453                     qdev_fw_name(DEVICE(sbdev)));
1454        exit(1);
1455    }
1456}
1457
1458static int spapr_reset_drcs(Object *child, void *opaque)
1459{
1460    sPAPRDRConnector *drc =
1461        (sPAPRDRConnector *) object_dynamic_cast(child,
1462                                                 TYPE_SPAPR_DR_CONNECTOR);
1463
1464    if (drc) {
1465        spapr_drc_reset(drc);
1466    }
1467
1468    return 0;
1469}
1470
1471static void spapr_machine_reset(void)
1472{
1473    MachineState *machine = MACHINE(qdev_get_machine());
1474    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1475    PowerPCCPU *first_ppc_cpu;
1476    uint32_t rtas_limit;
1477    hwaddr rtas_addr, fdt_addr;
1478    void *fdt;
1479    int rc;
1480
1481    /* Check for unknown sysbus devices */
1482    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1483
1484    spapr_caps_reset(spapr);
1485
1486    first_ppc_cpu = POWERPC_CPU(first_cpu);
1487    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1488        ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1489                         spapr->max_compat_pvr)) {
1490        /* If using KVM with radix mode available, VCPUs can be started
1491         * without a HPT because KVM will start them in radix mode.
1492         * Set the GR bit in PATB so that we know there is no HPT. */
1493        spapr->patb_entry = PATBE1_GR;
1494    } else {
1495        spapr_setup_hpt_and_vrma(spapr);
1496    }
1497
1498    /* if this reset wasn't generated by CAS, we should reset our
1499     * negotiated options and start from scratch */
1500    if (!spapr->cas_reboot) {
1501        spapr_ovec_cleanup(spapr->ov5_cas);
1502        spapr->ov5_cas = spapr_ovec_new();
1503
1504        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1505    }
1506
1507    qemu_devices_reset();
1508
1509    /* DRC reset may cause a device to be unplugged. This will cause troubles
1510     * if this device is used by another device (eg, a running vhost backend
1511     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1512     * situations, we reset DRCs after all devices have been reset.
1513     */
1514    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1515
1516    spapr_clear_pending_events(spapr);
1517
1518    /*
1519     * We place the device tree and RTAS just below either the top of the RMA,
1520     * or just below 2GB, whichever is lowere, so that it can be
1521     * processed with 32-bit real mode code if necessary
1522     */
1523    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1524    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1525    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1526
1527    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1528
1529    spapr_load_rtas(spapr, fdt, rtas_addr);
1530
1531    rc = fdt_pack(fdt);
1532
1533    /* Should only fail if we've built a corrupted tree */
1534    assert(rc == 0);
1535
1536    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1537        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1538                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1539        exit(1);
1540    }
1541
1542    /* Load the fdt */
1543    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1544    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1545    g_free(fdt);
1546
1547    /* Set up the entry state */
1548    first_ppc_cpu->env.gpr[3] = fdt_addr;
1549    first_ppc_cpu->env.gpr[5] = 0;
1550    first_cpu->halted = 0;
1551    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1552
1553    spapr->cas_reboot = false;
1554}
1555
1556static void spapr_create_nvram(sPAPRMachineState *spapr)
1557{
1558    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1559    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1560
1561    if (dinfo) {
1562        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1563                            &error_fatal);
1564    }
1565
1566    qdev_init_nofail(dev);
1567
1568    spapr->nvram = (struct sPAPRNVRAM *)dev;
1569}
1570
1571static void spapr_rtc_create(sPAPRMachineState *spapr)
1572{
1573    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1574    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1575                              &error_fatal);
1576    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1577                              &error_fatal);
1578    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1579                              "date", &error_fatal);
1580}
1581
1582/* Returns whether we want to use VGA or not */
1583static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1584{
1585    switch (vga_interface_type) {
1586    case VGA_NONE:
1587        return false;
1588    case VGA_DEVICE:
1589        return true;
1590    case VGA_STD:
1591    case VGA_VIRTIO:
1592        return pci_vga_init(pci_bus) != NULL;
1593    default:
1594        error_setg(errp,
1595                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1596        return false;
1597    }
1598}
1599
1600static int spapr_pre_load(void *opaque)
1601{
1602    int rc;
1603
1604    rc = spapr_caps_pre_load(opaque);
1605    if (rc) {
1606        return rc;
1607    }
1608
1609    return 0;
1610}
1611
1612static int spapr_post_load(void *opaque, int version_id)
1613{
1614    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1615    int err = 0;
1616
1617    err = spapr_caps_post_migration(spapr);
1618    if (err) {
1619        return err;
1620    }
1621
1622    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1623        CPUState *cs;
1624        CPU_FOREACH(cs) {
1625            PowerPCCPU *cpu = POWERPC_CPU(cs);
1626            icp_resend(ICP(cpu->intc));
1627        }
1628    }
1629
1630    /* In earlier versions, there was no separate qdev for the PAPR
1631     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1632     * So when migrating from those versions, poke the incoming offset
1633     * value into the RTC device */
1634    if (version_id < 3) {
1635        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1636    }
1637
1638    if (kvm_enabled() && spapr->patb_entry) {
1639        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1640        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1641        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1642
1643        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1644        if (err) {
1645            error_report("Process table config unsupported by the host");
1646            return -EINVAL;
1647        }
1648    }
1649
1650    return err;
1651}
1652
1653static int spapr_pre_save(void *opaque)
1654{
1655    int rc;
1656
1657    rc = spapr_caps_pre_save(opaque);
1658    if (rc) {
1659        return rc;
1660    }
1661
1662    return 0;
1663}
1664
1665static bool version_before_3(void *opaque, int version_id)
1666{
1667    return version_id < 3;
1668}
1669
1670static bool spapr_pending_events_needed(void *opaque)
1671{
1672    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1673    return !QTAILQ_EMPTY(&spapr->pending_events);
1674}
1675
1676static const VMStateDescription vmstate_spapr_event_entry = {
1677    .name = "spapr_event_log_entry",
1678    .version_id = 1,
1679    .minimum_version_id = 1,
1680    .fields = (VMStateField[]) {
1681        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1682        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1683        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1684                                     NULL, extended_length),
1685        VMSTATE_END_OF_LIST()
1686    },
1687};
1688
1689static const VMStateDescription vmstate_spapr_pending_events = {
1690    .name = "spapr_pending_events",
1691    .version_id = 1,
1692    .minimum_version_id = 1,
1693    .needed = spapr_pending_events_needed,
1694    .fields = (VMStateField[]) {
1695        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1696                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1697        VMSTATE_END_OF_LIST()
1698    },
1699};
1700
1701static bool spapr_ov5_cas_needed(void *opaque)
1702{
1703    sPAPRMachineState *spapr = opaque;
1704    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1705    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1706    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1707    bool cas_needed;
1708
1709    /* Prior to the introduction of sPAPROptionVector, we had two option
1710     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1711     * Both of these options encode machine topology into the device-tree
1712     * in such a way that the now-booted OS should still be able to interact
1713     * appropriately with QEMU regardless of what options were actually
1714     * negotiatied on the source side.
1715     *
1716     * As such, we can avoid migrating the CAS-negotiated options if these
1717     * are the only options available on the current machine/platform.
1718     * Since these are the only options available for pseries-2.7 and
1719     * earlier, this allows us to maintain old->new/new->old migration
1720     * compatibility.
1721     *
1722     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1723     * via default pseries-2.8 machines and explicit command-line parameters.
1724     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1725     * of the actual CAS-negotiated values to continue working properly. For
1726     * example, availability of memory unplug depends on knowing whether
1727     * OV5_HP_EVT was negotiated via CAS.
1728     *
1729     * Thus, for any cases where the set of available CAS-negotiatable
1730     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1731     * include the CAS-negotiated options in the migration stream.
1732     */
1733    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1734    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1735
1736    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1737     * the mask itself since in the future it's possible "legacy" bits may be
1738     * removed via machine options, which could generate a false positive
1739     * that breaks migration.
