qemu/hw/ppc/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "hw/hw.h"
  30#include "hw/sysbus.h"
  31#include "hw/pci/pci.h"
  32#include "hw/pci/msi.h"
  33#include "hw/pci/msix.h"
  34#include "hw/pci/pci_host.h"
  35#include "hw/ppc/spapr.h"
  36#include "hw/pci-host/spapr.h"
  37#include "exec/address-spaces.h"
  38#include "exec/ram_addr.h"
  39#include <libfdt.h>
  40#include "trace.h"
  41#include "qemu/error-report.h"
  42#include "qapi/qmp/qerror.h"
  43#include "hw/ppc/fdt.h"
  44#include "hw/pci/pci_bridge.h"
  45#include "hw/pci/pci_bus.h"
  46#include "hw/pci/pci_ids.h"
  47#include "hw/ppc/spapr_drc.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/kvm.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/numa.h"
  52
  53/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  54#define RTAS_QUERY_FN           0
  55#define RTAS_CHANGE_FN          1
  56#define RTAS_RESET_FN           2
  57#define RTAS_CHANGE_MSI_FN      3
  58#define RTAS_CHANGE_MSIX_FN     4
  59
  60/* Interrupt types to return on RTAS_CHANGE_* */
  61#define RTAS_TYPE_MSI           1
  62#define RTAS_TYPE_MSIX          2
  63
  64sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
  65{
  66    sPAPRPHBState *sphb;
  67
  68    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  69        if (sphb->buid != buid) {
  70            continue;
  71        }
  72        return sphb;
  73    }
  74
  75    return NULL;
  76}
  77
  78PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
  79                              uint32_t config_addr)
  80{
  81    sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
  82    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  83    int bus_num = (config_addr >> 16) & 0xFF;
  84    int devfn = (config_addr >> 8) & 0xFF;
  85
  86    if (!phb) {
  87        return NULL;
  88    }
  89
  90    return pci_find_device(phb->bus, bus_num, devfn);
  91}
  92
  93static uint32_t rtas_pci_cfgaddr(uint32_t arg)
  94{
  95    /* This handles the encoding of extended config space addresses */
  96    return ((arg >> 20) & 0xf00) | (arg & 0xff);
  97}
  98
  99static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 100                                   uint32_t addr, uint32_t size,
 101                                   target_ulong rets)
 102{
 103    PCIDevice *pci_dev;
 104    uint32_t val;
 105
 106    if ((size != 1) && (size != 2) && (size != 4)) {
 107        /* access must be 1, 2 or 4 bytes */
 108        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 109        return;
 110    }
 111
 112    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 113    addr = rtas_pci_cfgaddr(addr);
 114
 115    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 116        /* Access must be to a valid device, within bounds and
 117         * naturally aligned */
 118        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 119        return;
 120    }
 121
 122    val = pci_host_config_read_common(pci_dev, addr,
 123                                      pci_config_size(pci_dev), size);
 124
 125    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 126    rtas_st(rets, 1, val);
 127}
 128
 129static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 130                                     uint32_t token, uint32_t nargs,
 131                                     target_ulong args,
 132                                     uint32_t nret, target_ulong rets)
 133{
 134    uint64_t buid;
 135    uint32_t size, addr;
 136
 137    if ((nargs != 4) || (nret != 2)) {
 138        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 139        return;
 140    }
 141
 142    buid = rtas_ldq(args, 1);
 143    size = rtas_ld(args, 3);
 144    addr = rtas_ld(args, 0);
 145
 146    finish_read_pci_config(spapr, buid, addr, size, rets);
 147}
 148
 149static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 150                                 uint32_t token, uint32_t nargs,
 151                                 target_ulong args,
 152                                 uint32_t nret, target_ulong rets)
 153{
 154    uint32_t size, addr;
 155
 156    if ((nargs != 2) || (nret != 2)) {
 157        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 158        return;
 159    }
 160
 161    size = rtas_ld(args, 1);
 162    addr = rtas_ld(args, 0);
 163
 164    finish_read_pci_config(spapr, 0, addr, size, rets);
 165}
 166
 167static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 168                                    uint32_t addr, uint32_t size,
 169                                    uint32_t val, target_ulong rets)
 170{
 171    PCIDevice *pci_dev;
 172
 173    if ((size != 1) && (size != 2) && (size != 4)) {
 174        /* access must be 1, 2 or 4 bytes */
 175        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 176        return;
 177    }
 178
 179    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 180    addr = rtas_pci_cfgaddr(addr);
 181
 182    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 183        /* Access must be to a valid device, within bounds and
 184         * naturally aligned */
 185        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 186        return;
 187    }
 188
 189    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 190                                 val, size);
 191
 192    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 193}
 194
 195static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 196                                      uint32_t token, uint32_t nargs,
 197                                      target_ulong args,
 198                                      uint32_t nret, target_ulong rets)
 199{
 200    uint64_t buid;
 201    uint32_t val, size, addr;
 202
 203    if ((nargs != 5) || (nret != 1)) {
 204        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 205        return;
 206    }
 207
 208    buid = rtas_ldq(args, 1);
 209    val = rtas_ld(args, 4);
 210    size = rtas_ld(args, 3);
 211    addr = rtas_ld(args, 0);
 212
 213    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 214}
 215
 216static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 217                                  uint32_t token, uint32_t nargs,
 218                                  target_ulong args,
 219                                  uint32_t nret, target_ulong rets)
 220{
 221    uint32_t val, size, addr;
 222
 223    if ((nargs != 3) || (nret != 1)) {
 224        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 225        return;
 226    }
 227
 228
 229    val = rtas_ld(args, 2);
 230    size = rtas_ld(args, 1);
 231    addr = rtas_ld(args, 0);
 232
 233    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 234}
 235
 236/*
 237 * Set MSI/MSIX message data.
 238 * This is required for msi_notify()/msix_notify() which
 239 * will write at the addresses via spapr_msi_write().
 240 *
 241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
 242 * table will be reset.
