qemu/include/exec/exec-all.h
<<
>>
Prefs
   1/*
   2 * internal execution defines for qemu
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef EXEC_ALL_H
  21#define EXEC_ALL_H
  22
  23#include "qemu-common.h"
  24#include "exec/tb-context.h"
  25#include "sysemu/cpus.h"
  26
  27/* allow to see translation results - the slowdown should be negligible, so we leave it */
  28#define DEBUG_DISAS
  29
  30/* Page tracking code uses ram addresses in system mode, and virtual
  31   addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
  32   type.  */
  33#if defined(CONFIG_USER_ONLY)
  34typedef abi_ulong tb_page_addr_t;
  35#define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
  36#else
  37typedef ram_addr_t tb_page_addr_t;
  38#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
  39#endif
  40
  41#include "qemu/log.h"
  42
  43void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
  44void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
  45                          target_ulong *data);
  46
  47void cpu_gen_init(void);
  48
  49/**
  50 * cpu_restore_state:
  51 * @cpu: the vCPU state is to be restore to
  52 * @searched_pc: the host PC the fault occurred at
  53 * @will_exit: true if the TB executed will be interrupted after some
  54               cpu adjustments. Required for maintaining the correct
  55               icount valus
  56 * @return: true if state was restored, false otherwise
  57 *
  58 * Attempt to restore the state for a fault occurring in translated
  59 * code. If the searched_pc is not in translated code no state is
  60 * restored and the function returns false.
  61 */
  62bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
  63
  64void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
  65void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
  66TranslationBlock *tb_gen_code(CPUState *cpu,
  67                              target_ulong pc, target_ulong cs_base,
  68                              uint32_t flags,
  69                              int cflags);
  70
  71void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
  72void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
  73void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
  74
  75#if !defined(CONFIG_USER_ONLY)
  76void cpu_reloading_memory_map(void);
  77/**
  78 * cpu_address_space_init:
  79 * @cpu: CPU to add this address space to
  80 * @asidx: integer index of this address space
  81 * @prefix: prefix to be used as name of address space
  82 * @mr: the root memory region of address space
  83 *
  84 * Add the specified address space to the CPU's cpu_ases list.
  85 * The address space added with @asidx 0 is the one used for the
  86 * convenience pointer cpu->as.
  87 * The target-specific code which registers ASes is responsible
  88 * for defining what semantics address space 0, 1, 2, etc have.
  89 *
  90 * Before the first call to this function, the caller must set
  91 * cpu->num_ases to the total number of address spaces it needs
  92 * to support.
  93 *
  94 * Note that with KVM only one address space is supported.
  95 */
  96void cpu_address_space_init(CPUState *cpu, int asidx,
  97                            const char *prefix, MemoryRegion *mr);
  98#endif
  99
 100#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
 101/* cputlb.c */
 102/**
 103 * tlb_flush_page:
 104 * @cpu: CPU whose TLB should be flushed
 105 * @addr: virtual address of page to be flushed
 106 *
 107 * Flush one page from the TLB of the specified CPU, for all
 108 * MMU indexes.
 109 */
 110void tlb_flush_page(CPUState *cpu, target_ulong addr);
 111/**
 112 * tlb_flush_page_all_cpus:
 113 * @cpu: src CPU of the flush
 114 * @addr: virtual address of page to be flushed
 115 *
 116 * Flush one page from the TLB of the specified CPU, for all
 117 * MMU indexes.
 118 */
 119void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
 120/**
 121 * tlb_flush_page_all_cpus_synced:
 122 * @cpu: src CPU of the flush
 123 * @addr: virtual address of page to be flushed
 124 *
 125 * Flush one page from the TLB of the specified CPU, for all MMU
 126 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
 127 * is scheduled as safe work meaning all flushes will be complete once
 128 * the source vCPUs safe work is complete. This will depend on when
 129 * the guests translation ends the TB.
 130 */
 131void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
 132/**
 133 * tlb_flush:
 134 * @cpu: CPU whose TLB should be flushed
 135 *
 136 * Flush the entire TLB for the specified CPU. Most CPU architectures
 137 * allow the implementation to drop entries from the TLB at any time
 138 * so this is generally safe. If more selective flushing is required
 139 * use one of the other functions for efficiency.