1740     */
1741    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1742    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1743
1744    spapr_ovec_cleanup(ov5_mask);
1745    spapr_ovec_cleanup(ov5_legacy);
1746    spapr_ovec_cleanup(ov5_removed);
1747
1748    return cas_needed;
1749}
1750
1751static const VMStateDescription vmstate_spapr_ov5_cas = {
1752    .name = "spapr_option_vector_ov5_cas",
1753    .version_id = 1,
1754    .minimum_version_id = 1,
1755    .needed = spapr_ov5_cas_needed,
1756    .fields = (VMStateField[]) {
1757        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1758                                 vmstate_spapr_ovec, sPAPROptionVector),
1759        VMSTATE_END_OF_LIST()
1760    },
1761};
1762
1763static bool spapr_patb_entry_needed(void *opaque)
1764{
1765    sPAPRMachineState *spapr = opaque;
1766
1767    return !!spapr->patb_entry;
1768}
1769
1770static const VMStateDescription vmstate_spapr_patb_entry = {
1771    .name = "spapr_patb_entry",
1772    .version_id = 1,
1773    .minimum_version_id = 1,
1774    .needed = spapr_patb_entry_needed,
1775    .fields = (VMStateField[]) {
1776        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1777        VMSTATE_END_OF_LIST()
1778    },
1779};
1780
1781static const VMStateDescription vmstate_spapr = {
1782    .name = "spapr",
1783    .version_id = 3,
1784    .minimum_version_id = 1,
1785    .pre_load = spapr_pre_load,
1786    .post_load = spapr_post_load,
1787    .pre_save = spapr_pre_save,
1788    .fields = (VMStateField[]) {
1789        /* used to be @next_irq */
1790        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1791
1792        /* RTC offset */
1793        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1794
1795        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1796        VMSTATE_END_OF_LIST()
1797    },
1798    .subsections = (const VMStateDescription*[]) {
1799        &vmstate_spapr_ov5_cas,
1800        &vmstate_spapr_patb_entry,
1801        &vmstate_spapr_pending_events,
1802        &vmstate_spapr_cap_htm,
1803        &vmstate_spapr_cap_vsx,
1804        &vmstate_spapr_cap_dfp,
1805        &vmstate_spapr_cap_cfpc,
1806        &vmstate_spapr_cap_sbbc,
1807        &vmstate_spapr_cap_ibs,
1808        NULL
1809    }
1810};
1811
1812static int htab_save_setup(QEMUFile *f, void *opaque)
1813{
1814    sPAPRMachineState *spapr = opaque;
1815
1816    /* "Iteration" header */
1817    if (!spapr->htab_shift) {
1818        qemu_put_be32(f, -1);
1819    } else {
1820        qemu_put_be32(f, spapr->htab_shift);
1821    }
1822
1823    if (spapr->htab) {
1824        spapr->htab_save_index = 0;
1825        spapr->htab_first_pass = true;
1826    } else {
1827        if (spapr->htab_shift) {
1828            assert(kvm_enabled());
1829        }
1830    }
1831
1832
1833    return 0;
1834}
1835
1836static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1837                            int chunkstart, int n_valid, int n_invalid)
1838{
1839    qemu_put_be32(f, chunkstart);
1840    qemu_put_be16(f, n_valid);
1841    qemu_put_be16(f, n_invalid);
1842    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1843                    HASH_PTE_SIZE_64 * n_valid);
1844}
1845
1846static void htab_save_end_marker(QEMUFile *f)
1847{
1848    qemu_put_be32(f, 0);
1849    qemu_put_be16(f, 0);
1850    qemu_put_be16(f, 0);
1851}
1852
1853static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1854                                 int64_t max_ns)
1855{
1856    bool has_timeout = max_ns != -1;
1857    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1858    int index = spapr->htab_save_index;
1859    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1860
1861    assert(spapr->htab_first_pass);
1862
1863    do {
1864        int chunkstart;
1865
1866        /* Consume invalid HPTEs */
1867        while ((index < htabslots)
1868               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1869            CLEAN_HPTE(HPTE(spapr->htab, index));
1870            index++;
1871        }
1872
1873        /* Consume valid HPTEs */
1874        chunkstart = index;
1875        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1876               && HPTE_VALID(HPTE(spapr->htab, index))) {
1877            CLEAN_HPTE(HPTE(spapr->htab, index));
1878            index++;
1879        }
1880
1881        if (index > chunkstart) {
1882            int n_valid = index - chunkstart;
1883
1884            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1885
1886            if (has_timeout &&
1887                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1888                break;
1889            }
1890        }
1891    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1892
1893    if (index >= htabslots) {
1894        assert(index == htabslots);
1895        index = 0;
1896        spapr->htab_first_pass = false;
1897    }
1898    spapr->htab_save_index = index;
1899}
1900
1901static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1902                                int64_t max_ns)
1903{
1904    bool final = max_ns < 0;
1905    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1906    int examined = 0, sent = 0;
1907    int index = spapr->htab_save_index;
1908    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1909
1910    assert(!spapr->htab_first_pass);
1911
1912    do {
1913        int chunkstart, invalidstart;
1914
1915        /* Consume non-dirty HPTEs */
1916        while ((index < htabslots)
1917               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1918            index++;
1919            examined++;
1920        }
1921
1922        chunkstart = index;
1923        /* Consume valid dirty HPTEs */
1924        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1925               && HPTE_DIRTY(HPTE(spapr->htab, index))
1926               && HPTE_VALID(HPTE(spapr->htab, index))) {
1927            CLEAN_HPTE(HPTE(spapr->htab, index));
1928            index++;
1929            examined++;
1930        }
1931
1932        invalidstart = index;
1933        /* Consume invalid dirty HPTEs */
1934        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1935               && HPTE_DIRTY(HPTE(spapr->htab, index))
1936               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1937            CLEAN_HPTE(HPTE(spapr->htab, index));
1938            index++;
1939            examined++;
1940        }
1941
1942        if (index > chunkstart) {
1943            int n_valid = invalidstart - chunkstart;
1944            int n_invalid = index - invalidstart;
1945
1946            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1947            sent += index - chunkstart;
1948
1949            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1950                break;
1951            }
1952        }
1953
1954        if (examined >= htabslots) {
1955            break;
1956        }
1957
1958        if (index >= htabslots) {
1959            assert(index == htabslots);
1960            index = 0;
1961        }
1962    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1963
1964    if (index >= htabslots) {
1965        assert(index == htabslots);
1966        index = 0;
1967    }
1968
1969    spapr->htab_save_index = index;
1970
1971    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1972}
1973
1974#define MAX_ITERATION_NS    5000000 /* 5 ms */
1975#define MAX_KVM_BUF_SIZE    2048
1976
1977static int htab_save_iterate(QEMUFile *f, void *opaque)
1978{
1979    sPAPRMachineState *spapr = opaque;
1980    int fd;
1981    int rc = 0;
1982
1983    /* Iteration header */
1984    if (!spapr->htab_shift) {
1985        qemu_put_be32(f, -1);
1986        return 1;
1987    } else {
1988        qemu_put_be32(f, 0);
1989    }
1990
1991    if (!spapr->htab) {
1992        assert(kvm_enabled());
1993
1994        fd = get_htab_fd(spapr);
1995        if (fd < 0) {
1996            return fd;
1997        }
1998
1999        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2000        if (rc < 0) {
2001            return rc;
2002        }
2003    } else  if (spapr->htab_first_pass) {
2004        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2005    } else {
2006        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2007    }
2008
2009    htab_save_end_marker(f);
2010
2011    return rc;
2012}
2013
2014static int htab_save_complete(QEMUFile *f, void *opaque)
2015{
2016    sPAPRMachineState *spapr = opaque;
2017    int fd;
2018
2019    /* Iteration header */
2020    if (!spapr->htab_shift) {
2021        qemu_put_be32(f, -1);
2022        return 0;
2023    } else {
2024        qemu_put_be32(f, 0);
2025    }
2026
2027    if (!spapr->htab) {
2028        int rc;
2029
2030        assert(kvm_enabled());
2031
2032        fd = get_htab_fd(spapr);
2033        if (fd < 0) {
2034            return fd;
2035        }
2036
2037        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2038        if (rc < 0) {
2039            return rc;
2040        }
2041    } else {
2042        if (spapr->htab_first_pass) {
2043            htab_save_first_pass(f, spapr, -1);
2044        }
2045        htab_save_later_pass(f, spapr, -1);
2046    }
2047
2048    /* End marker */
2049    htab_save_end_marker(f);
2050
2051    return 0;
2052}
2053
2054static int htab_load(QEMUFile *f, void *opaque, int version_id)
2055{
2056    sPAPRMachineState *spapr = opaque;
2057    uint32_t section_hdr;
2058    int fd = -1;
2059    Error *local_err = NULL;
2060
2061    if (version_id < 1 || version_id > 1) {
2062        error_report("htab_load() bad version");
2063        return -EINVAL;
2064    }
2065
2066    section_hdr = qemu_get_be32(f);
2067
2068    if (section_hdr == -1) {
2069        spapr_free_hpt(spapr);
2070        return 0;
2071    }
2072
2073    if (section_hdr) {
2074        /* First section gives the htab size */
2075        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2076        if (local_err) {
2077            error_report_err(local_err);
2078            return -EINVAL;
2079        }
2080        return 0;
2081    }
2082
2083    if (!spapr->htab) {
2084        assert(kvm_enabled());
2085
2086        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2087        if (fd < 0) {
2088            error_report_err(local_err);
2089            return fd;
2090        }
2091    }
2092
2093    while (true) {
2094        uint32_t index;
2095        uint16_t n_valid, n_invalid;
2096
2097        index = qemu_get_be32(f);
2098        n_valid = qemu_get_be16(f);
2099        n_invalid = qemu_get_be16(f);
2100
2101        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2102            /* End of Stream */
2103            break;
2104        }
2105
2106        if ((index + n_valid + n_invalid) >
2107            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2108            /* Bad index in stream */
2109            error_report(
2110                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2111                index, n_valid, n_invalid, spapr->htab_shift);
2112            return -EINVAL;
2113        }
2114
2115        if (spapr->htab) {
2116            if (n_valid) {
2117                qemu_get_buffer(f, HPTE(spapr->htab, index),
2118                                HASH_PTE_SIZE_64 * n_valid);
2119            }
2120            if (n_invalid) {
2121                memset(HPTE(spapr->htab, index + n_valid), 0,
2122                       HASH_PTE_SIZE_64 * n_invalid);
2123            }
2124        } else {
2125            int rc;
2126
2127            assert(fd >= 0);
2128
2129            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2130            if (rc < 0) {
2131                return rc;
2132            }
2133        }
2134    }
2135
2136    if (!spapr->htab) {
2137        assert(fd >= 0);
2138        close(fd);
2139    }
2140
2141    return 0;
2142}
2143
2144static void htab_save_cleanup(void *opaque)
2145{
2146    sPAPRMachineState *spapr = opaque;
2147
2148    close_htab_fd(spapr);
2149}
2150
2151static SaveVMHandlers savevm_htab_handlers = {
2152    .save_setup = htab_save_setup,
2153    .save_live_iterate = htab_save_iterate,
2154    .save_live_complete_precopy = htab_save_complete,
2155    .save_cleanup = htab_save_cleanup,
2156    .load_state = htab_load,
2157};
2158
2159static void spapr_boot_set(void *opaque, const char *boot_device,
2160                           Error **errp)
2161{
2162    MachineState *machine = MACHINE(opaque);
2163    machine->boot_order = g_strdup(boot_device);
2164}
2165
2166static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2167{
2168    MachineState *machine = MACHINE(spapr);
2169    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2170    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2171    int i;
2172
2173    for (i = 0; i < nr_lmbs; i++) {
2174        uint64_t addr;
2175
2176        addr = i * lmb_size + spapr->hotplug_memory.base;
2177        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2178                               addr / lmb_size);
2179    }
2180}
2181
2182/*
2183 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2184 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2185 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2186 */
2187static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2188{
2189    int i;
2190
2191    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2192        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2193                   " is not aligned to %llu MiB",
2194                   machine->ram_size,
2195                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2196        return;
2197    }
2198
2199    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2200        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2201                   " is not aligned to %llu MiB",
2202                   machine->ram_size,
2203                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2204        return;
2205    }
2206
2207    for (i = 0; i < nb_numa_nodes; i++) {
2208        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2209            error_setg(errp,
2210                       "Node %d memory size 0x%" PRIx64
2211                       " is not aligned to %llu MiB",
2212                       i, numa_info[i].node_mem,
2213                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2214            return;
2215        }
2216    }
2217}
2218
2219/* find cpu slot in machine->possible_cpus by core_id */
2220static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2221{
2222    int index = id / smp_threads;
2223
2224    if (index >= ms->possible_cpus->len) {
2225        return NULL;
2226    }
2227    if (idx) {
2228        *idx = index;
2229    }
2230    return &ms->possible_cpus->cpus[index];
2231}
2232
2233static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2234{
2235    Error *local_err = NULL;
2236    bool vsmt_user = !!spapr->vsmt;
2237    int kvm_smt = kvmppc_smt_threads();
2238    int ret;
2239
2240    if (!kvm_enabled() && (smp_threads > 1)) {
2241        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2242                     "on a pseries machine");
2243        goto out;
2244    }
2245    if (!is_power_of_2(smp_threads)) {
2246        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2247                     "machine because it must be a power of 2", smp_threads);
2248        goto out;
2249    }
2250
2251    /* Detemine the VSMT mode to use: */
2252    if (vsmt_user) {
2253        if (spapr->vsmt < smp_threads) {
2254            error_setg(&local_err, "Cannot support VSMT mode %d"
2255                         " because it must be >= threads/core (%d)",
2256                         spapr->vsmt, smp_threads);
2257            goto out;
2258        }
2259        /* In this case, spapr->vsmt has been set by the command line */
2260    } else {
2261        /*
2262         * Default VSMT value is tricky, because we need it to be as
2263         * consistent as possible (for migration), but this requires
2264         * changing it for at least some existing cases.  We pick 8 as
2265         * the value that we'd get with KVM on POWER8, the
2266         * overwhelmingly common case in production systems.