 243 */
 244static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
 245                             unsigned first_irq, unsigned req_num)
 246{
 247    unsigned i;
 248    MSIMessage msg = { .address = addr, .data = first_irq };
 249
 250    if (!msix) {
 251        msi_set_message(pdev, msg);
 252        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 253        return;
 254    }
 255
 256    for (i = 0; i < req_num; ++i) {
 257        msix_set_message(pdev, i, msg);
 258        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 259        if (addr) {
 260            ++msg.data;
 261        }
 262    }
 263}
 264
 265static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 266                                uint32_t token, uint32_t nargs,
 267                                target_ulong args, uint32_t nret,
 268                                target_ulong rets)
 269{
 270    uint32_t config_addr = rtas_ld(args, 0);
 271    uint64_t buid = rtas_ldq(args, 1);
 272    unsigned int func = rtas_ld(args, 3);
 273    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 274    unsigned int seq_num = rtas_ld(args, 5);
 275    unsigned int ret_intr_type;
 276    unsigned int irq, max_irqs = 0;
 277    sPAPRPHBState *phb = NULL;
 278    PCIDevice *pdev = NULL;
 279    spapr_pci_msi *msi;
 280    int *config_addr_key;
 281    Error *err = NULL;
 282
 283    /* Fins sPAPRPHBState */
 284    phb = spapr_pci_find_phb(spapr, buid);
 285    if (phb) {
 286        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 287    }
 288    if (!phb || !pdev) {
 289        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 290        return;
 291    }
 292
 293    switch (func) {
 294    case RTAS_CHANGE_FN:
 295        if (msi_present(pdev)) {
 296            ret_intr_type = RTAS_TYPE_MSI;
 297        } else if (msix_present(pdev)) {
 298            ret_intr_type = RTAS_TYPE_MSIX;
 299        } else {
 300            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 301            return;
 302        }
 303        break;
 304    case RTAS_CHANGE_MSI_FN:
 305        if (msi_present(pdev)) {
 306            ret_intr_type = RTAS_TYPE_MSI;
 307        } else {
 308            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 309            return;
 310        }
 311        break;
 312    case RTAS_CHANGE_MSIX_FN:
 313        if (msix_present(pdev)) {
 314            ret_intr_type = RTAS_TYPE_MSIX;
 315        } else {
 316            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 317            return;
 318        }
 319        break;
 320    default:
 321        error_report("rtas_ibm_change_msi(%u) is not implemented", func);
 322        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 323        return;
 324    }
 325
 326    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 327
 328    /* Releasing MSIs */
 329    if (!req_num) {
 330        if (!msi) {
 331            trace_spapr_pci_msi("Releasing wrong config", config_addr);
 332            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 333            return;
 334        }
 335
 336        spapr_irq_free(spapr, msi->first_irq, msi->num);
 337        if (msi_present(pdev)) {
 338            spapr_msi_setmsg(pdev, 0, false, 0, 0);
 339        }
 340        if (msix_present(pdev)) {
 341            spapr_msi_setmsg(pdev, 0, true, 0, 0);
 342        }
 343        g_hash_table_remove(phb->msi, &config_addr);
 344
 345        trace_spapr_pci_msi("Released MSIs", config_addr);
 346        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 347        rtas_st(rets, 1, 0);
 348        return;
 349    }
 350
 351    /* Enabling MSI */
 352
 353    /* Check if the device supports as many IRQs as requested */
 354    if (ret_intr_type == RTAS_TYPE_MSI) {
 355        max_irqs = msi_nr_vectors_allocated(pdev);
 356    } else if (ret_intr_type == RTAS_TYPE_MSIX) {
 357        max_irqs = pdev->msix_entries_nr;
 358    }
 359    if (!max_irqs) {
 360        error_report("Requested interrupt type %d is not enabled for device %x",
 361                     ret_intr_type, config_addr);
 362        rtas_st(rets, 0, -1); /* Hardware error */
 363        return;
 364    }
 365    /* Correct the number if the guest asked for too many */
 366    if (req_num > max_irqs) {
 367        trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
 368        req_num = max_irqs;
 369        irq = 0; /* to avoid misleading trace */
 370        goto out;
 371    }
 372
 373    /* Allocate MSIs */
 374    irq = spapr_irq_alloc_block(spapr, req_num, false,
 375                           ret_intr_type == RTAS_TYPE_MSI, &err);
 376    if (err) {
 377        error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 378                          config_addr);
 379        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 380        return;
 381    }
 382
 383    /* Release previous MSIs */
 384    if (msi) {
 385        spapr_irq_free(spapr, msi->first_irq, msi->num);
 386        g_hash_table_remove(phb->msi, &config_addr);
 387    }
 388
 389    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 390    spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
 391                     irq, req_num);
 392
 393    /* Add MSI device to cache */
 394    msi = g_new(spapr_pci_msi, 1);
 395    msi->first_irq = irq;
 396    msi->num = req_num;
 397    config_addr_key = g_new(int, 1);
 398    *config_addr_key = config_addr;
 399    g_hash_table_insert(phb->msi, config_addr_key, msi);
 400
 401out:
 402    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 403    rtas_st(rets, 1, req_num);
 404    rtas_st(rets, 2, ++seq_num);
 405    if (nret > 3) {
 406        rtas_st(rets, 3, ret_intr_type);
 407    }
 408
 409    trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
 410}
 411
 412static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
 413                                                   sPAPRMachineState *spapr,
 414                                                   uint32_t token,
 415                                                   uint32_t nargs,
 416                                                   target_ulong args,
 417                                                   uint32_t nret,
 418                                                   target_ulong rets)
 419{
 420    uint32_t config_addr = rtas_ld(args, 0);
 421    uint64_t buid = rtas_ldq(args, 1);
 422    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 423    sPAPRPHBState *phb = NULL;
 424    PCIDevice *pdev = NULL;
 425    spapr_pci_msi *msi;
 426
 427    /* Find sPAPRPHBState */
 428    phb = spapr_pci_find_phb(spapr, buid);
 429    if (phb) {
 430        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 431    }
 432    if (!phb || !pdev) {
 433        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 434        return;
 435    }
 436
 437    /* Find device descriptor and start IRQ */
 438    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 439    if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
 440        trace_spapr_pci_msi("Failed to return vector", config_addr);
 441        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 442        return;
 443    }
 444    intr_src_num = msi->first_irq + ioa_intr_num;
 445    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 446                                                           intr_src_num);
 447
 448    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 449    rtas_st(rets, 1, intr_src_num);
 450    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 451}
 452
 453static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
 454                                    sPAPRMachineState *spapr,
 455                                    uint32_t token, uint32_t nargs,
 456                                    target_ulong args, uint32_t nret,
 457                                    target_ulong rets)
 458{
 459    sPAPRPHBState *sphb;
 460    uint32_t addr, option;
 461    uint64_t buid;
 462    int ret;
 463
 464    if ((nargs != 4) || (nret != 1)) {
 465        goto param_error_exit;
 466    }
 467
 468    buid = rtas_ldq(args, 1);
 469    addr = rtas_ld(args, 0);
 470    option = rtas_ld(args, 3);
 471
 472    sphb = spapr_pci_find_phb(spapr, buid);
 473    if (!sphb) {
 474        goto param_error_exit;
 475    }
 476
 477    if (!spapr_phb_eeh_available(sphb)) {
 478        goto param_error_exit;
 479    }
 480
 481    ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
 482    rtas_st(rets, 0, ret);
 483    return;
 484
 485param_error_exit:
 486    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 487}
 488
 489static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
 490                                           sPAPRMachineState *spapr,
 491                                           uint32_t token, uint32_t nargs,
 492                                           target_ulong args, uint32_t nret,
 493                                           target_ulong rets)
 494{
 495    sPAPRPHBState *sphb;
 496    PCIDevice *pdev;
 497    uint32_t addr, option;
 498    uint64_t buid;
 499
 500    if ((nargs != 4) || (nret != 2)) {
 501        goto param_error_exit;
 502    }
 503
 504    buid = rtas_ldq(args, 1);
 505    sphb = spapr_pci_find_phb(spapr, buid);
 506    if (!sphb) {
 507        goto param_error_exit;
 508    }
 509
 510    if (!spapr_phb_eeh_available(sphb)) {
 511        goto param_error_exit;
 512    }
 513
 514    /*
 515     * We always have PE address of form "00BB0001". "BB"
 516     * represents the bus number of PE's primary bus.
