qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qapi/error.h"
  21
  22#include "qemu/cutils.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "exec/target_page.h"
  26#include "tcg.h"
  27#include "hw/qdev-core.h"
  28#include "hw/qdev-properties.h"
  29#if !defined(CONFIG_USER_ONLY)
  30#include "hw/boards.h"
  31#include "hw/xen/xen.h"
  32#endif
  33#include "sysemu/kvm.h"
  34#include "sysemu/sysemu.h"
  35#include "qemu/timer.h"
  36#include "qemu/config-file.h"
  37#include "qemu/error-report.h"
  38#if defined(CONFIG_USER_ONLY)
  39#include "qemu.h"
  40#else /* !CONFIG_USER_ONLY */
  41#include "hw/hw.h"
  42#include "exec/memory.h"
  43#include "exec/ioport.h"
  44#include "sysemu/dma.h"
  45#include "sysemu/numa.h"
  46#include "sysemu/hw_accel.h"
  47#include "exec/address-spaces.h"
  48#include "sysemu/xen-mapcache.h"
  49#include "trace-root.h"
  50
  51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  52#include <linux/falloc.h>
  53#endif
  54
  55#endif
  56#include "qemu/rcu_queue.h"
  57#include "qemu/main-loop.h"
  58#include "translate-all.h"
  59#include "sysemu/replay.h"
  60
  61#include "exec/memory-internal.h"
  62#include "exec/ram_addr.h"
  63#include "exec/log.h"
  64
  65#include "migration/vmstate.h"
  66
  67#include "qemu/range.h"
  68#ifndef _WIN32
  69#include "qemu/mmap-alloc.h"
  70#endif
  71
  72#include "monitor/monitor.h"
  73
  74//#define DEBUG_SUBPAGE
  75
  76#if !defined(CONFIG_USER_ONLY)
  77/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  78 * are protected by the ramlist lock.
  79 */
  80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  81
  82static MemoryRegion *system_memory;
  83static MemoryRegion *system_io;
  84
  85AddressSpace address_space_io;
  86AddressSpace address_space_memory;
  87
  88MemoryRegion io_mem_rom, io_mem_notdirty;
  89static MemoryRegion io_mem_unassigned;
  90
  91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
  92#define RAM_PREALLOC   (1 << 0)
  93
  94/* RAM is mmap-ed with MAP_SHARED */
  95#define RAM_SHARED     (1 << 1)
  96
  97/* Only a portion of RAM (used_length) is actually used, and migrated.
  98 * This used_length size can change across reboots.
  99 */
 100#define RAM_RESIZEABLE (1 << 2)
 101
 102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 103 * zero the page and wake waiting processes.
 104 * (Set during postcopy)
 105 */
 106#define RAM_UF_ZEROPAGE (1 << 3)
 107#endif
 108
 109#ifdef TARGET_PAGE_BITS_VARY
 110int target_page_bits;
 111bool target_page_bits_decided;
 112#endif
 113
 114struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 115/* current CPU in the current thread. It is only valid inside
 116   cpu_exec() */
 117__thread CPUState *current_cpu;
 118/* 0 = Do not count executed instructions.
 119   1 = Precise instruction counting.
 120   2 = Adaptive rate instruction counting.  */
 121int use_icount;
 122
 123uintptr_t qemu_host_page_size;
 124intptr_t qemu_host_page_mask;
 125
 126bool set_preferred_target_page_bits(int bits)
 127{
 128    /* The target page size is the lowest common denominator for all
 129     * the CPUs in the system, so we can only make it smaller, never
 130     * larger. And we can't make it smaller once we've committed to
 131     * a particular size.
 132     */
 133#ifdef TARGET_PAGE_BITS_VARY
 134    assert(bits >= TARGET_PAGE_BITS_MIN);
 135    if (target_page_bits == 0 || target_page_bits > bits) {
 136        if (target_page_bits_decided) {
 137            return false;
 138        }
 139        target_page_bits = bits;
 140    }
 141#endif
 142    return true;
 143}
 144
 145#if !defined(CONFIG_USER_ONLY)
 146
 147static void finalize_target_page_bits(void)
 148{
 149#ifdef TARGET_PAGE_BITS_VARY
 150    if (target_page_bits == 0) {
 151        target_page_bits = TARGET_PAGE_BITS_MIN;
 152    }
 153    target_page_bits_decided = true;
 154#endif
 155}
 156
 157typedef struct PhysPageEntry PhysPageEntry;
 158
 159struct PhysPageEntry {
 160    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 161    uint32_t skip : 6;
 162     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 163    uint32_t ptr : 26;
 164};
 165
 166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 167
 168/* Size of the L2 (and L3, etc) page tables.  */
 169#define ADDR_SPACE_BITS 64
 170
 171#define P_L2_BITS 9
 172#define P_L2_SIZE (1 << P_L2_BITS)
 173
 174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 175
 176typedef PhysPageEntry Node[P_L2_SIZE];
 177
 178typedef struct PhysPageMap {
 179    struct rcu_head rcu;
 180
 181    unsigned sections_nb;
 182    unsigned sections_nb_alloc;
 183    unsigned nodes_nb;
 184    unsigned nodes_nb_alloc;
 185    Node *nodes;
 186    MemoryRegionSection *sections;
 187} PhysPageMap;
 188
 189struct AddressSpaceDispatch {
 190    MemoryRegionSection *mru_section;
 191    /* This is a multi-level map on the physical address space.
