qemu/slirp/slirp.c
<<
>>
Prefs
   1/*
   2 * libslirp glue
   3 *
   4 * Copyright (c) 2004-2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "qemu-common.h"
  26#include "qemu/timer.h"
  27#include "qemu/error-report.h"
  28#include "chardev/char-fe.h"
  29#include "migration/register.h"
  30#include "slirp.h"
  31#include "hw/hw.h"
  32#include "qemu/cutils.h"
  33
  34#ifndef _WIN32
  35#include <net/if.h>
  36#endif
  37
  38/* host loopback address */
  39struct in_addr loopback_addr;
  40/* host loopback network mask */
  41unsigned long loopback_mask;
  42
  43/* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
  44static const uint8_t special_ethaddr[ETH_ALEN] = {
  45    0x52, 0x55, 0x00, 0x00, 0x00, 0x00
  46};
  47
  48u_int curtime;
  49
  50static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances =
  51    QTAILQ_HEAD_INITIALIZER(slirp_instances);
  52
  53static struct in_addr dns_addr;
  54#ifndef _WIN32
  55static struct in6_addr dns6_addr;
  56#endif
  57static u_int dns_addr_time;
  58#ifndef _WIN32
  59static u_int dns6_addr_time;
  60#endif
  61
  62#define TIMEOUT_FAST 2  /* milliseconds */
  63#define TIMEOUT_SLOW 499  /* milliseconds */
  64/* for the aging of certain requests like DNS */
  65#define TIMEOUT_DEFAULT 1000  /* milliseconds */
  66
  67#ifdef _WIN32
  68
  69int get_dns_addr(struct in_addr *pdns_addr)
  70{
  71    FIXED_INFO *FixedInfo=NULL;
  72    ULONG    BufLen;
  73    DWORD    ret;
  74    IP_ADDR_STRING *pIPAddr;
  75    struct in_addr tmp_addr;
  76
  77    if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
  78        *pdns_addr = dns_addr;
  79        return 0;
  80    }
  81
  82    FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
  83    BufLen = sizeof(FIXED_INFO);
  84
  85    if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
  86        if (FixedInfo) {
  87            GlobalFree(FixedInfo);
  88            FixedInfo = NULL;
  89        }
  90        FixedInfo = GlobalAlloc(GPTR, BufLen);
  91    }
  92
  93    if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
  94        printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
  95        if (FixedInfo) {
  96            GlobalFree(FixedInfo);
  97            FixedInfo = NULL;
  98        }
  99        return -1;
 100    }
 101
 102    pIPAddr = &(FixedInfo->DnsServerList);
 103    inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
 104    *pdns_addr = tmp_addr;
 105    dns_addr = tmp_addr;
 106    dns_addr_time = curtime;
 107    if (FixedInfo) {
 108        GlobalFree(FixedInfo);
 109        FixedInfo = NULL;
 110    }
 111    return 0;
 112}
 113
 114int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
 115{
 116    return -1;
 117}
 118
 119static void winsock_cleanup(void)
 120{
 121    WSACleanup();
 122}
 123
 124#else
 125
 126static int get_dns_addr_cached(void *pdns_addr, void *cached_addr,
 127                               socklen_t addrlen,
 128                               struct stat *cached_stat, u_int *cached_time)
 129{
 130    struct stat old_stat;
 131    if (curtime - *cached_time < TIMEOUT_DEFAULT) {
 132        memcpy(pdns_addr, cached_addr, addrlen);
 133        return 0;
 134    }
 135    old_stat = *cached_stat;
 136    if (stat("/etc/resolv.conf", cached_stat) != 0) {
 137        return -1;
 138    }
 139    if (cached_stat->st_dev == old_stat.st_dev
 140        && cached_stat->st_ino == old_stat.st_ino
 141        && cached_stat->st_size == old_stat.st_size
 142        && cached_stat->st_mtime == old_stat.st_mtime) {
 143        memcpy(pdns_addr, cached_addr, addrlen);
 144        return 0;
 145    }
 146    return 1;
 147}
 148
 149static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr,
 150                                    socklen_t addrlen, uint32_t *scope_id,
 151                                    u_int *cached_time)
 152{
 153    char buff[512];
 154    char buff2[257];
 155    FILE *f;
 156    int found = 0;
 157    void *tmp_addr = alloca(addrlen);
 158    unsigned if_index;
 159
 160    f = fopen("/etc/resolv.conf", "r");
 161    if (!f)
 162        return -1;
 163
 164#ifdef DEBUG
 165    fprintf(stderr, "IP address of your DNS(s): ");
 166#endif
 167    while (fgets(buff, 512, f) != NULL) {
 168        if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
 169            char *c = strchr(buff2, '%');
 170            if (c) {
 171                if_index = if_nametoindex(c + 1);
 172                *c = '\0';
 173            } else {
 174                if_index = 0;
 175            }
 176
 177            if (!inet_pton(af, buff2, tmp_addr)) {
 178                continue;
 179            }
 180            /* If it's the first one, set it to dns_addr */
 181            if (!found) {
 182                memcpy(pdns_addr, tmp_addr, addrlen);
 183                memcpy(cached_addr, tmp_addr, addrlen);
 184                if (scope_id) {
 185                    *scope_id = if_index;
 186                }
 187                *cached_time = curtime;
 188            }
 189#ifdef DEBUG
 190            else
 191                fprintf(stderr, ", ");
 192#endif
 193            if (++found > 3) {
 194#ifdef DEBUG
 195                fprintf(stderr, "(more)");
 196#endif
 197                break;
 198            }
 199#ifdef DEBUG
 200            else {
 201                char s[INET6_ADDRSTRLEN];
 202                const char *res = inet_ntop(af, tmp_addr, s, sizeof(s));
 203                if (!res) {
 204                    res = "(string conversion error)";
 205                }
 206                fprintf(stderr, "%s", res);
 207            }
 208#endif
 209        }
 210    }
 211    fclose(f);
 212    if (!found)
 213        return -1;
 214    return 0;
 215}
 216
 217int get_dns_addr(struct in_addr *pdns_addr)
 218{
 219    static struct stat dns_addr_stat;
 220
 221    if (dns_addr.s_addr != 0) {
 222        int ret;
 223        ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr),
 224                                  &dns_addr_stat, &dns_addr_time);
