qemu/util/qemu-thread-win32.c
<<
>>
Prefs
   1/*
   2 * Win32 implementation for mutex/cond/thread functions
   3 *
   4 * Copyright Red Hat, Inc. 2010
   5 *
   6 * Author:
   7 *  Paolo Bonzini <pbonzini@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef _WIN32_WINNT
  15#define _WIN32_WINNT 0x0600
  16#endif
  17
  18#include "qemu/osdep.h"
  19#include "qemu-common.h"
  20#include "qemu/thread.h"
  21#include "qemu/notify.h"
  22#include "trace.h"
  23#include <process.h>
  24
  25static bool name_threads;
  26
  27void qemu_thread_naming(bool enable)
  28{
  29    /* But note we don't actually name them on Windows yet */
  30    name_threads = enable;
  31
  32    fprintf(stderr, "qemu: thread naming not supported on this host\n");
  33}
  34
  35static void error_exit(int err, const char *msg)
  36{
  37    char *pstr;
  38
  39    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
  40                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
  41    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
  42    LocalFree(pstr);
  43    abort();
  44}
  45
  46void qemu_mutex_init(QemuMutex *mutex)
  47{
  48    InitializeSRWLock(&mutex->lock);
  49    mutex->initialized = true;
  50}
  51
  52void qemu_mutex_destroy(QemuMutex *mutex)
  53{
  54    assert(mutex->initialized);
  55    mutex->initialized = false;
  56    InitializeSRWLock(&mutex->lock);
  57}
  58
  59void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
  60{
  61    assert(mutex->initialized);
  62    trace_qemu_mutex_lock(mutex, file, line);
  63
  64    AcquireSRWLockExclusive(&mutex->lock);
  65    trace_qemu_mutex_locked(mutex, file, line);
  66}
  67
  68int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
  69{
  70    int owned;
  71
  72    assert(mutex->initialized);
  73    owned = TryAcquireSRWLockExclusive(&mutex->lock);
  74    if (owned) {
  75        trace_qemu_mutex_locked(mutex, file, line);
  76        return 0;
  77    }
  78    return -EBUSY;
  79}
  80
  81void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
  82{
  83    assert(mutex->initialized);
  84    trace_qemu_mutex_unlock(mutex, file, line);
  85    ReleaseSRWLockExclusive(&mutex->lock);
  86}
  87
  88void qemu_rec_mutex_init(QemuRecMutex *mutex)
  89{
  90    InitializeCriticalSection(&mutex->lock);
  91    mutex->initialized = true;
  92}
  93
  94void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
  95{
  96    assert(mutex->initialized);
  97    mutex->initialized = false;
  98    DeleteCriticalSection(&mutex->lock);
  99}
 100
 101void qemu_rec_mutex_lock(QemuRecMutex *mutex)
 102{
 103    assert(mutex->initialized);
 104    EnterCriticalSection(&mutex->lock);
 105}
 106
 107int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
 108{
 109    assert(mutex->initialized);
 110    return !TryEnterCriticalSection(&mutex->lock);
 111}
 112
 113void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
 114{
 115    assert(mutex->initialized);
 116    LeaveCriticalSection(&mutex->lock);
 117}
 118
 119void qemu_cond_init(QemuCond *cond)
 120{
 121    memset(cond, 0, sizeof(*cond));
 122    InitializeConditionVariable(&cond->var);
 123    cond->initialized = true;
 124}
 125
 126void qemu_cond_destroy(QemuCond *cond)
 127{
 128    assert(cond->initialized);
 129    cond->initialized = false;
 130    InitializeConditionVariable(&cond->var);
 131}
 132
 133void qemu_cond_signal(QemuCond *cond)
 134{
 135    assert(cond->initialized);
 136    WakeConditionVariable(&cond->var);
 137}
 138
 139void qemu_cond_broadcast(QemuCond *cond)
 140{
 141    assert(cond->initialized);
 142    WakeAllConditionVariable(&cond->var);
 143}
 144
 145void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
 146{
 147    assert(cond->initialized);
 148    trace_qemu_mutex_unlock(mutex, file, line);
 149    SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
 150    trace_qemu_mutex_locked(mutex, file, line);
 151}
 152
 153void qemu_sem_init(QemuSemaphore *sem, int init)
 154{
 155    /* Manual reset.  */
 156    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
 157    sem->initialized = true;
 158}
 159
 160void qemu_sem_destroy(QemuSemaphore *sem)
 161{
 162    assert(sem->initialized);
 163    sem->initialized = false;
 164    CloseHandle(sem->sema);
 165}
 166
 167void qemu_sem_post(QemuSemaphore *sem)
 168{
 169    assert(sem->initialized);
 170    ReleaseSemaphore(sem->sema, 1, NULL);
 171}
 172
 173int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
 174{
 175    int rc;
 176
 177    assert(sem->initialized);
 178    rc = WaitForSingleObject(sem->sema, ms);
 179    if (rc == WAIT_OBJECT_0) {
 180        return 0;
 181    }
 182    if (rc != WAIT_TIMEOUT) {
 183        error_exit(GetLastError(), __func__);
 184    }
 185    return -1;
 186}
 187
 188void qemu_sem_wait(QemuSemaphore *sem)
 189{
 190    assert(sem->initialized);
 191    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
 192        error_exit(GetLastError(), __func__);
 193    }
 194}
 195
 196/* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
 197 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
 198 * sequence.  Such a sequence is, indeed, how QemuEvents are used by
 199 * RCU and other subsystems!