2267         */
2268        spapr->vsmt = MAX(8, smp_threads);
2269    }
2270
2271    /* KVM: If necessary, set the SMT mode: */
2272    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2273        ret = kvmppc_set_smt_threads(spapr->vsmt);
2274        if (ret) {
2275            /* Looks like KVM isn't able to change VSMT mode */
2276            error_setg(&local_err,
2277                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2278                       spapr->vsmt, ret);
2279            /* We can live with that if the default one is big enough
2280             * for the number of threads, and a submultiple of the one
2281             * we want.  In this case we'll waste some vcpu ids, but
2282             * behaviour will be correct */
2283            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2284                warn_report_err(local_err);
2285                local_err = NULL;
2286                goto out;
2287            } else {
2288                if (!vsmt_user) {
2289                    error_append_hint(&local_err,
2290                                      "On PPC, a VM with %d threads/core"
2291                                      " on a host with %d threads/core"
2292                                      " requires the use of VSMT mode %d.\n",
2293                                      smp_threads, kvm_smt, spapr->vsmt);
2294                }
2295                kvmppc_hint_smt_possible(&local_err);
2296                goto out;
2297            }
2298        }
2299    }
2300    /* else TCG: nothing to do currently */
2301out:
2302    error_propagate(errp, local_err);
2303}
2304
2305static void spapr_init_cpus(sPAPRMachineState *spapr)
2306{
2307    MachineState *machine = MACHINE(spapr);
2308    MachineClass *mc = MACHINE_GET_CLASS(machine);
2309    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2310    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2311    const CPUArchIdList *possible_cpus;
2312    int boot_cores_nr = smp_cpus / smp_threads;
2313    int i;
2314
2315    possible_cpus = mc->possible_cpu_arch_ids(machine);
2316    if (mc->has_hotpluggable_cpus) {
2317        if (smp_cpus % smp_threads) {
2318            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2319                         smp_cpus, smp_threads);
2320            exit(1);
2321        }
2322        if (max_cpus % smp_threads) {
2323            error_report("max_cpus (%u) must be multiple of threads (%u)",
2324                         max_cpus, smp_threads);
2325            exit(1);
2326        }
2327    } else {
2328        if (max_cpus != smp_cpus) {
2329            error_report("This machine version does not support CPU hotplug");
2330            exit(1);
2331        }
2332        boot_cores_nr = possible_cpus->len;
2333    }
2334
2335    /* VSMT must be set in order to be able to compute VCPU ids, ie to
2336     * call xics_max_server_number() or spapr_vcpu_id().
2337     */
2338    spapr_set_vsmt_mode(spapr, &error_fatal);
2339
2340    if (smc->pre_2_10_has_unused_icps) {
2341        int i;
2342
2343        for (i = 0; i < xics_max_server_number(spapr); i++) {
2344            /* Dummy entries get deregistered when real ICPState objects
2345             * are registered during CPU core hotplug.
2346             */
2347            pre_2_10_vmstate_register_dummy_icp(i);
2348        }
2349    }
2350
2351    for (i = 0; i < possible_cpus->len; i++) {
2352        int core_id = i * smp_threads;
2353
2354        if (mc->has_hotpluggable_cpus) {
2355            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2356                                   spapr_vcpu_id(spapr, core_id));
2357        }
2358
2359        if (i < boot_cores_nr) {
2360            Object *core  = object_new(type);
2361            int nr_threads = smp_threads;
2362
2363            /* Handle the partially filled core for older machine types */
2364            if ((i + 1) * smp_threads >= smp_cpus) {
2365                nr_threads = smp_cpus - i * smp_threads;
2366            }
2367
2368            object_property_set_int(core, nr_threads, "nr-threads",
2369                                    &error_fatal);
2370            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2371                                    &error_fatal);
2372            object_property_set_bool(core, true, "realized", &error_fatal);
2373        }
2374    }
2375}
2376
2377/* pSeries LPAR / sPAPR hardware init */
2378static void spapr_machine_init(MachineState *machine)
2379{
2380    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2381    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2382    const char *kernel_filename = machine->kernel_filename;
2383    const char *initrd_filename = machine->initrd_filename;
2384    PCIHostState *phb;
2385    int i;
2386    MemoryRegion *sysmem = get_system_memory();
2387    MemoryRegion *ram = g_new(MemoryRegion, 1);
2388    MemoryRegion *rma_region;
2389    void *rma = NULL;
2390    hwaddr rma_alloc_size;
2391    hwaddr node0_size = spapr_node0_size(machine);
2392    long load_limit, fw_size;
2393    char *filename;
2394    Error *resize_hpt_err = NULL;
2395
2396    msi_nonbroken = true;
2397
2398    QLIST_INIT(&spapr->phbs);
2399    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2400
2401    /* Check HPT resizing availability */
2402    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2403    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2404        /*
2405         * If the user explicitly requested a mode we should either
2406         * supply it, or fail completely (which we do below).  But if
2407         * it's not set explicitly, we reset our mode to something
2408         * that works
2409         */
2410        if (resize_hpt_err) {
2411            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2412            error_free(resize_hpt_err);
2413            resize_hpt_err = NULL;
2414        } else {
2415            spapr->resize_hpt = smc->resize_hpt_default;
2416        }
2417    }
2418
2419    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2420
2421    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2422        /*
2423         * User requested HPT resize, but this host can't supply it.  Bail out
2424         */
2425        error_report_err(resize_hpt_err);
2426        exit(1);
2427    }
2428
2429    /* Allocate RMA if necessary */
2430    rma_alloc_size = kvmppc_alloc_rma(&rma);
2431
2432    if (rma_alloc_size == -1) {
2433        error_report("Unable to create RMA");
2434        exit(1);
2435    }
2436
2437    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2438        spapr->rma_size = rma_alloc_size;
2439    } else {
2440        spapr->rma_size = node0_size;
2441
2442        /* With KVM, we don't actually know whether KVM supports an
2443         * unbounded RMA (PR KVM) or is limited by the hash table size
2444         * (HV KVM using VRMA), so we always assume the latter
2445         *
2446         * In that case, we also limit the initial allocations for RTAS
2447         * etc... to 256M since we have no way to know what the VRMA size
2448         * is going to be as it depends on the size of the hash table
2449         * isn't determined yet.
2450         */
2451        if (kvm_enabled()) {
2452            spapr->vrma_adjust = 1;
2453            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2454        }
2455
2456        /* Actually we don't support unbounded RMA anymore since we
2457         * added proper emulation of HV mode. The max we can get is
2458         * 16G which also happens to be what we configure for PAPR
2459         * mode so make sure we don't do anything bigger than that
2460         */
2461        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2462    }
2463
2464    if (spapr->rma_size > node0_size) {
2465        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2466                     spapr->rma_size);
2467        exit(1);
2468    }
2469
2470    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2471    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2472
2473    /* Set up Interrupt Controller before we create the VCPUs */
2474    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2475
2476    /* Set up containers for ibm,client-architecture-support negotiated options
2477     */
2478    spapr->ov5 = spapr_ovec_new();
2479    spapr->ov5_cas = spapr_ovec_new();
2480
2481    if (smc->dr_lmb_enabled) {
2482        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2483        spapr_validate_node_memory(machine, &error_fatal);
2484    }
2485
2486    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2487    if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2488        /* KVM and TCG always allow GTSE with radix... */
2489        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2490    }
2491    /* ... but not with hash (currently). */
2492
2493    /* advertise support for dedicated HP event source to guests */
2494    if (spapr->use_hotplug_event_source) {
2495        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2496    }
2497
2498    /* advertise support for HPT resizing */
2499    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2500        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2501    }
2502
2503    /* init CPUs */
2504    spapr_init_cpus(spapr);
2505
2506    if (kvm_enabled()) {
2507        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2508        kvmppc_enable_logical_ci_hcalls();
2509        kvmppc_enable_set_mode_hcall();
2510
2511        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2512        kvmppc_enable_clear_ref_mod_hcalls();
2513    }
2514
2515    /* allocate RAM */
2516    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2517                                         machine->ram_size);
2518    memory_region_add_subregion(sysmem, 0, ram);
2519
2520    if (rma_alloc_size && rma) {
2521        rma_region = g_new(MemoryRegion, 1);
2522        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2523                                   rma_alloc_size, rma);
2524        vmstate_register_ram_global(rma_region);
2525        memory_region_add_subregion(sysmem, 0, rma_region);
2526    }
2527
2528    /* initialize hotplug memory address space */
2529    if (machine->ram_size < machine->maxram_size) {
2530        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2531        /*
2532         * Limit the number of hotpluggable memory slots to half the number
2533         * slots that KVM supports, leaving the other half for PCI and other
2534         * devices. However ensure that number of slots doesn't drop below 32.