 225        if (ret <= 0) {
 226            return ret;
 227        }
 228    }
 229    return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr,
 230                                    sizeof(dns_addr), NULL, &dns_addr_time);
 231}
 232
 233int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
 234{
 235    static struct stat dns6_addr_stat;
 236
 237    if (!in6_zero(&dns6_addr)) {
 238        int ret;
 239        ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr),
 240                                  &dns6_addr_stat, &dns6_addr_time);
 241        if (ret <= 0) {
 242            return ret;
 243        }
 244    }
 245    return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr,
 246                                    sizeof(dns6_addr),
 247                                    scope_id, &dns6_addr_time);
 248}
 249
 250#endif
 251
 252static void slirp_init_once(void)
 253{
 254    static int initialized;
 255#ifdef _WIN32
 256    WSADATA Data;
 257#endif
 258
 259    if (initialized) {
 260        return;
 261    }
 262    initialized = 1;
 263
 264#ifdef _WIN32
 265    WSAStartup(MAKEWORD(2,0), &Data);
 266    atexit(winsock_cleanup);
 267#endif
 268
 269    loopback_addr.s_addr = htonl(INADDR_LOOPBACK);
 270    loopback_mask = htonl(IN_CLASSA_NET);
 271}
 272
 273static void slirp_state_save(QEMUFile *f, void *opaque);
 274static int slirp_state_load(QEMUFile *f, void *opaque, int version_id);
 275
 276static SaveVMHandlers savevm_slirp_state = {
 277    .save_state = slirp_state_save,
 278    .load_state = slirp_state_load,
 279};
 280
 281Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork,
 282                  struct in_addr vnetmask, struct in_addr vhost,
 283                  bool in6_enabled,
 284                  struct in6_addr vprefix_addr6, uint8_t vprefix_len,
 285                  struct in6_addr vhost6, const char *vhostname,
 286                  const char *tftp_path, const char *bootfile,
 287                  struct in_addr vdhcp_start, struct in_addr vnameserver,
 288                  struct in6_addr vnameserver6, const char **vdnssearch,
 289                  void *opaque)
 290{
 291    Slirp *slirp = g_malloc0(sizeof(Slirp));
 292
 293    slirp_init_once();
 294
 295    slirp->grand = g_rand_new();
 296    slirp->restricted = restricted;
 297
 298    slirp->in_enabled = in_enabled;
 299    slirp->in6_enabled = in6_enabled;
 300
 301    if_init(slirp);
 302    ip_init(slirp);
 303    ip6_init(slirp);
 304
 305    /* Initialise mbufs *after* setting the MTU */
 306    m_init(slirp);
 307
 308    slirp->vnetwork_addr = vnetwork;
 309    slirp->vnetwork_mask = vnetmask;
 310    slirp->vhost_addr = vhost;
 311    slirp->vprefix_addr6 = vprefix_addr6;
 312    slirp->vprefix_len = vprefix_len;
 313    slirp->vhost_addr6 = vhost6;
 314    if (vhostname) {
 315        pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname),
 316                vhostname);
 317    }
 318    slirp->tftp_prefix = g_strdup(tftp_path);
 319    slirp->bootp_filename = g_strdup(bootfile);
 320    slirp->vdhcp_startaddr = vdhcp_start;
 321    slirp->vnameserver_addr = vnameserver;
 322    slirp->vnameserver_addr6 = vnameserver6;
 323
 324    if (vdnssearch) {
 325        translate_dnssearch(slirp, vdnssearch);
 326    }
 327
 328    slirp->opaque = opaque;
 329
 330    register_savevm_live(NULL, "slirp", 0, 4, &savevm_slirp_state, slirp);
 331
 332    QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry);
 333
 334    return slirp;
 335}
 336
 337void slirp_cleanup(Slirp *slirp)
 338{
 339    QTAILQ_REMOVE(&slirp_instances, slirp, entry);
 340
 341    unregister_savevm(NULL, "slirp", slirp);
 342
 343    ip_cleanup(slirp);
 344    ip6_cleanup(slirp);
 345    m_cleanup(slirp);
 346
 347    g_rand_free(slirp->grand);
 348
 349    g_free(slirp->vdnssearch);
 350    g_free(slirp->tftp_prefix);
 351    g_free(slirp->bootp_filename);
 352    g_free(slirp);
 353}
 354
 355#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
 356#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
 357
 358static void slirp_update_timeout(uint32_t *timeout)
 359{
 360    Slirp *slirp;
 361    uint32_t t;
 362
 363    if (*timeout <= TIMEOUT_FAST) {
 364        return;
 365    }
 366
 367    t = MIN(1000, *timeout);
 368
 369    /* If we have tcp timeout with slirp, then we will fill @timeout with
 370     * more precise value.
 371     */
 372    QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
 373        if (slirp->time_fasttimo) {
 374            *timeout = TIMEOUT_FAST;
 375            return;
 376        }
 377        if (slirp->do_slowtimo) {
 378            t = MIN(TIMEOUT_SLOW, t);
 379        }
 380    }
 381    *timeout = t;
 382}
 383
 384void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout)
 385{
 386    Slirp *slirp;
 387    struct socket *so, *so_next;
 388
 389    if (QTAILQ_EMPTY(&slirp_instances)) {
 390        return;
 391    }
 392
 393    /*
 394     * First, TCP sockets
 395     */
 396
 397    QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
 398        /*
 399         * *_slowtimo needs calling if there are IP fragments
 400         * in the fragment queue, or there are TCP connections active
 401         */
 402        slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) ||
 403                (&slirp->ipq.ip_link != slirp->ipq.ip_link.next));
 404
 405        for (so = slirp->tcb.so_next; so != &slirp->tcb;
 406                so = so_next) {
 407            int events = 0;
 408
 409            so_next = so->so_next;
 410
 411            so->pollfds_idx = -1;
 412
 413            /*
 414             * See if we need a tcp_fasttimo
 415             */
 416            if (slirp->time_fasttimo == 0 &&
 417                so->so_tcpcb->t_flags & TF_DELACK) {
 418                slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */
 419            }
 420
 421            /*
 422             * NOFDREF can include still connecting to local-host,
 423             * newly socreated() sockets etc. Don't want to select these.
