qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  31
  32#define MAX_PHYS_ADDR_SPACE_BITS 62
  33#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  34
  35#define TYPE_MEMORY_REGION "qemu:memory-region"
  36#define MEMORY_REGION(obj) \
  37        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  38
  39#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  40#define IOMMU_MEMORY_REGION(obj) \
  41        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  42#define IOMMU_MEMORY_REGION_CLASS(klass) \
  43        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  44                         TYPE_IOMMU_MEMORY_REGION)
  45#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  46        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  47                         TYPE_IOMMU_MEMORY_REGION)
  48
  49typedef struct MemoryRegionOps MemoryRegionOps;
  50typedef struct MemoryRegionMmio MemoryRegionMmio;
  51
  52struct MemoryRegionMmio {
  53    CPUReadMemoryFunc *read[3];
  54    CPUWriteMemoryFunc *write[3];
  55};
  56
  57typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  58
  59/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  60typedef enum {
  61    IOMMU_NONE = 0,
  62    IOMMU_RO   = 1,
  63    IOMMU_WO   = 2,
  64    IOMMU_RW   = 3,
  65} IOMMUAccessFlags;
  66
  67#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  68
  69struct IOMMUTLBEntry {
  70    AddressSpace    *target_as;
  71    hwaddr           iova;
  72    hwaddr           translated_addr;
  73    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  74    IOMMUAccessFlags perm;
  75};
  76
  77/*
  78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  79 * register with one or multiple IOMMU Notifier capability bit(s).
  80 */
  81typedef enum {
  82    IOMMU_NOTIFIER_NONE = 0,
  83    /* Notify cache invalidations */
  84    IOMMU_NOTIFIER_UNMAP = 0x1,
  85    /* Notify entry changes (newly created entries) */
  86    IOMMU_NOTIFIER_MAP = 0x2,
  87} IOMMUNotifierFlag;
  88
  89#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  90
  91struct IOMMUNotifier;
  92typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  93                            IOMMUTLBEntry *data);
  94
  95struct IOMMUNotifier {
  96    IOMMUNotify notify;
  97    IOMMUNotifierFlag notifier_flags;
  98    /* Notify for address space range start <= addr <= end */
  99    hwaddr start;
 100    hwaddr end;
 101    QLIST_ENTRY(IOMMUNotifier) node;
 102};
 103typedef struct IOMMUNotifier IOMMUNotifier;
 104
 105static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 106                                       IOMMUNotifierFlag flags,
 107                                       hwaddr start, hwaddr end)
 108{
 109    n->notify = fn;
 110    n->notifier_flags = flags;
 111    n->start = start;
 112    n->end = end;
 113}
 114
 115/*
 116 * Memory region callbacks
 117 */
 118struct MemoryRegionOps {
 119    /* Read from the memory region. @addr is relative to @mr; @size is
 120     * in bytes. */
 121    uint64_t (*read)(void *opaque,
 122                     hwaddr addr,
 123                     unsigned size);
 124    /* Write to the memory region. @addr is relative to @mr; @size is
 125     * in bytes. */
 126    void (*write)(void *opaque,
 127                  hwaddr addr,
 128                  uint64_t data,
 129                  unsigned size);
 130
 131    MemTxResult (*read_with_attrs)(void *opaque,
 132                                   hwaddr addr,
 133                                   uint64_t *data,
 134                                   unsigned size,
 135                                   MemTxAttrs attrs);
 136    MemTxResult (*write_with_attrs)(void *opaque,
 137                                    hwaddr addr,
 138                                    uint64_t data,
 139                                    unsigned size,
 140                                    MemTxAttrs attrs);
 141    /* Instruction execution pre-callback:
 142     * @addr is the address of the access relative to the @mr.
 143     * @size is the size of the area returned by the callback.
 144     * @offset is the location of the pointer inside @mr.
 145     *
 146     * Returns a pointer to a location which contains guest code.
 147     */
 148    void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
 149                         unsigned *offset);
 150
 151    enum device_endian endianness;
 152    /* Guest-visible constraints: */
 153    struct {
 154        /* If nonzero, specify bounds on access sizes beyond which a machine
 155         * check is thrown.
 156         */
 157        unsigned min_access_size;
 158        unsigned max_access_size;
 159        /* If true, unaligned accesses are supported.  Otherwise unaligned
 160         * accesses throw machine checks.
 161         */
 162         bool unaligned;
 163        /*
 164         * If present, and returns #false, the transaction is not accepted
 165         * by the device (and results in machine dependent behaviour such
 166         * as a machine check exception).
 167         */
 168        bool (*accepts)(void *opaque, hwaddr addr,
 169                        unsigned size, bool is_write);
 170    } valid;
 171    /* Internal implementation constraints: */
 172    struct {
 173        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 174         * will be rounded upwards and a partial result will be returned.
 175         */
 176        unsigned min_access_size;
 177        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 178         * will be done as a series of accesses with smaller sizes.
 179         */
 180        unsigned max_access_size;
 181        /* If true, unaligned accesses are supported.  Otherwise all accesses
 182         * are converted to (possibly multiple) naturally aligned accesses.
 183         */
 184        bool unaligned;
 185    } impl;
 186
 187    /* If .read and .write are not present, old_mmio may be used for
 188     * backwards compatibility with old mmio registration
 189     */
 190    const MemoryRegionMmio old_mmio;
 191};
 192
 193enum IOMMUMemoryRegionAttr {
 194    IOMMU_ATTR_SPAPR_TCE_FD
 195};
 196
 197typedef struct IOMMUMemoryRegionClass {
 198    /* private */
 199    struct DeviceClass parent_class;
 200
 201    /*
 202     * Return a TLB entry that contains a given address. Flag should
 203     * be the access permission of this translation operation. We can
 204     * set flag to IOMMU_NONE to mean that we don't need any
 205     * read/write permission checks, like, when for region replay.
 206     */
 207    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 208                               IOMMUAccessFlags flag);
 209    /* Returns minimum supported page size */
 210    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 211    /* Called when IOMMU Notifier flag changed */
 212    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 213                                IOMMUNotifierFlag old_flags,
 214                                IOMMUNotifierFlag new_flags);
 215    /* Set this up to provide customized IOMMU replay function */
 216    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 217
 218    /* Get IOMMU misc attributes */
 219    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
 220                    void *data);
 221} IOMMUMemoryRegionClass;
 222
 223typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 224typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 225
 226struct MemoryRegion {
 227    Object parent_obj;
 228
 229    /* All fields are private - violators will be prosecuted */
 230
 231    /* The following fields should fit in a cache line */
 232    bool romd_mode;
 233    bool ram;
 234    bool subpage;
 235    bool readonly; /* For RAM regions */
 236    bool rom_device;
 237    bool flush_coalesced_mmio;
 238    bool global_locking;
 239    uint8_t dirty_log_mask;
 240    bool is_iommu;
 241    RAMBlock *ram_block;
 242    Object *owner;
 243
 244    const MemoryRegionOps *ops;
 245    void *opaque;
 246    MemoryRegion *container;
 247    Int128 size;
 248    hwaddr addr;
 249    void (*destructor)(MemoryRegion *mr);
 250    uint64_t align;
 251    bool terminates;
 252    bool ram_device;
 253    bool enabled;
 254    bool warning_printed; /* For reservations */
 255    uint8_t vga_logging_count;
 256    MemoryRegion *alias;
 257    hwaddr alias_offset;
 258    int32_t priority;
 259    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 260    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 261    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 262    const char *name;
 263    unsigned ioeventfd_nb;
 264    MemoryRegionIoeventfd *ioeventfds;
 265};
 266
 267struct IOMMUMemoryRegion {
 268    MemoryRegion parent_obj;
 269
 270    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 271    IOMMUNotifierFlag iommu_notify_flags;
 272};
 273
 274#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 275    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 276
 277/**
 278 * MemoryListener: callbacks structure for updates to the physical memory map
 279 *
 280 * Allows a component to adjust to changes in the guest-visible memory map.
 281 * Use with memory_listener_register() and memory_listener_unregister().