 517     */
 518    option = rtas_ld(args, 3);
 519    switch (option) {
 520    case RTAS_GET_PE_ADDR:
 521        addr = rtas_ld(args, 0);
 522        pdev = spapr_pci_find_dev(spapr, buid, addr);
 523        if (!pdev) {
 524            goto param_error_exit;
 525        }
 526
 527        rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
 528        break;
 529    case RTAS_GET_PE_MODE:
 530        rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
 531        break;
 532    default:
 533        goto param_error_exit;
 534    }
 535
 536    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 537    return;
 538
 539param_error_exit:
 540    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 541}
 542
 543static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
 544                                            sPAPRMachineState *spapr,
 545                                            uint32_t token, uint32_t nargs,
 546                                            target_ulong args, uint32_t nret,
 547                                            target_ulong rets)
 548{
 549    sPAPRPHBState *sphb;
 550    uint64_t buid;
 551    int state, ret;
 552
 553    if ((nargs != 3) || (nret != 4 && nret != 5)) {
 554        goto param_error_exit;
 555    }
 556
 557    buid = rtas_ldq(args, 1);
 558    sphb = spapr_pci_find_phb(spapr, buid);
 559    if (!sphb) {
 560        goto param_error_exit;
 561    }
 562
 563    if (!spapr_phb_eeh_available(sphb)) {
 564        goto param_error_exit;
 565    }
 566
 567    ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
 568    rtas_st(rets, 0, ret);
 569    if (ret != RTAS_OUT_SUCCESS) {
 570        return;
 571    }
 572
 573    rtas_st(rets, 1, state);
 574    rtas_st(rets, 2, RTAS_EEH_SUPPORT);
 575    rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
 576    if (nret >= 5) {
 577        rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
 578    }
 579    return;
 580
 581param_error_exit:
 582    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 583}
 584
 585static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
 586                                    sPAPRMachineState *spapr,
 587                                    uint32_t token, uint32_t nargs,
 588                                    target_ulong args, uint32_t nret,
 589                                    target_ulong rets)
 590{
 591    sPAPRPHBState *sphb;
 592    uint32_t option;
 593    uint64_t buid;
 594    int ret;
 595
 596    if ((nargs != 4) || (nret != 1)) {
 597        goto param_error_exit;
 598    }
 599
 600    buid = rtas_ldq(args, 1);
 601    option = rtas_ld(args, 3);
 602    sphb = spapr_pci_find_phb(spapr, buid);
 603    if (!sphb) {
 604        goto param_error_exit;
 605    }
 606
 607    if (!spapr_phb_eeh_available(sphb)) {
 608        goto param_error_exit;
 609    }
 610
 611    ret = spapr_phb_vfio_eeh_reset(sphb, option);
 612    rtas_st(rets, 0, ret);
 613    return;
 614
 615param_error_exit:
 616    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 617}
 618
 619static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
 620                                  sPAPRMachineState *spapr,
 621                                  uint32_t token, uint32_t nargs,
 622                                  target_ulong args, uint32_t nret,
 623                                  target_ulong rets)
 624{
 625    sPAPRPHBState *sphb;
 626    uint64_t buid;
 627    int ret;
 628
 629    if ((nargs != 3) || (nret != 1)) {
 630        goto param_error_exit;
 631    }
 632
 633    buid = rtas_ldq(args, 1);
 634    sphb = spapr_pci_find_phb(spapr, buid);
 635    if (!sphb) {
 636        goto param_error_exit;
 637    }
 638
 639    if (!spapr_phb_eeh_available(sphb)) {
 640        goto param_error_exit;
 641    }
 642
 643    ret = spapr_phb_vfio_eeh_configure(sphb);
 644    rtas_st(rets, 0, ret);
 645    return;
 646
 647param_error_exit:
 648    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 649}
 650
 651/* To support it later */
 652static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
 653                                       sPAPRMachineState *spapr,
 654                                       uint32_t token, uint32_t nargs,
 655                                       target_ulong args, uint32_t nret,
 656                                       target_ulong rets)
 657{
 658    sPAPRPHBState *sphb;
 659    int option;
 660    uint64_t buid;
 661
 662    if ((nargs != 8) || (nret != 1)) {
 663        goto param_error_exit;
 664    }
 665
 666    buid = rtas_ldq(args, 1);
 667    sphb = spapr_pci_find_phb(spapr, buid);
 668    if (!sphb) {
 669        goto param_error_exit;
 670    }
 671
 672    if (!spapr_phb_eeh_available(sphb)) {
 673        goto param_error_exit;
 674    }
 675
 676    option = rtas_ld(args, 7);
 677    switch (option) {
 678    case RTAS_SLOT_TEMP_ERR_LOG:
 679    case RTAS_SLOT_PERM_ERR_LOG:
 680        break;
 681    default:
 682        goto param_error_exit;
 683    }
 684
 685    /* We don't have error log yet */
 686    rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
 687    return;
 688
 689param_error_exit:
 690    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 691}
 692
 693static int pci_spapr_swizzle(int slot, int pin)
 694{
 695    return (slot + pin) % PCI_NUM_PINS;
 696}
 697
 698static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 699{
 700    /*
 701     * Here we need to convert pci_dev + irq_num to some unique value
 702     * which is less than number of IRQs on the specific bus (4).  We
 703     * use standard PCI swizzling, that is (slot number + pin number)
 704     * % 4.
 705     */
 706    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 707}
 708
 709static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 710{
 711    /*
 712     * Here we use the number returned by pci_spapr_map_irq to find a
 713     * corresponding qemu_irq.
 714     */
 715    sPAPRPHBState *phb = opaque;
 716
 717    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 718    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 719}
 720
 721static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
 722{
 723    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
 724    PCIINTxRoute route;
 725
 726    route.mode = PCI_INTX_ENABLED;
 727    route.irq = sphb->lsi_table[pin].irq;
 728
 729    return route;
 730}
 731
 732/*
 733 * MSI/MSIX memory region implementation.
 734 * The handler handles both MSI and MSIX.
 735 * The vector number is encoded in least bits in data.
 736 */
 737static void spapr_msi_write(void *opaque, hwaddr addr,
 738                            uint64_t data, unsigned size)
 739{
 740    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 741    uint32_t irq = data;
 742
 743    trace_spapr_pci_msi_write(addr, data, irq);
 744
 745    qemu_irq_pulse(spapr_qirq(spapr, irq));
 746}
 747
 748static const MemoryRegionOps spapr_msi_ops = {
 749    /* There is no .read as the read result is undefined by PCI spec */
 750    .read = NULL,
 751    .write = spapr_msi_write,
 752    .endianness = DEVICE_LITTLE_ENDIAN
 753};
 754
 755/*
 756 * PHB PCI device
 757 */
 758static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
 759{
 760    sPAPRPHBState *phb = opaque;
 761
 762    return &phb->iommu_as;
 763}
 764
 765static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
 766{
 767    char *path = NULL, *buf = NULL, *host = NULL;
 768
 769    /* Get the PCI VFIO host id */
 770    host = object_property_get_str(OBJECT(pdev), "host", NULL);
 771    if (!host) {
 772        goto err_out;
 773    }
 774
 775    /* Construct the path of the file that will give us the DT location */
 776    path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
 777    g_free(host);
 778    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 779        goto err_out;
 780    }
 781    g_free(path);
 782
 783    /* Construct and read from host device tree the loc-code */
 784    path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
 785    g_free(buf);
 786    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 787        goto err_out;
 788    }
 789    return buf;
 790
 791err_out:
 792    g_free(path);
 793    return NULL;
 794}
 795
 796static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
 797{
 798    char *buf;
 799    const char *devtype = "qemu";
 800    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
 801
 802    if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
 803        buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
 804        if (buf) {
 805            return buf;
 806        }
 807        devtype = "vfio";
 808    }
 809    /*
 810     * For emulated devices and VFIO-failure case, make up
 811     * the loc-code.
 812     */
 813    buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
 814                          devtype, pdev->name, sphb->index, busnr,
 815                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 816    return buf;
 817}
 818
 819/* Macros to operate with address in OF binding to PCI */
 820#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 821#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 822#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 823#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 824#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 825#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 826#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 827#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 828#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 829
 830/* for 'reg'/'assigned-addresses' OF properties */
 831#define RESOURCE_CELLS_SIZE 2
 832#define RESOURCE_CELLS_ADDRESS 3
 833
 834typedef struct ResourceFields {
 835    uint32_t phys_hi;
 836    uint32_t phys_mid;
 837    uint32_t phys_lo;
 838    uint32_t size_hi;
 839    uint32_t size_lo;
 840} QEMU_PACKED ResourceFields;
 841
 842typedef struct ResourceProps {
 843    ResourceFields reg[8];
 844    ResourceFields assigned[7];
 845    uint32_t reg_len;
 846    uint32_t assigned_len;
 847} ResourceProps;
 848
 849/* fill in the 'reg'/'assigned-resources' OF properties for
 850 * a PCI device. 'reg' describes resource requirements for a
 851 * device's IO/MEM regions, 'assigned-addresses' describes the
 852 * actual resource assignments.