 424             */
 425            if (so->so_state & SS_NOFDREF || so->s == -1) {
 426                continue;
 427            }
 428
 429            /*
 430             * Set for reading sockets which are accepting
 431             */
 432            if (so->so_state & SS_FACCEPTCONN) {
 433                GPollFD pfd = {
 434                    .fd = so->s,
 435                    .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
 436                };
 437                so->pollfds_idx = pollfds->len;
 438                g_array_append_val(pollfds, pfd);
 439                continue;
 440            }
 441
 442            /*
 443             * Set for writing sockets which are connecting
 444             */
 445            if (so->so_state & SS_ISFCONNECTING) {
 446                GPollFD pfd = {
 447                    .fd = so->s,
 448                    .events = G_IO_OUT | G_IO_ERR,
 449                };
 450                so->pollfds_idx = pollfds->len;
 451                g_array_append_val(pollfds, pfd);
 452                continue;
 453            }
 454
 455            /*
 456             * Set for writing if we are connected, can send more, and
 457             * we have something to send
 458             */
 459            if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
 460                events |= G_IO_OUT | G_IO_ERR;
 461            }
 462
 463            /*
 464             * Set for reading (and urgent data) if we are connected, can
 465             * receive more, and we have room for it XXX /2 ?
 466             */
 467            if (CONN_CANFRCV(so) &&
 468                (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
 469                events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI;
 470            }
 471
 472            if (events) {
 473                GPollFD pfd = {
 474                    .fd = so->s,
 475                    .events = events,
 476                };
 477                so->pollfds_idx = pollfds->len;
 478                g_array_append_val(pollfds, pfd);
 479            }
 480        }
 481
 482        /*
 483         * UDP sockets
 484         */
 485        for (so = slirp->udb.so_next; so != &slirp->udb;
 486                so = so_next) {
 487            so_next = so->so_next;
 488
 489            so->pollfds_idx = -1;
 490
 491            /*
 492             * See if it's timed out
 493             */
 494            if (so->so_expire) {
 495                if (so->so_expire <= curtime) {
 496                    udp_detach(so);
 497                    continue;
 498                } else {
 499                    slirp->do_slowtimo = true; /* Let socket expire */
 500                }
 501            }
 502
 503            /*
 504             * When UDP packets are received from over the
 505             * link, they're sendto()'d straight away, so
 506             * no need for setting for writing
 507             * Limit the number of packets queued by this session
 508             * to 4.  Note that even though we try and limit this
 509             * to 4 packets, the session could have more queued
 510             * if the packets needed to be fragmented
 511             * (XXX <= 4 ?)
 512             */
 513            if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
 514                GPollFD pfd = {
 515                    .fd = so->s,
 516                    .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
 517                };
 518                so->pollfds_idx = pollfds->len;
 519                g_array_append_val(pollfds, pfd);
 520            }
 521        }
 522
 523        /*
 524         * ICMP sockets
 525         */
 526        for (so = slirp->icmp.so_next; so != &slirp->icmp;
 527                so = so_next) {
 528            so_next = so->so_next;
 529
 530            so->pollfds_idx = -1;
 531
 532            /*
 533             * See if it's timed out
 534             */
 535            if (so->so_expire) {
 536                if (so->so_expire <= curtime) {
 537                    icmp_detach(so);
 538                    continue;
 539                } else {
 540                    slirp->do_slowtimo = true; /* Let socket expire */
 541                }
 542            }
 543
 544            if (so->so_state & SS_ISFCONNECTED) {
 545                GPollFD pfd = {
 546                    .fd = so->s,
 547                    .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
 548                };
 549                so->pollfds_idx = pollfds->len;
 550                g_array_append_val(pollfds, pfd);
 551            }
 552        }
 553    }
 554    slirp_update_timeout(timeout);
 555}
 556
 557void slirp_pollfds_poll(GArray *pollfds, int select_error)
 558{
 559    Slirp *slirp;
 560    struct socket *so, *so_next;
 561    int ret;
 562
 563    if (QTAILQ_EMPTY(&slirp_instances)) {
 564        return;
 565    }
 566
 567    curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 568
 569    QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
 570        /*
 571         * See if anything has timed out
 572         */
 573        if (slirp->time_fasttimo &&
 574            ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) {
 575            tcp_fasttimo(slirp);
 576            slirp->time_fasttimo = 0;
 577        }
 578        if (slirp->do_slowtimo &&
 579            ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) {
 580            ip_slowtimo(slirp);
 581            tcp_slowtimo(slirp);
 582            slirp->last_slowtimo = curtime;
 583        }
 584
 585        /*
 586         * Check sockets
 587         */
 588        if (!select_error) {
 589            /*
 590             * Check TCP sockets
 591             */
 592            for (so = slirp->tcb.so_next; so != &slirp->tcb;
 593                    so = so_next) {
 594                int revents;
 595
 596                so_next = so->so_next;
 597
 598                revents = 0;
 599                if (so->pollfds_idx != -1) {
 600                    revents = g_array_index(pollfds, GPollFD,
 601                                            so->pollfds_idx).revents;
 602                }
 603
 604                if (so->so_state & SS_NOFDREF || so->s == -1) {
 605                    continue;
 606                }
 607
 608                /*
 609                 * Check for URG data
 610                 * This will soread as well, so no need to
 611                 * test for G_IO_IN below if this succeeds
 612                 */
 613                if (revents & G_IO_PRI) {
 614                    ret = sorecvoob(so);
 615                    if (ret < 0) {
 616                        /* Socket error might have resulted in the socket being
 617                         * removed, do not try to do anything more with it. */
 618                        continue;
 619                    }
 620                }
 621                /*
 622                 * Check sockets for reading
 623                 */
 624                else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
 625                    /*
 626                     * Check for incoming connections
 627                     */
 628                    if (so->so_state & SS_FACCEPTCONN) {
 629                        tcp_connect(so);
 630                        continue;
 631                    } /* else */
 632                    ret = soread(so);
 633
 634                    /* Output it if we read something */
 635                    if (ret > 0) {
 636                        tcp_output(sototcpcb(so));
 637                    }
 638                    if (ret < 0) {
 639                        /* Socket error might have resulted in the socket being
 640                         * removed, do not try to do anything more with it. */
 641                        continue;
 642                    }
 643                }
 644
 645                /*
 646                 * Check sockets for writing
 647                 */
 648                if (!(so->so_state & SS_NOFDREF) &&
 649                        (revents & (G_IO_OUT | G_IO_ERR))) {
 650                    /*
 651                     * Check for non-blocking, still-connecting sockets
 652                     */
 653                    if (so->so_state & SS_ISFCONNECTING) {
 654                        /* Connected */
 655                        so->so_state &= ~SS_ISFCONNECTING;
 656
 657                        ret = send(so->s, (const void *) &ret, 0, 0);
 658                        if (ret < 0) {
 659                            /* XXXXX Must fix, zero bytes is a NOP */
 660                            if (errno == EAGAIN || errno == EWOULDBLOCK ||
 661                                errno == EINPROGRESS || errno == ENOTCONN) {
 662                                continue;
 663                            }
 664
 665                            /* else failed */
 666                            so->so_state &= SS_PERSISTENT_MASK;
 667                            so->so_state |= SS_NOFDREF;
 668                        }
 669                        /* else so->so_state &= ~SS_ISFCONNECTING; */
 670
 671                        /*
 672                         * Continue tcp_input
 673                         */
 674                        tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
 675                                  so->so_ffamily);
 676                        /* continue; */
 677                    } else {
 678                        ret = sowrite(so);
 679                    }
 680                    /*
 681                     * XXXXX If we wrote something (a lot), there
 682                     * could be a need for a window update.