 282 */
 283struct MemoryListener {
 284    void (*begin)(MemoryListener *listener);
 285    void (*commit)(MemoryListener *listener);
 286    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 287    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 288    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 289    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 290                      int old, int new);
 291    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 292                     int old, int new);
 293    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 294    void (*log_global_start)(MemoryListener *listener);
 295    void (*log_global_stop)(MemoryListener *listener);
 296    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 297                        bool match_data, uint64_t data, EventNotifier *e);
 298    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 299                        bool match_data, uint64_t data, EventNotifier *e);
 300    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 301                               hwaddr addr, hwaddr len);
 302    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 303                               hwaddr addr, hwaddr len);
 304    /* Lower = earlier (during add), later (during del) */
 305    unsigned priority;
 306    AddressSpace *address_space;
 307    QTAILQ_ENTRY(MemoryListener) link;
 308    QTAILQ_ENTRY(MemoryListener) link_as;
 309};
 310
 311/**
 312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 313 */
 314struct AddressSpace {
 315    /* All fields are private. */
 316    struct rcu_head rcu;
 317    char *name;
 318    MemoryRegion *root;
 319
 320    /* Accessed via RCU.  */
 321    struct FlatView *current_map;
 322
 323    int ioeventfd_nb;
 324    struct MemoryRegionIoeventfd *ioeventfds;
 325    QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
 326    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 327};
 328
 329typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 330typedef struct FlatRange FlatRange;
 331
 332/* Flattened global view of current active memory hierarchy.  Kept in sorted
 333 * order.
 334 */
 335struct FlatView {
 336    struct rcu_head rcu;
 337    unsigned ref;
 338    FlatRange *ranges;
 339    unsigned nr;
 340    unsigned nr_allocated;
 341    struct AddressSpaceDispatch *dispatch;
 342    MemoryRegion *root;
 343};
 344
 345static inline FlatView *address_space_to_flatview(AddressSpace *as)
 346{
 347    return atomic_rcu_read(&as->current_map);
 348}
 349
 350
 351/**
 352 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 353 *
 354 * @mr: the region, or %NULL if empty
 355 * @fv: the flat view of the address space the region is mapped in
 356 * @offset_within_region: the beginning of the section, relative to @mr's start
 357 * @size: the size of the section; will not exceed @mr's boundaries
 358 * @offset_within_address_space: the address of the first byte of the section
 359 *     relative to the region's address space
 360 * @readonly: writes to this section are ignored
 361 */
 362struct MemoryRegionSection {
 363    MemoryRegion *mr;
 364    FlatView *fv;
 365    hwaddr offset_within_region;
 366    Int128 size;
 367    hwaddr offset_within_address_space;
 368    bool readonly;
 369};
 370
 371/**
 372 * memory_region_init: Initialize a memory region
 373 *
 374 * The region typically acts as a container for other memory regions.  Use
 375 * memory_region_add_subregion() to add subregions.
 376 *
 377 * @mr: the #MemoryRegion to be initialized
 378 * @owner: the object that tracks the region's reference count
 379 * @name: used for debugging; not visible to the user or ABI
 380 * @size: size of the region; any subregions beyond this size will be clipped
 381 */
 382void memory_region_init(MemoryRegion *mr,
 383                        struct Object *owner,
 384                        const char *name,
 385                        uint64_t size);
 386
 387/**
 388 * memory_region_ref: Add 1 to a memory region's reference count
 389 *
 390 * Whenever memory regions are accessed outside the BQL, they need to be
 391 * preserved against hot-unplug.  MemoryRegions actually do not have their
 392 * own reference count; they piggyback on a QOM object, their "owner".
 393 * This function adds a reference to the owner.
 394 *
 395 * All MemoryRegions must have an owner if they can disappear, even if the
 396 * device they belong to operates exclusively under the BQL.  This is because
 397 * the region could be returned at any time by memory_region_find, and this
 398 * is usually under guest control.
 399 *
 400 * @mr: the #MemoryRegion
 401 */
 402void memory_region_ref(MemoryRegion *mr);
 403
 404/**
 405 * memory_region_unref: Remove 1 to a memory region's reference count
 406 *
 407 * Whenever memory regions are accessed outside the BQL, they need to be
 408 * preserved against hot-unplug.  MemoryRegions actually do not have their
 409 * own reference count; they piggyback on a QOM object, their "owner".
 410 * This function removes a reference to the owner and possibly destroys it.
 411 *
 412 * @mr: the #MemoryRegion
 413 */
 414void memory_region_unref(MemoryRegion *mr);
 415
 416/**
 417 * memory_region_init_io: Initialize an I/O memory region.
 418 *
 419 * Accesses into the region will cause the callbacks in @ops to be called.
 420 * if @size is nonzero, subregions will be clipped to @size.
 421 *
 422 * @mr: the #MemoryRegion to be initialized.
 423 * @owner: the object that tracks the region's reference count
 424 * @ops: a structure containing read and write callbacks to be used when
 425 *       I/O is performed on the region.
 426 * @opaque: passed to the read and write callbacks of the @ops structure.
 427 * @name: used for debugging; not visible to the user or ABI
 428 * @size: size of the region.
 429 */
 430void memory_region_init_io(MemoryRegion *mr,
 431                           struct Object *owner,
 432                           const MemoryRegionOps *ops,
 433                           void *opaque,
 434                           const char *name,
 435                           uint64_t size);
 436
 437/**
 438 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 439 *                                    into the region will modify memory
 440 *                                    directly.
 441 *
 442 * @mr: the #MemoryRegion to be initialized.
 443 * @owner: the object that tracks the region's reference count
 444 * @name: Region name, becomes part of RAMBlock name used in migration stream
 445 *        must be unique within any device
 446 * @size: size of the region.
 447 * @errp: pointer to Error*, to store an error if it happens.
 448 *
 449 * Note that this function does not do anything to cause the data in the
 450 * RAM memory region to be migrated; that is the responsibility of the caller.
 451 */
 452void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 453                                      struct Object *owner,
 454                                      const char *name,
 455                                      uint64_t size,
 456                                      Error **errp);
 457
 458/**
 459 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 460 *                                           Accesses into the region will
 461 *                                           modify memory directly.
 462 *
 463 * @mr: the #MemoryRegion to be initialized.
 464 * @owner: the object that tracks the region's reference count
 465 * @name: Region name, becomes part of RAMBlock name used in migration stream
 466 *        must be unique within any device
 467 * @size: size of the region.
 468 * @share: allow remapping RAM to different addresses
 469 * @errp: pointer to Error*, to store an error if it happens.
 470 *
 471 * Note that this function is similar to memory_region_init_ram_nomigrate.
 472 * The only difference is part of the RAM region can be remapped.
 473 */
 474void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 475                                             struct Object *owner,
 476                                             const char *name,
 477                                             uint64_t size,
 478                                             bool share,
 479                                             Error **errp);
 480
 481/**
 482 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 483 *                                     RAM.  Accesses into the region will
 484 *                                     modify memory directly.  Only an initial
 485 *                                     portion of this RAM is actually used.
 486 *                                     The used size can change across reboots.
 487 *
 488 * @mr: the #MemoryRegion to be initialized.
 489 * @owner: the object that tracks the region's reference count
 490 * @name: Region name, becomes part of RAMBlock name used in migration stream
 491 *        must be unique within any device
 492 * @size: used size of the region.
 493 * @max_size: max size of the region.
 494 * @resized: callback to notify owner about used size change.
 495 * @errp: pointer to Error*, to store an error if it happens.
 496 *
 497 * Note that this function does not do anything to cause the data in the
 498 * RAM memory region to be migrated; that is the responsibility of the caller.
 499 */
 500void memory_region_init_resizeable_ram(MemoryRegion *mr,
 501                                       struct Object *owner,
 502                                       const char *name,
 503                                       uint64_t size,
 504                                       uint64_t max_size,
 505                                       void (*resized)(const char*,
 506                                                       uint64_t length,
 507                                                       void *host),
 508                                       Error **errp);
 509#ifdef __linux__
 510/**
 511 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 512 *                                    mmap-ed backend.
 513 *
 514 * @mr: the #MemoryRegion to be initialized.
 515 * @owner: the object that tracks the region's reference count
 516 * @name: Region name, becomes part of RAMBlock name used in migration stream
 517 *        must be unique within any device
 518 * @size: size of the region.
 519 * @align: alignment of the region base address; if 0, the default alignment
 520 *         (getpagesize()) will be used.
 521 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 522 * @path: the path in which to allocate the RAM.
 523 * @errp: pointer to Error*, to store an error if it happens.