 200 *
 201 * Valid transitions:
 202 * - free->set, when setting the event
 203 * - busy->set, when setting the event, followed by SetEvent
 204 * - set->free, when resetting the event
 205 * - free->busy, when waiting
 206 *
 207 * set->busy does not happen (it can be observed from the outside but
 208 * it really is set->free->busy).
 209 *
 210 * busy->free provably cannot happen; to enforce it, the set->free transition
 211 * is done with an OR, which becomes a no-op if the event has concurrently
 212 * transitioned to free or busy (and is faster than cmpxchg).
 213 */
 214
 215#define EV_SET         0
 216#define EV_FREE        1
 217#define EV_BUSY       -1
 218
 219void qemu_event_init(QemuEvent *ev, bool init)
 220{
 221    /* Manual reset.  */
 222    ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
 223    ev->value = (init ? EV_SET : EV_FREE);
 224    ev->initialized = true;
 225}
 226
 227void qemu_event_destroy(QemuEvent *ev)
 228{
 229    assert(ev->initialized);
 230    ev->initialized = false;
 231    CloseHandle(ev->event);
 232}
 233
 234void qemu_event_set(QemuEvent *ev)
 235{
 236    assert(ev->initialized);
 237    /* qemu_event_set has release semantics, but because it *loads*
 238     * ev->value we need a full memory barrier here.
 239     */
 240    smp_mb();
 241    if (atomic_read(&ev->value) != EV_SET) {
 242        if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
 243            /* There were waiters, wake them up.  */
 244            SetEvent(ev->event);
 245        }
 246    }
 247}
 248
 249void qemu_event_reset(QemuEvent *ev)
 250{
 251    unsigned value;
 252
 253    assert(ev->initialized);
 254    value = atomic_read(&ev->value);
 255    smp_mb_acquire();
 256    if (value == EV_SET) {
 257        /* If there was a concurrent reset (or even reset+wait),
 258         * do nothing.  Otherwise change EV_SET->EV_FREE.
 259         */
 260        atomic_or(&ev->value, EV_FREE);
 261    }
 262}
 263
 264void qemu_event_wait(QemuEvent *ev)
 265{
 266    unsigned value;
 267
 268    assert(ev->initialized);
 269    value = atomic_read(&ev->value);
 270    smp_mb_acquire();
 271    if (value != EV_SET) {
 272        if (value == EV_FREE) {
 273            /* qemu_event_set is not yet going to call SetEvent, but we are
 274             * going to do another check for EV_SET below when setting EV_BUSY.
 275             * At that point it is safe to call WaitForSingleObject.
 276             */
 277            ResetEvent(ev->event);
 278
 279            /* Tell qemu_event_set that there are waiters.  No need to retry
 280             * because there cannot be a concurent busy->free transition.
 281             * After the CAS, the event will be either set or busy.