2535         */
2536        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2537                           SPAPR_MAX_RAM_SLOTS;
2538
2539        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2540            max_memslots = SPAPR_MAX_RAM_SLOTS;
2541        }
2542        if (machine->ram_slots > max_memslots) {
2543            error_report("Specified number of memory slots %"
2544                         PRIu64" exceeds max supported %d",
2545                         machine->ram_slots, max_memslots);
2546            exit(1);
2547        }
2548
2549        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2550                                              SPAPR_HOTPLUG_MEM_ALIGN);
2551        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2552                           "hotplug-memory", hotplug_mem_size);
2553        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2554                                    &spapr->hotplug_memory.mr);
2555    }
2556
2557    if (smc->dr_lmb_enabled) {
2558        spapr_create_lmb_dr_connectors(spapr);
2559    }
2560
2561    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2562    if (!filename) {
2563        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2564        exit(1);
2565    }
2566    spapr->rtas_size = get_image_size(filename);
2567    if (spapr->rtas_size < 0) {
2568        error_report("Could not get size of LPAR rtas '%s'", filename);
2569        exit(1);
2570    }
2571    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2572    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2573        error_report("Could not load LPAR rtas '%s'", filename);
2574        exit(1);
2575    }
2576    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2577        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2578                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2579        exit(1);
2580    }
2581    g_free(filename);
2582
2583    /* Set up RTAS event infrastructure */
2584    spapr_events_init(spapr);
2585
2586    /* Set up the RTC RTAS interfaces */
2587    spapr_rtc_create(spapr);
2588
2589    /* Set up VIO bus */
2590    spapr->vio_bus = spapr_vio_bus_init();
2591
2592    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2593        if (serial_hds[i]) {
2594            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2595        }
2596    }
2597
2598    /* We always have at least the nvram device on VIO */
2599    spapr_create_nvram(spapr);
2600
2601    /* Set up PCI */
2602    spapr_pci_rtas_init();
2603
2604    phb = spapr_create_phb(spapr, 0);
2605
2606    for (i = 0; i < nb_nics; i++) {
2607        NICInfo *nd = &nd_table[i];
2608
2609        if (!nd->model) {
2610            nd->model = g_strdup("spapr-vlan");
2611        }
2612
2613        if (g_str_equal(nd->model, "spapr-vlan") ||
2614            g_str_equal(nd->model, "ibmveth")) {
2615            spapr_vlan_create(spapr->vio_bus, nd);
2616        } else {
2617            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2618        }
2619    }
2620
2621    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2622        spapr_vscsi_create(spapr->vio_bus);
2623    }
2624
2625    /* Graphics */
2626    if (spapr_vga_init(phb->bus, &error_fatal)) {
2627        spapr->has_graphics = true;
2628        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2629    }
2630
2631    if (machine->usb) {
2632        if (smc->use_ohci_by_default) {
2633            pci_create_simple(phb->bus, -1, "pci-ohci");
2634        } else {
2635            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2636        }
2637
2638        if (spapr->has_graphics) {
2639            USBBus *usb_bus = usb_bus_find(-1);
2640
2641            usb_create_simple(usb_bus, "usb-kbd");
2642            usb_create_simple(usb_bus, "usb-mouse");
2643        }
2644    }
2645
2646    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2647        error_report(
2648            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2649            MIN_RMA_SLOF);
2650        exit(1);
2651    }
2652
2653    if (kernel_filename) {
2654        uint64_t lowaddr = 0;
2655
2656        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2657                                      NULL, NULL, &lowaddr, NULL, 1,
2658                                      PPC_ELF_MACHINE, 0, 0);
2659        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2660            spapr->kernel_size = load_elf(kernel_filename,
2661                                          translate_kernel_address, NULL, NULL,
2662                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2663                                          0, 0);
2664            spapr->kernel_le = spapr->kernel_size > 0;
2665        }
2666        if (spapr->kernel_size < 0) {
2667            error_report("error loading %s: %s", kernel_filename,
2668                         load_elf_strerror(spapr->kernel_size));
2669            exit(1);
2670        }
2671
2672        /* load initrd */
2673        if (initrd_filename) {
2674            /* Try to locate the initrd in the gap between the kernel
2675             * and the firmware. Add a bit of space just in case
2676             */
2677            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2678                                  + 0x1ffff) & ~0xffff;
2679            spapr->initrd_size = load_image_targphys(initrd_filename,
2680                                                     spapr->initrd_base,
2681                                                     load_limit
2682                                                     - spapr->initrd_base);
2683            if (spapr->initrd_size < 0) {
2684                error_report("could not load initial ram disk '%s'",
2685                             initrd_filename);
2686                exit(1);
2687            }
2688        }
2689    }
2690
2691    if (bios_name == NULL) {
2692        bios_name = FW_FILE_NAME;
2693    }
2694    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2695    if (!filename) {
2696        error_report("Could not find LPAR firmware '%s'", bios_name);
2697        exit(1);
2698    }
2699    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2700    if (fw_size <= 0) {
2701        error_report("Could not load LPAR firmware '%s'", filename);
2702        exit(1);
2703    }
2704    g_free(filename);
2705
2706    /* FIXME: Should register things through the MachineState's qdev
2707     * interface, this is a legacy from the sPAPREnvironment structure
2708     * which predated MachineState but had a similar function */
2709    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2710    register_savevm_live(NULL, "spapr/htab", -1, 1,
2711                         &savevm_htab_handlers, spapr);
2712
2713    qemu_register_boot_set(spapr_boot_set, spapr);
2714
2715    if (kvm_enabled()) {
2716        /* to stop and start vmclock */
2717        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2718                                         &spapr->tb);
2719
2720        kvmppc_spapr_enable_inkernel_multitce();
2721    }
2722}
2723
2724static int spapr_kvm_type(const char *vm_type)
2725{
2726    if (!vm_type) {
2727        return 0;
2728    }
2729
2730    if (!strcmp(vm_type, "HV")) {
2731        return 1;
2732    }
2733
2734    if (!strcmp(vm_type, "PR")) {
2735        return 2;
2736    }
2737
2738    error_report("Unknown kvm-type specified '%s'", vm_type);
2739    exit(1);
2740}
2741
2742/*
2743 * Implementation of an interface to adjust firmware path
2744 * for the bootindex property handling.
2745 */
2746static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2747                                   DeviceState *dev)
2748{
2749#define CAST(type, obj, name) \
2750    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2751    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2752    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2753    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2754
2755    if (d) {
2756        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2757        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2758        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2759
2760        if (spapr) {
2761            /*
2762             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2763             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2764             * in the top 16 bits of the 64-bit LUN
2765             */
2766            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2767            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2768                                   (uint64_t)id << 48);
2769        } else if (virtio) {
2770            /*
2771             * We use SRP luns of the form 01000000 | (target << 8) | lun
2772             * in the top 32 bits of the 64-bit LUN
2773             * Note: the quote above is from SLOF and it is wrong,
2774             * the actual binding is:
2775             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2776             */
2777            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2778            if (d->lun >= 256) {
2779                /* Use the LUN "flat space addressing method" */
2780                id |= 0x4000;
2781            }
2782            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2783                                   (uint64_t)id << 32);
2784        } else if (usb) {
2785            /*
2786             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2787             * in the top 32 bits of the 64-bit LUN
2788             */
2789            unsigned usb_port = atoi(usb->port->path);
2790            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2791            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2792                                   (uint64_t)id << 32);
2793        }
2794    }
2795
2796    /*
2797     * SLOF probes the USB devices, and if it recognizes that the device is a
2798     * storage device, it changes its name to "storage" instead of "usb-host",
2799     * and additionally adds a child node for the SCSI LUN, so the correct
2800     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2801     */
2802    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2803        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2804        if (usb_host_dev_is_scsi_storage(usbdev)) {
2805            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2806        }
2807    }
2808
2809    if (phb) {
2810        /* Replace "pci" with "pci@800000020000000" */
2811        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2812    }
2813
2814    if (vsc) {
2815        /* Same logic as virtio above */
2816        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2817        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2818    }
2819
2820    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2821        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2822        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2823        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2824    }
2825
2826    return NULL;
2827}
2828
2829static char *spapr_get_kvm_type(Object *obj, Error **errp)
2830{
2831    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2832
2833    return g_strdup(spapr->kvm_type);
2834}
2835
2836static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2837{
2838    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2839
2840    g_free(spapr->kvm_type);
2841    spapr->kvm_type = g_strdup(value);
2842}
2843
2844static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2845{
2846    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2847
2848    return spapr->use_hotplug_event_source;
2849}
2850
2851static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2852                                            Error **errp)
2853{
2854    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2855
2856    spapr->use_hotplug_event_source = value;
2857}
2858
2859static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2860{
2861    return true;
2862}
2863
2864static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2865{
2866    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2867
2868    switch (spapr->resize_hpt) {
2869    case SPAPR_RESIZE_HPT_DEFAULT:
2870        return g_strdup("default");
2871    case SPAPR_RESIZE_HPT_DISABLED:
2872        return g_strdup("disabled");
2873    case SPAPR_RESIZE_HPT_ENABLED:
2874        return g_strdup("enabled");
2875    case SPAPR_RESIZE_HPT_REQUIRED:
2876        return g_strdup("required");
2877    }
2878    g_assert_not_reached();
2879}
2880
2881static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2882{
2883    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2884
2885    if (strcmp(value, "default") == 0) {
2886        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2887    } else if (strcmp(value, "disabled") == 0) {
