qemu/include/qemu/bswap.h
<<
>>
Prefs
   1#ifndef BSWAP_H
   2#define BSWAP_H
   3
   4#include "fpu/softfloat-types.h"
   5
   6#ifdef CONFIG_MACHINE_BSWAP_H
   7# include <sys/endian.h>
   8# include <machine/bswap.h>
   9#elif defined(__FreeBSD__)
  10# include <sys/endian.h>
  11#elif defined(CONFIG_BYTESWAP_H)
  12# include <byteswap.h>
  13
  14static inline uint16_t bswap16(uint16_t x)
  15{
  16    return bswap_16(x);
  17}
  18
  19static inline uint32_t bswap32(uint32_t x)
  20{
  21    return bswap_32(x);
  22}
  23
  24static inline uint64_t bswap64(uint64_t x)
  25{
  26    return bswap_64(x);
  27}
  28# else
  29static inline uint16_t bswap16(uint16_t x)
  30{
  31    return (((x & 0x00ff) << 8) |
  32            ((x & 0xff00) >> 8));
  33}
  34
  35static inline uint32_t bswap32(uint32_t x)
  36{
  37    return (((x & 0x000000ffU) << 24) |
  38            ((x & 0x0000ff00U) <<  8) |
  39            ((x & 0x00ff0000U) >>  8) |
  40            ((x & 0xff000000U) >> 24));
  41}
  42
  43static inline uint64_t bswap64(uint64_t x)
  44{
  45    return (((x & 0x00000000000000ffULL) << 56) |
  46            ((x & 0x000000000000ff00ULL) << 40) |
  47            ((x & 0x0000000000ff0000ULL) << 24) |
  48            ((x & 0x00000000ff000000ULL) <<  8) |
  49            ((x & 0x000000ff00000000ULL) >>  8) |
  50            ((x & 0x0000ff0000000000ULL) >> 24) |
  51            ((x & 0x00ff000000000000ULL) >> 40) |
  52            ((x & 0xff00000000000000ULL) >> 56));
  53}
  54#endif /* ! CONFIG_MACHINE_BSWAP_H */
  55
  56static inline void bswap16s(uint16_t *s)
  57{
  58    *s = bswap16(*s);
  59}
  60
  61static inline void bswap32s(uint32_t *s)
  62{
  63    *s = bswap32(*s);
  64}
  65
  66static inline void bswap64s(uint64_t *s)
  67{
  68    *s = bswap64(*s);
  69}
  70
  71#if defined(HOST_WORDS_BIGENDIAN)
  72#define be_bswap(v, size) (v)
  73#define le_bswap(v, size) glue(bswap, size)(v)
  74#define be_bswaps(v, size)
  75#define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
  76#else
  77#define le_bswap(v, size) (v)
  78#define be_bswap(v, size) glue(bswap, size)(v)
  79#define le_bswaps(v, size)
  80#define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
  81#endif
  82
  83/**
  84 * Endianness conversion functions between host cpu and specified endianness.
  85 * (We list the complete set of prototypes produced by the macros below
  86 * to assist people who search the headers to find their definitions.)
  87 *
  88 * uint16_t le16_to_cpu(uint16_t v);
  89 * uint32_t le32_to_cpu(uint32_t v);
  90 * uint64_t le64_to_cpu(uint64_t v);
  91 * uint16_t be16_to_cpu(uint16_t v);
  92 * uint32_t be32_to_cpu(uint32_t v);
  93 * uint64_t be64_to_cpu(uint64_t v);
  94 *
  95 * Convert the value @v from the specified format to the native
  96 * endianness of the host CPU by byteswapping if necessary, and
  97 * return the converted value.
  98 *
  99 * uint16_t cpu_to_le16(uint16_t v);
 100 * uint32_t cpu_to_le32(uint32_t v);
 101 * uint64_t cpu_to_le64(uint64_t v);
 102 * uint16_t cpu_to_be16(uint16_t v);
 103 * uint32_t cpu_to_be32(uint32_t v);
 104 * uint64_t cpu_to_be64(uint64_t v);
 105 *
 106 * Convert the value @v from the native endianness of the host CPU to
 107 * the specified format by byteswapping if necessary, and return
 108 * the converted value.
