qemu/target/arm/cpu64.c
<<
>>
Prefs
   1/*
   2 * QEMU AArch64 CPU
   3 *
   4 * Copyright (c) 2013 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qapi/error.h"
  23#include "cpu.h"
  24#include "qemu-common.h"
  25#if !defined(CONFIG_USER_ONLY)
  26#include "hw/loader.h"
  27#endif
  28#include "hw/arm/arm.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/kvm.h"
  31#include "kvm_arm.h"
  32
  33static inline void set_feature(CPUARMState *env, int feature)
  34{
  35    env->features |= 1ULL << feature;
  36}
  37
  38static inline void unset_feature(CPUARMState *env, int feature)
  39{
  40    env->features &= ~(1ULL << feature);
  41}
  42
  43#ifndef CONFIG_USER_ONLY
  44static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
  45{
  46    ARMCPU *cpu = arm_env_get_cpu(env);
  47
  48    /* Number of cores is in [25:24]; otherwise we RAZ */
  49    return (cpu->core_count - 1) << 24;
  50}
  51#endif
  52
  53static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
  54#ifndef CONFIG_USER_ONLY
  55    { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
  56      .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
  57      .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
  58      .writefn = arm_cp_write_ignore },
  59    { .name = "L2CTLR",
  60      .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
  61      .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
  62      .writefn = arm_cp_write_ignore },
  63#endif
  64    { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
  65      .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
  66      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  67    { .name = "L2ECTLR",
  68      .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
  69      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  70    { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
  71      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
  72      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  73    { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
  74      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
  75      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  76    { .name = "CPUACTLR",
  77      .cp = 15, .opc1 = 0, .crm = 15,
  78      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
  79    { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
  80      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
  81      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  82    { .name = "CPUECTLR",
  83      .cp = 15, .opc1 = 1, .crm = 15,
  84      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
  85    { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
  86      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
  87      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  88    { .name = "CPUMERRSR",
  89      .cp = 15, .opc1 = 2, .crm = 15,
  90      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
  91    { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
  92      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
  93      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
  94    { .name = "L2MERRSR",
  95      .cp = 15, .opc1 = 3, .crm = 15,
  96      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
  97    REGINFO_SENTINEL
  98};
  99
 100static void aarch64_a57_initfn(Object *obj)
 101{
 102    ARMCPU *cpu = ARM_CPU(obj);
 103
 104    cpu->dtb_compatible = "arm,cortex-a57";
 105    set_feature(&cpu->env, ARM_FEATURE_V8);
 106    set_feature(&cpu->env, ARM_FEATURE_VFP4);
 107    set_feature(&cpu->env, ARM_FEATURE_NEON);
 108    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 109    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 110    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 111    set_feature(&cpu->env, ARM_FEATURE_V8_AES);
 112    set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
 113    set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
 114    set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
 115    set_feature(&cpu->env, ARM_FEATURE_CRC);
 116    set_feature(&cpu->env, ARM_FEATURE_EL2);
 117    set_feature(&cpu->env, ARM_FEATURE_EL3);
 118    set_feature(&cpu->env, ARM_FEATURE_PMU);
 119    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
 120    cpu->midr = 0x411fd070;
 121    cpu->revidr = 0x00000000;
 122    cpu->reset_fpsid = 0x41034070;
 123    cpu->mvfr0 = 0x10110222;
 124    cpu->mvfr1 = 0x12111111;
 125    cpu->mvfr2 = 0x00000043;
 126    cpu->ctr = 0x8444c004;
 127    cpu->reset_sctlr = 0x00c50838;
 128    cpu->id_pfr0 = 0x00000131;
 129    cpu->id_pfr1 = 0x00011011;
 130    cpu->id_dfr0 = 0x03010066;
 131    cpu->id_afr0 = 0x00000000;
 132    cpu->id_mmfr0 = 0x10101105;
 133    cpu->id_mmfr1 = 0x40000000;
 134    cpu->id_mmfr2 = 0x01260000;
 135    cpu->id_mmfr3 = 0x02102211;
 136    cpu->id_isar0 = 0x02101110;
 137    cpu->id_isar1 = 0x13112111;
 138    cpu->id_isar2 = 0x21232042;
 139    cpu->id_isar3 = 0x01112131;
 140    cpu->id_isar4 = 0x00011142;
 141    cpu->id_isar5 = 0x00011121;
 142    cpu->id_aa64pfr0 = 0x00002222;
 143    cpu->id_aa64dfr0 = 0x10305106;
 144    cpu->pmceid0 = 0x00000000;
 145    cpu->pmceid1 = 0x00000000;
 146    cpu->id_aa64isar0 = 0x00011120;
 147    cpu->id_aa64mmfr0 = 0x00001124;
 148    cpu->dbgdidr = 0x3516d000;
 149    cpu->clidr = 0x0a200023;
 150    cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
 151    cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
 152    cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
 153    cpu->dcz_blocksize = 4; /* 64 bytes */
 154    cpu->gic_num_lrs = 4;
 155    cpu->gic_vpribits = 5;