 683                     * In the worst case, the remote will send
 684                     * a window probe to get things going again
 685                     */
 686                }
 687
 688                /*
 689                 * Probe a still-connecting, non-blocking socket
 690                 * to check if it's still alive
 691                 */
 692#ifdef PROBE_CONN
 693                if (so->so_state & SS_ISFCONNECTING) {
 694                    ret = qemu_recv(so->s, &ret, 0, 0);
 695
 696                    if (ret < 0) {
 697                        /* XXX */
 698                        if (errno == EAGAIN || errno == EWOULDBLOCK ||
 699                            errno == EINPROGRESS || errno == ENOTCONN) {
 700                            continue; /* Still connecting, continue */
 701                        }
 702
 703                        /* else failed */
 704                        so->so_state &= SS_PERSISTENT_MASK;
 705                        so->so_state |= SS_NOFDREF;
 706
 707                        /* tcp_input will take care of it */
 708                    } else {
 709                        ret = send(so->s, &ret, 0, 0);
 710                        if (ret < 0) {
 711                            /* XXX */
 712                            if (errno == EAGAIN || errno == EWOULDBLOCK ||
 713                                errno == EINPROGRESS || errno == ENOTCONN) {
 714                                continue;
 715                            }
 716                            /* else failed */
 717                            so->so_state &= SS_PERSISTENT_MASK;
 718                            so->so_state |= SS_NOFDREF;
 719                        } else {
 720                            so->so_state &= ~SS_ISFCONNECTING;
 721                        }
 722
 723                    }
 724                    tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
 725                              so->so_ffamily);
 726                } /* SS_ISFCONNECTING */
 727#endif
 728            }
 729
 730            /*
 731             * Now UDP sockets.
 732             * Incoming packets are sent straight away, they're not buffered.
 733             * Incoming UDP data isn't buffered either.
 734             */
 735            for (so = slirp->udb.so_next; so != &slirp->udb;
 736                    so = so_next) {
 737                int revents;
 738
 739                so_next = so->so_next;
 740
 741                revents = 0;
 742                if (so->pollfds_idx != -1) {
 743                    revents = g_array_index(pollfds, GPollFD,
 744                            so->pollfds_idx).revents;
 745                }
 746
 747                if (so->s != -1 &&
 748                    (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
 749                    sorecvfrom(so);
 750                }
 751            }
 752
 753            /*
 754             * Check incoming ICMP relies.
 755             */
 756            for (so = slirp->icmp.so_next; so != &slirp->icmp;
 757                    so = so_next) {
 758                    int revents;
 759
 760                    so_next = so->so_next;
 761
 762                    revents = 0;
 763                    if (so->pollfds_idx != -1) {
 764                        revents = g_array_index(pollfds, GPollFD,
 765                                                so->pollfds_idx).revents;
 766                    }
 767
 768                    if (so->s != -1 &&
 769                        (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
 770                    icmp_receive(so);
 771                }
 772            }
 773        }
 774
 775        if_start(slirp);
 776    }
 777}
 778
 779static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
 780{
 781    struct slirp_arphdr *ah = (struct slirp_arphdr *)(pkt + ETH_HLEN);
 782    uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)];
 783    struct ethhdr *reh = (struct ethhdr *)arp_reply;
 784    struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN);
 785    int ar_op;
 786    struct ex_list *ex_ptr;
 787
 788    if (!slirp->in_enabled) {
 789        return;
 790    }
 791
 792    ar_op = ntohs(ah->ar_op);
 793    switch(ar_op) {
 794    case ARPOP_REQUEST:
 795        if (ah->ar_tip == ah->ar_sip) {
 796            /* Gratuitous ARP */
 797            arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
 798            return;
 799        }
 800
 801        if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) ==
 802            slirp->vnetwork_addr.s_addr) {
 803            if (ah->ar_tip == slirp->vnameserver_addr.s_addr ||
 804                ah->ar_tip == slirp->vhost_addr.s_addr)
 805                goto arp_ok;
 806            for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
 807                if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
 808                    goto arp_ok;
 809            }
 810            return;
 811        arp_ok:
 812            memset(arp_reply, 0, sizeof(arp_reply));
 813
 814            arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
 815
 816            /* ARP request for alias/dns mac address */
 817            memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
 818            memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
 819            memcpy(&reh->h_source[2], &ah->ar_tip, 4);
 820            reh->h_proto = htons(ETH_P_ARP);
 821
 822            rah->ar_hrd = htons(1);
 823            rah->ar_pro = htons(ETH_P_IP);
 824            rah->ar_hln = ETH_ALEN;
 825            rah->ar_pln = 4;
 826            rah->ar_op = htons(ARPOP_REPLY);
 827            memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
 828            rah->ar_sip = ah->ar_tip;
 829            memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
 830            rah->ar_tip = ah->ar_sip;
 831            slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply));
 832        }
 833        break;
 834    case ARPOP_REPLY:
 835        arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
 836        break;
 837    default:
 838        break;
 839    }
 840}
 841
 842void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
 843{
 844    struct mbuf *m;
 845    int proto;
 846
 847    if (pkt_len < ETH_HLEN)
 848        return;
 849
 850    proto = ntohs(*(uint16_t *)(pkt + 12));
 851    switch(proto) {
 852    case ETH_P_ARP:
 853        arp_input(slirp, pkt, pkt_len);
 854        break;
 855    case ETH_P_IP:
 856    case ETH_P_IPV6:
 857        m = m_get(slirp);
 858        if (!m)
 859            return;
 860        /* Note: we add 2 to align the IP header on 4 bytes,
 861         * and add the margin for the tcpiphdr overhead  */
 862        if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) {
 863            m_inc(m, pkt_len + TCPIPHDR_DELTA + 2);
 864        }
 865        m->m_len = pkt_len + TCPIPHDR_DELTA + 2;
 866        memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len);
 867
 868        m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN;
 869        m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN;
 870
 871        if (proto == ETH_P_IP) {
 872            ip_input(m);
 873        } else if (proto == ETH_P_IPV6) {
 874            ip6_input(m);
 875        }
 876        break;
 877
 878    case ETH_P_NCSI:
 879        ncsi_input(slirp, pkt, pkt_len);
 880        break;
 881
 882    default:
 883        break;
 884    }
 885}
 886
 887/* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no
 888 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
 889 * is ready to go.