2888        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2889    } else if (strcmp(value, "enabled") == 0) {
2890        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2891    } else if (strcmp(value, "required") == 0) {
2892        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2893    } else {
2894        error_setg(errp, "Bad value for \"resize-hpt\" property");
2895    }
2896}
2897
2898static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2899                                   void *opaque, Error **errp)
2900{
2901    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2902}
2903
2904static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2905                                   void *opaque, Error **errp)
2906{
2907    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2908}
2909
2910static void spapr_instance_init(Object *obj)
2911{
2912    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2913
2914    spapr->htab_fd = -1;
2915    spapr->use_hotplug_event_source = true;
2916    object_property_add_str(obj, "kvm-type",
2917                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2918    object_property_set_description(obj, "kvm-type",
2919                                    "Specifies the KVM virtualization mode (HV, PR)",
2920                                    NULL);
2921    object_property_add_bool(obj, "modern-hotplug-events",
2922                            spapr_get_modern_hotplug_events,
2923                            spapr_set_modern_hotplug_events,
2924                            NULL);
2925    object_property_set_description(obj, "modern-hotplug-events",
2926                                    "Use dedicated hotplug event mechanism in"
2927                                    " place of standard EPOW events when possible"
2928                                    " (required for memory hot-unplug support)",
2929                                    NULL);
2930
2931    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2932                            "Maximum permitted CPU compatibility mode",
2933                            &error_fatal);
2934
2935    object_property_add_str(obj, "resize-hpt",
2936                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2937    object_property_set_description(obj, "resize-hpt",
2938                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
2939                                    NULL);
2940    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2941                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2942    object_property_set_description(obj, "vsmt",
2943                                    "Virtual SMT: KVM behaves as if this were"
2944                                    " the host's SMT mode", &error_abort);
2945    object_property_add_bool(obj, "vfio-no-msix-emulation",
2946                             spapr_get_msix_emulation, NULL, NULL);
2947}
2948
2949static void spapr_machine_finalizefn(Object *obj)
2950{
2951    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2952
2953    g_free(spapr->kvm_type);
2954}
2955
2956void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2957{
2958    cpu_synchronize_state(cs);
2959    ppc_cpu_do_system_reset(cs);
2960}
2961
2962static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2963{
2964    CPUState *cs;
2965
2966    CPU_FOREACH(cs) {
2967        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2968    }
2969}
2970
2971static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2972                           uint32_t node, bool dedicated_hp_event_source,
2973                           Error **errp)
2974{
2975    sPAPRDRConnector *drc;
2976    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2977    int i, fdt_offset, fdt_size;
2978    void *fdt;
2979    uint64_t addr = addr_start;
2980    bool hotplugged = spapr_drc_hotplugged(dev);
2981    Error *local_err = NULL;
2982
2983    for (i = 0; i < nr_lmbs; i++) {
2984        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2985                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2986        g_assert(drc);
2987
2988        fdt = create_device_tree(&fdt_size);
2989        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2990                                                SPAPR_MEMORY_BLOCK_SIZE);
2991
2992        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2993        if (local_err) {
2994            while (addr > addr_start) {
2995                addr -= SPAPR_MEMORY_BLOCK_SIZE;
2996                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2997                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
2998                spapr_drc_detach(drc);
2999            }
3000            g_free(fdt);
3001            error_propagate(errp, local_err);
3002            return;
3003        }
3004        if (!hotplugged) {
3005            spapr_drc_reset(drc);
3006        }
3007        addr += SPAPR_MEMORY_BLOCK_SIZE;
3008    }
3009    /* send hotplug notification to the
3010     * guest only in case of hotplugged memory
3011     */
3012    if (hotplugged) {
3013        if (dedicated_hp_event_source) {
3014            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3015                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3016            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3017                                                   nr_lmbs,
3018                                                   spapr_drc_index(drc));
3019        } else {
3020            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3021                                           nr_lmbs);
3022        }
3023    }
3024}
3025
3026static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3027                              uint32_t node, Error **errp)
3028{
3029    Error *local_err = NULL;
3030    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3031    PCDIMMDevice *dimm = PC_DIMM(dev);
3032    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3033    MemoryRegion *mr;
3034    uint64_t align, size, addr;
3035
3036    mr = ddc->get_memory_region(dimm, &local_err);
3037    if (local_err) {
3038        goto out;
3039    }
3040    align = memory_region_get_alignment(mr);
3041    size = memory_region_size(mr);
3042
3043    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3044    if (local_err) {
3045        goto out;
3046    }
3047
3048    addr = object_property_get_uint(OBJECT(dimm),
3049                                    PC_DIMM_ADDR_PROP, &local_err);
3050    if (local_err) {
3051        goto out_unplug;
3052    }
3053
3054    spapr_add_lmbs(dev, addr, size, node,
3055                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3056                   &local_err);
3057    if (local_err) {
3058        goto out_unplug;
3059    }
3060
3061    return;
3062
3063out_unplug:
3064    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3065out:
3066    error_propagate(errp, local_err);
3067}
3068
3069static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3070                                  Error **errp)
3071{
3072    PCDIMMDevice *dimm = PC_DIMM(dev);
3073    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3074    MemoryRegion *mr;
3075    uint64_t size;
3076    char *mem_dev;
3077
3078    mr = ddc->get_memory_region(dimm, errp);
3079    if (!mr) {
3080        return;
3081    }
3082    size = memory_region_size(mr);
3083
3084    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3085        error_setg(errp, "Hotplugged memory size must be a multiple of "
3086                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3087        return;
3088    }
3089
3090    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3091    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3092        error_setg(errp, "Memory backend has bad page size. "
3093                   "Use 'memory-backend-file' with correct mem-path.");
3094        goto out;
3095    }
3096
3097out:
3098    g_free(mem_dev);
3099}
3100
3101struct sPAPRDIMMState {
3102    PCDIMMDevice *dimm;
3103    uint32_t nr_lmbs;
3104    QTAILQ_ENTRY(sPAPRDIMMState) next;
3105};
3106
3107static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3108                                                       PCDIMMDevice *dimm)
3109{
3110    sPAPRDIMMState *dimm_state = NULL;
3111
3112    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3113        if (dimm_state->dimm == dimm) {
3114            break;
3115        }
3116    }
3117    return dimm_state;
3118}
3119
3120static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3121                                                      uint32_t nr_lmbs,
3122                                                      PCDIMMDevice *dimm)
3123{
3124    sPAPRDIMMState *ds = NULL;
3125
3126    /*
3127     * If this request is for a DIMM whose removal had failed earlier
3128     * (due to guest's refusal to remove the LMBs), we would have this
3129     * dimm already in the pending_dimm_unplugs list. In that
3130     * case don't add again.
3131     */
3132    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3133    if (!ds) {
3134        ds = g_malloc0(sizeof(sPAPRDIMMState));
3135        ds->nr_lmbs = nr_lmbs;
3136        ds->dimm = dimm;
3137        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3138    }
3139    return ds;
3140}
3141
3142static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3143                                              sPAPRDIMMState *dimm_state)
3144{
3145    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3146    g_free(dimm_state);
3147}
3148
3149static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3150                                                        PCDIMMDevice *dimm)
3151{
3152    sPAPRDRConnector *drc;
3153    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3154    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3155    uint64_t size = memory_region_size(mr);
3156    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3157    uint32_t avail_lmbs = 0;
3158    uint64_t addr_start, addr;
3159    int i;
3160
3161    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3162                                         &error_abort);
3163
3164    addr = addr_start;
3165    for (i = 0; i < nr_lmbs; i++) {
3166        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3167                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3168        g_assert(drc);
3169        if (drc->dev) {
3170            avail_lmbs++;
3171        }
3172        addr += SPAPR_MEMORY_BLOCK_SIZE;
3173    }
3174
3175    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3176}
3177
3178/* Callback to be called during DRC release. */
3179void spapr_lmb_release(DeviceState *dev)
3180{
3181    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3182    PCDIMMDevice *dimm = PC_DIMM(dev);
3183    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3184    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3185    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3186
3187    /* This information will get lost if a migration occurs
3188     * during the unplug process. In this case recover it. */
3189    if (ds == NULL) {
3190        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3191        g_assert(ds);
3192        /* The DRC being examined by the caller at least must be counted */
3193        g_assert(ds->nr_lmbs);
3194    }
3195
3196    if (--ds->nr_lmbs) {
3197        return;
3198    }
3199
3200    /*
3201     * Now that all the LMBs have been removed by the guest, call the
3202     * pc-dimm unplug handler to cleanup up the pc-dimm device.
3203     */
3204    pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3205    object_unparent(OBJECT(dev));
3206    spapr_pending_dimm_unplugs_remove(spapr, ds);
3207}
3208
3209static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3210                                        DeviceState *dev, Error **errp)
3211{
3212    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3213    Error *local_err = NULL;
3214    PCDIMMDevice *dimm = PC_DIMM(dev);
3215    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3216    MemoryRegion *mr;
3217    uint32_t nr_lmbs;
3218    uint64_t size, addr_start, addr;
3219    int i;
3220    sPAPRDRConnector *drc;
3221
3222    mr = ddc->get_memory_region(dimm, &local_err);
3223    if (local_err) {
3224        goto out;
3225    }
3226    size = memory_region_size(mr);
3227    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3228
3229    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3230                                         &local_err);
3231    if (local_err) {
3232        goto out;
3233    }
3234
3235    /*
3236     * An existing pending dimm state for this DIMM means that there is an
3237     * unplug operation in progress, waiting for the spapr_lmb_release
3238     * callback to complete the job (BQL can't cover that far). In this case,
3239     * bail out to avoid detaching DRCs that were already released.