 853 *
 854 * the properties are arrays of ('phys-addr', 'size') pairs describing
 855 * the addressable regions of the PCI device, where 'phys-addr' is a
 856 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
 857 * (phys.hi, phys.mid, phys.lo), and 'size' is a
 858 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
 859 *
 860 * phys.hi = 0xYYXXXXZZ, where:
 861 *   0xYY = npt000ss
 862 *          |||   |
 863 *          |||   +-- space code
 864 *          |||               |
 865 *          |||               +  00 if configuration space
 866 *          |||               +  01 if IO region,
 867 *          |||               +  10 if 32-bit MEM region
 868 *          |||               +  11 if 64-bit MEM region
 869 *          |||
 870 *          ||+------ for non-relocatable IO: 1 if aliased
 871 *          ||        for relocatable IO: 1 if below 64KB
 872 *          ||        for MEM: 1 if below 1MB
 873 *          |+------- 1 if region is prefetchable
 874 *          +-------- 1 if region is non-relocatable
 875 *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
 876 *            bits respectively
 877 *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
 878 *          to the region
 879 *
 880 * phys.mid and phys.lo correspond respectively to the hi/lo portions
 881 * of the actual address of the region.
 882 *
 883 * how the phys-addr/size values are used differ slightly between
 884 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
 885 * an additional description for the config space region of the
 886 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
 887 * to describe the region as relocatable, with an address-mapping
 888 * that corresponds directly to the PHB's address space for the
 889 * resource. 'assigned-addresses' always has n=1 set with an absolute
 890 * address assigned for the resource. in general, 'assigned-addresses'
 891 * won't be populated, since addresses for PCI devices are generally
 892 * unmapped initially and left to the guest to assign.
 893 *
 894 * note also that addresses defined in these properties are, at least
 895 * for PAPR guests, relative to the PHBs IO/MEM windows, and
 896 * correspond directly to the addresses in the BARs.
 897 *
 898 * in accordance with PCI Bus Binding to Open Firmware,
 899 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
 900 * Appendix C.
 901 */
 902static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
 903{
 904    int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
 905    uint32_t dev_id = (b_bbbbbbbb(bus_num) |
 906                       b_ddddd(PCI_SLOT(d->devfn)) |
 907                       b_fff(PCI_FUNC(d->devfn)));
 908    ResourceFields *reg, *assigned;
 909    int i, reg_idx = 0, assigned_idx = 0;
 910
 911    /* config space region */
 912    reg = &rp->reg[reg_idx++];
 913    reg->phys_hi = cpu_to_be32(dev_id);
 914    reg->phys_mid = 0;
 915    reg->phys_lo = 0;
 916    reg->size_hi = 0;
 917    reg->size_lo = 0;
 918
 919    for (i = 0; i < PCI_NUM_REGIONS; i++) {
 920        if (!d->io_regions[i].size) {
 921            continue;
 922        }
 923
 924        reg = &rp->reg[reg_idx++];
 925
 926        reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
 927        if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
 928            reg->phys_hi |= cpu_to_be32(b_ss(1));
 929        } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
 930            reg->phys_hi |= cpu_to_be32(b_ss(3));
 931        } else {
 932            reg->phys_hi |= cpu_to_be32(b_ss(2));
 933        }
 934        reg->phys_mid = 0;
 935        reg->phys_lo = 0;
 936        reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
 937        reg->size_lo = cpu_to_be32(d->io_regions[i].size);
 938
 939        if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
 940            continue;
 941        }
 942
 943        assigned = &rp->assigned[assigned_idx++];
 944        assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
 945        assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
 946        assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
 947        assigned->size_hi = reg->size_hi;
 948        assigned->size_lo = reg->size_lo;
 949    }
 950
 951    rp->reg_len = reg_idx * sizeof(ResourceFields);
 952    rp->assigned_len = assigned_idx * sizeof(ResourceFields);
 953}
 954
 955typedef struct PCIClass PCIClass;
 956typedef struct PCISubClass PCISubClass;
 957typedef struct PCIIFace PCIIFace;
 958
 959struct PCIIFace {
 960    int iface;
 961    const char *name;
 962};
 963
 964struct PCISubClass {
 965    int subclass;
 966    const char *name;
 967    const PCIIFace *iface;
 968};
 969
 970struct PCIClass {
 971    const char *name;
 972    const PCISubClass *subc;
 973};
 974
 975static const PCISubClass undef_subclass[] = {
 976    { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
 977    { 0xFF, NULL, NULL },
 978};
 979
 980static const PCISubClass mass_subclass[] = {
 981    { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
 982    { PCI_CLASS_STORAGE_IDE, "ide", NULL },
 983    { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
 984    { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
 985    { PCI_CLASS_STORAGE_RAID, "raid", NULL },
 986    { PCI_CLASS_STORAGE_ATA, "ata", NULL },
 987    { PCI_CLASS_STORAGE_SATA, "sata", NULL },
 988    { PCI_CLASS_STORAGE_SAS, "sas", NULL },
 989    { 0xFF, NULL, NULL },
 990};
 991
 992static const PCISubClass net_subclass[] = {
 993    { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
 994    { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
 995    { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
 996    { PCI_CLASS_NETWORK_ATM, "atm", NULL },
 997    { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
 998    { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
 999    { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1000    { 0xFF, NULL, NULL },
1001};
1002
1003static const PCISubClass displ_subclass[] = {
1004    { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1005    { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1006    { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1007    { 0xFF, NULL, NULL },
1008};
1009
1010static const PCISubClass media_subclass[] = {
1011    { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1012    { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1013    { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1014    { 0xFF, NULL, NULL },
1015};
1016
1017static const PCISubClass mem_subclass[] = {
1018    { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1019    { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1020    { 0xFF, NULL, NULL },
1021};
1022
1023static const PCISubClass bridg_subclass[] = {
1024    { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1025    { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1026    { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1027    { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1028    { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1029    { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1030    { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1031    { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1032    { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1033    { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1034    { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1035    { 0xFF, NULL, NULL },
1036};
1037
1038static const PCISubClass comm_subclass[] = {
1039    { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1040    { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1041    { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1042    { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1043    { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1044    { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1045    { 0xFF, NULL, NULL, },
1046};
1047
1048static const PCIIFace pic_iface[] = {
1049    { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1050    { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1051    { 0xFF, NULL },
1052};
1053
1054static const PCISubClass sys_subclass[] = {
1055    { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1056    { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1057    { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1058    { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1059    { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1060    { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1061    { 0xFF, NULL, NULL },
1062};
1063
1064static const PCISubClass inp_subclass[] = {
1065    { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1066    { PCI_CLASS_INPUT_PEN, "pen", NULL },
1067    { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1068    { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1069    { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1070    { 0xFF, NULL, NULL },
1071};
1072
1073static const PCISubClass dock_subclass[] = {
1074    { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1075    { 0xFF, NULL, NULL },
1076};
1077
1078static const PCISubClass cpu_subclass[] = {
1079    { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1080    { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1081    { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1082    { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1083    { 0xFF, NULL, NULL },
1084};
1085
1086static const PCIIFace usb_iface[] = {
1087    { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1088    { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1089    { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1090    { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1091    { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1092    { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1093    { 0xFF, NULL },
1094};
1095
1096static const PCISubClass ser_subclass[] = {
1097    { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1098    { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1099    { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1100    { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1101    { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1102    { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1103    { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1104    { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1105    { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1106    { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1107    { 0xFF, NULL, NULL },
1108};
1109
1110static const PCISubClass wrl_subclass[] = {
1111    { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1112    { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1113    { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1114    { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1115    { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1116    { 0xFF, NULL, NULL },
1117};
1118
1119static const PCISubClass sat_subclass[] = {
1120    { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1121    { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1122    { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1123    { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1124    { 0xFF, NULL, NULL },
1125};
1126
1127static const PCISubClass crypt_subclass[] = {
1128    { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1129    { PCI_CLASS_CRYPT_ENTERTAINMENT,
1130      "entertainment-encryption", NULL },
1131    { 0xFF, NULL, NULL },