 890 */
 891static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
 892        uint8_t ethaddr[ETH_ALEN])
 893{
 894    const struct ip *iph = (const struct ip *)ifm->m_data;
 895
 896    if (iph->ip_dst.s_addr == 0) {
 897        /* 0.0.0.0 can not be a destination address, something went wrong,
 898         * avoid making it worse */
 899        return 1;
 900    }
 901    if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) {
 902        uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)];
 903        struct ethhdr *reh = (struct ethhdr *)arp_req;
 904        struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN);
 905
 906        if (!ifm->resolution_requested) {
 907            /* If the client addr is not known, send an ARP request */
 908            memset(reh->h_dest, 0xff, ETH_ALEN);
 909            memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
 910            memcpy(&reh->h_source[2], &slirp->vhost_addr, 4);
 911            reh->h_proto = htons(ETH_P_ARP);
 912            rah->ar_hrd = htons(1);
 913            rah->ar_pro = htons(ETH_P_IP);
 914            rah->ar_hln = ETH_ALEN;
 915            rah->ar_pln = 4;
 916            rah->ar_op = htons(ARPOP_REQUEST);
 917
 918            /* source hw addr */
 919            memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
 920            memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4);
 921
 922            /* source IP */
 923            rah->ar_sip = slirp->vhost_addr.s_addr;
 924
 925            /* target hw addr (none) */
 926            memset(rah->ar_tha, 0, ETH_ALEN);
 927
 928            /* target IP */
 929            rah->ar_tip = iph->ip_dst.s_addr;
 930            slirp->client_ipaddr = iph->ip_dst;
 931            slirp_output(slirp->opaque, arp_req, sizeof(arp_req));
 932            ifm->resolution_requested = true;
 933
 934            /* Expire request and drop outgoing packet after 1 second */
 935            ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
 936        }
 937        return 0;
 938    } else {
 939        memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
 940        /* XXX: not correct */
 941        memcpy(&eh->h_source[2], &slirp->vhost_addr, 4);
 942        eh->h_proto = htons(ETH_P_IP);
 943
 944        /* Send this */
 945        return 2;
 946    }
 947}
 948
 949/* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no
 950 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
 951 * is ready to go.
 952 */
 953static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
 954        uint8_t ethaddr[ETH_ALEN])
 955{
 956    const struct ip6 *ip6h = mtod(ifm, const struct ip6 *);
 957    if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) {
 958        if (!ifm->resolution_requested) {
 959            ndp_send_ns(slirp, ip6h->ip_dst);
 960            ifm->resolution_requested = true;
 961            ifm->expiration_date =
 962                qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
 963        }
 964        return 0;
 965    } else {
 966        eh->h_proto = htons(ETH_P_IPV6);
 967        in6_compute_ethaddr(ip6h->ip_src, eh->h_source);
 968
 969        /* Send this */
 970        return 2;
 971    }
 972}
 973
 974/* Output the IP packet to the ethernet device. Returns 0 if the packet must be
 975 * re-queued.