 109 *
 110 * void le16_to_cpus(uint16_t *v);
 111 * void le32_to_cpus(uint32_t *v);
 112 * void le64_to_cpus(uint64_t *v);
 113 * void be16_to_cpus(uint16_t *v);
 114 * void be32_to_cpus(uint32_t *v);
 115 * void be64_to_cpus(uint64_t *v);
 116 *
 117 * Do an in-place conversion of the value pointed to by @v from the
 118 * specified format to the native endianness of the host CPU.
 119 *
 120 * void cpu_to_le16s(uint16_t *v);
 121 * void cpu_to_le32s(uint32_t *v);
 122 * void cpu_to_le64s(uint64_t *v);
 123 * void cpu_to_be16s(uint16_t *v);
 124 * void cpu_to_be32s(uint32_t *v);
 125 * void cpu_to_be64s(uint64_t *v);
 126 *
 127 * Do an in-place conversion of the value pointed to by @v from the
 128 * native endianness of the host CPU to the specified format.
 129 *
 130 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
 131 * should use whichever one is better documenting of the function your
 132 * code is performing.
 133 *
 134 * Do not use these functions for conversion of values which are in guest
 135 * memory, since the data may not be sufficiently aligned for the host CPU's
 136 * load and store instructions. Instead you should use the ld*_p() and
 137 * st*_p() functions, which perform loads and stores of data of any
 138 * required size and endianness and handle possible misalignment.
 139 */
 140
 141#define CPU_CONVERT(endian, size, type)\
 142static inline type endian ## size ## _to_cpu(type v)\
 143{\
 144    return glue(endian, _bswap)(v, size);\
 145}\
 146\
 147static inline type cpu_to_ ## endian ## size(type v)\
 148{\
 149    return glue(endian, _bswap)(v, size);\
 150}\
 151\
 152static inline void endian ## size ## _to_cpus(type *p)\
 153{\
 154    glue(endian, _bswaps)(p, size);\
 155}\
 156\
 157static inline void cpu_to_ ## endian ## size ## s(type *p)\
 158{\
 159    glue(endian, _bswaps)(p, size);\
 160}
 161
 162CPU_CONVERT(be, 16, uint16_t)
 163CPU_CONVERT(be, 32, uint32_t)
 164CPU_CONVERT(be, 64, uint64_t)
 165
 166CPU_CONVERT(le, 16, uint16_t)
 167CPU_CONVERT(le, 32, uint32_t)
 168CPU_CONVERT(le, 64, uint64_t)
 169
 170/* len must be one of 1, 2, 4 */
 171static inline uint32_t qemu_bswap_len(uint32_t value, int len)
 172{
 173    return bswap32(value) >> (32 - 8 * len);
 174}
 175
 176/*
 177 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
 178 * a compile-time constant if you pass in a constant.  So this can be
 179 * used to initialize static variables.
 180 */
 181#if defined(HOST_WORDS_BIGENDIAN)
 182# define const_le32(_x)                          \
 183    ((((_x) & 0x000000ffU) << 24) |              \
 184     (((_x) & 0x0000ff00U) <<  8) |              \
 185     (((_x) & 0x00ff0000U) >>  8) |              \
 186     (((_x) & 0xff000000U) >> 24))
 187# define const_le16(_x)                          \
 188    ((((_x) & 0x00ff) << 8) |                    \
 189     (((_x) & 0xff00) >> 8))
 190#else
 191# define const_le32(_x) (_x)
 192# define const_le16(_x) (_x)
 193#endif
 194
 195/* Unions for reinterpreting between floats and integers.  */
 196
 197typedef union {
 198    float32 f;
 199    uint32_t l;
 200} CPU_FloatU;
 201
 202typedef union {
 203    float64 d;
 204#if defined(HOST_WORDS_BIGENDIAN)
 205    struct {
 206        uint32_t upper;
 207        uint32_t lower;
 208    } l;
 209#else
 210    struct {
 211        uint32_t lower;
 212        uint32_t upper;
 213    } l;
 214#endif
 215    uint64_t ll;
 216} CPU_DoubleU;
 217
 218typedef union {
 219     floatx80 d;
 220     struct {
 221         uint64_t lower;
 222         uint16_t upper;
 223     } l;
 224} CPU_LDoubleU;
 225
 226typedef union {
 227    float128 q;
 228#if defined(HOST_WORDS_BIGENDIAN)
 229    struct {
 230        uint32_t upmost;
 231        uint32_t upper;
 232        uint32_t lower;
 233        uint32_t lowest;
 234    } l;
 235    struct {
 236        uint64_t upper;
 237        uint64_t lower;
 238    } ll;
 239#else
 240    struct {
 241        uint32_t lowest;
 242        uint32_t lower;
 243        uint32_t upper;
 244        uint32_t upmost;
 245    } l;
 246    struct {
 247        uint64_t lower;
 248        uint64_t upper;
 249    } ll;
 250#endif
 251} CPU_QuadU;
 252
 253/* unaligned/endian-independent pointer access */
 254
 255/*
 256 * the generic syntax is:
 257 *
 258 * load: ld{type}{sign}{size}{endian}_p(ptr)
 259 *
 260 * store: st{type}{size}{endian}_p(ptr, val)
 261 *
 262 * Note there are small differences with the softmmu access API!