 524 *
 525 * Note that this function does not do anything to cause the data in the
 526 * RAM memory region to be migrated; that is the responsibility of the caller.
 527 */
 528void memory_region_init_ram_from_file(MemoryRegion *mr,
 529                                      struct Object *owner,
 530                                      const char *name,
 531                                      uint64_t size,
 532                                      uint64_t align,
 533                                      bool share,
 534                                      const char *path,
 535                                      Error **errp);
 536
 537/**
 538 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 539 *                                  mmap-ed backend.
 540 *
 541 * @mr: the #MemoryRegion to be initialized.
 542 * @owner: the object that tracks the region's reference count
 543 * @name: the name of the region.
 544 * @size: size of the region.
 545 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 546 * @fd: the fd to mmap.
 547 * @errp: pointer to Error*, to store an error if it happens.
 548 *
 549 * Note that this function does not do anything to cause the data in the
 550 * RAM memory region to be migrated; that is the responsibility of the caller.
 551 */
 552void memory_region_init_ram_from_fd(MemoryRegion *mr,
 553                                    struct Object *owner,
 554                                    const char *name,
 555                                    uint64_t size,
 556                                    bool share,
 557                                    int fd,
 558                                    Error **errp);
 559#endif
 560
 561/**
 562 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 563 *                              user-provided pointer.  Accesses into the
 564 *                              region will modify memory directly.
 565 *
 566 * @mr: the #MemoryRegion to be initialized.
 567 * @owner: the object that tracks the region's reference count
 568 * @name: Region name, becomes part of RAMBlock name used in migration stream
 569 *        must be unique within any device
 570 * @size: size of the region.
 571 * @ptr: memory to be mapped; must contain at least @size bytes.
 572 *
 573 * Note that this function does not do anything to cause the data in the
 574 * RAM memory region to be migrated; that is the responsibility of the caller.
 575 */
 576void memory_region_init_ram_ptr(MemoryRegion *mr,
 577                                struct Object *owner,
 578                                const char *name,
 579                                uint64_t size,
 580                                void *ptr);
 581
 582/**
 583 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 584 *                                     a user-provided pointer.
 585 *
 586 * A RAM device represents a mapping to a physical device, such as to a PCI
 587 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 588 * into the VM address space and access to the region will modify memory
 589 * directly.  However, the memory region should not be included in a memory
 590 * dump (device may not be enabled/mapped at the time of the dump), and
 591 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 592 * skip_dump flag.
 593 *
 594 * @mr: the #MemoryRegion to be initialized.
 595 * @owner: the object that tracks the region's reference count
 596 * @name: the name of the region.
 597 * @size: size of the region.
 598 * @ptr: memory to be mapped; must contain at least @size bytes.
 599 *
 600 * Note that this function does not do anything to cause the data in the
 601 * RAM memory region to be migrated; that is the responsibility of the caller.
 602 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 603 */
 604void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 605                                       struct Object *owner,
 606                                       const char *name,
 607                                       uint64_t size,
 608                                       void *ptr);
 609
 610/**
 611 * memory_region_init_alias: Initialize a memory region that aliases all or a
 612 *                           part of another memory region.
 613 *
 614 * @mr: the #MemoryRegion to be initialized.
 615 * @owner: the object that tracks the region's reference count
 616 * @name: used for debugging; not visible to the user or ABI
 617 * @orig: the region to be referenced; @mr will be equivalent to
 618 *        @orig between @offset and @offset + @size - 1.
 619 * @offset: start of the section in @orig to be referenced.
 620 * @size: size of the region.
 621 */
 622void memory_region_init_alias(MemoryRegion *mr,
 623                              struct Object *owner,
 624                              const char *name,
 625                              MemoryRegion *orig,
 626                              hwaddr offset,
 627                              uint64_t size);
 628
 629/**
 630 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 631 *
 632 * This has the same effect as calling memory_region_init_ram_nomigrate()
 633 * and then marking the resulting region read-only with
 634 * memory_region_set_readonly().
 635 *
 636 * Note that this function does not do anything to cause the data in the
 637 * RAM side of the memory region to be migrated; that is the responsibility
 638 * of the caller.
 639 *
 640 * @mr: the #MemoryRegion to be initialized.
 641 * @owner: the object that tracks the region's reference count
 642 * @name: Region name, becomes part of RAMBlock name used in migration stream
 643 *        must be unique within any device
 644 * @size: size of the region.
 645 * @errp: pointer to Error*, to store an error if it happens.
 646 */
 647void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 648                                      struct Object *owner,
 649                                      const char *name,
 650                                      uint64_t size,
 651                                      Error **errp);
 652
 653/**
 654 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 655 *                                 Writes are handled via callbacks.
 656 *
 657 * Note that this function does not do anything to cause the data in the
 658 * RAM side of the memory region to be migrated; that is the responsibility
 659 * of the caller.
 660 *
 661 * @mr: the #MemoryRegion to be initialized.
 662 * @owner: the object that tracks the region's reference count
 663 * @ops: callbacks for write access handling (must not be NULL).
 664 * @opaque: passed to the read and write callbacks of the @ops structure.
 665 * @name: Region name, becomes part of RAMBlock name used in migration stream
 666 *        must be unique within any device
 667 * @size: size of the region.
 668 * @errp: pointer to Error*, to store an error if it happens.
 669 */
 670void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 671                                             struct Object *owner,
 672                                             const MemoryRegionOps *ops,
 673                                             void *opaque,
 674                                             const char *name,
 675                                             uint64_t size,
 676                                             Error **errp);
 677
 678/**
 679 * memory_region_init_reservation: Initialize a memory region that reserves
 680 *                                 I/O space.
 681 *
 682 * A reservation region primariy serves debugging purposes.  It claims I/O
 683 * space that is not supposed to be handled by QEMU itself.  Any access via
 684 * the memory API will cause an abort().
 685 * This function is deprecated. Use memory_region_init_io() with NULL
 686 * callbacks instead.
 687 *
 688 * @mr: the #MemoryRegion to be initialized
 689 * @owner: the object that tracks the region's reference count
 690 * @name: used for debugging; not visible to the user or ABI
 691 * @size: size of the region.
 692 */
 693static inline void memory_region_init_reservation(MemoryRegion *mr,
 694                                    Object *owner,
 695                                    const char *name,
 696                                    uint64_t size)
 697{
 698    memory_region_init_io(mr, owner, NULL, mr, name, size);
 699}
 700
 701/**
 702 * memory_region_init_iommu: Initialize a memory region of a custom type
 703 * that translates addresses
 704 *
 705 * An IOMMU region translates addresses and forwards accesses to a target
 706 * memory region.
 707 *
 708 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 709 * @instance_size: the IOMMUMemoryRegion subclass instance size
 710 * @mrtypename: the type name of the #IOMMUMemoryRegion
 711 * @owner: the object that tracks the region's reference count
 712 * @name: used for debugging; not visible to the user or ABI
 713 * @size: size of the region.
 714 */
 715void memory_region_init_iommu(void *_iommu_mr,
 716                              size_t instance_size,
 717                              const char *mrtypename,
 718                              Object *owner,
 719                              const char *name,
 720                              uint64_t size);
 721
 722/**
 723 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 724 *                          region will modify memory directly.
 725 *
 726 * @mr: the #MemoryRegion to be initialized
 727 * @owner: the object that tracks the region's reference count (must be
 728 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 729 * @name: name of the memory region
 730 * @size: size of the region in bytes
 731 * @errp: pointer to Error*, to store an error if it happens.
 732 *
 733 * This function allocates RAM for a board model or device, and
 734 * arranges for it to be migrated (by calling vmstate_register_ram()
 735 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 736 * @owner is NULL).
 737 *
 738 * TODO: Currently we restrict @owner to being either NULL (for
 739 * global RAM regions with no owner) or devices, so that we can
 740 * give the RAM block a unique name for migration purposes.
 741 * We should lift this restriction and allow arbitrary Objects.
 742 * If you pass a non-NULL non-device @owner then we will assert.
 743 */
 744void memory_region_init_ram(MemoryRegion *mr,
 745                            struct Object *owner,
 746                            const char *name,
 747                            uint64_t size,
 748                            Error **errp);
 749
 750/**
 751 * memory_region_init_rom: Initialize a ROM memory region.