 192     * The bottom level has pointers to MemoryRegionSections.
 193     */
 194    PhysPageEntry phys_map;
 195    PhysPageMap map;
 196};
 197
 198#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 199typedef struct subpage_t {
 200    MemoryRegion iomem;
 201    FlatView *fv;
 202    hwaddr base;
 203    uint16_t sub_section[];
 204} subpage_t;
 205
 206#define PHYS_SECTION_UNASSIGNED 0
 207#define PHYS_SECTION_NOTDIRTY 1
 208#define PHYS_SECTION_ROM 2
 209#define PHYS_SECTION_WATCH 3
 210
 211static void io_mem_init(void);
 212static void memory_map_init(void);
 213static void tcg_commit(MemoryListener *listener);
 214
 215static MemoryRegion io_mem_watch;
 216
 217/**
 218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 219 * @cpu: the CPU whose AddressSpace this is
 220 * @as: the AddressSpace itself
 221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 223 */
 224struct CPUAddressSpace {
 225    CPUState *cpu;
 226    AddressSpace *as;
 227    struct AddressSpaceDispatch *memory_dispatch;
 228    MemoryListener tcg_as_listener;
 229};
 230
 231struct DirtyBitmapSnapshot {
 232    ram_addr_t start;
 233    ram_addr_t end;
 234    unsigned long dirty[];
 235};
 236
 237#endif
 238
 239#if !defined(CONFIG_USER_ONLY)
 240
 241static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 242{
 243    static unsigned alloc_hint = 16;
 244    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 245        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 246        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 247        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 248        alloc_hint = map->nodes_nb_alloc;
 249    }
 250}
 251
 252static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 253{
 254    unsigned i;
 255    uint32_t ret;
 256    PhysPageEntry e;
 257    PhysPageEntry *p;
 258
 259    ret = map->nodes_nb++;
 260    p = map->nodes[ret];
 261    assert(ret != PHYS_MAP_NODE_NIL);
 262    assert(ret != map->nodes_nb_alloc);
 263
 264    e.skip = leaf ? 0 : 1;
 265    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 266    for (i = 0; i < P_L2_SIZE; ++i) {
 267        memcpy(&p[i], &e, sizeof(e));
 268    }
 269    return ret;
 270}
 271
 272static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 273                                hwaddr *index, hwaddr *nb, uint16_t leaf,
 274                                int level)
 275{
 276    PhysPageEntry *p;
 277    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 278
 279    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 280        lp->ptr = phys_map_node_alloc(map, level == 0);
 281    }
 282    p = map->nodes[lp->ptr];
 283    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 284
 285    while (*nb && lp < &p[P_L2_SIZE]) {
 286        if ((*index & (step - 1)) == 0 && *nb >= step) {
 287            lp->skip = 0;
 288            lp->ptr = leaf;
 289            *index += step;
 290            *nb -= step;
 291        } else {
 292            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 293        }
 294        ++lp;
 295    }
 296}
 297
 298static void phys_page_set(AddressSpaceDispatch *d,
 299                          hwaddr index, hwaddr nb,
 300                          uint16_t leaf)
 301{
 302    /* Wildly overreserve - it doesn't matter much. */
 303    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 304
 305    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 306}
 307
 308/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 309 * and update our entry so we can skip it and go directly to the destination.
 310 */
 311static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 312{
 313    unsigned valid_ptr = P_L2_SIZE;
 314    int valid = 0;
 315    PhysPageEntry *p;
 316    int i;
 317
 318    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 319        return;
 320    }
 321
 322    p = nodes[lp->ptr];
 323    for (i = 0; i < P_L2_SIZE; i++) {
 324        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 325            continue;
 326        }
 327
 328        valid_ptr = i;
 329        valid++;
 330        if (p[i].skip) {
 331            phys_page_compact(&p[i], nodes);
 332        }
 333    }
 334
 335    /* We can only compress if there's only one child. */
 336    if (valid != 1) {
 337        return;
 338    }
 339
 340    assert(valid_ptr < P_L2_SIZE);
 341
 342    /* Don't compress if it won't fit in the # of bits we have. */
 343    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 344        return;
 345    }
 346
 347    lp->ptr = p[valid_ptr].ptr;
 348    if (!p[valid_ptr].skip) {
 349        /* If our only child is a leaf, make this a leaf. */
 350        /* By design, we should have made this node a leaf to begin with so we
 351         * should never reach here.