 156    cpu->gic_vprebits = 5;
 157    define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
 158}
 159
 160static void aarch64_a53_initfn(Object *obj)
 161{
 162    ARMCPU *cpu = ARM_CPU(obj);
 163
 164    cpu->dtb_compatible = "arm,cortex-a53";
 165    set_feature(&cpu->env, ARM_FEATURE_V8);
 166    set_feature(&cpu->env, ARM_FEATURE_VFP4);
 167    set_feature(&cpu->env, ARM_FEATURE_NEON);
 168    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 169    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 170    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 171    set_feature(&cpu->env, ARM_FEATURE_V8_AES);
 172    set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
 173    set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
 174    set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
 175    set_feature(&cpu->env, ARM_FEATURE_CRC);
 176    set_feature(&cpu->env, ARM_FEATURE_EL2);
 177    set_feature(&cpu->env, ARM_FEATURE_EL3);
 178    set_feature(&cpu->env, ARM_FEATURE_PMU);
 179    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
 180    cpu->midr = 0x410fd034;
 181    cpu->revidr = 0x00000000;
 182    cpu->reset_fpsid = 0x41034070;
 183    cpu->mvfr0 = 0x10110222;
 184    cpu->mvfr1 = 0x12111111;
 185    cpu->mvfr2 = 0x00000043;
 186    cpu->ctr = 0x84448004; /* L1Ip = VIPT */
 187    cpu->reset_sctlr = 0x00c50838;
 188    cpu->id_pfr0 = 0x00000131;
 189    cpu->id_pfr1 = 0x00011011;
 190    cpu->id_dfr0 = 0x03010066;
 191    cpu->id_afr0 = 0x00000000;
 192    cpu->id_mmfr0 = 0x10101105;
 193    cpu->id_mmfr1 = 0x40000000;
 194    cpu->id_mmfr2 = 0x01260000;
 195    cpu->id_mmfr3 = 0x02102211;
 196    cpu->id_isar0 = 0x02101110;
 197    cpu->id_isar1 = 0x13112111;
 198    cpu->id_isar2 = 0x21232042;
 199    cpu->id_isar3 = 0x01112131;
 200    cpu->id_isar4 = 0x00011142;
 201    cpu->id_isar5 = 0x00011121;
 202    cpu->id_aa64pfr0 = 0x00002222;
 203    cpu->id_aa64dfr0 = 0x10305106;
 204    cpu->id_aa64isar0 = 0x00011120;
 205    cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
 206    cpu->dbgdidr = 0x3516d000;
 207    cpu->clidr = 0x0a200023;
 208    cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
 209    cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
 210    cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
 211    cpu->dcz_blocksize = 4; /* 64 bytes */
 212    cpu->gic_num_lrs = 4;
 213    cpu->gic_vpribits = 5;
 214    cpu->gic_vprebits = 5;
 215    define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
 216}
 217
 218/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
 219 * otherwise, a CPU with as many features enabled as our emulation supports.
 220 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
 221 * this only needs to handle 64 bits.
 222 */
 223static void aarch64_max_initfn(Object *obj)
 224{
 225    ARMCPU *cpu = ARM_CPU(obj);
 226
 227    if (kvm_enabled()) {
 228        kvm_arm_set_cpu_features_from_host(cpu);
 229    } else {
 230        aarch64_a57_initfn(obj);
 231#ifdef CONFIG_USER_ONLY
 232        /* We don't set these in system emulation mode for the moment,
 233         * since we don't correctly set the ID registers to advertise them,
 234         * and in some cases they're only available in AArch64 and not AArch32,
 235         * whereas the architecture requires them to be present in both if
 236         * present in either.
 237         */
 238        set_feature(&cpu->env, ARM_FEATURE_V8);
 239        set_feature(&cpu->env, ARM_FEATURE_VFP4);
 240        set_feature(&cpu->env, ARM_FEATURE_NEON);
 241        set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 242        set_feature(&cpu->env, ARM_FEATURE_V8_AES);
 243        set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
 244        set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
 245        set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
 246        set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
 247        set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
 248        set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
 249        set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
 250        set_feature(&cpu->env, ARM_FEATURE_CRC);
 251        set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
 252        set_feature(&cpu->env, ARM_FEATURE_V8_FP16);
 253        set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
 254        /* For usermode -cpu max we can use a larger and more efficient DCZ
 255         * blocksize since we don't have to follow what the hardware does.
 256         */
 257        cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
 258        cpu->dcz_blocksize = 7; /*  512 bytes */
 259#endif
 260    }
 261}
 262
 263typedef struct ARMCPUInfo {
 264    const char *name;
 265    void (*initfn)(Object *obj);
 266    void (*class_init)(ObjectClass *oc, void *data);
 267} ARMCPUInfo;
 268
 269static const ARMCPUInfo aarch64_cpus[] = {
 270    { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
 271    { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
 272    { .name = "max",                .initfn = aarch64_max_initfn },
 273    { .name = NULL }
 274};
 275
 276static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
 277{
 278    ARMCPU *cpu = ARM_CPU(obj);
 279
 280    return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
 281}
 282
 283static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
 284{
 285    ARMCPU *cpu = ARM_CPU(obj);
 286
 287    /* At this time, this property is only allowed if KVM is enabled.  This
 288     * restriction allows us to avoid fixing up functionality that assumes a
 289     * uniform execution state like do_interrupt.