 263 *
 264 * type is:
 265 * (empty): integer access
 266 *   f    : float access
 267 *
 268 * sign is:
 269 * (empty): for 32 or 64 bit sizes (including floats and doubles)
 270 *   u    : unsigned
 271 *   s    : signed
 272 *
 273 * size is:
 274 *   b: 8 bits
 275 *   w: 16 bits
 276 *   l: 32 bits
 277 *   q: 64 bits
 278 *
 279 * endian is:
 280 *   he   : host endian
 281 *   be   : big endian
 282 *   le   : little endian
 283 *   te   : target endian
 284 * (except for byte accesses, which have no endian infix).
 285 *
 286 * The target endian accessors are obviously only available to source
 287 * files which are built per-target; they are defined in cpu-all.h.
 288 *
 289 * In all cases these functions take a host pointer.
 290 * For accessors that take a guest address rather than a
 291 * host address, see the cpu_{ld,st}_* accessors defined in
 292 * cpu_ldst.h.
 293 */
 294
 295static inline int ldub_p(const void *ptr)
 296{
 297    return *(uint8_t *)ptr;
 298}
 299
 300static inline int ldsb_p(const void *ptr)
 301{
 302    return *(int8_t *)ptr;
 303}
 304
 305static inline void stb_p(void *ptr, uint8_t v)
 306{
 307    *(uint8_t *)ptr = v;
 308}
 309
 310/* Any compiler worth its salt will turn these memcpy into native unaligned
 311   operations.  Thus we don't need to play games with packed attributes, or
 312   inline byte-by-byte stores.  */
 313
 314static inline int lduw_he_p(const void *ptr)
 315{
 316    uint16_t r;
 317    memcpy(&r, ptr, sizeof(r));
 318    return r;
 319}
 320
 321static inline int ldsw_he_p(const void *ptr)
 322{
 323    int16_t r;
 324    memcpy(&r, ptr, sizeof(r));
 325    return r;
 326}
 327
 328static inline void stw_he_p(void *ptr, uint16_t v)
 329{
 330    memcpy(ptr, &v, sizeof(v));
 331}
 332
 333static inline int ldl_he_p(const void *ptr)
 334{
 335    int32_t r;
 336    memcpy(&r, ptr, sizeof(r));
 337    return r;
 338}
 339
 340static inline void stl_he_p(void *ptr, uint32_t v)
 341{
 342    memcpy(ptr, &v, sizeof(v));
 343}
 344
 345static inline uint64_t ldq_he_p(const void *ptr)
 346{
 347    uint64_t r;
 348    memcpy(&r, ptr, sizeof(r));
 349    return r;
 350}
 351
 352static inline void stq_he_p(void *ptr, uint64_t v)
 353{
 354    memcpy(ptr, &v, sizeof(v));
 355}
 356
 357static inline int lduw_le_p(const void *ptr)
 358{
 359    return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
 360}
 361
 362static inline int ldsw_le_p(const void *ptr)
 363{
 364    return (int16_t)le_bswap(lduw_he_p(ptr), 16);
 365}
 366
 367static inline int ldl_le_p(const void *ptr)
 368{
 369    return le_bswap(ldl_he_p(ptr), 32);
 370}
 371
 372static inline uint64_t ldq_le_p(const void *ptr)
 373{
 374    return le_bswap(ldq_he_p(ptr), 64);