 352         * But since it's so simple to handle this, let's do it just in case we
 353         * change this rule.
 354         */
 355        lp->skip = 0;
 356    } else {
 357        lp->skip += p[valid_ptr].skip;
 358    }
 359}
 360
 361void address_space_dispatch_compact(AddressSpaceDispatch *d)
 362{
 363    if (d->phys_map.skip) {
 364        phys_page_compact(&d->phys_map, d->map.nodes);
 365    }
 366}
 367
 368static inline bool section_covers_addr(const MemoryRegionSection *section,
 369                                       hwaddr addr)
 370{
 371    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 372     * the section must cover the entire address space.
 373     */
 374    return int128_gethi(section->size) ||
 375           range_covers_byte(section->offset_within_address_space,
 376                             int128_getlo(section->size), addr);
 377}
 378
 379static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 380{
 381    PhysPageEntry lp = d->phys_map, *p;
 382    Node *nodes = d->map.nodes;
 383    MemoryRegionSection *sections = d->map.sections;
 384    hwaddr index = addr >> TARGET_PAGE_BITS;
 385    int i;
 386
 387    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 388        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 389            return &sections[PHYS_SECTION_UNASSIGNED];
 390        }
 391        p = nodes[lp.ptr];
 392        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 393    }
 394
 395    if (section_covers_addr(&sections[lp.ptr], addr)) {
 396        return &sections[lp.ptr];
 397    } else {
 398        return &sections[PHYS_SECTION_UNASSIGNED];
 399    }
 400}
 401
 402bool memory_region_is_unassigned(MemoryRegion *mr)
 403{
 404    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
 405        && mr != &io_mem_watch;
 406}
 407
 408/* Called from RCU critical section */
 409static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 410                                                        hwaddr addr,
 411                                                        bool resolve_subpage)
 412{
 413    MemoryRegionSection *section = atomic_read(&d->mru_section);
 414    subpage_t *subpage;
 415
 416    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 417        !section_covers_addr(section, addr)) {
 418        section = phys_page_find(d, addr);
 419        atomic_set(&d->mru_section, section);
 420    }
 421    if (resolve_subpage && section->mr->subpage) {
 422        subpage = container_of(section->mr, subpage_t, iomem);
 423        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 424    }
 425    return section;
 426}
 427
 428/* Called from RCU critical section */
 429static MemoryRegionSection *
 430address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 431                                 hwaddr *plen, bool resolve_subpage)
 432{
 433    MemoryRegionSection *section;
 434    MemoryRegion *mr;
 435    Int128 diff;
 436
 437    section = address_space_lookup_region(d, addr, resolve_subpage);
 438    /* Compute offset within MemoryRegionSection */
 439    addr -= section->offset_within_address_space;
 440
 441    /* Compute offset within MemoryRegion */
 442    *xlat = addr + section->offset_within_region;
 443
 444    mr = section->mr;
 445
 446    /* MMIO registers can be expected to perform full-width accesses based only
 447     * on their address, without considering adjacent registers that could
 448     * decode to completely different MemoryRegions.  When such registers
 449     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 450     * regions overlap wildly.  For this reason we cannot clamp the accesses
 451     * here.
 452     *
 453     * If the length is small (as is the case for address_space_ldl/stl),
 454     * everything works fine.  If the incoming length is large, however,
 455     * the caller really has to do the clamping through memory_access_size.
 456     */
 457    if (memory_region_is_ram(mr)) {
 458        diff = int128_sub(section->size, int128_make64(addr));
 459        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 460    }
 461    return section;
 462}
 463
 464/**
 465 * flatview_do_translate - translate an address in FlatView
 466 *
 467 * @fv: the flat view that we want to translate on
 468 * @addr: the address to be translated in above address space
 469 * @xlat: the translated address offset within memory region. It
 470 *        cannot be @NULL.
 471 * @plen_out: valid read/write length of the translated address. It
 472 *            can be @NULL when we don't care about it.
 473 * @page_mask_out: page mask for the translated address. This
 474 *            should only be meaningful for IOMMU translated
 475 *            addresses, since there may be huge pages that this bit
 476 *            would tell. It can be @NULL if we don't care about it.