 976 */
 977int if_encap(Slirp *slirp, struct mbuf *ifm)
 978{
 979    uint8_t buf[1600];
 980    struct ethhdr *eh = (struct ethhdr *)buf;
 981    uint8_t ethaddr[ETH_ALEN];
 982    const struct ip *iph = (const struct ip *)ifm->m_data;
 983    int ret;
 984
 985    if (ifm->m_len + ETH_HLEN > sizeof(buf)) {
 986        return 1;
 987    }
 988
 989    switch (iph->ip_v) {
 990    case IPVERSION:
 991        ret = if_encap4(slirp, ifm, eh, ethaddr);
 992        if (ret < 2) {
 993            return ret;
 994        }
 995        break;
 996
 997    case IP6VERSION:
 998        ret = if_encap6(slirp, ifm, eh, ethaddr);
 999        if (ret < 2) {
1000            return ret;
1001        }
1002        break;
1003
1004    default:
1005        g_assert_not_reached();
1006        break;
1007    }
1008
1009    memcpy(eh->h_dest, ethaddr, ETH_ALEN);
1010    DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n",
1011                eh->h_source[0], eh->h_source[1], eh->h_source[2],
1012                eh->h_source[3], eh->h_source[4], eh->h_source[5]));
1013    DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n",
1014                eh->h_dest[0], eh->h_dest[1], eh->h_dest[2],
1015                eh->h_dest[3], eh->h_dest[4], eh->h_dest[5]));
1016    memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len);
1017    slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN);
1018    return 1;
1019}
1020
1021/* Drop host forwarding rule, return 0 if found. */
1022int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1023                         int host_port)
1024{
1025    struct socket *so;
1026    struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb);
1027    struct sockaddr_in addr;
1028    int port = htons(host_port);
1029    socklen_t addr_len;
1030
1031    for (so = head->so_next; so != head; so = so->so_next) {
1032        addr_len = sizeof(addr);
1033        if ((so->so_state & SS_HOSTFWD) &&
1034            getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
1035            addr.sin_addr.s_addr == host_addr.s_addr &&
1036            addr.sin_port == port) {
1037            close(so->s);
1038            sofree(so);
1039            return 0;
1040        }
1041    }
1042
1043    return -1;
1044}
1045
1046int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1047                      int host_port, struct in_addr guest_addr, int guest_port)
1048{
1049    if (!guest_addr.s_addr) {
1050        guest_addr = slirp->vdhcp_startaddr;
1051    }
1052    if (is_udp) {
1053        if (!udp_listen(slirp, host_addr.s_addr, htons(host_port),
1054                        guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1055            return -1;
1056    } else {
1057        if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port),
1058                        guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1059            return -1;
1060    }
1061    return 0;
1062}
1063
1064int slirp_add_exec(Slirp *slirp, int do_pty, const void *args,
1065                   struct in_addr *guest_addr, int guest_port)
1066{
1067    if (!guest_addr->s_addr) {
1068        guest_addr->s_addr = slirp->vnetwork_addr.s_addr |
1069            (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr);
1070    }
1071    if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) !=
1072        slirp->vnetwork_addr.s_addr ||
1073        guest_addr->s_addr == slirp->vhost_addr.s_addr ||
1074        guest_addr->s_addr == slirp->vnameserver_addr.s_addr) {
1075        return -1;
1076    }
1077    return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr,
1078                    htons(guest_port));
1079}
1080
1081ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
1082{
1083    if (so->s == -1 && so->extra) {
1084        /* XXX this blocks entire thread. Rewrite to use
1085         * qemu_chr_fe_write and background I/O callbacks */
1086        qemu_chr_fe_write_all(so->extra, buf, len);
1087        return len;
1088    }
1089
1090    return send(so->s, buf, len, flags);
1091}
1092
1093static struct socket *
1094slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port)
1095{
1096    struct socket *so;
1097
1098    for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
1099        if (so->so_faddr.s_addr == guest_addr.s_addr &&
1100            htons(so->so_fport) == guest_port) {
1101            return so;
1102        }
1103    }
1104    return NULL;
1105}
1106
1107size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
1108                             int guest_port)
1109{
1110    struct iovec iov[2];
1111    struct socket *so;
1112
1113    so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1114
1115    if (!so || so->so_state & SS_NOFDREF) {
1116        return 0;
1117    }
1118
1119    if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) {
1120        return 0;
1121    }
1122
1123    return sopreprbuf(so, iov, NULL);
1124}
1125
1126void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port,
1127                       const uint8_t *buf, int size)
1128{
1129    int ret;
1130    struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1131
1132    if (!so)
1133        return;
1134
1135    ret = soreadbuf(so, (const char *)buf, size);
1136
1137    if (ret > 0)
1138        tcp_output(sototcpcb(so));
1139}
1140
1141static int slirp_tcp_post_load(void *opaque, int version)
1142{
1143    tcp_template((struct tcpcb *)opaque);
1144
1145    return 0;
1146}
1147
1148static const VMStateDescription vmstate_slirp_tcp = {
1149    .name = "slirp-tcp",
1150    .version_id = 0,
1151    .post_load = slirp_tcp_post_load,
1152    .fields = (VMStateField[]) {
1153        VMSTATE_INT16(t_state, struct tcpcb),
1154        VMSTATE_INT16_ARRAY(t_timer, struct tcpcb, TCPT_NTIMERS),
1155        VMSTATE_INT16(t_rxtshift, struct tcpcb),
1156        VMSTATE_INT16(t_rxtcur, struct tcpcb),
1157        VMSTATE_INT16(t_dupacks, struct tcpcb),
1158        VMSTATE_UINT16(t_maxseg, struct tcpcb),
1159        VMSTATE_UINT8(t_force, struct tcpcb),
1160        VMSTATE_UINT16(t_flags, struct tcpcb),
1161        VMSTATE_UINT32(snd_una, struct tcpcb),
1162        VMSTATE_UINT32(snd_nxt, struct tcpcb),
1163        VMSTATE_UINT32(snd_up, struct tcpcb),
1164        VMSTATE_UINT32(snd_wl1, struct tcpcb),
1165        VMSTATE_UINT32(snd_wl2, struct tcpcb),
1166        VMSTATE_UINT32(iss, struct tcpcb),
1167        VMSTATE_UINT32(snd_wnd, struct tcpcb),
1168        VMSTATE_UINT32(rcv_wnd, struct tcpcb),
1169        VMSTATE_UINT32(rcv_nxt, struct tcpcb),
1170        VMSTATE_UINT32(rcv_up, struct tcpcb),
1171        VMSTATE_UINT32(irs, struct tcpcb),
1172        VMSTATE_UINT32(rcv_adv, struct tcpcb),
1173        VMSTATE_UINT32(snd_max, struct tcpcb),
1174        VMSTATE_UINT32(snd_cwnd, struct tcpcb),
1175        VMSTATE_UINT32(snd_ssthresh, struct tcpcb),
1176        VMSTATE_INT16(t_idle, struct tcpcb),
1177        VMSTATE_INT16(t_rtt, struct tcpcb),
1178        VMSTATE_UINT32(t_rtseq, struct tcpcb),
1179        VMSTATE_INT16(t_srtt, struct tcpcb),
1180        VMSTATE_INT16(t_rttvar, struct tcpcb),
1181        VMSTATE_UINT16(t_rttmin, struct tcpcb),
1182        VMSTATE_UINT32(max_sndwnd, struct tcpcb),
1183        VMSTATE_UINT8(t_oobflags, struct tcpcb),
1184        VMSTATE_UINT8(t_iobc, struct tcpcb),
1185        VMSTATE_INT16(t_softerror, struct tcpcb),
1186        VMSTATE_UINT8(snd_scale, struct tcpcb),
1187        VMSTATE_UINT8(rcv_scale, struct tcpcb),
1188        VMSTATE_UINT8(request_r_scale, struct tcpcb),
1189        VMSTATE_UINT8(requested_s_scale, struct tcpcb),
1190        VMSTATE_UINT32(ts_recent, struct tcpcb),
1191        VMSTATE_UINT32(ts_recent_age, struct tcpcb),
1192        VMSTATE_UINT32(last_ack_sent, struct tcpcb),
1193        VMSTATE_END_OF_LIST()
1194    }
1195};
1196
1197/* The sbuf has a pair of pointers that are migrated as offsets;
1198 * we calculate the offsets and restore the pointers using
1199 * pre_save/post_load on a tmp structure.