 140 */
 141void tlb_flush(CPUState *cpu);
 142/**
 143 * tlb_flush_all_cpus:
 144 * @cpu: src CPU of the flush
 145 */
 146void tlb_flush_all_cpus(CPUState *src_cpu);
 147/**
 148 * tlb_flush_all_cpus_synced:
 149 * @cpu: src CPU of the flush
 150 *
 151 * Like tlb_flush_all_cpus except this except the source vCPUs work is
 152 * scheduled as safe work meaning all flushes will be complete once
 153 * the source vCPUs safe work is complete. This will depend on when
 154 * the guests translation ends the TB.
 155 */
 156void tlb_flush_all_cpus_synced(CPUState *src_cpu);
 157/**
 158 * tlb_flush_page_by_mmuidx:
 159 * @cpu: CPU whose TLB should be flushed
 160 * @addr: virtual address of page to be flushed
 161 * @idxmap: bitmap of MMU indexes to flush
 162 *
 163 * Flush one page from the TLB of the specified CPU, for the specified
 164 * MMU indexes.
 165 */
 166void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
 167                              uint16_t idxmap);
 168/**
 169 * tlb_flush_page_by_mmuidx_all_cpus:
 170 * @cpu: Originating CPU of the flush
 171 * @addr: virtual address of page to be flushed
 172 * @idxmap: bitmap of MMU indexes to flush
 173 *
 174 * Flush one page from the TLB of all CPUs, for the specified
 175 * MMU indexes.
 176 */
 177void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
 178                                       uint16_t idxmap);
 179/**
 180 * tlb_flush_page_by_mmuidx_all_cpus_synced:
 181 * @cpu: Originating CPU of the flush
 182 * @addr: virtual address of page to be flushed
 183 * @idxmap: bitmap of MMU indexes to flush
 184 *
 185 * Flush one page from the TLB of all CPUs, for the specified MMU
 186 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
 187 * vCPUs work is scheduled as safe work meaning all flushes will be
 188 * complete once  the source vCPUs safe work is complete. This will
 189 * depend on when the guests translation ends the TB.
 190 */
 191void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
 192                                              uint16_t idxmap);
 193/**
 194 * tlb_flush_by_mmuidx:
 195 * @cpu: CPU whose TLB should be flushed
 196 * @wait: If true ensure synchronisation by exiting the cpu_loop
 197 * @idxmap: bitmap of MMU indexes to flush
 198 *
 199 * Flush all entries from the TLB of the specified CPU, for the specified
 200 * MMU indexes.
 201 */
 202void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
 203/**
 204 * tlb_flush_by_mmuidx_all_cpus:
 205 * @cpu: Originating CPU of the flush
 206 * @idxmap: bitmap of MMU indexes to flush
 207 *
 208 * Flush all entries from all TLBs of all CPUs, for the specified
 209 * MMU indexes.
 210 */
 211void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
 212/**
 213 * tlb_flush_by_mmuidx_all_cpus_synced:
 214 * @cpu: Originating CPU of the flush
 215 * @idxmap: bitmap of MMU indexes to flush
 216 *
 217 * Flush all entries from all TLBs of all CPUs, for the specified
 218 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
 219 * vCPUs work is scheduled as safe work meaning all flushes will be
 220 * complete once  the source vCPUs safe work is complete. This will
 221 * depend on when the guests translation ends the TB.
 222 */
 223void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
 224/**
 225 * tlb_set_page_with_attrs:
 226 * @cpu: CPU to add this TLB entry for
 227 * @vaddr: virtual address of page to add entry for
 228 * @paddr: physical address of the page
 229 * @attrs: memory transaction attributes
 230 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
 231 * @mmu_idx: MMU index to insert TLB entry for
 232 * @size: size of the page in bytes
 233 *
 234 * Add an entry to this CPU's TLB (a mapping from virtual address
 235 * @vaddr to physical address @paddr) with the specified memory
 236 * transaction attributes. This is generally called by the target CPU
 237 * specific code after it has been called through the tlb_fill()
 238 * entry point and performed a successful page table walk to find
 239 * the physical address and attributes for the virtual address
 240 * which provoked the TLB miss.