 477 * @is_write: whether the translation operation is for write
 478 * @is_mmio: whether this can be MMIO, set true if it can
 479 *
 480 * This function is called from RCU critical section
 481 */
 482static MemoryRegionSection flatview_do_translate(FlatView *fv,
 483                                                 hwaddr addr,
 484                                                 hwaddr *xlat,
 485                                                 hwaddr *plen_out,
 486                                                 hwaddr *page_mask_out,
 487                                                 bool is_write,
 488                                                 bool is_mmio,
 489                                                 AddressSpace **target_as)
 490{
 491    IOMMUTLBEntry iotlb;
 492    MemoryRegionSection *section;
 493    IOMMUMemoryRegion *iommu_mr;
 494    IOMMUMemoryRegionClass *imrc;
 495    hwaddr page_mask = (hwaddr)(-1);
 496    hwaddr plen = (hwaddr)(-1);
 497
 498    if (plen_out) {
 499        plen = *plen_out;
 500    }
 501
 502    for (;;) {
 503        section = address_space_translate_internal(
 504                flatview_to_dispatch(fv), addr, &addr,
 505                &plen, is_mmio);
 506
 507        iommu_mr = memory_region_get_iommu(section->mr);
 508        if (!iommu_mr) {
 509            break;
 510        }
 511        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 512
 513        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 514                                IOMMU_WO : IOMMU_RO);
 515        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 516                | (addr & iotlb.addr_mask));
 517        page_mask &= iotlb.addr_mask;
 518        plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
 519        if (!(iotlb.perm & (1 << is_write))) {
 520            goto translate_fail;
 521        }
 522
 523        fv = address_space_to_flatview(iotlb.target_as);
 524        *target_as = iotlb.target_as;
 525    }
 526
 527    *xlat = addr;
 528
 529    if (page_mask == (hwaddr)(-1)) {
 530        /* Not behind an IOMMU, use default page size. */
 531        page_mask = ~TARGET_PAGE_MASK;
 532    }
 533
 534    if (page_mask_out) {
 535        *page_mask_out = page_mask;
 536    }
 537
 538    if (plen_out) {
 539        *plen_out = plen;
 540    }
 541
 542    return *section;
 543
 544translate_fail:
 545    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 546}
 547
 548/* Called from RCU critical section */
 549IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 550                                            bool is_write)
 551{
 552    MemoryRegionSection section;
 553    hwaddr xlat, page_mask;
 554
 555    /*
 556     * This can never be MMIO, and we don't really care about plen,
 557     * but page mask.
 558     */
 559    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 560                                    NULL, &page_mask, is_write, false, &as);
 561
 562    /* Illegal translation */
 563    if (section.mr == &io_mem_unassigned) {
 564        goto iotlb_fail;
 565    }
 566
 567    /* Convert memory region offset into address space offset */
 568    xlat += section.offset_within_address_space -
 569        section.offset_within_region;
 570
 571    return (IOMMUTLBEntry) {
 572        .target_as = as,
 573        .iova = addr & ~page_mask,
 574        .translated_addr = xlat & ~page_mask,
 575        .addr_mask = page_mask,
 576        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 577        .perm = IOMMU_RW,
 578    };
 579
 580iotlb_fail:
 581    return (IOMMUTLBEntry) {0};
 582}
 583
 584/* Called from RCU critical section */
 585MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 586                                 hwaddr *plen, bool is_write)
 587{
 588    MemoryRegion *mr;
 589    MemoryRegionSection section;
 590    AddressSpace *as = NULL;
 591
 592    /* This can be MMIO, so setup MMIO bit. */
 593    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 594                                    is_write, true, &as);
 595    mr = section.mr;
 596
 597    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 598        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 599        *plen = MIN(page, *plen);
 600    }
 601
 602    return mr;
 603}
 604
 605/* Called from RCU critical section */
 606MemoryRegionSection *
 607address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 608                                  hwaddr *xlat, hwaddr *plen)
 609{
 610    MemoryRegionSection *section;
 611    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 612
 613    section = address_space_translate_internal(d, addr, xlat, plen, false);
 614
 615    assert(!memory_region_is_iommu(section->mr));
 616    return section;
 617}
 618#endif
 619
 620#if !defined(CONFIG_USER_ONLY)
 621
 622static int cpu_common_post_load(void *opaque, int version_id)
 623{
 624    CPUState *cpu = opaque;
 625
 626    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 627       version_id is increased. */
 628    cpu->interrupt_request &= ~0x01;
 629    tlb_flush(cpu);
 630
 631    /* loadvm has just updated the content of RAM, bypassing the
 632     * usual mechanisms that ensure we flush TBs for writes to
 633     * memory we've translated code from. So we must flush all TBs,
 634     * which will now be stale.