 282             */
 283            if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
 284                value = EV_SET;
 285            } else {
 286                value = EV_BUSY;
 287            }
 288        }
 289        if (value == EV_BUSY) {
 290            WaitForSingleObject(ev->event, INFINITE);
 291        }
 292    }
 293}
 294
 295struct QemuThreadData {
 296    /* Passed to win32_start_routine.  */
 297    void             *(*start_routine)(void *);
 298    void             *arg;
 299    short             mode;
 300    NotifierList      exit;
 301
 302    /* Only used for joinable threads. */
 303    bool              exited;
 304    void             *ret;
 305    CRITICAL_SECTION  cs;
 306};
 307
 308static bool atexit_registered;
 309static NotifierList main_thread_exit;
 310
 311static __thread QemuThreadData *qemu_thread_data;
 312
 313static void run_main_thread_exit(void)
 314{
 315    notifier_list_notify(&main_thread_exit, NULL);
 316}
 317
 318void qemu_thread_atexit_add(Notifier *notifier)
 319{
 320    if (!qemu_thread_data) {
 321        if (!atexit_registered) {
 322            atexit_registered = true;
 323            atexit(run_main_thread_exit);
 324        }
 325        notifier_list_add(&main_thread_exit, notifier);
 326    } else {
 327        notifier_list_add(&qemu_thread_data->exit, notifier);
 328    }
 329}
 330
 331void qemu_thread_atexit_remove(Notifier *notifier)
 332{
 333    notifier_remove(notifier);
 334}
 335
 336static unsigned __stdcall win32_start_routine(void *arg)
 337{
 338    QemuThreadData *data = (QemuThreadData *) arg;
 339    void *(*start_routine)(void *) = data->start_routine;
 340    void *thread_arg = data->arg;
 341
 342    qemu_thread_data = data;
 343    qemu_thread_exit(start_routine(thread_arg));
 344    abort();
 345}
 346
 347void qemu_thread_exit(void *arg)
 348{
 349    QemuThreadData *data = qemu_thread_data;
 350
 351    notifier_list_notify(&data->exit, NULL);
 352    if (data->mode == QEMU_THREAD_JOINABLE) {
 353        data->ret = arg;
 354        EnterCriticalSection(&data->cs);
 355        data->exited = true;
 356        LeaveCriticalSection(&data->cs);
 357    } else {
 358        g_free(data);
 359    }
 360    _endthreadex(0);
 361}
 362
 363void *qemu_thread_join(QemuThread *thread)
 364{
 365    QemuThreadData *data;
 366    void *ret;
 367    HANDLE handle;
 368
 369    data = thread->data;
 370    if (data->mode == QEMU_THREAD_DETACHED) {
 371        return NULL;
 372    }
 373
 374    /*
 375     * Because multiple copies of the QemuThread can exist via
 376     * qemu_thread_get_self, we need to store a value that cannot
 377     * leak there.  The simplest, non racy way is to store the TID,
 378     * discard the handle that _beginthreadex gives back, and
 379     * get another copy of the handle here.
 380     */
 381    handle = qemu_thread_get_handle(thread);
 382    if (handle) {
 383        WaitForSingleObject(handle, INFINITE);
 384        CloseHandle(handle);
 385    }
 386    ret = data->ret;
 387    DeleteCriticalSection(&data->cs);
 388    g_free(data);
 389    return ret;
 390}
 391
 392void qemu_thread_create(QemuThread *thread, const char *name,
 393                       void *(*start_routine)(void *),
 394                       void *arg, int mode)
 395{
 396    HANDLE hThread;
 397    struct QemuThreadData *data;
 398
 399    data = g_malloc(sizeof *data);
 400    data->start_routine = start_routine;
 401    data->arg = arg;
 402    data->mode = mode;
 403    data->exited = false;
 404    notifier_list_init(&data->exit);
 405
 406    if (data->mode != QEMU_THREAD_DETACHED) {
 407        InitializeCriticalSection(&data->cs);
 408    }
 409
 410    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
 411                                      data, 0, &thread->tid);
 412    if (!hThread) {
 413        error_exit(GetLastError(), __func__);
 414    }
 415    CloseHandle(hThread);
 416    thread->data = data;
 417}
 418
 419void qemu_thread_get_self(QemuThread *thread)
 420{
 421    thread->data = qemu_thread_data;
 422    thread->tid = GetCurrentThreadId();
 423}
 424
 425HANDLE qemu_thread_get_handle(QemuThread *thread)
 426{
 427    QemuThreadData *data;
 428    HANDLE handle;
 429
 430    data = thread->data;
 431    if (data->mode == QEMU_THREAD_DETACHED) {
 432        return NULL;
 433    }
 434
 435    EnterCriticalSection(&data->cs);
 436    if (!data->exited) {
 437        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
 438                            THREAD_SET_CONTEXT, FALSE, thread->tid);
 439    } else {
 440        handle = NULL;
 441    }
 442    LeaveCriticalSection(&data->cs);
 443    return handle;
 444}
 445
 446bool qemu_thread_is_self(QemuThread *thread)
 447{
 448    return GetCurrentThreadId() == thread->tid;
 449}
 450