3240     */
3241    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3242        error_setg(&local_err,
3243                   "Memory unplug already in progress for device %s",
3244                   dev->id);
3245        goto out;
3246    }
3247
3248    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3249
3250    addr = addr_start;
3251    for (i = 0; i < nr_lmbs; i++) {
3252        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3253                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3254        g_assert(drc);
3255
3256        spapr_drc_detach(drc);
3257        addr += SPAPR_MEMORY_BLOCK_SIZE;
3258    }
3259
3260    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3261                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3262    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3263                                              nr_lmbs, spapr_drc_index(drc));
3264out:
3265    error_propagate(errp, local_err);
3266}
3267
3268static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3269                                           sPAPRMachineState *spapr)
3270{
3271    PowerPCCPU *cpu = POWERPC_CPU(cs);
3272    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3273    int id = spapr_get_vcpu_id(cpu);
3274    void *fdt;
3275    int offset, fdt_size;
3276    char *nodename;
3277
3278    fdt = create_device_tree(&fdt_size);
3279    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3280    offset = fdt_add_subnode(fdt, 0, nodename);
3281
3282    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3283    g_free(nodename);
3284
3285    *fdt_offset = offset;
3286    return fdt;
3287}
3288
3289/* Callback to be called during DRC release. */
3290void spapr_core_release(DeviceState *dev)
3291{
3292    MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3293    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3294    CPUCore *cc = CPU_CORE(dev);
3295    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3296
3297    if (smc->pre_2_10_has_unused_icps) {
3298        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3299        int i;
3300
3301        for (i = 0; i < cc->nr_threads; i++) {
3302            CPUState *cs = CPU(sc->threads[i]);
3303
3304            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3305        }
3306    }
3307
3308    assert(core_slot);
3309    core_slot->cpu = NULL;
3310    object_unparent(OBJECT(dev));
3311}
3312
3313static
3314void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3315                               Error **errp)
3316{
3317    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3318    int index;
3319    sPAPRDRConnector *drc;
3320    CPUCore *cc = CPU_CORE(dev);
3321
3322    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3323        error_setg(errp, "Unable to find CPU core with core-id: %d",
3324                   cc->core_id);
3325        return;
3326    }
3327    if (index == 0) {
3328        error_setg(errp, "Boot CPU core may not be unplugged");
3329        return;
3330    }
3331
3332    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3333                          spapr_vcpu_id(spapr, cc->core_id));
3334    g_assert(drc);
3335
3336    spapr_drc_detach(drc);
3337
3338    spapr_hotplug_req_remove_by_index(drc);
3339}
3340
3341static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3342                            Error **errp)
3343{
3344    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3345    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3346    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3347    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3348    CPUCore *cc = CPU_CORE(dev);
3349    CPUState *cs = CPU(core->threads[0]);
3350    sPAPRDRConnector *drc;
3351    Error *local_err = NULL;
3352    CPUArchId *core_slot;
3353    int index;
3354    bool hotplugged = spapr_drc_hotplugged(dev);
3355
3356    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3357    if (!core_slot) {
3358        error_setg(errp, "Unable to find CPU core with core-id: %d",
3359                   cc->core_id);
3360        return;
3361    }
3362    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3363                          spapr_vcpu_id(spapr, cc->core_id));
3364
3365    g_assert(drc || !mc->has_hotpluggable_cpus);
3366
3367    if (drc) {
3368        void *fdt;
3369        int fdt_offset;
3370
3371        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3372
3373        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3374        if (local_err) {
3375            g_free(fdt);
3376            error_propagate(errp, local_err);
3377            return;
3378        }
3379
3380        if (hotplugged) {
3381            /*
3382             * Send hotplug notification interrupt to the guest only
3383             * in case of hotplugged CPUs.
3384             */
3385            spapr_hotplug_req_add_by_index(drc);
3386        } else {
3387            spapr_drc_reset(drc);
3388        }
3389    }
3390
3391    core_slot->cpu = OBJECT(dev);
3392
3393    if (smc->pre_2_10_has_unused_icps) {
3394        int i;
3395
3396        for (i = 0; i < cc->nr_threads; i++) {
3397            cs = CPU(core->threads[i]);
3398            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3399        }
3400    }
3401}
3402
3403static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3404                                Error **errp)
3405{
3406    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3407    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3408    Error *local_err = NULL;
3409    CPUCore *cc = CPU_CORE(dev);
3410    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3411    const char *type = object_get_typename(OBJECT(dev));
3412    CPUArchId *core_slot;
3413    int index;
3414
3415    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3416        error_setg(&local_err, "CPU hotplug not supported for this machine");
3417        goto out;
3418    }
3419
3420    if (strcmp(base_core_type, type)) {
3421        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3422        goto out;
3423    }
3424
3425    if (cc->core_id % smp_threads) {
3426        error_setg(&local_err, "invalid core id %d", cc->core_id);
3427        goto out;
3428    }
3429
3430    /*
3431     * In general we should have homogeneous threads-per-core, but old
3432     * (pre hotplug support) machine types allow the last core to have
3433     * reduced threads as a compatibility hack for when we allowed
3434     * total vcpus not a multiple of threads-per-core.
3435     */
3436    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3437        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3438                   cc->nr_threads, smp_threads);
3439        goto out;
3440    }
3441
3442    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3443    if (!core_slot) {
3444        error_setg(&local_err, "core id %d out of range", cc->core_id);
3445        goto out;
3446    }
3447
3448    if (core_slot->cpu) {
3449        error_setg(&local_err, "core %d already populated", cc->core_id);
3450        goto out;
3451    }
3452
3453    numa_cpu_pre_plug(core_slot, dev, &local_err);
3454
3455out:
3456    error_propagate(errp, local_err);
3457}
3458
3459static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3460                                      DeviceState *dev, Error **errp)
3461{
3462    MachineState *ms = MACHINE(hotplug_dev);
3463    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3464
3465    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3466        int node;
3467
3468        if (!smc->dr_lmb_enabled) {
3469            error_setg(errp, "Memory hotplug not supported for this machine");
3470            return;
3471        }
3472        node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3473        if (*errp) {
3474            return;
3475        }
3476        if (node < 0 || node >= MAX_NODES) {
3477            error_setg(errp, "Invaild node %d", node);
3478            return;
3479        }
3480
3481        /*
3482         * Currently PowerPC kernel doesn't allow hot-adding memory to
3483         * memory-less node, but instead will silently add the memory
3484         * to the first node that has some memory. This causes two
3485         * unexpected behaviours for the user.
3486         *
3487         * - Memory gets hotplugged to a different node than what the user
3488         *   specified.
3489         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3490         *   to memory-less node, a reboot will set things accordingly
3491         *   and the previously hotplugged memory now ends in the right node.
3492         *   This appears as if some memory moved from one node to another.
3493         *
3494         * So until kernel starts supporting memory hotplug to memory-less
3495         * nodes, just prevent such attempts upfront in QEMU.
3496         */
3497        if (nb_numa_nodes && !numa_info[node].node_mem) {
3498            error_setg(errp, "Can't hotplug memory to memory-less node %d",
3499                       node);
3500            return;
3501        }
3502
3503        spapr_memory_plug(hotplug_dev, dev, node, errp);
3504    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3505        spapr_core_plug(hotplug_dev, dev, errp);
3506    }
3507}
3508
3509static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3510                                                DeviceState *dev, Error **errp)
3511{
3512    sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3513    MachineClass *mc = MACHINE_GET_CLASS(sms);
3514
3515    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3516        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3517            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3518        } else {
3519            /* NOTE: this means there is a window after guest reset, prior to
3520             * CAS negotiation, where unplug requests will fail due to the
3521             * capability not being detected yet. This is a bit different than
3522             * the case with PCI unplug, where the events will be queued and
3523             * eventually handled by the guest after boot
3524             */
3525            error_setg(errp, "Memory hot unplug not supported for this guest");
3526        }
3527    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3528        if (!mc->has_hotpluggable_cpus) {
3529            error_setg(errp, "CPU hot unplug not supported on this machine");
3530            return;
3531        }
3532        spapr_core_unplug_request(hotplug_dev, dev, errp);
3533    }
3534}
3535
3536static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3537                                          DeviceState *dev, Error **errp)
3538{
3539    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3540        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3541    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3542        spapr_core_pre_plug(hotplug_dev, dev, errp);
3543    }
3544}
3545
3546static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3547                                                 DeviceState *dev)
3548{
3549    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3550        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3551        return HOTPLUG_HANDLER(machine);
3552    }
3553    return NULL;
3554}
3555
3556static CpuInstanceProperties
3557spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3558{
3559    CPUArchId *core_slot;
3560    MachineClass *mc = MACHINE_GET_CLASS(machine);
3561
3562    /* make sure possible_cpu are intialized */
3563    mc->possible_cpu_arch_ids(machine);
3564    /* get CPU core slot containing thread that matches cpu_index */
3565    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3566    assert(core_slot);
3567    return core_slot->props;
3568}
3569
3570static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3571{
3572    return idx / smp_cores % nb_numa_nodes;
3573}
3574
3575static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3576{
3577    int i;
3578    const char *core_type;
3579    int spapr_max_cores = max_cpus / smp_threads;
3580    MachineClass *mc = MACHINE_GET_CLASS(machine);
3581
3582    if (!mc->has_hotpluggable_cpus) {
3583        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3584    }
3585    if (machine->possible_cpus) {
3586        assert(machine->possible_cpus->len == spapr_max_cores);
3587        return machine->possible_cpus;
3588    }
3589
3590    core_type = spapr_get_cpu_core_type(machine->cpu_type);
3591    if (!core_type) {
3592        error_report("Unable to find sPAPR CPU Core definition");
3593        exit(1);
3594    }
3595
3596    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3597                             sizeof(CPUArchId) * spapr_max_cores);
3598    machine->possible_cpus->len = spapr_max_cores;
3599    for (i = 0; i < machine->possible_cpus->len; i++) {
3600        int core_id = i * smp_threads;
3601
3602        machine->possible_cpus->cpus[i].type = core_type;
3603        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3604        machine->possible_cpus->cpus[i].arch_id = core_id;
3605        machine->possible_cpus->cpus[i].props.has_core_id = true;
3606        machine->possible_cpus->cpus[i].props.core_id = core_id;
3607    }
3608    return machine->possible_cpus;
3609}
3610
3611static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3612                                uint64_t *buid, hwaddr *pio,
3613                                hwaddr *mmio32, hwaddr *mmio64,
3614                                unsigned n_dma, uint32_t *liobns, Error **errp)
3615{
3616    /*
3617     * New-style PHB window placement.
3618     *
3619     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3620     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3621     * windows.