1200 */
1201struct sbuf_tmp {
1202    struct sbuf *parent;
1203    uint32_t roff, woff;
1204};
1205
1206static int sbuf_tmp_pre_save(void *opaque)
1207{
1208    struct sbuf_tmp *tmp = opaque;
1209    tmp->woff = tmp->parent->sb_wptr - tmp->parent->sb_data;
1210    tmp->roff = tmp->parent->sb_rptr - tmp->parent->sb_data;
1211
1212    return 0;
1213}
1214
1215static int sbuf_tmp_post_load(void *opaque, int version)
1216{
1217    struct sbuf_tmp *tmp = opaque;
1218    uint32_t requested_len = tmp->parent->sb_datalen;
1219
1220    /* Allocate the buffer space used by the field after the tmp */
1221    sbreserve(tmp->parent, tmp->parent->sb_datalen);
1222
1223    if (tmp->parent->sb_datalen != requested_len) {
1224        return -ENOMEM;
1225    }
1226    if (tmp->woff >= requested_len ||
1227        tmp->roff >= requested_len) {
1228        error_report("invalid sbuf offsets r/w=%u/%u len=%u",
1229                     tmp->roff, tmp->woff, requested_len);
1230        return -EINVAL;
1231    }
1232
1233    tmp->parent->sb_wptr = tmp->parent->sb_data + tmp->woff;
1234    tmp->parent->sb_rptr = tmp->parent->sb_data + tmp->roff;
1235
1236    return 0;
1237}
1238
1239
1240static const VMStateDescription vmstate_slirp_sbuf_tmp = {
1241    .name = "slirp-sbuf-tmp",
1242    .post_load = sbuf_tmp_post_load,
1243    .pre_save  = sbuf_tmp_pre_save,
1244    .version_id = 0,
1245    .fields = (VMStateField[]) {
1246        VMSTATE_UINT32(woff, struct sbuf_tmp),
1247        VMSTATE_UINT32(roff, struct sbuf_tmp),
1248        VMSTATE_END_OF_LIST()
1249    }
1250};
1251
1252static const VMStateDescription vmstate_slirp_sbuf = {
1253    .name = "slirp-sbuf",
1254    .version_id = 0,
1255    .fields = (VMStateField[]) {
1256        VMSTATE_UINT32(sb_cc, struct sbuf),
1257        VMSTATE_UINT32(sb_datalen, struct sbuf),
1258        VMSTATE_WITH_TMP(struct sbuf, struct sbuf_tmp, vmstate_slirp_sbuf_tmp),
1259        VMSTATE_VBUFFER_UINT32(sb_data, struct sbuf, 0, NULL, sb_datalen),
1260        VMSTATE_END_OF_LIST()
1261    }
1262};
1263
1264static bool slirp_older_than_v4(void *opaque, int version_id)
1265{
1266    return version_id < 4;
1267}
1268
1269static bool slirp_family_inet(void *opaque, int version_id)
1270{
1271    union slirp_sockaddr *ssa = (union slirp_sockaddr *)opaque;
1272    return ssa->ss.ss_family == AF_INET;
1273}
1274
1275static int slirp_socket_pre_load(void *opaque)
1276{
1277    struct socket *so = opaque;
1278    if (tcp_attach(so) < 0) {
1279        return -ENOMEM;
1280    }
1281    /* Older versions don't load these fields */
1282    so->so_ffamily = AF_INET;
1283    so->so_lfamily = AF_INET;
1284    return 0;
1285}
1286
1287#ifndef _WIN32
1288#define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_UINT32_TEST(f, s, t)
1289#else
1290/* Win uses u_long rather than uint32_t - but it's still 32bits long */
1291#define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_SINGLE_TEST(f, s, t, 0, \
1292                                       vmstate_info_uint32, u_long)
1293#endif
1294
1295/* The OS provided ss_family field isn't that portable; it's size
1296 * and type varies (16/8 bit, signed, unsigned)
1297 * and the values it contains aren't fully portable.
1298 */
1299typedef struct SS_FamilyTmpStruct {
1300    union slirp_sockaddr    *parent;
1301    uint16_t                 portable_family;
1302} SS_FamilyTmpStruct;
1303
1304#define SS_FAMILY_MIG_IPV4   2  /* Linux, BSD, Win... */
1305#define SS_FAMILY_MIG_IPV6  10  /* Linux */
1306#define SS_FAMILY_MIG_OTHER 0xffff
1307
1308static int ss_family_pre_save(void *opaque)
1309{
1310    SS_FamilyTmpStruct *tss = opaque;
1311
1312    tss->portable_family = SS_FAMILY_MIG_OTHER;
1313
1314    if (tss->parent->ss.ss_family == AF_INET) {
1315        tss->portable_family = SS_FAMILY_MIG_IPV4;
1316    } else if (tss->parent->ss.ss_family == AF_INET6) {
1317        tss->portable_family = SS_FAMILY_MIG_IPV6;
1318    }
1319
1320    return 0;
1321}
1322
1323static int ss_family_post_load(void *opaque, int version_id)
1324{
1325    SS_FamilyTmpStruct *tss = opaque;
1326
1327    switch (tss->portable_family) {
1328    case SS_FAMILY_MIG_IPV4:
1329        tss->parent->ss.ss_family = AF_INET;
1330        break;
1331    case SS_FAMILY_MIG_IPV6:
1332    case 23: /* compatibility: AF_INET6 from mingw */
1333    case 28: /* compatibility: AF_INET6 from FreeBSD sys/socket.h */
1334        tss->parent->ss.ss_family = AF_INET6;
1335        break;
1336    default:
1337        error_report("invalid ss_family type %x", tss->portable_family);
1338        return -EINVAL;
1339    }
1340
1341    return 0;
1342}
1343
1344static const VMStateDescription vmstate_slirp_ss_family = {
1345    .name = "slirp-socket-addr/ss_family",
1346    .pre_save  = ss_family_pre_save,
1347    .post_load = ss_family_post_load,
1348    .fields = (VMStateField[]) {
1349        VMSTATE_UINT16(portable_family, SS_FamilyTmpStruct),
1350        VMSTATE_END_OF_LIST()
1351    }
1352};
1353
1354static const VMStateDescription vmstate_slirp_socket_addr = {
1355    .name = "slirp-socket-addr",
1356    .version_id = 4,
1357    .fields = (VMStateField[]) {