 752 *
 753 * This has the same effect as calling memory_region_init_ram()
 754 * and then marking the resulting region read-only with
 755 * memory_region_set_readonly(). This includes arranging for the
 756 * contents to be migrated.
 757 *
 758 * TODO: Currently we restrict @owner to being either NULL (for
 759 * global RAM regions with no owner) or devices, so that we can
 760 * give the RAM block a unique name for migration purposes.
 761 * We should lift this restriction and allow arbitrary Objects.
 762 * If you pass a non-NULL non-device @owner then we will assert.
 763 *
 764 * @mr: the #MemoryRegion to be initialized.
 765 * @owner: the object that tracks the region's reference count
 766 * @name: Region name, becomes part of RAMBlock name used in migration stream
 767 *        must be unique within any device
 768 * @size: size of the region.
 769 * @errp: pointer to Error*, to store an error if it happens.
 770 */
 771void memory_region_init_rom(MemoryRegion *mr,
 772                            struct Object *owner,
 773                            const char *name,
 774                            uint64_t size,
 775                            Error **errp);
 776
 777/**
 778 * memory_region_init_rom_device:  Initialize a ROM memory region.
 779 *                                 Writes are handled via callbacks.
 780 *
 781 * This function initializes a memory region backed by RAM for reads
 782 * and callbacks for writes, and arranges for the RAM backing to
 783 * be migrated (by calling vmstate_register_ram()
 784 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 785 * @owner is NULL).
 786 *
 787 * TODO: Currently we restrict @owner to being either NULL (for
 788 * global RAM regions with no owner) or devices, so that we can
 789 * give the RAM block a unique name for migration purposes.
 790 * We should lift this restriction and allow arbitrary Objects.
 791 * If you pass a non-NULL non-device @owner then we will assert.
 792 *
 793 * @mr: the #MemoryRegion to be initialized.
 794 * @owner: the object that tracks the region's reference count
 795 * @ops: callbacks for write access handling (must not be NULL).
 796 * @name: Region name, becomes part of RAMBlock name used in migration stream
 797 *        must be unique within any device
 798 * @size: size of the region.
 799 * @errp: pointer to Error*, to store an error if it happens.
 800 */
 801void memory_region_init_rom_device(MemoryRegion *mr,
 802                                   struct Object *owner,
 803                                   const MemoryRegionOps *ops,
 804                                   void *opaque,
 805                                   const char *name,
 806                                   uint64_t size,
 807                                   Error **errp);
 808
 809
 810/**
 811 * memory_region_owner: get a memory region's owner.
 812 *
 813 * @mr: the memory region being queried.
 814 */
 815struct Object *memory_region_owner(MemoryRegion *mr);
 816
 817/**
 818 * memory_region_size: get a memory region's size.
 819 *
 820 * @mr: the memory region being queried.
 821 */
 822uint64_t memory_region_size(MemoryRegion *mr);
 823
 824/**
 825 * memory_region_is_ram: check whether a memory region is random access
 826 *
 827 * Returns %true is a memory region is random access.
 828 *
 829 * @mr: the memory region being queried
 830 */
 831static inline bool memory_region_is_ram(MemoryRegion *mr)
 832{
 833    return mr->ram;
 834}
 835
 836/**
 837 * memory_region_is_ram_device: check whether a memory region is a ram device
 838 *
 839 * Returns %true is a memory region is a device backed ram region
 840 *
 841 * @mr: the memory region being queried
 842 */
 843bool memory_region_is_ram_device(MemoryRegion *mr);
 844
 845/**
 846 * memory_region_is_romd: check whether a memory region is in ROMD mode
 847 *
 848 * Returns %true if a memory region is a ROM device and currently set to allow
 849 * direct reads.
 850 *
 851 * @mr: the memory region being queried
 852 */
 853static inline bool memory_region_is_romd(MemoryRegion *mr)
 854{
 855    return mr->rom_device && mr->romd_mode;
 856}
 857
 858/**
 859 * memory_region_get_iommu: check whether a memory region is an iommu
 860 *
 861 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 862 * otherwise NULL.
 863 *
 864 * @mr: the memory region being queried
 865 */
 866static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 867{
 868    if (mr->alias) {
 869        return memory_region_get_iommu(mr->alias);
 870    }
 871    if (mr->is_iommu) {
 872        return (IOMMUMemoryRegion *) mr;
 873    }
 874    return NULL;
 875}
 876
 877/**
 878 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
 879 *   if an iommu or NULL if not
 880 *
 881 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
 882 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
 883 *
 884 * @mr: the memory region being queried
 885 */
 886static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
 887        IOMMUMemoryRegion *iommu_mr)
 888{
 889    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
 890}
 891
 892#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
 893
 894/**
 895 * memory_region_iommu_get_min_page_size: get minimum supported page size
 896 * for an iommu
 897 *
 898 * Returns minimum supported page size for an iommu.
 899 *
 900 * @iommu_mr: the memory region being queried
 901 */
 902uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
 903
 904/**
 905 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 906 *
 907 * The notification type will be decided by entry.perm bits:
 908 *
 909 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
 910 * - For MAP (newly added entry) notifies: set entry.perm to the
 911 *   permission of the page (which is definitely !IOMMU_NONE).
 912 *
 913 * Note: for any IOMMU implementation, an in-place mapping change
 914 * should be notified with an UNMAP followed by a MAP.
 915 *
 916 * @iommu_mr: the memory region that was changed
 917 * @entry: the new entry in the IOMMU translation table.  The entry
 918 *         replaces all old entries for the same virtual I/O address range.
 919 *         Deleted entries have .@perm == 0.
 920 */
 921void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
 922                                IOMMUTLBEntry entry);
 923
 924/**
 925 * memory_region_notify_one: notify a change in an IOMMU translation
 926 *                           entry to a single notifier
 927 *
 928 * This works just like memory_region_notify_iommu(), but it only
 929 * notifies a specific notifier, not all of them.
 930 *
 931 * @notifier: the notifier to be notified
 932 * @entry: the new entry in the IOMMU translation table.  The entry
 933 *         replaces all old entries for the same virtual I/O address range.
 934 *         Deleted entries have .@perm == 0.
 935 */
 936void memory_region_notify_one(IOMMUNotifier *notifier,
 937                              IOMMUTLBEntry *entry);
 938
 939/**
 940 * memory_region_register_iommu_notifier: register a notifier for changes to
 941 * IOMMU translation entries.
 942 *
 943 * @mr: the memory region to observe
 944 * @n: the IOMMUNotifier to be added; the notify callback receives a
 945 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
 946 *     ceases to be valid on exit from the notifier.
 947 */
 948void memory_region_register_iommu_notifier(MemoryRegion *mr,
 949                                           IOMMUNotifier *n);
 950
 951/**
 952 * memory_region_iommu_replay: replay existing IOMMU translations to
 953 * a notifier with the minimum page granularity returned by
 954 * mr->iommu_ops->get_page_size().
 955 *
 956 * @iommu_mr: the memory region to observe
 957 * @n: the notifier to which to replay iommu mappings
 958 */
 959void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
 960
 961/**
 962 * memory_region_iommu_replay_all: replay existing IOMMU translations
 963 * to all the notifiers registered.
 964 *
 965 * @iommu_mr: the memory region to observe
 966 */
 967void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
 968
 969/**
 970 * memory_region_unregister_iommu_notifier: unregister a notifier for
 971 * changes to IOMMU translation entries.
 972 *
 973 * @mr: the memory region which was observed and for which notity_stopped()
 974 *      needs to be called
 975 * @n: the notifier to be removed.
 976 */
 977void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
 978                                             IOMMUNotifier *n);
 979
 980/**
 981 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
 982 * defined on the IOMMU.
 983 *
 984 * Returns 0 if succeded, error code otherwise.
 985 *
 986 * @iommu_mr: the memory region
 987 * @attr: the requested attribute
 988 * @data: a pointer to the requested attribute data
 989 */
 990int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
 991                                 enum IOMMUMemoryRegionAttr attr,
 992                                 void *data);
 993
 994/**
 995 * memory_region_name: get a memory region's name
 996 *
 997 * Returns the string that was used to initialize the memory region.