 375}
 376
 377static inline void stw_le_p(void *ptr, uint16_t v)
 378{
 379    stw_he_p(ptr, le_bswap(v, 16));
 380}
 381
 382static inline void stl_le_p(void *ptr, uint32_t v)
 383{
 384    stl_he_p(ptr, le_bswap(v, 32));
 385}
 386
 387static inline void stq_le_p(void *ptr, uint64_t v)
 388{
 389    stq_he_p(ptr, le_bswap(v, 64));
 390}
 391
 392/* float access */
 393
 394static inline float32 ldfl_le_p(const void *ptr)
 395{
 396    CPU_FloatU u;
 397    u.l = ldl_le_p(ptr);
 398    return u.f;
 399}
 400
 401static inline void stfl_le_p(void *ptr, float32 v)
 402{
 403    CPU_FloatU u;
 404    u.f = v;
 405    stl_le_p(ptr, u.l);
 406}
 407
 408static inline float64 ldfq_le_p(const void *ptr)
 409{
 410    CPU_DoubleU u;
 411    u.ll = ldq_le_p(ptr);
 412    return u.d;
 413}
 414
 415static inline void stfq_le_p(void *ptr, float64 v)
 416{
 417    CPU_DoubleU u;
 418    u.d = v;
 419    stq_le_p(ptr, u.ll);
 420}
 421
 422static inline int lduw_be_p(const void *ptr)
 423{
 424    return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
 425}
 426
 427static inline int ldsw_be_p(const void *ptr)
 428{
 429    return (int16_t)be_bswap(lduw_he_p(ptr), 16);
 430}
 431
 432static inline int ldl_be_p(const void *ptr)
 433{
 434    return be_bswap(ldl_he_p(ptr), 32);
 435}
 436
 437static inline uint64_t ldq_be_p(const void *ptr)
 438{
 439    return be_bswap(ldq_he_p(ptr), 64);
 440}
 441
 442static inline void stw_be_p(void *ptr, uint16_t v)
 443{
 444    stw_he_p(ptr, be_bswap(v, 16));
 445}
 446
 447static inline void stl_be_p(void *ptr, uint32_t v)
 448{
 449    stl_he_p(ptr, be_bswap(v, 32));
 450}
 451
 452static inline void stq_be_p(void *ptr, uint64_t v)
 453{
 454    stq_he_p(ptr, be_bswap(v, 64));
 455}
 456
 457/* float access */
 458
 459static inline float32 ldfl_be_p(const void *ptr)
 460{
 461    CPU_FloatU u;
 462    u.l = ldl_be_p(ptr);
 463    return u.f;
 464}
 465
 466static inline void stfl_be_p(void *ptr, float32 v)
 467{
 468    CPU_FloatU u;
 469    u.f = v;
 470    stl_be_p(ptr, u.l);
 471}
 472
 473static inline float64 ldfq_be_p(const void *ptr)
 474{
 475    CPU_DoubleU u;
 476    u.ll = ldq_be_p(ptr);
 477    return u.d;
 478}
 479
 480static inline void stfq_be_p(void *ptr, float64 v)
 481{
 482    CPU_DoubleU u;
 483    u.d = v;
 484    stq_be_p(ptr, u.ll);
 485}
 486
 487static inline unsigned long leul_to_cpu(unsigned long v)
 488{
 489#if HOST_LONG_BITS == 32
 490    return le_bswap(v, 32);
 491#elif HOST_LONG_BITS == 64
 492    return le_bswap(v, 64);
 493#else
 494# error Unknown sizeof long
 495#endif
 496}
 497
 498#undef le_bswap
 499#undef be_bswap
 500#undef le_bswaps
 501#undef be_bswaps
 502
 503#endif /* BSWAP_H */
 504