 635     */
 636    tb_flush(cpu);
 637
 638    return 0;
 639}
 640
 641static int cpu_common_pre_load(void *opaque)
 642{
 643    CPUState *cpu = opaque;
 644
 645    cpu->exception_index = -1;
 646
 647    return 0;
 648}
 649
 650static bool cpu_common_exception_index_needed(void *opaque)
 651{
 652    CPUState *cpu = opaque;
 653
 654    return tcg_enabled() && cpu->exception_index != -1;
 655}
 656
 657static const VMStateDescription vmstate_cpu_common_exception_index = {
 658    .name = "cpu_common/exception_index",
 659    .version_id = 1,
 660    .minimum_version_id = 1,
 661    .needed = cpu_common_exception_index_needed,
 662    .fields = (VMStateField[]) {
 663        VMSTATE_INT32(exception_index, CPUState),
 664        VMSTATE_END_OF_LIST()
 665    }
 666};
 667
 668static bool cpu_common_crash_occurred_needed(void *opaque)
 669{
 670    CPUState *cpu = opaque;
 671
 672    return cpu->crash_occurred;
 673}
 674
 675static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 676    .name = "cpu_common/crash_occurred",
 677    .version_id = 1,
 678    .minimum_version_id = 1,
 679    .needed = cpu_common_crash_occurred_needed,
 680    .fields = (VMStateField[]) {
 681        VMSTATE_BOOL(crash_occurred, CPUState),
 682        VMSTATE_END_OF_LIST()
 683    }
 684};
 685
 686const VMStateDescription vmstate_cpu_common = {
 687    .name = "cpu_common",
 688    .version_id = 1,
 689    .minimum_version_id = 1,
 690    .pre_load = cpu_common_pre_load,
 691    .post_load = cpu_common_post_load,
 692    .fields = (VMStateField[]) {
 693        VMSTATE_UINT32(halted, CPUState),
 694        VMSTATE_UINT32(interrupt_request, CPUState),
 695        VMSTATE_END_OF_LIST()
 696    },
 697    .subsections = (const VMStateDescription*[]) {
 698        &vmstate_cpu_common_exception_index,
 699        &vmstate_cpu_common_crash_occurred,
 700        NULL
 701    }
 702};
 703
 704#endif
 705
 706CPUState *qemu_get_cpu(int index)
 707{
 708    CPUState *cpu;
 709
 710    CPU_FOREACH(cpu) {
 711        if (cpu->cpu_index == index) {
 712            return cpu;
 713        }
 714    }
 715
 716    return NULL;
 717}
 718
 719#if !defined(CONFIG_USER_ONLY)
 720void cpu_address_space_init(CPUState *cpu, int asidx,
 721                            const char *prefix, MemoryRegion *mr)
 722{
 723    CPUAddressSpace *newas;
 724    AddressSpace *as = g_new0(AddressSpace, 1);
 725    char *as_name;
 726
 727    assert(mr);
 728    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 729    address_space_init(as, mr, as_name);
 730    g_free(as_name);
 731
 732    /* Target code should have set num_ases before calling us */
 733    assert(asidx < cpu->num_ases);
 734
 735    if (asidx == 0) {
 736        /* address space 0 gets the convenience alias */
 737        cpu->as = as;
 738    }
 739
 740    /* KVM cannot currently support multiple address spaces. */
 741    assert(asidx == 0 || !kvm_enabled());
 742
 743    if (!cpu->cpu_ases) {
 744        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 745    }
 746
 747    newas = &cpu->cpu_ases[asidx];
 748    newas->cpu = cpu;
 749    newas->as = as;
 750    if (tcg_enabled()) {
 751        newas->tcg_as_listener.commit = tcg_commit;
 752        memory_listener_register(&newas->tcg_as_listener, as);
 753    }
 754}
 755
 756AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 757{
 758    /* Return the AddressSpace corresponding to the specified index */
 759    return cpu->cpu_ases[asidx].as;
 760}
 761#endif
 762
 763void cpu_exec_unrealizefn(CPUState *cpu)
 764{
 765    CPUClass *cc = CPU_GET_CLASS(cpu);
 766
 767    cpu_list_remove(cpu);
 768
 769    if (cc->vmsd != NULL) {
 770        vmstate_unregister(NULL, cc->vmsd, cpu);
 771    }
 772    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 773        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 774    }
 775}
 776
 777Property cpu_common_props[] = {
 778#ifndef CONFIG_USER_ONLY
 779    /* Create a memory property for softmmu CPU object,
 780     * so users can wire up its memory. (This can't go in qom/cpu.c
 781     * because that file is compiled only once for both user-mode
 782     * and system builds.) The default if no link is set up is to use
 783     * the system address space.