1358        VMSTATE_WITH_TMP(union slirp_sockaddr, SS_FamilyTmpStruct,
1359                            vmstate_slirp_ss_family),
1360        VMSTATE_SIN4_ADDR(sin.sin_addr.s_addr, union slirp_sockaddr,
1361                            slirp_family_inet),
1362        VMSTATE_UINT16_TEST(sin.sin_port, union slirp_sockaddr,
1363                            slirp_family_inet),
1364
1365#if 0
1366        /* Untested: Needs checking by someone with IPv6 test */
1367        VMSTATE_BUFFER_TEST(sin6.sin6_addr, union slirp_sockaddr,
1368                            slirp_family_inet6),
1369        VMSTATE_UINT16_TEST(sin6.sin6_port, union slirp_sockaddr,
1370                            slirp_family_inet6),
1371        VMSTATE_UINT32_TEST(sin6.sin6_flowinfo, union slirp_sockaddr,
1372                            slirp_family_inet6),
1373        VMSTATE_UINT32_TEST(sin6.sin6_scope_id, union slirp_sockaddr,
1374                            slirp_family_inet6),
1375#endif
1376
1377        VMSTATE_END_OF_LIST()
1378    }
1379};
1380
1381static const VMStateDescription vmstate_slirp_socket = {
1382    .name = "slirp-socket",
1383    .version_id = 4,
1384    .pre_load = slirp_socket_pre_load,
1385    .fields = (VMStateField[]) {
1386        VMSTATE_UINT32(so_urgc, struct socket),
1387        /* Pre-v4 versions */
1388        VMSTATE_SIN4_ADDR(so_faddr.s_addr, struct socket,
1389                            slirp_older_than_v4),
1390        VMSTATE_SIN4_ADDR(so_laddr.s_addr, struct socket,
1391                            slirp_older_than_v4),
1392        VMSTATE_UINT16_TEST(so_fport, struct socket, slirp_older_than_v4),
1393        VMSTATE_UINT16_TEST(so_lport, struct socket, slirp_older_than_v4),
1394        /* v4 and newer */
1395        VMSTATE_STRUCT(fhost, struct socket, 4, vmstate_slirp_socket_addr,
1396                       union slirp_sockaddr),
1397        VMSTATE_STRUCT(lhost, struct socket, 4, vmstate_slirp_socket_addr,
1398                       union slirp_sockaddr),
1399
1400        VMSTATE_UINT8(so_iptos, struct socket),
1401        VMSTATE_UINT8(so_emu, struct socket),
1402        VMSTATE_UINT8(so_type, struct socket),
1403        VMSTATE_INT32(so_state, struct socket),
1404        VMSTATE_STRUCT(so_rcv, struct socket, 0, vmstate_slirp_sbuf,
1405                       struct sbuf),
1406        VMSTATE_STRUCT(so_snd, struct socket, 0, vmstate_slirp_sbuf,
1407                       struct sbuf),
1408        VMSTATE_STRUCT_POINTER(so_tcpcb, struct socket, vmstate_slirp_tcp,
1409                       struct tcpcb),
1410        VMSTATE_END_OF_LIST()
1411    }
1412};
1413
1414static const VMStateDescription vmstate_slirp_bootp_client = {
1415    .name = "slirp_bootpclient",
1416    .fields = (VMStateField[]) {
1417        VMSTATE_UINT16(allocated, BOOTPClient),
1418        VMSTATE_BUFFER(macaddr, BOOTPClient),
1419        VMSTATE_END_OF_LIST()
1420    }
1421};
1422
1423static const VMStateDescription vmstate_slirp = {
1424    .name = "slirp",
1425    .version_id = 4,
1426    .fields = (VMStateField[]) {
1427        VMSTATE_UINT16_V(ip_id, Slirp, 2),
1428        VMSTATE_STRUCT_ARRAY(bootp_clients, Slirp, NB_BOOTP_CLIENTS, 3,
1429                             vmstate_slirp_bootp_client, BOOTPClient),
1430        VMSTATE_END_OF_LIST()
1431    }
1432};
1433
1434static void slirp_state_save(QEMUFile *f, void *opaque)
1435{
1436    Slirp *slirp = opaque;
1437    struct ex_list *ex_ptr;
1438
1439    for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
1440        if (ex_ptr->ex_pty == 3) {
1441            struct socket *so;
1442            so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr,
1443                                       ntohs(ex_ptr->ex_fport));
1444            if (!so)
1445                continue;
1446
1447            qemu_put_byte(f, 42);
1448            vmstate_save_state(f, &vmstate_slirp_socket, so, NULL);
1449        }
1450    qemu_put_byte(f, 0);
1451
1452    vmstate_save_state(f, &vmstate_slirp, slirp, NULL);
1453}
1454
1455
1456static int slirp_state_load(QEMUFile *f, void *opaque, int version_id)
1457{
1458    Slirp *slirp = opaque;
1459    struct ex_list *ex_ptr;
1460
1461    while (qemu_get_byte(f)) {
1462        int ret;
1463        struct socket *so = socreate(slirp);
1464
1465        if (!so)
1466            return -ENOMEM;
1467
1468        ret = vmstate_load_state(f, &vmstate_slirp_socket, so, version_id);
1469
1470        if (ret < 0)
1471            return ret;
1472
1473        if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) !=
1474            slirp->vnetwork_addr.s_addr) {
1475            return -EINVAL;
1476        }
1477        for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
1478            if (ex_ptr->ex_pty == 3 &&
1479                so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr &&
1480                so->so_fport == ex_ptr->ex_fport) {
1481                break;
1482            }
1483        }
1484        if (!ex_ptr)
1485            return -EINVAL;
1486
1487        so->extra = (void *)ex_ptr->ex_exec;
1488    }
1489
1490    return vmstate_load_state(f, &vmstate_slirp, slirp, version_id);
1491}
1492