3622     *
3623     * Some guest kernels can't work with MMIO windows above 1<<46
3624     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3625     *
3626     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3627     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3628     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3629     * 1TiB 64-bit MMIO windows for each PHB.
3630     */
3631    const uint64_t base_buid = 0x800000020000000ULL;
3632#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3633                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3634    int i;
3635
3636    /* Sanity check natural alignments */
3637    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3638    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3639    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3640    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3641    /* Sanity check bounds */
3642    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3643                      SPAPR_PCI_MEM32_WIN_SIZE);
3644    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3645                      SPAPR_PCI_MEM64_WIN_SIZE);
3646
3647    if (index >= SPAPR_MAX_PHBS) {
3648        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3649                   SPAPR_MAX_PHBS - 1);
3650        return;
3651    }
3652
3653    *buid = base_buid + index;
3654    for (i = 0; i < n_dma; ++i) {
3655        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3656    }
3657
3658    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3659    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3660    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3661}
3662
3663static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3664{
3665    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3666
3667    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3668}
3669
3670static void spapr_ics_resend(XICSFabric *dev)
3671{
3672    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3673
3674    ics_resend(spapr->ics);
3675}
3676
3677static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3678{
3679    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3680
3681    return cpu ? ICP(cpu->intc) : NULL;
3682}
3683
3684#define ICS_IRQ_FREE(ics, srcno)   \
3685    (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3686
3687static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3688{
3689    int first, i;
3690
3691    for (first = 0; first < ics->nr_irqs; first += alignnum) {
3692        if (num > (ics->nr_irqs - first)) {
3693            return -1;
3694        }
3695        for (i = first; i < first + num; ++i) {
3696            if (!ICS_IRQ_FREE(ics, i)) {
3697                break;
3698            }
3699        }
3700        if (i == (first + num)) {
3701            return first;
3702        }
3703    }
3704
3705    return -1;
3706}
3707
3708/*
3709 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3710 */
3711static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3712{
3713    ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3714}
3715
3716int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3717                    Error **errp)
3718{
3719    ICSState *ics = spapr->ics;
3720    int irq;
3721
3722    if (!ics) {
3723        return -1;
3724    }
3725    if (irq_hint) {
3726        if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3727            error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3728            return -1;
3729        }
3730        irq = irq_hint;
3731    } else {
3732        irq = ics_find_free_block(ics, 1, 1);
3733        if (irq < 0) {
3734            error_setg(errp, "can't allocate IRQ: no IRQ left");
3735            return -1;
3736        }
3737        irq += ics->offset;
3738    }
3739
3740    spapr_irq_set_lsi(spapr, irq, lsi);
3741    trace_spapr_irq_alloc(irq);
3742
3743    return irq;
3744}
3745
3746/*
3747 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3748 * the block. If align==true, aligns the first IRQ number to num.
3749 */
3750int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3751                          bool align, Error **errp)
3752{
3753    ICSState *ics = spapr->ics;
3754    int i, first = -1;
3755
3756    if (!ics) {
3757        return -1;
3758    }
3759
3760    /*
3761     * MSIMesage::data is used for storing VIRQ so
3762     * it has to be aligned to num to support multiple
3763     * MSI vectors. MSI-X is not affected by this.
3764     * The hint is used for the first IRQ, the rest should
3765     * be allocated continuously.
3766     */
3767    if (align) {
3768        assert((num == 1) || (num == 2) || (num == 4) ||
3769               (num == 8) || (num == 16) || (num == 32));
3770        first = ics_find_free_block(ics, num, num);
3771    } else {
3772        first = ics_find_free_block(ics, num, 1);
3773    }
3774    if (first < 0) {
3775        error_setg(errp, "can't find a free %d-IRQ block", num);
3776        return -1;
3777    }
3778
3779    first += ics->offset;
3780    for (i = first; i < first + num; ++i) {
3781        spapr_irq_set_lsi(spapr, i, lsi);
3782    }
3783
3784    trace_spapr_irq_alloc_block(first, num, lsi, align);
3785
3786    return first;
3787}
3788
3789void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3790{
3791    ICSState *ics = spapr->ics;
3792    int srcno = irq - ics->offset;
3793    int i;
3794
3795    if (ics_valid_irq(ics, irq)) {
3796        trace_spapr_irq_free(0, irq, num);
3797        for (i = srcno; i < srcno + num; ++i) {
3798            if (ICS_IRQ_FREE(ics, i)) {
3799                trace_spapr_irq_free_warn(0, i + ics->offset);
3800            }
3801            memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3802        }
3803    }
3804}
3805
3806qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3807{
3808    ICSState *ics = spapr->ics;
3809
3810    if (ics_valid_irq(ics, irq)) {
3811        return ics->qirqs[irq - ics->offset];
3812    }
3813
3814    return NULL;
3815}
3816
3817static void spapr_pic_print_info(InterruptStatsProvider *obj,
3818                                 Monitor *mon)
3819{
3820    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3821    CPUState *cs;
3822
3823    CPU_FOREACH(cs) {
3824        PowerPCCPU *cpu = POWERPC_CPU(cs);
3825
3826        icp_pic_print_info(ICP(cpu->intc), mon);
3827    }
3828
3829    ics_pic_print_info(spapr->ics, mon);
3830}
3831
3832int spapr_get_vcpu_id(PowerPCCPU *cpu)
3833{
3834    return cpu->vcpu_id;
3835}
3836
3837void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3838{
3839    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3840    int vcpu_id;
3841
3842    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3843
3844    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3845        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3846        error_append_hint(errp, "Adjust the number of cpus to %d "
3847                          "or try to raise the number of threads per core\n",
3848                          vcpu_id * smp_threads / spapr->vsmt);
3849        return;
3850    }
3851
3852    cpu->vcpu_id = vcpu_id;
3853}
3854
3855PowerPCCPU *spapr_find_cpu(int vcpu_id)
3856{
3857    CPUState *cs;
3858
3859    CPU_FOREACH(cs) {
3860        PowerPCCPU *cpu = POWERPC_CPU(cs);
3861
3862        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3863            return cpu;
3864        }
3865    }
3866
3867    return NULL;
3868}
3869
3870static void spapr_machine_class_init(ObjectClass *oc, void *data)
3871{
3872    MachineClass *mc = MACHINE_CLASS(oc);
3873    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3874    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3875    NMIClass *nc = NMI_CLASS(oc);
3876    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3877    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3878    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3879    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3880
3881    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3882
3883    /*
3884     * We set up the default / latest behaviour here.  The class_init
3885     * functions for the specific versioned machine types can override
3886     * these details for backwards compatibility
3887     */
3888    mc->init = spapr_machine_init;
3889    mc->reset = spapr_machine_reset;
3890    mc->block_default_type = IF_SCSI;
3891    mc->max_cpus = 1024;
3892    mc->no_parallel = 1;
3893    mc->default_boot_order = "";
3894    mc->default_ram_size = 512 * M_BYTE;
3895    mc->kvm_type = spapr_kvm_type;
3896    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3897    mc->pci_allow_0_address = true;
3898    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3899    hc->pre_plug = spapr_machine_device_pre_plug;
3900    hc->plug = spapr_machine_device_plug;
3901    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3902    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3903    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3904    hc->unplug_request = spapr_machine_device_unplug_request;
3905
3906    smc->dr_lmb_enabled = true;
3907    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3908    mc->has_hotpluggable_cpus = true;
3909    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3910    fwc->get_dev_path = spapr_get_fw_dev_path;
3911    nc->nmi_monitor_handler = spapr_nmi;
3912    smc->phb_placement = spapr_phb_placement;
3913    vhc->hypercall = emulate_spapr_hypercall;
3914    vhc->hpt_mask = spapr_hpt_mask;
3915    vhc->map_hptes = spapr_map_hptes;
3916    vhc->unmap_hptes = spapr_unmap_hptes;
3917    vhc->store_hpte = spapr_store_hpte;
3918    vhc->get_patbe = spapr_get_patbe;
3919    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3920    xic->ics_get = spapr_ics_get;
3921    xic->ics_resend = spapr_ics_resend;
3922    xic->icp_get = spapr_icp_get;
3923    ispc->print_info = spapr_pic_print_info;
3924    /* Force NUMA node memory size to be a multiple of
3925     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3926     * in which LMBs are represented and hot-added
3927     */
3928    mc->numa_mem_align_shift = 28;
3929
3930    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3931    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3932    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3933    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3934    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3935    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3936    spapr_caps_add_properties(smc, &error_abort);
3937}
3938
3939static const TypeInfo spapr_machine_info = {
3940    .name          = TYPE_SPAPR_MACHINE,
3941    .parent        = TYPE_MACHINE,
3942    .abstract      = true,
3943    .instance_size = sizeof(sPAPRMachineState),
3944    .instance_init = spapr_instance_init,
3945    .instance_finalize = spapr_machine_finalizefn,
3946    .class_size    = sizeof(sPAPRMachineClass),
3947    .class_init    = spapr_machine_class_init,
3948    .interfaces = (InterfaceInfo[]) {
3949        { TYPE_FW_PATH_PROVIDER },
3950        { TYPE_NMI },
3951        { TYPE_HOTPLUG_HANDLER },
3952        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3953        { TYPE_XICS_FABRIC },
3954        { TYPE_INTERRUPT_STATS_PROVIDER },
3955        { }
3956    },
3957};
3958
3959#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3960    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3961                                                    void *data)      \
3962    {                                                                \
3963        MachineClass *mc = MACHINE_CLASS(oc);                        \
3964        spapr_machine_##suffix##_class_options(mc);                  \
3965        if (latest) {                                                \
3966            mc->alias = "pseries";                                   \
3967            mc->is_default = 1;                                      \
3968        }                                                            \
3969    }                                                                \
3970    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3971    {                                                                \
3972        MachineState *machine = MACHINE(obj);                        \
3973        spapr_machine_##suffix##_instance_options(machine);          \
3974    }                                                                \
3975    static const TypeInfo spapr_machine_##suffix##_info = {          \
3976        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3977        .parent = TYPE_SPAPR_MACHINE,                                \