 998 *
 999 * @mr: the memory region being queried
1000 */
1001const char *memory_region_name(const MemoryRegion *mr);
1002
1003/**
1004 * memory_region_is_logging: return whether a memory region is logging writes
1005 *
1006 * Returns %true if the memory region is logging writes for the given client
1007 *
1008 * @mr: the memory region being queried
1009 * @client: the client being queried
1010 */
1011bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1012
1013/**
1014 * memory_region_get_dirty_log_mask: return the clients for which a
1015 * memory region is logging writes.
1016 *
1017 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1018 * are the bit indices.
1019 *
1020 * @mr: the memory region being queried
1021 */
1022uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1023
1024/**
1025 * memory_region_is_rom: check whether a memory region is ROM
1026 *
1027 * Returns %true is a memory region is read-only memory.
1028 *
1029 * @mr: the memory region being queried
1030 */
1031static inline bool memory_region_is_rom(MemoryRegion *mr)
1032{
1033    return mr->ram && mr->readonly;
1034}
1035
1036
1037/**
1038 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1039 *
1040 * Returns a file descriptor backing a file-based RAM memory region,
1041 * or -1 if the region is not a file-based RAM memory region.
1042 *
1043 * @mr: the RAM or alias memory region being queried.
1044 */
1045int memory_region_get_fd(MemoryRegion *mr);
1046
1047/**
1048 * memory_region_from_host: Convert a pointer into a RAM memory region
1049 * and an offset within it.
1050 *
1051 * Given a host pointer inside a RAM memory region (created with
1052 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1053 * the MemoryRegion and the offset within it.
1054 *
1055 * Use with care; by the time this function returns, the returned pointer is
1056 * not protected by RCU anymore.  If the caller is not within an RCU critical
1057 * section and does not hold the iothread lock, it must have other means of
1058 * protecting the pointer, such as a reference to the region that includes
1059 * the incoming ram_addr_t.
1060 *
1061 * @ptr: the host pointer to be converted
1062 * @offset: the offset within memory region
1063 */
1064MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1065
1066/**
1067 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1068 *
1069 * Returns a host pointer to a RAM memory region (created with
1070 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1071 *
1072 * Use with care; by the time this function returns, the returned pointer is
1073 * not protected by RCU anymore.  If the caller is not within an RCU critical
1074 * section and does not hold the iothread lock, it must have other means of
1075 * protecting the pointer, such as a reference to the region that includes
1076 * the incoming ram_addr_t.
1077 *
1078 * @mr: the memory region being queried.
1079 */
1080void *memory_region_get_ram_ptr(MemoryRegion *mr);
1081
1082/* memory_region_ram_resize: Resize a RAM region.
1083 *
1084 * Only legal before guest might have detected the memory size: e.g. on
1085 * incoming migration, or right after reset.
1086 *
1087 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1088 * @newsize: the new size the region
1089 * @errp: pointer to Error*, to store an error if it happens.
1090 */
1091void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1092                              Error **errp);
1093
1094/**
1095 * memory_region_set_log: Turn dirty logging on or off for a region.
1096 *
1097 * Turns dirty logging on or off for a specified client (display, migration).
1098 * Only meaningful for RAM regions.
1099 *
1100 * @mr: the memory region being updated.
1101 * @log: whether dirty logging is to be enabled or disabled.
1102 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1103 */
1104void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1105
1106/**
1107 * memory_region_get_dirty: Check whether a range of bytes is dirty
1108 *                          for a specified client.
1109 *
1110 * Checks whether a range of bytes has been written to since the last
1111 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1112 * must be enabled.
1113 *
1114 * @mr: the memory region being queried.
1115 * @addr: the address (relative to the start of the region) being queried.
1116 * @size: the size of the range being queried.
1117 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1118 *          %DIRTY_MEMORY_VGA.
1119 */
1120bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1121                             hwaddr size, unsigned client);
1122
1123/**
1124 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1125 *
1126 * Marks a range of bytes as dirty, after it has been dirtied outside
1127 * guest code.
1128 *
1129 * @mr: the memory region being dirtied.
1130 * @addr: the address (relative to the start of the region) being dirtied.
1131 * @size: size of the range being dirtied.
1132 */
1133void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1134                             hwaddr size);
1135
1136/**
1137 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1138 *                                         bitmap and clear it.
1139 *
1140 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1141 * returns the snapshot.  The snapshot can then be used to query dirty
1142 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1143 * querying the same page multiple times, which is especially useful for
1144 * display updates where the scanlines often are not page aligned.
1145 *
1146 * The dirty bitmap region which gets copyed into the snapshot (and
1147 * cleared afterwards) can be larger than requested.  The boundaries
1148 * are rounded up/down so complete bitmap longs (covering 64 pages on
1149 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1150 * isn't a problem for display updates as the extra pages are outside
1151 * the visible area, and in case the visible area changes a full
1152 * display redraw is due anyway.  Should other use cases for this
1153 * function emerge we might have to revisit this implementation
1154 * detail.
1155 *
1156 * Use g_free to release DirtyBitmapSnapshot.
1157 *
1158 * @mr: the memory region being queried.
1159 * @addr: the address (relative to the start of the region) being queried.
1160 * @size: the size of the range being queried.
1161 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1162 */
1163DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1164                                                            hwaddr addr,
1165                                                            hwaddr size,
1166                                                            unsigned client);
1167
1168/**
1169 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1170 *                                   in the specified dirty bitmap snapshot.
1171 *
1172 * @mr: the memory region being queried.
1173 * @snap: the dirty bitmap snapshot
1174 * @addr: the address (relative to the start of the region) being queried.
1175 * @size: the size of the range being queried.
1176 */
1177bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1178                                      DirtyBitmapSnapshot *snap,
1179                                      hwaddr addr, hwaddr size);
1180
1181/**
1182 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1183 *                            client.
1184 *
1185 * Marks a range of pages as no longer dirty.
1186 *
1187 * @mr: the region being updated.
1188 * @addr: the start of the subrange being cleaned.
1189 * @size: the size of the subrange being cleaned.
1190 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1191 *          %DIRTY_MEMORY_VGA.
1192 */
1193void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1194                               hwaddr size, unsigned client);
1195
1196/**
1197 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1198 *
1199 * Allows a memory region to be marked as read-only (turning it into a ROM).
1200 * only useful on RAM regions.
1201 *
1202 * @mr: the region being updated.
1203 * @readonly: whether rhe region is to be ROM or RAM.
1204 */
1205void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1206
1207/**
1208 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1209 *
1210 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1211 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1212 * device is mapped to guest memory and satisfies read access directly.
1213 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1214 * Writes are always handled by the #MemoryRegion.write function.
1215 *
1216 * @mr: the memory region to be updated
1217 * @romd_mode: %true to put the region into ROMD mode
1218 */
1219void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1220
1221/**
1222 * memory_region_set_coalescing: Enable memory coalescing for the region.
1223 *
1224 * Enabled writes to a region to be queued for later processing. MMIO ->write
1225 * callbacks may be delayed until a non-coalesced MMIO is issued.
1226 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1227 *
1228 * @mr: the memory region to be write coalesced
1229 */
1230void memory_region_set_coalescing(MemoryRegion *mr);
1231
1232/**
1233 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1234 *                               a region.
1235 *
1236 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1237 * Multiple calls can be issued coalesced disjoint ranges.
1238 *
1239 * @mr: the memory region to be updated.
1240 * @offset: the start of the range within the region to be coalesced.
1241 * @size: the size of the subrange to be coalesced.
1242 */
1243void memory_region_add_coalescing(MemoryRegion *mr,
1244                                  hwaddr offset,
1245                                  uint64_t size);
1246
1247/**
1248 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1249 *
1250 * Disables any coalescing caused by memory_region_set_coalescing() or
1251 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1252 * hardware.
1253 *
1254 * @mr: the memory region to be updated.
1255 */
1256void memory_region_clear_coalescing(MemoryRegion *mr);
1257
1258/**
1259 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1260 *                                    accesses.
1261 *
1262 * Ensure that pending coalesced MMIO request are flushed before the memory
1263 * region is accessed. This property is automatically enabled for all regions
1264 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1265 *
1266 * @mr: the memory region to be updated.
1267 */
1268void memory_region_set_flush_coalesced(MemoryRegion *mr);
1269
1270/**
1271 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1272 *                                      accesses.
1273 *
1274 * Clear the automatic coalesced MMIO flushing enabled via
1275 * memory_region_set_flush_coalesced. Note that this service has no effect on
1276 * memory regions that have MMIO coalescing enabled for themselves. For them,
1277 * automatic flushing will stop once coalescing is disabled.