1132};
1133
1134static const PCISubClass spc_subclass[] = {
1135    { PCI_CLASS_SP_DPIO, "dpio", NULL },
1136    { PCI_CLASS_SP_PERF, "counter", NULL },
1137    { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1138    { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1139    { 0xFF, NULL, NULL },
1140};
1141
1142static const PCIClass pci_classes[] = {
1143    { "legacy-device", undef_subclass },
1144    { "mass-storage",  mass_subclass },
1145    { "network", net_subclass },
1146    { "display", displ_subclass, },
1147    { "multimedia-device", media_subclass },
1148    { "memory-controller", mem_subclass },
1149    { "unknown-bridge", bridg_subclass },
1150    { "communication-controller", comm_subclass},
1151    { "system-peripheral", sys_subclass },
1152    { "input-controller", inp_subclass },
1153    { "docking-station", dock_subclass },
1154    { "cpu", cpu_subclass },
1155    { "serial-bus", ser_subclass },
1156    { "wireless-controller", wrl_subclass },
1157    { "intelligent-io", NULL },
1158    { "satellite-device", sat_subclass },
1159    { "encryption", crypt_subclass },
1160    { "data-processing-controller", spc_subclass },
1161};
1162
1163static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1164                                        uint8_t iface)
1165{
1166    const PCIClass *pclass;
1167    const PCISubClass *psubclass;
1168    const PCIIFace *piface;
1169    const char *name;
1170
1171    if (class >= ARRAY_SIZE(pci_classes)) {
1172        return "pci";
1173    }
1174
1175    pclass = pci_classes + class;
1176    name = pclass->name;
1177
1178    if (pclass->subc == NULL) {
1179        return name;
1180    }
1181
1182    psubclass = pclass->subc;
1183    while ((psubclass->subclass & 0xff) != 0xff) {
1184        if ((psubclass->subclass & 0xff) == subclass) {
1185            name = psubclass->name;
1186            break;
1187        }
1188        psubclass++;
1189    }
1190
1191    piface = psubclass->iface;
1192    if (piface == NULL) {
1193        return name;
1194    }
1195    while ((piface->iface & 0xff) != 0xff) {
1196        if ((piface->iface & 0xff) == iface) {
1197            name = piface->name;
1198            break;
1199        }
1200        piface++;
1201    }
1202
1203    return name;
1204}
1205
1206static gchar *pci_get_node_name(PCIDevice *dev)
1207{
1208    int slot = PCI_SLOT(dev->devfn);
1209    int func = PCI_FUNC(dev->devfn);
1210    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1211    const char *name;
1212
1213    name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1214                                ccode & 0xff);
1215
1216    if (func != 0) {
1217        return g_strdup_printf("%s@%x,%x", name, slot, func);
1218    } else {
1219        return g_strdup_printf("%s@%x", name, slot);
1220    }
1221}
1222
1223static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1224                                            PCIDevice *pdev);
1225
1226static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1227                                       sPAPRPHBState *sphb)
1228{
1229    ResourceProps rp;
1230    bool is_bridge = false;
1231    int pci_status;
1232    char *buf = NULL;
1233    uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1234    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1235    uint32_t max_msi, max_msix;
1236
1237    if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1238        PCI_HEADER_TYPE_BRIDGE) {
1239        is_bridge = true;
1240    }
1241
1242    /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1243    _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1244                          pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1245    _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1246                          pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1247    _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1248                          pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1249    _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1250    if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1251        _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1252                 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1253    }
1254
1255    if (!is_bridge) {
1256        _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1257            pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1258        _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1259            pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1260    }
1261
1262    if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1263        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1264                 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1265    }
1266
1267    if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1268        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1269                 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1270    }
1271
1272    _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1273        pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1274
1275    /* the following fdt cells are masked off the pci status register */
1276    pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1277    _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1278                          PCI_STATUS_DEVSEL_MASK & pci_status));
1279
1280    if (pci_status & PCI_STATUS_FAST_BACK) {
1281        _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1282    }
1283    if (pci_status & PCI_STATUS_66MHZ) {
1284        _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1285    }
1286    if (pci_status & PCI_STATUS_UDF) {
1287        _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1288    }
1289
1290    _FDT(fdt_setprop_string(fdt, offset, "name",
1291                            pci_find_device_name((ccode >> 16) & 0xff,
1292                                                 (ccode >> 8) & 0xff,
1293                                                 ccode & 0xff)));
1294
1295    buf = spapr_phb_get_loc_code(sphb, dev);
1296    _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1297    g_free(buf);
1298
1299    if (drc_index) {
1300        _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1301    }
1302
1303    _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1304                          RESOURCE_CELLS_ADDRESS));
1305    _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1306                          RESOURCE_CELLS_SIZE));
1307
1308    if (msi_present(dev)) {
1309        max_msi = msi_nr_vectors_allocated(dev);
1310        if (max_msi) {
1311            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1312        }
1313    }
1314    if (msix_present(dev)) {
1315        max_msix = dev->msix_entries_nr;
1316        if (max_msix) {
1317            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1318        }
1319    }
1320
1321    populate_resource_props(dev, &rp);
1322    _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1323    _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1324                     (uint8_t *)rp.assigned, rp.assigned_len));
1325
1326    if (sphb->pcie_ecs && pci_is_express(dev)) {
1327        _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1328    }
1329}
1330
1331/* create OF node for pci device and required OF DT properties */
1332static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1333                                     void *fdt, int node_offset)
1334{
1335    int offset;
1336    gchar *nodename;
1337
1338    nodename = pci_get_node_name(dev);
1339    _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1340    g_free(nodename);
1341
1342    spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1343
1344    return offset;
1345}
1346
1347/* Callback to be called during DRC release. */
1348void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1349{
1350    /* some version guests do not wait for completion of a device
1351     * cleanup (generally done asynchronously by the kernel) before
1352     * signaling to QEMU that the device is safe, but instead sleep
1353     * for some 'safe' period of time. unfortunately on a busy host
1354     * this sleep isn't guaranteed to be long enough, resulting in
1355     * bad things like IRQ lines being left asserted during final
1356     * device removal. to deal with this we call reset just prior
1357     * to finalizing the device, which will put the device back into
1358     * an 'idle' state, as the device cleanup code expects.
1359     */
1360    pci_device_reset(PCI_DEVICE(dev));
1361    object_unparent(OBJECT(dev));
1362}
1363
1364static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1365                                                    uint32_t busnr,
1366                                                    int32_t devfn)
1367{
1368    return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1369                           (phb->index << 16) | (busnr << 8) | devfn);
1370}
1371
1372static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1373                                               PCIDevice *pdev)
1374{
1375    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1376    return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1377}
1378
1379static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1380                                            PCIDevice *pdev)
1381{
1382    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1383
1384    if (!drc) {
1385        return 0;
1386    }
1387
1388    return spapr_drc_index(drc);
1389}
1390
1391static void spapr_pci_plug(HotplugHandler *plug_handler,
1392                           DeviceState *plugged_dev, Error **errp)
1393{
1394    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1395    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1396    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1397    Error *local_err = NULL;
1398    PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1399    uint32_t slotnr = PCI_SLOT(pdev->devfn);
1400    void *fdt = NULL;
1401    int fdt_start_offset, fdt_size;
1402
1403    /* if DR is disabled we don't need to do anything in the case of
1404     * hotplug or coldplug callbacks
1405     */
1406    if (!phb->dr_enabled) {
1407        /* if this is a hotplug operation initiated by the user
1408         * we need to let them know it's not enabled
1409         */
1410        if (plugged_dev->hotplugged) {
1411            error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1412                       object_get_typename(OBJECT(phb)));
1413        }
1414        goto out;
1415    }
1416
1417    g_assert(drc);
1418
1419    /* Following the QEMU convention used for PCIe multifunction
1420     * hotplug, we do not allow functions to be hotplugged to a
1421     * slot that already has function 0 present
1422     */
1423    if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1424        PCI_FUNC(pdev->devfn) != 0) {
1425        error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1426                   " additional functions can no longer be exposed to guest.",
1427                   slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1428        goto out;
1429    }
1430
1431    fdt = create_device_tree(&fdt_size);
1432    fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1433
1434    spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1435    if (local_err) {
1436        goto out;
1437    }
1438
1439    /* If this is function 0, signal hotplug for all the device functions.