 784     */
 785    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 786                     MemoryRegion *),
 787#endif
 788    DEFINE_PROP_END_OF_LIST(),
 789};
 790
 791void cpu_exec_initfn(CPUState *cpu)
 792{
 793    cpu->as = NULL;
 794    cpu->num_ases = 0;
 795
 796#ifndef CONFIG_USER_ONLY
 797    cpu->thread_id = qemu_get_thread_id();
 798    cpu->memory = system_memory;
 799    object_ref(OBJECT(cpu->memory));
 800#endif
 801}
 802
 803void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 804{
 805    CPUClass *cc = CPU_GET_CLASS(cpu);
 806    static bool tcg_target_initialized;
 807
 808    cpu_list_add(cpu);
 809
 810    if (tcg_enabled() && !tcg_target_initialized) {
 811        tcg_target_initialized = true;
 812        cc->tcg_initialize();
 813    }
 814
 815#ifndef CONFIG_USER_ONLY
 816    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 817        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 818    }
 819    if (cc->vmsd != NULL) {
 820        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 821    }
 822#endif
 823}
 824
 825const char *parse_cpu_model(const char *cpu_model)
 826{
 827    ObjectClass *oc;
 828    CPUClass *cc;
 829    gchar **model_pieces;
 830    const char *cpu_type;
 831
 832    model_pieces = g_strsplit(cpu_model, ",", 2);
 833
 834    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
 835    if (oc == NULL) {
 836        error_report("unable to find CPU model '%s'", model_pieces[0]);
 837        g_strfreev(model_pieces);
 838        exit(EXIT_FAILURE);
 839    }
 840
 841    cpu_type = object_class_get_name(oc);
 842    cc = CPU_CLASS(oc);
 843    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
 844    g_strfreev(model_pieces);
 845    return cpu_type;
 846}
 847
 848#if defined(CONFIG_USER_ONLY)
 849static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 850{
 851    mmap_lock();
 852    tb_lock();
 853    tb_invalidate_phys_page_range(pc, pc + 1, 0);
 854    tb_unlock();
 855    mmap_unlock();
 856}
 857#else
 858static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 859{
 860    MemTxAttrs attrs;
 861    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
 862    int asidx = cpu_asidx_from_attrs(cpu, attrs);
 863    if (phys != -1) {
 864        /* Locks grabbed by tb_invalidate_phys_addr */
 865        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
 866                                phys | (pc & ~TARGET_PAGE_MASK));
 867    }
 868}
 869#endif
 870
 871#if defined(CONFIG_USER_ONLY)
 872void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 873
 874{
 875}
 876
 877int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 878                          int flags)
 879{
 880    return -ENOSYS;
 881}
 882
 883void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 884{
 885}
 886
 887int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 888                          int flags, CPUWatchpoint **watchpoint)
 889{
 890    return -ENOSYS;
 891}
 892#else
 893/* Add a watchpoint.  */
 894int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 895                          int flags, CPUWatchpoint **watchpoint)
 896{
 897    CPUWatchpoint *wp;
 898
 899    /* forbid ranges which are empty or run off the end of the address space */
 900    if (len == 0 || (addr + len - 1) < addr) {
 901        error_report("tried to set invalid watchpoint at %"
 902                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
 903        return -EINVAL;
 904    }
 905    wp = g_malloc(sizeof(*wp));
 906
 907    wp->vaddr = addr;
 908    wp->len = len;
 909    wp->flags = flags;
 910
 911    /* keep all GDB-injected watchpoints in front */
 912    if (flags & BP_GDB) {
 913        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
 914    } else {
 915        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
 916    }
 917
 918    tlb_flush_page(cpu, addr);
 919
 920    if (watchpoint)
 921        *watchpoint = wp;
 922    return 0;
 923}
 924
 925/* Remove a specific watchpoint.  */
 926int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 927                          int flags)
 928{
 929    CPUWatchpoint *wp;
 930
 931    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 932        if (addr == wp->vaddr && len == wp->len
 933                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 934            cpu_watchpoint_remove_by_ref(cpu, wp);
 935            return 0;
 936        }
 937    }
 938    return -ENOENT;
 939}
 940
 941/* Remove a specific watchpoint by reference.  */
 942void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 943{
 944    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
 945
 946    tlb_flush_page(cpu, watchpoint->vaddr);
 947
 948    g_free(watchpoint);
 949}
 950
 951/* Remove all matching watchpoints.  */
 952void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 953{
 954    CPUWatchpoint *wp, *next;
 955
 956    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
 957        if (wp->flags & mask) {
 958            cpu_watchpoint_remove_by_ref(cpu, wp);
 959        }
 960    }
 961}
 962
 963/* Return true if this watchpoint address matches the specified
 964 * access (ie the address range covered by the watchpoint overlaps
 965 * partially or completely with the address range covered by the
 966 * access).
 967 */
 968static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
 969                                                  vaddr addr,
 970                                                  vaddr len)
 971{
 972    /* We know the lengths are non-zero, but a little caution is
 973     * required to avoid errors in the case where the range ends
 974     * exactly at the top of the address space and so addr + len
 975     * wraps round to zero.