1278 *
1279 * @mr: the memory region to be updated.
1280 */
1281void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1282
1283/**
1284 * memory_region_clear_global_locking: Declares that access processing does
1285 *                                     not depend on the QEMU global lock.
1286 *
1287 * By clearing this property, accesses to the memory region will be processed
1288 * outside of QEMU's global lock (unless the lock is held on when issuing the
1289 * access request). In this case, the device model implementing the access
1290 * handlers is responsible for synchronization of concurrency.
1291 *
1292 * @mr: the memory region to be updated.
1293 */
1294void memory_region_clear_global_locking(MemoryRegion *mr);
1295
1296/**
1297 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1298 *                            is written to a location.
1299 *
1300 * Marks a word in an IO region (initialized with memory_region_init_io())
1301 * as a trigger for an eventfd event.  The I/O callback will not be called.
1302 * The caller must be prepared to handle failure (that is, take the required
1303 * action if the callback _is_ called).
1304 *
1305 * @mr: the memory region being updated.
1306 * @addr: the address within @mr that is to be monitored
1307 * @size: the size of the access to trigger the eventfd
1308 * @match_data: whether to match against @data, instead of just @addr
1309 * @data: the data to match against the guest write
1310 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1311 **/
1312void memory_region_add_eventfd(MemoryRegion *mr,
1313                               hwaddr addr,
1314                               unsigned size,
1315                               bool match_data,
1316                               uint64_t data,
1317                               EventNotifier *e);
1318
1319/**
1320 * memory_region_del_eventfd: Cancel an eventfd.
1321 *
1322 * Cancels an eventfd trigger requested by a previous
1323 * memory_region_add_eventfd() call.
1324 *
1325 * @mr: the memory region being updated.
1326 * @addr: the address within @mr that is to be monitored
1327 * @size: the size of the access to trigger the eventfd
1328 * @match_data: whether to match against @data, instead of just @addr
1329 * @data: the data to match against the guest write
1330 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1331 */
1332void memory_region_del_eventfd(MemoryRegion *mr,
1333                               hwaddr addr,
1334                               unsigned size,
1335                               bool match_data,
1336                               uint64_t data,
1337                               EventNotifier *e);
1338
1339/**
1340 * memory_region_add_subregion: Add a subregion to a container.
1341 *
1342 * Adds a subregion at @offset.  The subregion may not overlap with other
1343 * subregions (except for those explicitly marked as overlapping).  A region
1344 * may only be added once as a subregion (unless removed with
1345 * memory_region_del_subregion()); use memory_region_init_alias() if you
1346 * want a region to be a subregion in multiple locations.
1347 *
1348 * @mr: the region to contain the new subregion; must be a container
1349 *      initialized with memory_region_init().
1350 * @offset: the offset relative to @mr where @subregion is added.
1351 * @subregion: the subregion to be added.
1352 */
1353void memory_region_add_subregion(MemoryRegion *mr,
1354                                 hwaddr offset,
1355                                 MemoryRegion *subregion);
1356/**
1357 * memory_region_add_subregion_overlap: Add a subregion to a container
1358 *                                      with overlap.
1359 *
1360 * Adds a subregion at @offset.  The subregion may overlap with other
1361 * subregions.  Conflicts are resolved by having a higher @priority hide a
1362 * lower @priority. Subregions without priority are taken as @priority 0.
1363 * A region may only be added once as a subregion (unless removed with
1364 * memory_region_del_subregion()); use memory_region_init_alias() if you
1365 * want a region to be a subregion in multiple locations.
1366 *
1367 * @mr: the region to contain the new subregion; must be a container
1368 *      initialized with memory_region_init().
1369 * @offset: the offset relative to @mr where @subregion is added.
1370 * @subregion: the subregion to be added.
1371 * @priority: used for resolving overlaps; highest priority wins.
1372 */
1373void memory_region_add_subregion_overlap(MemoryRegion *mr,
1374                                         hwaddr offset,
1375                                         MemoryRegion *subregion,
1376                                         int priority);
1377
1378/**
1379 * memory_region_get_ram_addr: Get the ram address associated with a memory
1380 *                             region
1381 */
1382ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1383
1384uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1385/**
1386 * memory_region_del_subregion: Remove a subregion.
1387 *
1388 * Removes a subregion from its container.
1389 *
1390 * @mr: the container to be updated.
1391 * @subregion: the region being removed; must be a current subregion of @mr.
1392 */
1393void memory_region_del_subregion(MemoryRegion *mr,
1394                                 MemoryRegion *subregion);
1395
1396/*
1397 * memory_region_set_enabled: dynamically enable or disable a region
1398 *
1399 * Enables or disables a memory region.  A disabled memory region
1400 * ignores all accesses to itself and its subregions.  It does not
1401 * obscure sibling subregions with lower priority - it simply behaves as
1402 * if it was removed from the hierarchy.
1403 *
1404 * Regions default to being enabled.
1405 *
1406 * @mr: the region to be updated
1407 * @enabled: whether to enable or disable the region
1408 */
1409void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1410
1411/*
1412 * memory_region_set_address: dynamically update the address of a region
1413 *
1414 * Dynamically updates the address of a region, relative to its container.
1415 * May be used on regions are currently part of a memory hierarchy.
1416 *
1417 * @mr: the region to be updated
1418 * @addr: new address, relative to container region
1419 */
1420void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1421
1422/*
1423 * memory_region_set_size: dynamically update the size of a region.
1424 *
1425 * Dynamically updates the size of a region.
1426 *
1427 * @mr: the region to be updated
1428 * @size: used size of the region.
1429 */
1430void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1431
1432/*
1433 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1434 *
1435 * Dynamically updates the offset into the target region that an alias points
1436 * to, as if the fourth argument to memory_region_init_alias() has changed.
1437 *
1438 * @mr: the #MemoryRegion to be updated; should be an alias.
1439 * @offset: the new offset into the target memory region
1440 */
1441void memory_region_set_alias_offset(MemoryRegion *mr,
1442                                    hwaddr offset);
1443
1444/**
1445 * memory_region_present: checks if an address relative to a @container
1446 * translates into #MemoryRegion within @container
1447 *
1448 * Answer whether a #MemoryRegion within @container covers the address
1449 * @addr.
1450 *
1451 * @container: a #MemoryRegion within which @addr is a relative address
1452 * @addr: the area within @container to be searched
1453 */
1454bool memory_region_present(MemoryRegion *container, hwaddr addr);
1455
1456/**
1457 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1458 * into any address space.
1459 *
1460 * @mr: a #MemoryRegion which should be checked if it's mapped
1461 */
1462bool memory_region_is_mapped(MemoryRegion *mr);
1463
1464/**
1465 * memory_region_find: translate an address/size relative to a
1466 * MemoryRegion into a #MemoryRegionSection.
1467 *
1468 * Locates the first #MemoryRegion within @mr that overlaps the range
1469 * given by @addr and @size.
1470 *
1471 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1472 * It will have the following characteristics:
1473 *    .@size = 0 iff no overlap was found
1474 *    .@mr is non-%NULL iff an overlap was found
1475 *
1476 * Remember that in the return value the @offset_within_region is
1477 * relative to the returned region (in the .@mr field), not to the
1478 * @mr argument.
1479 *
1480 * Similarly, the .@offset_within_address_space is relative to the
1481 * address space that contains both regions, the passed and the
1482 * returned one.  However, in the special case where the @mr argument
1483 * has no container (and thus is the root of the address space), the
1484 * following will hold:
1485 *    .@offset_within_address_space >= @addr
1486 *    .@offset_within_address_space + .@size <= @addr + @size
1487 *
1488 * @mr: a MemoryRegion within which @addr is a relative address
1489 * @addr: start of the area within @as to be searched
1490 * @size: size of the area to be searched
1491 */
1492MemoryRegionSection memory_region_find(MemoryRegion *mr,
1493                                       hwaddr addr, uint64_t size);
1494
1495/**
1496 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1497 *
1498 * Synchronizes the dirty page log for all address spaces.
1499 */
1500void memory_global_dirty_log_sync(void);
1501
1502/**
1503 * memory_region_transaction_begin: Start a transaction.
1504 *
1505 * During a transaction, changes will be accumulated and made visible
1506 * only when the transaction ends (is committed).