 241 *
 242 * At most one entry for a given virtual address is permitted. Only a
 243 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
 244 * used by tlb_flush_page.
 245 */
 246void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 247                             hwaddr paddr, MemTxAttrs attrs,
 248                             int prot, int mmu_idx, target_ulong size);
 249/* tlb_set_page:
 250 *
 251 * This function is equivalent to calling tlb_set_page_with_attrs()
 252 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
 253 * as a convenience for CPUs which don't use memory transaction attributes.
 254 */
 255void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 256                  hwaddr paddr, int prot,
 257                  int mmu_idx, target_ulong size);
 258void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
 259void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
 260                 uintptr_t retaddr);
 261#else
 262static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
 263{
 264}
 265static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 266{
 267}
 268static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
 269                                                  target_ulong addr)
 270{
 271}
 272static inline void tlb_flush(CPUState *cpu)
 273{
 274}
 275static inline void tlb_flush_all_cpus(CPUState *src_cpu)
 276{
 277}
 278static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 279{
 280}
 281static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
 282                                            target_ulong addr, uint16_t idxmap)
 283{
 284}
 285
 286static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 287{
 288}
 289static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
 290                                                     target_ulong addr,
 291                                                     uint16_t idxmap)
 292{
 293}
 294static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
 295                                                            target_ulong addr,
 296                                                            uint16_t idxmap)
 297{
 298}
 299static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
 300{
 301}
 302static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
 303                                                       uint16_t idxmap)
 304{
 305}
 306static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
 307{
 308}
 309#endif
 310
 311#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
 312
 313/* Estimated block size for TB allocation.  */
 314/* ??? The following is based on a 2015 survey of x86_64 host output.
 315   Better would seem to be some sort of dynamically sized TB array,
 316   adapting to the block sizes actually being produced.  */
 317#if defined(CONFIG_SOFTMMU)
 318#define CODE_GEN_AVG_BLOCK_SIZE 400
 319#else
 320#define CODE_GEN_AVG_BLOCK_SIZE 150
 321#endif
 322
 323/*
 324 * Translation Cache-related fields of a TB.
 325 * This struct exists just for convenience; we keep track of TB's in a binary
 326 * search tree, and the only fields needed to compare TB's in the tree are
 327 * @ptr and @size.
 328 * Note: the address of search data can be obtained by adding @size to @ptr.
 329 */
 330struct tb_tc {
 331    void *ptr;    /* pointer to the translated code */
 332    size_t size;
 333};
 334
 335struct TranslationBlock {
 336    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
 337    target_ulong cs_base; /* CS base for this block */
 338    uint32_t flags; /* flags defining in which context the code was generated */
 339    uint16_t size;      /* size of target code for this block (1 <=
 340                           size <= TARGET_PAGE_SIZE) */
 341    uint16_t icount;
 342    uint32_t cflags;    /* compile flags */
 343#define CF_COUNT_MASK  0x00007fff
 344#define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
 345#define CF_NOCACHE     0x00010000 /* To be freed after execution */
 346#define CF_USE_ICOUNT  0x00020000
 347#define CF_INVALID     0x00040000 /* TB is stale. Setters need tb_lock */
 348#define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
 349/* cflags' mask for hashing/comparison */
 350#define CF_HASH_MASK   \
 351    (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
 352
 353    /* Per-vCPU dynamic tracing state used to generate this TB */
 354    uint32_t trace_vcpu_dstate;
 355
 356    struct tb_tc tc;
 357
 358    /* original tb when cflags has CF_NOCACHE */
 359    struct TranslationBlock *orig_tb;
 360    /* first and second physical page containing code. The lower bit
 361       of the pointer tells the index in page_next[] */
 362    struct TranslationBlock *page_next[2];
 363    tb_page_addr_t page_addr[2];
 364
 365    /* The following data are used to directly call another TB from
 366     * the code of this one. This can be done either by emitting direct or
 367     * indirect native jump instructions. These jumps are reset so that the TB
 368     * just continues its execution. The TB can be linked to another one by
 369     * setting one of the jump targets (or patching the jump instruction). Only
 370     * two of such jumps are supported.