 976     */
 977    vaddr wpend = wp->vaddr + wp->len - 1;
 978    vaddr addrend = addr + len - 1;
 979
 980    return !(addr > wpend || wp->vaddr > addrend);
 981}
 982
 983#endif
 984
 985/* Add a breakpoint.  */
 986int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
 987                          CPUBreakpoint **breakpoint)
 988{
 989    CPUBreakpoint *bp;
 990
 991    bp = g_malloc(sizeof(*bp));
 992
 993    bp->pc = pc;
 994    bp->flags = flags;
 995
 996    /* keep all GDB-injected breakpoints in front */
 997    if (flags & BP_GDB) {
 998        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
 999    } else {
1000        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1001    }
1002
1003    breakpoint_invalidate(cpu, pc);
1004
1005    if (breakpoint) {
1006        *breakpoint = bp;
1007    }
1008    return 0;
1009}
1010
1011/* Remove a specific breakpoint.  */
1012int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1013{
1014    CPUBreakpoint *bp;
1015
1016    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1017        if (bp->pc == pc && bp->flags == flags) {
1018            cpu_breakpoint_remove_by_ref(cpu, bp);
1019            return 0;
1020        }
1021    }
1022    return -ENOENT;
1023}
1024
1025/* Remove a specific breakpoint by reference.  */
1026void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1027{
1028    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1029
1030    breakpoint_invalidate(cpu, breakpoint->pc);
1031
1032    g_free(breakpoint);
1033}
1034
1035/* Remove all matching breakpoints. */
1036void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1037{
1038    CPUBreakpoint *bp, *next;
1039
1040    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1041        if (bp->flags & mask) {
1042            cpu_breakpoint_remove_by_ref(cpu, bp);
1043        }
1044    }
1045}
1046
1047/* enable or disable single step mode. EXCP_DEBUG is returned by the
1048   CPU loop after each instruction */
1049void cpu_single_step(CPUState *cpu, int enabled)
1050{
1051    if (cpu->singlestep_enabled != enabled) {
1052        cpu->singlestep_enabled = enabled;
1053        if (kvm_enabled()) {
1054            kvm_update_guest_debug(cpu, 0);
1055        } else {
1056            /* must flush all the translated code to avoid inconsistencies */
1057            /* XXX: only flush what is necessary */
1058            tb_flush(cpu);
1059        }
1060    }
1061}
1062
1063void cpu_abort(CPUState *cpu, const char *fmt, ...)
1064{
1065    va_list ap;
1066    va_list ap2;
1067
1068    va_start(ap, fmt);
1069    va_copy(ap2, ap);
1070    fprintf(stderr, "qemu: fatal: ");
1071    vfprintf(stderr, fmt, ap);
1072    fprintf(stderr, "\n");
1073    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1074    if (qemu_log_separate()) {
1075        qemu_log_lock();
1076        qemu_log("qemu: fatal: ");
1077        qemu_log_vprintf(fmt, ap2);
1078        qemu_log("\n");
1079        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1080        qemu_log_flush();
1081        qemu_log_unlock();
1082        qemu_log_close();
1083    }
1084    va_end(ap2);
1085    va_end(ap);
1086    replay_finish();
1087#if defined(CONFIG_USER_ONLY)
1088    {
1089        struct sigaction act;
1090        sigfillset(&act.sa_mask);
1091        act.sa_handler = SIG_DFL;
1092        sigaction(SIGABRT, &act, NULL);
1093    }
1094#endif
1095    abort();
1096}
1097
1098#if !defined(CONFIG_USER_ONLY)
1099/* Called from RCU critical section */
1100static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1101{
1102    RAMBlock *block;
1103
1104    block = atomic_rcu_read(&ram_list.mru_block);
1105    if (block && addr - block->offset < block->max_length) {
1106        return block;
1107    }
1108    RAMBLOCK_FOREACH(block) {
1109        if (addr - block->offset < block->max_length) {
1110            goto found;
1111        }
1112    }
1113
1114    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1115    abort();
1116
1117found:
1118    /* It is safe to write mru_block outside the iothread lock.  This
1119     * is what happens:
1120     *
1121     *     mru_block = xxx
1122     *     rcu_read_unlock()
1123     *                                        xxx removed from list
1124     *                  rcu_read_lock()
1125     *                  read mru_block
1126     *                                        mru_block = NULL;
1127     *                                        call_rcu(reclaim_ramblock, xxx);
1128     *                  rcu_read_unlock()
1129     *
1130     * atomic_rcu_set is not needed here.  The block was already published
1131     * when it was placed into the list.  Here we're just making an extra
1132     * copy of the pointer.