1507 */
1508void memory_region_transaction_begin(void);
1509
1510/**
1511 * memory_region_transaction_commit: Commit a transaction and make changes
1512 *                                   visible to the guest.
1513 */
1514void memory_region_transaction_commit(void);
1515
1516/**
1517 * memory_listener_register: register callbacks to be called when memory
1518 *                           sections are mapped or unmapped into an address
1519 *                           space
1520 *
1521 * @listener: an object containing the callbacks to be called
1522 * @filter: if non-%NULL, only regions in this address space will be observed
1523 */
1524void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1525
1526/**
1527 * memory_listener_unregister: undo the effect of memory_listener_register()
1528 *
1529 * @listener: an object containing the callbacks to be removed
1530 */
1531void memory_listener_unregister(MemoryListener *listener);
1532
1533/**
1534 * memory_global_dirty_log_start: begin dirty logging for all regions
1535 */
1536void memory_global_dirty_log_start(void);
1537
1538/**
1539 * memory_global_dirty_log_stop: end dirty logging for all regions
1540 */
1541void memory_global_dirty_log_stop(void);
1542
1543void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1544                bool dispatch_tree);
1545
1546/**
1547 * memory_region_request_mmio_ptr: request a pointer to an mmio
1548 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1549 * When the device wants to invalidate the pointer it will call
1550 * memory_region_invalidate_mmio_ptr.
1551 *
1552 * @mr: #MemoryRegion to check
1553 * @addr: address within that region
1554 *
1555 * Returns true on success, false otherwise.
1556 */
1557bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1558
1559/**
1560 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1561 * previously requested.
1562 * In the end that means that if something wants to execute from this area it
1563 * will need to request the pointer again.
1564 *
1565 * @mr: #MemoryRegion associated to the pointer.
1566 * @offset: offset within the memory region
1567 * @size: size of that area.
1568 */
1569void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1570                                       unsigned size);
1571
1572/**
1573 * memory_region_dispatch_read: perform a read directly to the specified
1574 * MemoryRegion.
1575 *
1576 * @mr: #MemoryRegion to access
1577 * @addr: address within that region
1578 * @pval: pointer to uint64_t which the data is written to
1579 * @size: size of the access in bytes
1580 * @attrs: memory transaction attributes to use for the access
1581 */
1582MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1583                                        hwaddr addr,
1584                                        uint64_t *pval,
1585                                        unsigned size,
1586                                        MemTxAttrs attrs);
1587/**
1588 * memory_region_dispatch_write: perform a write directly to the specified
1589 * MemoryRegion.
1590 *
1591 * @mr: #MemoryRegion to access
1592 * @addr: address within that region
1593 * @data: data to write
1594 * @size: size of the access in bytes
1595 * @attrs: memory transaction attributes to use for the access
1596 */
1597MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1598                                         hwaddr addr,
1599                                         uint64_t data,
1600                                         unsigned size,
1601                                         MemTxAttrs attrs);
1602
1603/**
1604 * address_space_init: initializes an address space
1605 *
1606 * @as: an uninitialized #AddressSpace
1607 * @root: a #MemoryRegion that routes addresses for the address space
1608 * @name: an address space name.  The name is only used for debugging
1609 *        output.
1610 */
1611void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1612
1613/**
1614 * address_space_destroy: destroy an address space
1615 *
1616 * Releases all resources associated with an address space.  After an address space
1617 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1618 * as well.
1619 *
1620 * @as: address space to be destroyed
1621 */
1622void address_space_destroy(AddressSpace *as);
1623
1624/**
1625 * address_space_rw: read from or write to an address space.
1626 *
1627 * Return a MemTxResult indicating whether the operation succeeded
1628 * or failed (eg unassigned memory, device rejected the transaction,
1629 * IOMMU fault).
1630 *
1631 * @as: #AddressSpace to be accessed
1632 * @addr: address within that address space
1633 * @attrs: memory transaction attributes
1634 * @buf: buffer with the data transferred
1635 * @len: the number of bytes to read or write
1636 * @is_write: indicates the transfer direction
1637 */
1638MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639                             MemTxAttrs attrs, uint8_t *buf,
1640                             int len, bool is_write);
1641
1642/**
1643 * address_space_write: write to address space.
1644 *
1645 * Return a MemTxResult indicating whether the operation succeeded
1646 * or failed (eg unassigned memory, device rejected the transaction,
1647 * IOMMU fault).
1648 *
1649 * @as: #AddressSpace to be accessed
1650 * @addr: address within that address space
1651 * @attrs: memory transaction attributes
1652 * @buf: buffer with the data transferred
1653 * @len: the number of bytes to write
1654 */
1655MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1656                                MemTxAttrs attrs,
1657                                const uint8_t *buf, int len);
1658
1659/* address_space_ld*: load from an address space
1660 * address_space_st*: store to an address space
1661 *
1662 * These functions perform a load or store of the byte, word,
1663 * longword or quad to the specified address within the AddressSpace.
1664 * The _le suffixed functions treat the data as little endian;
1665 * _be indicates big endian; no suffix indicates "same endianness
1666 * as guest CPU".
1667 *
1668 * The "guest CPU endianness" accessors are deprecated for use outside
1669 * target-* code; devices should be CPU-agnostic and use either the LE
1670 * or the BE accessors.
1671 *
1672 * @as #AddressSpace to be accessed
1673 * @addr: address within that address space
1674 * @val: data value, for stores
1675 * @attrs: memory transaction attributes
1676 * @result: location to write the success/failure of the transaction;
1677 *   if NULL, this information is discarded
1678 */
1679uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1680                            MemTxAttrs attrs, MemTxResult *result);
1681uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1682                            MemTxAttrs attrs, MemTxResult *result);
1683uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1684                            MemTxAttrs attrs, MemTxResult *result);
1685uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1686                            MemTxAttrs attrs, MemTxResult *result);
1687uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1688                            MemTxAttrs attrs, MemTxResult *result);
1689uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1690                            MemTxAttrs attrs, MemTxResult *result);
1691uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1692                            MemTxAttrs attrs, MemTxResult *result);
1693void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1694                            MemTxAttrs attrs, MemTxResult *result);
1695void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1696                            MemTxAttrs attrs, MemTxResult *result);
1697void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1698                            MemTxAttrs attrs, MemTxResult *result);
1699void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1700                            MemTxAttrs attrs, MemTxResult *result);
1701void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1702                            MemTxAttrs attrs, MemTxResult *result);
1703void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1704                            MemTxAttrs attrs, MemTxResult *result);
1705void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1706                            MemTxAttrs attrs, MemTxResult *result);
1707
1708uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1709uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1710uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1711uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1712uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1713uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1714uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1715void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1716void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1717void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1718void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1719void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1720void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1721void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1722
1723struct MemoryRegionCache {
1724    hwaddr xlat;
1725    hwaddr len;
1726    AddressSpace *as;
1727};
1728
1729#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1730
1731/* address_space_cache_init: prepare for repeated access to a physical
1732 * memory region
1733 *
1734 * @cache: #MemoryRegionCache to be filled
1735 * @as: #AddressSpace to be accessed
1736 * @addr: address within that address space
1737 * @len: length of buffer
1738 * @is_write: indicates the transfer direction
1739 *
1740 * Will only work with RAM, and may map a subset of the requested range by
1741 * returning a value that is less than @len.  On failure, return a negative
1742 * errno value.
1743 *
1744 * Because it only works with RAM, this function can be used for
1745 * read-modify-write operations.  In this case, is_write should be %true.
1746 *
1747 * Note that addresses passed to the address_space_*_cached functions
1748 * are relative to @addr.
1749 */
1750int64_t address_space_cache_init(MemoryRegionCache *cache,
1751                                 AddressSpace *as,
1752                                 hwaddr addr,
1753                                 hwaddr len,
1754                                 bool is_write);
1755
1756/**
1757 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1758 *
1759 * @cache: The #MemoryRegionCache to operate on.
1760 * @addr: The first physical address that was written, relative to the
1761 * address that was passed to @address_space_cache_init.
1762 * @access_len: The number of bytes that were written starting at @addr.
1763 */
1764void address_space_cache_invalidate(MemoryRegionCache *cache,
1765                                    hwaddr addr,
1766                                    hwaddr access_len);
1767
1768/**
1769 * address_space_cache_destroy: free a #MemoryRegionCache
1770 *
1771 * @cache: The #MemoryRegionCache whose memory should be released.