1440     * Otherwise defer sending the hotplug event.
1441     */
1442    if (!spapr_drc_hotplugged(plugged_dev)) {
1443        spapr_drc_reset(drc);
1444    } else if (PCI_FUNC(pdev->devfn) == 0) {
1445        int i;
1446
1447        for (i = 0; i < 8; i++) {
1448            sPAPRDRConnector *func_drc;
1449            sPAPRDRConnectorClass *func_drck;
1450            sPAPRDREntitySense state;
1451
1452            func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1453                                                  PCI_DEVFN(slotnr, i));
1454            func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1455            state = func_drck->dr_entity_sense(func_drc);
1456
1457            if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1458                spapr_hotplug_req_add_by_index(func_drc);
1459            }
1460        }
1461    }
1462
1463out:
1464    if (local_err) {
1465        error_propagate(errp, local_err);
1466        g_free(fdt);
1467    }
1468}
1469
1470static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1471                                     DeviceState *plugged_dev, Error **errp)
1472{
1473    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1474    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1475    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1476
1477    if (!phb->dr_enabled) {
1478        error_setg(errp, QERR_BUS_NO_HOTPLUG,
1479                   object_get_typename(OBJECT(phb)));
1480        return;
1481    }
1482
1483    g_assert(drc);
1484    g_assert(drc->dev == plugged_dev);
1485
1486    if (!spapr_drc_unplug_requested(drc)) {
1487        PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1488        uint32_t slotnr = PCI_SLOT(pdev->devfn);
1489        sPAPRDRConnector *func_drc;
1490        sPAPRDRConnectorClass *func_drck;
1491        sPAPRDREntitySense state;
1492        int i;
1493
1494        /* ensure any other present functions are pending unplug */
1495        if (PCI_FUNC(pdev->devfn) == 0) {
1496            for (i = 1; i < 8; i++) {
1497                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1498                                                      PCI_DEVFN(slotnr, i));
1499                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1500                state = func_drck->dr_entity_sense(func_drc);
1501                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1502                    && !spapr_drc_unplug_requested(func_drc)) {
1503                    error_setg(errp,
1504                               "PCI: slot %d, function %d still present. "
1505                               "Must unplug all non-0 functions first.",
1506                               slotnr, i);
1507                    return;
1508                }
1509            }
1510        }
1511
1512        spapr_drc_detach(drc);
1513
1514        /* if this isn't func 0, defer unplug event. otherwise signal removal
1515         * for all present functions
1516         */
1517        if (PCI_FUNC(pdev->devfn) == 0) {
1518            for (i = 7; i >= 0; i--) {
1519                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1520                                                      PCI_DEVFN(slotnr, i));
1521                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1522                state = func_drck->dr_entity_sense(func_drc);
1523                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1524                    spapr_hotplug_req_remove_by_index(func_drc);
1525                }
1526            }
1527        }
1528    }
1529}
1530
1531static void spapr_phb_realize(DeviceState *dev, Error **errp)
1532{
1533    /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1534     * tries to add a sPAPR PHB to a non-pseries machine.
1535     */
1536    sPAPRMachineState *spapr =
1537        (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1538                                                  TYPE_SPAPR_MACHINE);
1539    SysBusDevice *s = SYS_BUS_DEVICE(dev);
1540    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1541    PCIHostState *phb = PCI_HOST_BRIDGE(s);
1542    char *namebuf;
1543    int i;
1544    PCIBus *bus;
1545    uint64_t msi_window_size = 4096;
1546    sPAPRTCETable *tcet;
1547    const unsigned windows_supported =
1548        sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1549
1550    if (!spapr) {
1551        error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1552        return;
1553    }
1554
1555    if (sphb->index != (uint32_t)-1) {
1556        sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1557        Error *local_err = NULL;
1558
1559        smc->phb_placement(spapr, sphb->index,
1560                           &sphb->buid, &sphb->io_win_addr,
1561                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
1562                           windows_supported, sphb->dma_liobn, &local_err);
1563        if (local_err) {
1564            error_propagate(errp, local_err);
1565            return;
1566        }
1567    } else {
1568        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1569        return;
1570    }
1571
1572    if (sphb->mem64_win_size != 0) {
1573        if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1574            error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1575                       " (max 2 GiB)", sphb->mem_win_size);
1576            return;
1577        }
1578
1579        /* 64-bit window defaults to identity mapping */
1580        sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1581    } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1582        /*
1583         * For compatibility with old configuration, if no 64-bit MMIO
1584         * window is specified, but the ordinary (32-bit) memory
1585         * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1586         * window, with a 64-bit MMIO window following on immediately
1587         * afterwards
1588         */
1589        sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1590        sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1591        sphb->mem64_win_pciaddr =
1592            SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1593        sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1594    }
1595
1596    if (spapr_pci_find_phb(spapr, sphb->buid)) {
1597        error_setg(errp, "PCI host bridges must have unique BUIDs");
1598        return;
1599    }
1600
1601    if (sphb->numa_node != -1 &&
1602        (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1603        error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1604        return;
1605    }
1606
1607    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1608
1609    /* Initialize memory regions */
1610    namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1611    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1612    g_free(namebuf);
1613
1614    namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1615    memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1616                             namebuf, &sphb->memspace,
1617                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1618    g_free(namebuf);
1619    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1620                                &sphb->mem32window);
1621
1622    if (sphb->mem64_win_size != 0) {
1623        namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1624        memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1625                                 namebuf, &sphb->memspace,
1626                                 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1627        g_free(namebuf);
1628
1629        memory_region_add_subregion(get_system_memory(),
1630                                    sphb->mem64_win_addr,
1631                                    &sphb->mem64window);
1632    }
1633
1634    /* Initialize IO regions */
1635    namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1636    memory_region_init(&sphb->iospace, OBJECT(sphb),
1637                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
1638    g_free(namebuf);
1639
1640    namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1641    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1642                             &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1643    g_free(namebuf);
1644    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1645                                &sphb->iowindow);
1646
1647    bus = pci_register_root_bus(dev, NULL,
1648                                pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1649                                &sphb->memspace, &sphb->iospace,
1650                                PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1651    phb->bus = bus;
1652    qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1653
1654    /*
1655     * Initialize PHB address space.
1656     * By default there will be at least one subregion for default
1657     * 32bit DMA window.
1658     * Later the guest might want to create another DMA window
1659     * which will become another memory subregion.
1660     */
1661    namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1662    memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1663                       namebuf, UINT64_MAX);
1664    g_free(namebuf);
1665    address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1666                       sphb->dtbusname);
1667
1668    /*
1669     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1670     * we need to allocate some memory to catch those writes coming
1671     * from msi_notify()/msix_notify().
1672     * As MSIMessage:addr is going to be the same and MSIMessage:data
1673     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1674     * be used.
1675     *
1676     * For KVM we want to ensure that this memory is a full page so that
1677     * our memory slot is of page size granularity.