3978        .class_init = spapr_machine_##suffix##_class_init,           \
3979        .instance_init = spapr_machine_##suffix##_instance_init,     \
3980    };                                                               \
3981    static void spapr_machine_register_##suffix(void)                \
3982    {                                                                \
3983        type_register(&spapr_machine_##suffix##_info);               \
3984    }                                                                \
3985    type_init(spapr_machine_register_##suffix)
3986
3987/*
3988 * pseries-2.12
3989 */
3990static void spapr_machine_2_12_instance_options(MachineState *machine)
3991{
3992}
3993
3994static void spapr_machine_2_12_class_options(MachineClass *mc)
3995{
3996    /* Defaults for the latest behaviour inherited from the base class */
3997}
3998
3999DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
4000
4001static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4002{
4003    spapr_machine_2_12_instance_options(machine);
4004}
4005
4006static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4007{
4008    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4009
4010    spapr_machine_2_12_class_options(mc);
4011    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4012    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4013    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4014}
4015
4016DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4017
4018/*
4019 * pseries-2.11
4020 */
4021#define SPAPR_COMPAT_2_11                                              \
4022    HW_COMPAT_2_11
4023
4024static void spapr_machine_2_11_instance_options(MachineState *machine)
4025{
4026    spapr_machine_2_12_instance_options(machine);
4027}
4028
4029static void spapr_machine_2_11_class_options(MachineClass *mc)
4030{
4031    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4032
4033    spapr_machine_2_12_class_options(mc);
4034    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4035    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4036}
4037
4038DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4039
4040/*
4041 * pseries-2.10
4042 */
4043#define SPAPR_COMPAT_2_10                                              \
4044    HW_COMPAT_2_10
4045
4046static void spapr_machine_2_10_instance_options(MachineState *machine)
4047{
4048    spapr_machine_2_11_instance_options(machine);
4049}
4050
4051static void spapr_machine_2_10_class_options(MachineClass *mc)
4052{
4053    spapr_machine_2_11_class_options(mc);
4054    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4055}
4056
4057DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4058
4059/*
4060 * pseries-2.9
4061 */
4062#define SPAPR_COMPAT_2_9                                               \
4063    HW_COMPAT_2_9                                                      \
4064    {                                                                  \
4065        .driver = TYPE_POWERPC_CPU,                                    \
4066        .property = "pre-2.10-migration",                              \
4067        .value    = "on",                                              \
4068    },                                                                 \
4069
4070static void spapr_machine_2_9_instance_options(MachineState *machine)
4071{
4072    spapr_machine_2_10_instance_options(machine);
4073}
4074
4075static void spapr_machine_2_9_class_options(MachineClass *mc)
4076{
4077    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4078
4079    spapr_machine_2_10_class_options(mc);
4080    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4081    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4082    smc->pre_2_10_has_unused_icps = true;
4083    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4084}
4085
4086DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4087
4088/*
4089 * pseries-2.8
4090 */
4091#define SPAPR_COMPAT_2_8                                        \
4092    HW_COMPAT_2_8                                               \
4093    {                                                           \
4094        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4095        .property = "pcie-extended-configuration-space",        \
4096        .value    = "off",                                      \
4097    },
4098
4099static void spapr_machine_2_8_instance_options(MachineState *machine)
4100{
4101    spapr_machine_2_9_instance_options(machine);
4102}
4103
4104static void spapr_machine_2_8_class_options(MachineClass *mc)
4105{
4106    spapr_machine_2_9_class_options(mc);
4107    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4108    mc->numa_mem_align_shift = 23;
4109}
4110
4111DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4112
4113/*
4114 * pseries-2.7
4115 */
4116#define SPAPR_COMPAT_2_7                            \
4117    HW_COMPAT_2_7                                   \
4118    {                                               \
4119        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4120        .property = "mem_win_size",                 \
4121        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4122    },                                              \
4123    {                                               \
4124        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4125        .property = "mem64_win_size",               \
4126        .value    = "0",                            \
4127    },                                              \
4128    {                                               \
4129        .driver = TYPE_POWERPC_CPU,                 \
4130        .property = "pre-2.8-migration",            \
4131        .value    = "on",                           \
4132    },                                              \
4133    {                                               \
4134        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4135        .property = "pre-2.8-migration",            \
4136        .value    = "on",                           \
4137    },
4138
4139static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4140                              uint64_t *buid, hwaddr *pio,
4141                              hwaddr *mmio32, hwaddr *mmio64,
4142                              unsigned n_dma, uint32_t *liobns, Error **errp)
4143{
4144    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4145    const uint64_t base_buid = 0x800000020000000ULL;
4146    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4147    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4148    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4149    const uint32_t max_index = 255;
4150    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4151
4152    uint64_t ram_top = MACHINE(spapr)->ram_size;
4153    hwaddr phb0_base, phb_base;
4154    int i;
4155
4156    /* Do we have hotpluggable memory? */
4157    if (MACHINE(spapr)->maxram_size > ram_top) {
4158        /* Can't just use maxram_size, because there may be an
4159         * alignment gap between normal and hotpluggable memory
4160         * regions */
4161        ram_top = spapr->hotplug_memory.base +
4162            memory_region_size(&spapr->hotplug_memory.mr);
4163    }
4164
4165    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4166
4167    if (index > max_index) {
4168        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4169                   max_index);
4170        return;
4171    }
4172
4173    *buid = base_buid + index;
4174    for (i = 0; i < n_dma; ++i) {
4175        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4176    }
4177
4178    phb_base = phb0_base + index * phb_spacing;
4179    *pio = phb_base + pio_offset;
4180    *mmio32 = phb_base + mmio_offset;
4181    /*
4182     * We don't set the 64-bit MMIO window, relying on the PHB's
4183     * fallback behaviour of automatically splitting a large "32-bit"
4184     * window into contiguous 32-bit and 64-bit windows
4185     */
4186}
4187
4188static void spapr_machine_2_7_instance_options(MachineState *machine)
4189{
4190    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4191
4192    spapr_machine_2_8_instance_options(machine);
4193    spapr->use_hotplug_event_source = false;
4194}
4195
4196static void spapr_machine_2_7_class_options(MachineClass *mc)
4197{
4198    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4199
4200    spapr_machine_2_8_class_options(mc);
4201    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4202    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4203    smc->phb_placement = phb_placement_2_7;
4204}
4205
4206DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4207
4208/*
4209 * pseries-2.6
4210 */
4211#define SPAPR_COMPAT_2_6 \
4212    HW_COMPAT_2_6 \
4213    { \
4214        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4215        .property = "ddw",\
4216        .value    = stringify(off),\
4217    },
4218
4219static void spapr_machine_2_6_instance_options(MachineState *machine)
4220{
4221    spapr_machine_2_7_instance_options(machine);
4222}
4223
4224static void spapr_machine_2_6_class_options(MachineClass *mc)
4225{
4226    spapr_machine_2_7_class_options(mc);
4227    mc->has_hotpluggable_cpus = false;
4228    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4229}
4230
4231DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4232
4233/*
4234 * pseries-2.5
4235 */
4236#define SPAPR_COMPAT_2_5 \
4237    HW_COMPAT_2_5 \
4238    { \
4239        .driver   = "spapr-vlan", \
4240        .property = "use-rx-buffer-pools", \
4241        .value    = "off", \
4242    },
4243
4244static void spapr_machine_2_5_instance_options(MachineState *machine)
4245{
4246    spapr_machine_2_6_instance_options(machine);
4247}
4248
4249static void spapr_machine_2_5_class_options(MachineClass *mc)
4250{
4251    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4252
4253    spapr_machine_2_6_class_options(mc);
4254    smc->use_ohci_by_default = true;
4255    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4256}
4257
4258DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4259
4260/*
4261 * pseries-2.4
4262 */
4263#define SPAPR_COMPAT_2_4 \
4264        HW_COMPAT_2_4
4265
4266static void spapr_machine_2_4_instance_options(MachineState *machine)
4267{
4268    spapr_machine_2_5_instance_options(machine);
4269}
4270
4271static void spapr_machine_2_4_class_options(MachineClass *mc)
4272{
4273    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4274
4275    spapr_machine_2_5_class_options(mc);
4276    smc->dr_lmb_enabled = false;
4277    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4278}
4279
4280DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4281
4282/*
4283 * pseries-2.3
4284 */
4285#define SPAPR_COMPAT_2_3 \
4286        HW_COMPAT_2_3 \
4287        {\
4288            .driver   = "spapr-pci-host-bridge",\
4289            .property = "dynamic-reconfiguration",\
4290            .value    = "off",\
4291        },
4292
4293static void spapr_machine_2_3_instance_options(MachineState *machine)
4294{
4295    spapr_machine_2_4_instance_options(machine);
4296}
4297
4298static void spapr_machine_2_3_class_options(MachineClass *mc)
4299{
4300    spapr_machine_2_4_class_options(mc);
4301    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4302}
4303DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4304
4305/*
4306 * pseries-2.2
4307 */
4308
4309#define SPAPR_COMPAT_2_2 \
4310        HW_COMPAT_2_2 \
4311        {\
4312            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4313            .property = "mem_win_size",\
4314            .value    = "0x20000000",\
4315        },
4316
4317static void spapr_machine_2_2_instance_options(MachineState *machine)
4318{
4319    spapr_machine_2_3_instance_options(machine);
4320    machine->suppress_vmdesc = true;
4321}
4322
4323static void spapr_machine_2_2_class_options(MachineClass *mc)
4324{
4325    spapr_machine_2_3_class_options(mc);
4326    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4327}
4328DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4329
4330/*
4331 * pseries-2.1
4332 */
4333#define SPAPR_COMPAT_2_1 \
4334        HW_COMPAT_2_1
4335
4336static void spapr_machine_2_1_instance_options(MachineState *machine)
4337{
4338    spapr_machine_2_2_instance_options(machine);
4339}
4340
4341static void spapr_machine_2_1_class_options(MachineClass *mc)
4342{
4343    spapr_machine_2_2_class_options(mc);
4344    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4345}
4346DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4347
4348static void spapr_machine_register_types(void)
4349{
4350    type_register_static(&spapr_machine_info);
4351}
4352
4353type_init(spapr_machine_register_types)
4354