1772 */
1773void address_space_cache_destroy(MemoryRegionCache *cache);
1774
1775/* address_space_ld*_cached: load from a cached #MemoryRegion
1776 * address_space_st*_cached: store into a cached #MemoryRegion
1777 *
1778 * These functions perform a load or store of the byte, word,
1779 * longword or quad to the specified address.  The address is
1780 * a physical address in the AddressSpace, but it must lie within
1781 * a #MemoryRegion that was mapped with address_space_cache_init.
1782 *
1783 * The _le suffixed functions treat the data as little endian;
1784 * _be indicates big endian; no suffix indicates "same endianness
1785 * as guest CPU".
1786 *
1787 * The "guest CPU endianness" accessors are deprecated for use outside
1788 * target-* code; devices should be CPU-agnostic and use either the LE
1789 * or the BE accessors.
1790 *
1791 * @cache: previously initialized #MemoryRegionCache to be accessed
1792 * @addr: address within the address space
1793 * @val: data value, for stores
1794 * @attrs: memory transaction attributes
1795 * @result: location to write the success/failure of the transaction;
1796 *   if NULL, this information is discarded
1797 */
1798uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1799                            MemTxAttrs attrs, MemTxResult *result);
1800uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1801                            MemTxAttrs attrs, MemTxResult *result);
1802uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1803                            MemTxAttrs attrs, MemTxResult *result);
1804uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1805                            MemTxAttrs attrs, MemTxResult *result);
1806uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1807                            MemTxAttrs attrs, MemTxResult *result);
1808uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1809                            MemTxAttrs attrs, MemTxResult *result);
1810uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1811                            MemTxAttrs attrs, MemTxResult *result);
1812void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1813                            MemTxAttrs attrs, MemTxResult *result);
1814void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1815                            MemTxAttrs attrs, MemTxResult *result);
1816void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1817                            MemTxAttrs attrs, MemTxResult *result);
1818void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1819                            MemTxAttrs attrs, MemTxResult *result);
1820void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1821                            MemTxAttrs attrs, MemTxResult *result);
1822void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1823                            MemTxAttrs attrs, MemTxResult *result);
1824void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1825                            MemTxAttrs attrs, MemTxResult *result);
1826
1827uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1828uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1829uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1830uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1831uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1832uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1833uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1834void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1835void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1836void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1837void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1838void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1839void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1840void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1841/* address_space_get_iotlb_entry: translate an address into an IOTLB
1842 * entry. Should be called from an RCU critical section.
1843 */
1844IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1845                                            bool is_write);
1846
1847/* address_space_translate: translate an address range into an address space
1848 * into a MemoryRegion and an address range into that section.  Should be
1849 * called from an RCU critical section, to avoid that the last reference
1850 * to the returned region disappears after address_space_translate returns.
1851 *
1852 * @fv: #FlatView to be accessed
1853 * @addr: address within that address space
1854 * @xlat: pointer to address within the returned memory region section's
1855 * #MemoryRegion.
1856 * @len: pointer to length
1857 * @is_write: indicates the transfer direction
1858 */
1859MemoryRegion *flatview_translate(FlatView *fv,
1860                                 hwaddr addr, hwaddr *xlat,
1861                                 hwaddr *len, bool is_write);
1862
1863static inline MemoryRegion *address_space_translate(AddressSpace *as,
1864                                                    hwaddr addr, hwaddr *xlat,
1865                                                    hwaddr *len, bool is_write)
1866{
1867    return flatview_translate(address_space_to_flatview(as),
1868                              addr, xlat, len, is_write);
1869}
1870
1871/* address_space_access_valid: check for validity of accessing an address
1872 * space range
1873 *
1874 * Check whether memory is assigned to the given address space range, and
1875 * access is permitted by any IOMMU regions that are active for the address
1876 * space.
1877 *
1878 * For now, addr and len should be aligned to a page size.  This limitation
1879 * will be lifted in the future.
1880 *
1881 * @as: #AddressSpace to be accessed
1882 * @addr: address within that address space
1883 * @len: length of the area to be checked
1884 * @is_write: indicates the transfer direction
1885 */
1886bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1887
1888/* address_space_map: map a physical memory region into a host virtual address
1889 *
1890 * May map a subset of the requested range, given by and returned in @plen.
1891 * May return %NULL if resources needed to perform the mapping are exhausted.
1892 * Use only for reads OR writes - not for read-modify-write operations.
1893 * Use cpu_register_map_client() to know when retrying the map operation is
1894 * likely to succeed.
1895 *
1896 * @as: #AddressSpace to be accessed
1897 * @addr: address within that address space
1898 * @plen: pointer to length of buffer; updated on return
1899 * @is_write: indicates the transfer direction
1900 */
1901void *address_space_map(AddressSpace *as, hwaddr addr,
1902                        hwaddr *plen, bool is_write);
1903
1904/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1905 *
1906 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1907 * the amount of memory that was actually read or written by the caller.
1908 *
1909 * @as: #AddressSpace used
1910 * @buffer: host pointer as returned by address_space_map()
1911 * @len: buffer length as returned by address_space_map()
1912 * @access_len: amount of data actually transferred
1913 * @is_write: indicates the transfer direction
1914 */
1915void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1916                         int is_write, hwaddr access_len);
1917
1918
1919/* Internal functions, part of the implementation of address_space_read.  */
1920MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1921                                    MemTxAttrs attrs, uint8_t *buf, int len);
1922MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1923                                   MemTxAttrs attrs, uint8_t *buf,
1924                                   int len, hwaddr addr1, hwaddr l,
1925                                   MemoryRegion *mr);
1926void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1927
1928static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1929{
1930    if (is_write) {
1931        return memory_region_is_ram(mr) &&
1932               !mr->readonly && !memory_region_is_ram_device(mr);
1933    } else {
1934        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1935               memory_region_is_romd(mr);
1936    }
1937}
1938
1939/**
1940 * address_space_read: read from an address space.
1941 *
1942 * Return a MemTxResult indicating whether the operation succeeded
1943 * or failed (eg unassigned memory, device rejected the transaction,
1944 * IOMMU fault).  Called within RCU critical section.
1945 *
1946 * @as: #AddressSpace to be accessed
1947 * @addr: address within that address space
1948 * @attrs: memory transaction attributes
1949 * @buf: buffer with the data transferred
1950 */
1951static inline __attribute__((__always_inline__))
1952MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1953                               MemTxAttrs attrs, uint8_t *buf,
1954                               int len)
1955{
1956    MemTxResult result = MEMTX_OK;
1957    hwaddr l, addr1;
1958    void *ptr;
1959    MemoryRegion *mr;
1960    FlatView *fv;
1961
1962    if (__builtin_constant_p(len)) {
1963        if (len) {
1964            rcu_read_lock();
1965            fv = address_space_to_flatview(as);
1966            l = len;
1967            mr = flatview_translate(fv, addr, &addr1, &l, false);
1968            if (len == l && memory_access_is_direct(mr, false)) {
1969                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1970                memcpy(buf, ptr, len);
1971            } else {
1972                result = flatview_read_continue(fv, addr, attrs, buf, len,
1973                                                addr1, l, mr);
1974            }
1975            rcu_read_unlock();
1976        }
1977    } else {
1978        result = address_space_read_full(as, addr, attrs, buf, len);
1979    }
1980    return result;
1981}
1982
1983/**
1984 * address_space_read_cached: read from a cached RAM region
1985 *
1986 * @cache: Cached region to be addressed
1987 * @addr: address relative to the base of the RAM region
1988 * @buf: buffer with the data transferred
1989 * @len: length of the data transferred
1990 */
1991static inline void
1992address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1993                          void *buf, int len)
1994{
1995    assert(addr < cache->len && len <= cache->len - addr);
1996    address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1997}
1998
1999/**
2000 * address_space_write_cached: write to a cached RAM region
2001 *
2002 * @cache: Cached region to be addressed
2003 * @addr: address relative to the base of the RAM region
2004 * @buf: buffer with the data transferred
2005 * @len: length of the data transferred
2006 */
2007static inline void
2008address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2009                           void *buf, int len)
2010{
2011    assert(addr < cache->len && len <= cache->len - addr);
2012    address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2013}
2014
2015#endif
2016
2017#endif
2018