 290     */
 291    if (!kvm_enabled()) {
 292        error_setg(errp, "'aarch64' feature cannot be disabled "
 293                         "unless KVM is enabled");
 294        return;
 295    }
 296
 297    if (value == false) {
 298        unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
 299    } else {
 300        set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 301    }
 302}
 303
 304static void aarch64_cpu_initfn(Object *obj)
 305{
 306    object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
 307                             aarch64_cpu_set_aarch64, NULL);
 308    object_property_set_description(obj, "aarch64",
 309                                    "Set on/off to enable/disable aarch64 "
 310                                    "execution state ",
 311                                    NULL);
 312}
 313
 314static void aarch64_cpu_finalizefn(Object *obj)
 315{
 316}
 317
 318static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
 319{
 320    ARMCPU *cpu = ARM_CPU(cs);
 321    /* It's OK to look at env for the current mode here, because it's
 322     * never possible for an AArch64 TB to chain to an AArch32 TB.
 323     * (Otherwise we would need to use synchronize_from_tb instead.)
 324     */
 325    if (is_a64(&cpu->env)) {
 326        cpu->env.pc = value;
 327    } else {
 328        cpu->env.regs[15] = value;
 329    }
 330}
 331
 332static gchar *aarch64_gdb_arch_name(CPUState *cs)
 333{
 334    return g_strdup("aarch64");
 335}
 336
 337static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
 338{
 339    CPUClass *cc = CPU_CLASS(oc);
 340
 341    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
 342    cc->set_pc = aarch64_cpu_set_pc;
 343    cc->gdb_read_register = aarch64_cpu_gdb_read_register;
 344    cc->gdb_write_register = aarch64_cpu_gdb_write_register;
 345    cc->gdb_num_core_regs = 34;
 346    cc->gdb_core_xml_file = "aarch64-core.xml";
 347    cc->gdb_arch_name = aarch64_gdb_arch_name;
 348}
 349
 350static void aarch64_cpu_register(const ARMCPUInfo *info)
 351{
 352    TypeInfo type_info = {
 353        .parent = TYPE_AARCH64_CPU,
 354        .instance_size = sizeof(ARMCPU),
 355        .instance_init = info->initfn,
 356        .class_size = sizeof(ARMCPUClass),
 357        .class_init = info->class_init,
 358    };
 359
 360    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
 361    type_register(&type_info);
 362    g_free((void *)type_info.name);
 363}
 364
 365static const TypeInfo aarch64_cpu_type_info = {
 366    .name = TYPE_AARCH64_CPU,
 367    .parent = TYPE_ARM_CPU,
 368    .instance_size = sizeof(ARMCPU),
 369    .instance_init = aarch64_cpu_initfn,
 370    .instance_finalize = aarch64_cpu_finalizefn,
 371    .abstract = true,
 372    .class_size = sizeof(AArch64CPUClass),
 373    .class_init = aarch64_cpu_class_init,
 374};
 375
 376static void aarch64_cpu_register_types(void)
 377{
 378    const ARMCPUInfo *info = aarch64_cpus;
 379
 380    type_register_static(&aarch64_cpu_type_info);
 381
 382    while (info->name) {
 383        aarch64_cpu_register(info);
 384        info++;
 385    }
 386}
 387
 388type_init(aarch64_cpu_register_types)
 389
 390/* The manual says that when SVE is enabled and VQ is widened the
 391 * implementation is allowed to zero the previously inaccessible
 392 * portion of the registers.  The corollary to that is that when
 393 * SVE is enabled and VQ is narrowed we are also allowed to zero
 394 * the now inaccessible portion of the registers.
 395 *
 396 * The intent of this is that no predicate bit beyond VQ is ever set.
 397 * Which means that some operations on predicate registers themselves
 398 * may operate on full uint64_t or even unrolled across the maximum
 399 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
 400 * may well be cheaper than conditionals to restrict the operation
 401 * to the relevant portion of a uint16_t[16].
 402 *
 403 * TODO: Need to call this for changes to the real system registers
 404 * and EL state changes.
 405 */
 406void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
 407{
 408    int i, j;
 409    uint64_t pmask;
 410
 411    assert(vq >= 1 && vq <= ARM_MAX_VQ);
 412
 413    /* Zap the high bits of the zregs.  */
 414    for (i = 0; i < 32; i++) {
 415        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
 416    }
 417
 418    /* Zap the high bits of the pregs and ffr.  */
 419    pmask = 0;
 420    if (vq & 3) {
 421        pmask = ~(-1ULL << (16 * (vq & 3)));
 422    }
 423    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
 424        for (i = 0; i < 17; ++i) {
 425            env->vfp.pregs[i].p[j] &= pmask;
 426        }
 427        pmask = 0;
 428    }
 429}
 430