1678     */
1679#ifdef CONFIG_KVM
1680    if (kvm_enabled()) {
1681        msi_window_size = getpagesize();
1682    }
1683#endif
1684
1685    memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1686                          "msi", msi_window_size);
1687    memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1688                                &sphb->msiwindow);
1689
1690    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1691
1692    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1693
1694    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1695
1696    /* Initialize the LSI table */
1697    for (i = 0; i < PCI_NUM_PINS; i++) {
1698        uint32_t irq;
1699        Error *local_err = NULL;
1700
1701        irq = spapr_irq_alloc_block(spapr, 1, true, false, &local_err);
1702        if (local_err) {
1703            error_propagate(errp, local_err);
1704            error_prepend(errp, "can't allocate LSIs: ");
1705            return;
1706        }
1707
1708        sphb->lsi_table[i].irq = irq;
1709    }
1710
1711    /* allocate connectors for child PCI devices */
1712    if (sphb->dr_enabled) {
1713        for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1714            spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1715                                   (sphb->index << 16) | i);
1716        }
1717    }
1718
1719    /* DMA setup */
1720    if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
1721        && kvm_enabled()) {
1722        warn_report("System page size 0x%lx is not enabled in page_size_mask "
1723                    "(0x%"PRIx64"). Performance may be slow",
1724                    qemu_getrampagesize(), sphb->page_size_mask);
1725    }
1726
1727    for (i = 0; i < windows_supported; ++i) {
1728        tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1729        if (!tcet) {
1730            error_setg(errp, "Creating window#%d failed for %s",
1731                       i, sphb->dtbusname);
1732            return;
1733        }
1734        memory_region_add_subregion(&sphb->iommu_root, 0,
1735                                    spapr_tce_get_iommu(tcet));
1736    }
1737
1738    sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1739}
1740
1741static int spapr_phb_children_reset(Object *child, void *opaque)
1742{
1743    DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1744
1745    if (dev) {
1746        device_reset(dev);
1747    }
1748
1749    return 0;
1750}
1751
1752void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1753{
1754    int i;
1755    sPAPRTCETable *tcet;
1756
1757    for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1758        tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1759
1760        if (tcet && tcet->nb_table) {
1761            spapr_tce_table_disable(tcet);
1762        }
1763    }
1764
1765    /* Register default 32bit DMA window */
1766    tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1767    spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1768                           sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1769}
1770
1771static void spapr_phb_reset(DeviceState *qdev)
1772{
1773    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1774
1775    spapr_phb_dma_reset(sphb);
1776
1777    /* Reset the IOMMU state */
1778    object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1779
1780    if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1781        spapr_phb_vfio_reset(qdev);
1782    }
1783}
1784
1785static Property spapr_phb_properties[] = {
1786    DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1787    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1788                       SPAPR_PCI_MEM32_WIN_SIZE),
1789    DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1790                       SPAPR_PCI_MEM64_WIN_SIZE),
1791    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1792                       SPAPR_PCI_IO_WIN_SIZE),
1793    DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1794                     true),
1795    /* Default DMA window is 0..1GB */
1796    DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1797    DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1798    DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1799                       0x800000000000000ULL),
1800    DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1801    DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1802                       (1ULL << 12) | (1ULL << 16)),
1803    DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1804    DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1805                     pre_2_8_migration, false),
1806    DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1807                     pcie_ecs, true),
1808    DEFINE_PROP_END_OF_LIST(),
1809};
1810
1811static const VMStateDescription vmstate_spapr_pci_lsi = {
1812    .name = "spapr_pci/lsi",
1813    .version_id = 1,
1814    .minimum_version_id = 1,
1815    .fields = (VMStateField[]) {
1816        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1817
1818        VMSTATE_END_OF_LIST()
1819    },
1820};
1821
1822static const VMStateDescription vmstate_spapr_pci_msi = {
1823    .name = "spapr_pci/msi",
1824    .version_id = 1,
1825    .minimum_version_id = 1,
1826    .fields = (VMStateField []) {
1827        VMSTATE_UINT32(key, spapr_pci_msi_mig),
1828        VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1829        VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1830        VMSTATE_END_OF_LIST()
1831    },
1832};
1833
1834static int spapr_pci_pre_save(void *opaque)
1835{
1836    sPAPRPHBState *sphb = opaque;
1837    GHashTableIter iter;
1838    gpointer key, value;
1839    int i;
1840
1841    if (sphb->pre_2_8_migration) {
1842        sphb->mig_liobn = sphb->dma_liobn[0];
1843        sphb->mig_mem_win_addr = sphb->mem_win_addr;
1844        sphb->mig_mem_win_size = sphb->mem_win_size;
1845        sphb->mig_io_win_addr = sphb->io_win_addr;
1846        sphb->mig_io_win_size = sphb->io_win_size;
1847
1848        if ((sphb->mem64_win_size != 0)
1849            && (sphb->mem64_win_addr
1850                == (sphb->mem_win_addr + sphb->mem_win_size))) {
1851            sphb->mig_mem_win_size += sphb->mem64_win_size;
1852        }
1853    }
1854
1855    g_free(sphb->msi_devs);
1856    sphb->msi_devs = NULL;
1857    sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1858    if (!sphb->msi_devs_num) {
1859        return 0;
1860    }
1861    sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1862
1863    g_hash_table_iter_init(&iter, sphb->msi);
1864    for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1865        sphb->msi_devs[i].key = *(uint32_t *) key;
1866        sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1867    }
1868
1869    return 0;
1870}
1871
1872static int spapr_pci_post_load(void *opaque, int version_id)
1873{
1874    sPAPRPHBState *sphb = opaque;
1875    gpointer key, value;
1876    int i;
1877
1878    for (i = 0; i < sphb->msi_devs_num; ++i) {
1879        key = g_memdup(&sphb->msi_devs[i].key,
1880                       sizeof(sphb->msi_devs[i].key));
1881        value = g_memdup(&sphb->msi_devs[i].value,
1882                         sizeof(sphb->msi_devs[i].value));
1883        g_hash_table_insert(sphb->msi, key, value);
1884    }
1885    g_free(sphb->msi_devs);
1886    sphb->msi_devs = NULL;
1887    sphb->msi_devs_num = 0;
1888
1889    return 0;
1890}
1891
1892static bool pre_2_8_migration(void *opaque, int version_id)
1893{
1894    sPAPRPHBState *sphb = opaque;
1895
1896    return sphb->pre_2_8_migration;
1897}
1898
1899static const VMStateDescription vmstate_spapr_pci = {
1900    .name = "spapr_pci",
1901    .version_id = 2,
1902    .minimum_version_id = 2,
1903    .pre_save = spapr_pci_pre_save,
1904    .post_load = spapr_pci_post_load,
1905    .fields = (VMStateField[]) {
1906        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1907        VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1908        VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1909        VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1910        VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1911        VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1912        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1913                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1914        VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1915        VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1916                                    vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1917        VMSTATE_END_OF_LIST()
1918    },
1919};
1920
1921static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1922                                           PCIBus *rootbus)
1923{
1924    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1925
1926    return sphb->dtbusname;
1927}
1928
1929static void spapr_phb_class_init(ObjectClass *klass, void *data)
1930{
1931    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1932    DeviceClass *dc = DEVICE_CLASS(klass);
1933    HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1934
1935    hc->root_bus_path = spapr_phb_root_bus_path;
1936    dc->realize = spapr_phb_realize;
1937    dc->props = spapr_phb_properties;
1938    dc->reset = spapr_phb_reset;
1939    dc->vmsd = &vmstate_spapr_pci;
1940    /* Supported by TYPE_SPAPR_MACHINE */
1941    dc->user_creatable = true;
1942    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1943    hp->plug = spapr_pci_plug;
1944    hp->unplug_request = spapr_pci_unplug_request;
1945}
1946
1947static const TypeInfo spapr_phb_info = {
1948    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1949    .parent        = TYPE_PCI_HOST_BRIDGE,
1950    .instance_size = sizeof(sPAPRPHBState),
1951    .class_init    = spapr_phb_class_init,
1952    .interfaces    = (InterfaceInfo[]) {
1953        { TYPE_HOTPLUG_HANDLER },
1954        { }
1955    }
1956};
1957
1958PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1959{
1960    DeviceState *dev;
1961
1962    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1963    qdev_prop_set_uint32(dev, "index", index);
1964    qdev_init_nofail(dev);
1965
1966    return PCI_HOST_BRIDGE(dev);
1967}
1968
1969typedef struct sPAPRFDT {
1970    void *fdt;
1971    int node_off;
1972    sPAPRPHBState *sphb;
1973} sPAPRFDT;
1974
1975static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1976                                          void *opaque)
1977{
1978    PCIBus *sec_bus;
1979    sPAPRFDT *p = opaque;
1980    int offset;
1981    sPAPRFDT s_fdt;
1982