 371     */
 372    uint16_t jmp_reset_offset[2]; /* offset of original jump target */
 373#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
 374    uintptr_t jmp_target_arg[2];  /* target address or offset */
 375
 376    /* Each TB has an associated circular list of TBs jumping to this one.
 377     * jmp_list_first points to the first TB jumping to this one.
 378     * jmp_list_next is used to point to the next TB in a list.
 379     * Since each TB can have two jumps, it can participate in two lists.
 380     * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
 381     * TranslationBlock structure, but the two least significant bits of
 382     * them are used to encode which data field of the pointed TB should
 383     * be used to traverse the list further from that TB:
 384     * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
 385     * In other words, 0/1 tells which jump is used in the pointed TB,
 386     * and 2 means that this is a pointer back to the target TB of this list.
 387     */
 388    uintptr_t jmp_list_next[2];
 389    uintptr_t jmp_list_first;
 390};
 391
 392extern bool parallel_cpus;
 393
 394/* Hide the atomic_read to make code a little easier on the eyes */
 395static inline uint32_t tb_cflags(const TranslationBlock *tb)
 396{
 397    return atomic_read(&tb->cflags);
 398}
 399
 400/* current cflags for hashing/comparison */
 401static inline uint32_t curr_cflags(void)
 402{
 403    return (parallel_cpus ? CF_PARALLEL : 0)
 404         | (use_icount ? CF_USE_ICOUNT : 0);
 405}
 406
 407void tb_remove(TranslationBlock *tb);
 408void tb_flush(CPUState *cpu);
 409void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
 410TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
 411                                   target_ulong cs_base, uint32_t flags,
 412                                   uint32_t cf_mask);
 413void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
 414
 415/* GETPC is the true target of the return instruction that we'll execute.  */
 416#if defined(CONFIG_TCG_INTERPRETER)
 417extern uintptr_t tci_tb_ptr;
 418# define GETPC() tci_tb_ptr
 419#else
 420# define GETPC() \
 421    ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
 422#endif
 423
 424/* The true return address will often point to a host insn that is part of
 425   the next translated guest insn.  Adjust the address backward to point to
 426   the middle of the call insn.  Subtracting one would do the job except for
 427   several compressed mode architectures (arm, mips) which set the low bit
 428   to indicate the compressed mode; subtracting two works around that.  It
 429   is also the case that there are no host isas that contain a call insn
 430   smaller than 4 bytes, so we don't worry about special-casing this.  */
 431#define GETPC_ADJ   2
 432
 433void tb_lock(void);
 434void tb_unlock(void);
 435void tb_lock_reset(void);
 436
 437#if !defined(CONFIG_USER_ONLY)
 438
 439struct MemoryRegion *iotlb_to_region(CPUState *cpu,
 440                                     hwaddr index, MemTxAttrs attrs);
 441
 442void tlb_fill(CPUState *cpu, target_ulong addr, int size,
 443              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
 444
 445#endif
 446
 447#if defined(CONFIG_USER_ONLY)
 448void mmap_lock(void);
 449void mmap_unlock(void);
 450bool have_mmap_lock(void);
 451
 452static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 453{
 454    return addr;
 455}
 456#else
 457static inline void mmap_lock(void) {}
 458static inline void mmap_unlock(void) {}
 459
 460/* cputlb.c */
 461tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
 462
 463void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
 464void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
 465
 466/* exec.c */
 467void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
 468
 469MemoryRegionSection *
 470address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 471                                  hwaddr *xlat, hwaddr *plen);
 472hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 473                                       MemoryRegionSection *section,
 474                                       target_ulong vaddr,
 475                                       hwaddr paddr, hwaddr xlat,
 476                                       int prot,
 477                                       target_ulong *address);
 478bool memory_region_is_unassigned(MemoryRegion *mr);
 479
 480#endif
 481
 482/* vl.c */
 483extern int singlestep;
 484
 485#endif
 486