1983    offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1984    if (!offset) {
1985        error_report("Failed to create pci child device tree node");
1986        return;
1987    }
1988
1989    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1990         PCI_HEADER_TYPE_BRIDGE)) {
1991        return;
1992    }
1993
1994    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1995    if (!sec_bus) {
1996        return;
1997    }
1998
1999    s_fdt.fdt = p->fdt;
2000    s_fdt.node_off = offset;
2001    s_fdt.sphb = p->sphb;
2002    pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2003                                spapr_populate_pci_devices_dt,
2004                                &s_fdt);
2005}
2006
2007static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2008                                           void *opaque)
2009{
2010    unsigned int *bus_no = opaque;
2011    unsigned int primary = *bus_no;
2012    unsigned int subordinate = 0xff;
2013    PCIBus *sec_bus = NULL;
2014
2015    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2016         PCI_HEADER_TYPE_BRIDGE)) {
2017        return;
2018    }
2019
2020    (*bus_no)++;
2021    pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2022    pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2023    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2024
2025    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2026    if (!sec_bus) {
2027        return;
2028    }
2029
2030    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2031    pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2032                        spapr_phb_pci_enumerate_bridge, bus_no);
2033    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2034}
2035
2036static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2037{
2038    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2039    unsigned int bus_no = 0;
2040
2041    pci_for_each_device(bus, pci_bus_num(bus),
2042                        spapr_phb_pci_enumerate_bridge,
2043                        &bus_no);
2044
2045}
2046
2047int spapr_populate_pci_dt(sPAPRPHBState *phb,
2048                          uint32_t xics_phandle,
2049                          void *fdt)
2050{
2051    int bus_off, i, j, ret;
2052    gchar *nodename;
2053    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2054    struct {
2055        uint32_t hi;
2056        uint64_t child;
2057        uint64_t parent;
2058        uint64_t size;
2059    } QEMU_PACKED ranges[] = {
2060        {
2061            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2062            cpu_to_be64(phb->io_win_addr),
2063            cpu_to_be64(memory_region_size(&phb->iospace)),
2064        },
2065        {
2066            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2067            cpu_to_be64(phb->mem_win_addr),
2068            cpu_to_be64(phb->mem_win_size),
2069        },
2070        {
2071            cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2072            cpu_to_be64(phb->mem64_win_addr),
2073            cpu_to_be64(phb->mem64_win_size),
2074        },
2075    };
2076    const unsigned sizeof_ranges =
2077        (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2078    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2079    uint32_t interrupt_map_mask[] = {
2080        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2081    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2082    uint32_t ddw_applicable[] = {
2083        cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2084        cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2085        cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2086    };
2087    uint32_t ddw_extensions[] = {
2088        cpu_to_be32(1),
2089        cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2090    };
2091    uint32_t associativity[] = {cpu_to_be32(0x4),
2092                                cpu_to_be32(0x0),
2093                                cpu_to_be32(0x0),
2094                                cpu_to_be32(0x0),
2095                                cpu_to_be32(phb->numa_node)};
2096    sPAPRTCETable *tcet;
2097    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2098    sPAPRFDT s_fdt;
2099
2100    /* Start populating the FDT */
2101    nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2102    _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2103    g_free(nodename);
2104
2105    /* Write PHB properties */
2106    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2107    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2108    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2109    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2110    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2111    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2112    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2113    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2114    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2115    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2116    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2117
2118    /* Dynamic DMA window */
2119    if (phb->ddw_enabled) {
2120        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2121                         sizeof(ddw_applicable)));
2122        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2123                         &ddw_extensions, sizeof(ddw_extensions)));
2124    }
2125
2126    /* Advertise NUMA via ibm,associativity */
2127    if (phb->numa_node != -1) {
2128        _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2129                         sizeof(associativity)));
2130    }
2131
2132    /* Build the interrupt-map, this must matches what is done
2133     * in pci_spapr_map_irq
2134     */
2135    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2136                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
2137    for (i = 0; i < PCI_SLOT_MAX; i++) {
2138        for (j = 0; j < PCI_NUM_PINS; j++) {
2139            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2140            int lsi_num = pci_spapr_swizzle(i, j);
2141
2142            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2143            irqmap[1] = 0;
2144            irqmap[2] = 0;
2145            irqmap[3] = cpu_to_be32(j+1);
2146            irqmap[4] = cpu_to_be32(xics_phandle);
2147            spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2148        }
2149    }
2150    /* Write interrupt map */
2151    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2152                     sizeof(interrupt_map)));
2153
2154    tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2155    if (!tcet) {
2156        return -1;
2157    }
2158    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2159                 tcet->liobn, tcet->bus_offset,
2160                 tcet->nb_table << tcet->page_shift);
2161
2162    /* Walk the bridges and program the bus numbers*/
2163    spapr_phb_pci_enumerate(phb);
2164    _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2165
2166    /* Populate tree nodes with PCI devices attached */
2167    s_fdt.fdt = fdt;
2168    s_fdt.node_off = bus_off;
2169    s_fdt.sphb = phb;
2170    pci_for_each_device_reverse(bus, pci_bus_num(bus),
2171                                spapr_populate_pci_devices_dt,
2172                                &s_fdt);
2173
2174    ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2175                                SPAPR_DR_CONNECTOR_TYPE_PCI);
2176    if (ret) {
2177        return ret;
2178    }
2179
2180    return 0;
2181}
2182
2183void spapr_pci_rtas_init(void)
2184{
2185    spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2186                        rtas_read_pci_config);
2187    spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2188                        rtas_write_pci_config);
2189    spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2190                        rtas_ibm_read_pci_config);
2191    spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2192                        rtas_ibm_write_pci_config);
2193    if (msi_nonbroken) {
2194        spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2195                            "ibm,query-interrupt-source-number",
2196                            rtas_ibm_query_interrupt_source_number);
2197        spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2198                            rtas_ibm_change_msi);
2199    }
2200
2201    spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2202                        "ibm,set-eeh-option",
2203                        rtas_ibm_set_eeh_option);
2204    spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2205                        "ibm,get-config-addr-info2",
2206                        rtas_ibm_get_config_addr_info2);
2207    spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2208                        "ibm,read-slot-reset-state2",
2209                        rtas_ibm_read_slot_reset_state2);
2210    spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2211                        "ibm,set-slot-reset",
2212                        rtas_ibm_set_slot_reset);
2213    spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2214                        "ibm,configure-pe",
2215                        rtas_ibm_configure_pe);
2216    spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2217                        "ibm,slot-error-detail",
2218                        rtas_ibm_slot_error_detail);
2219}
2220
2221static void spapr_pci_register_types(void)
2222{
2223    type_register_static(&spapr_phb_info);
2224}
2225
2226type_init(spapr_pci_register_types)
2227
2228static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2229{
2230    bool be = *(bool *)opaque;
2231
2232    if (object_dynamic_cast(OBJECT(dev), "VGA")
2233        || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2234        object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2235                                 &error_abort);
2236    }
2237    return 0;
2238}
2239
2240void spapr_pci_switch_vga(bool big_endian)
2241{
2242    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2243    sPAPRPHBState *sphb;
2244
2245    /*
2246     * For backward compatibility with existing guests, we switch
2247     * the endianness of the VGA controller when changing the guest
2248     * interrupt mode
2249     */
2250    QLIST_FOREACH(sphb, &spapr->phbs, list) {
2251        BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2252        qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2253                           &big_endian);
2254    }
2255}
2256