1133     */
1134    ram_list.mru_block = block;
1135    return block;
1136}
1137
1138static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1139{
1140    CPUState *cpu;
1141    ram_addr_t start1;
1142    RAMBlock *block;
1143    ram_addr_t end;
1144
1145    end = TARGET_PAGE_ALIGN(start + length);
1146    start &= TARGET_PAGE_MASK;
1147
1148    rcu_read_lock();
1149    block = qemu_get_ram_block(start);
1150    assert(block == qemu_get_ram_block(end - 1));
1151    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1152    CPU_FOREACH(cpu) {
1153        tlb_reset_dirty(cpu, start1, length);
1154    }
1155    rcu_read_unlock();
1156}
1157
1158/* Note: start and end must be within the same ram block.  */
1159bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1160                                              ram_addr_t length,
1161                                              unsigned client)
1162{
1163    DirtyMemoryBlocks *blocks;
1164    unsigned long end, page;
1165    bool dirty = false;
1166
1167    if (length == 0) {
1168        return false;
1169    }
1170
1171    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1172    page = start >> TARGET_PAGE_BITS;
1173
1174    rcu_read_lock();
1175
1176    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1177
1178    while (page < end) {
1179        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1180        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1181        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1182
1183        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1184                                              offset, num);
1185        page += num;
1186    }
1187
1188    rcu_read_unlock();
1189
1190    if (dirty && tcg_enabled()) {
1191        tlb_reset_dirty_range_all(start, length);
1192    }
1193
1194    return dirty;
1195}
1196
1197DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1198     (ram_addr_t start, ram_addr_t length, unsigned client)
1199{
1200    DirtyMemoryBlocks *blocks;
1201    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1202    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1203    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1204    DirtyBitmapSnapshot *snap;
1205    unsigned long page, end, dest;
1206
1207    snap = g_malloc0(sizeof(*snap) +
1208                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1209    snap->start = first;
1210    snap->end   = last;
1211
1212    page = first >> TARGET_PAGE_BITS;
1213    end  = last  >> TARGET_PAGE_BITS;
1214    dest = 0;
1215
1216    rcu_read_lock();
1217
1218    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1219
1220    while (page < end) {
1221        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1224
1225        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1226        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1227        offset >>= BITS_PER_LEVEL;
1228
1229        bitmap_copy_and_clear_atomic(snap->dirty + dest,
1230                                     blocks->blocks[idx] + offset,
1231                                     num);
1232        page += num;
1233        dest += num >> BITS_PER_LEVEL;
1234    }
1235
1236    rcu_read_unlock();
1237
1238    if (tcg_enabled()) {
1239        tlb_reset_dirty_range_all(start, length);
1240    }
1241
1242    return snap;
1243}
1244
1245bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1246                                            ram_addr_t start,
1247                                            ram_addr_t length)
1248{
1249    unsigned long page, end;
1250
1251    assert(start >= snap->start);
1252    assert(start + length <= snap->end);
1253
1254    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1255    page = (start - snap->start) >> TARGET_PAGE_BITS;
1256
1257    while (page < end) {
1258        if (test_bit(page, snap->dirty)) {
1259            return true;
1260        }
1261        page++;
1262    }
1263    return false;
1264}
1265
1266/* Called from RCU critical section */
1267hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1268                                       MemoryRegionSection *section,
1269                                       target_ulong vaddr,
1270                                       hwaddr paddr, hwaddr xlat,
1271                                       int prot,
1272                                       target_ulong *address)
1273{
1274    hwaddr iotlb;
1275    CPUWatchpoint *wp;
1276
1277    if (memory_region_is_ram(section->mr)) {
1278        /* Normal RAM.  */
1279        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1280        if (!section->readonly) {
1281            iotlb |= PHYS_SECTION_NOTDIRTY;
1282        } else {
1283            iotlb |= PHYS_SECTION_ROM;
1284        }
1285    } else {
1286        AddressSpaceDispatch *d;
1287
1288        d = flatview_to_dispatch(section->fv);
1289        iotlb = section - d->map.sections;
1290        iotlb += xlat;
1291    }
1292
1293    /* Make accesses to pages with watchpoints go via the
1294       watchpoint trap routines.  */
1295    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1296        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1297            /* Avoid trapping reads of pages with a write breakpoint. */
1298            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1299                iotlb = PHYS_SECTION_WATCH + paddr;
1300                *address |= TLB_MMIO;
1301                break;
1302            }
1303        }
1304    }
1305
1306    return iotlb;
1307}
1308#endif /* defined(CONFIG_USER_ONLY) */
1309
1310#if !defined(CONFIG_USER_ONLY)
1311
1312static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1313                             uint16_t section);
1314static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1315
1316static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1317                               qemu_anon_ram_alloc;
1318
1319/*
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this.  Hopefully, we can
1322 * get rid of it eventually.
1323 */
1324void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1325{
1326    phys_mem_alloc = alloc;
1327}
1328
1329static uint16_t phys_section_add(PhysPageMap *map,
1330                                 MemoryRegionSection *section)
1331{
1332    /* The physical section number is ORed with a page-aligned
1333     * pointer to produce the iotlb entries.  Thus it should
1334     * never overflow into the page-aligned value.
1335     */
1336    assert(map->sections_nb < TARGET_PAGE_SIZE);
1337
1338    if (map->sections_nb == map->sections_nb_alloc) {
1339        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1340        map->sections = g_renew(MemoryRegionSection, map->sections,
1341                                map->sections_nb_alloc);
1342    }
1343    map->sections[map->sections_nb] = *section;
1344    memory_region_ref(section->mr);
1345    return map->sections_nb++;
1346}
1347
1348static void phys_section_destroy(MemoryRegion *mr)
1349{
1350    bool have_sub_page = mr->subpage;
1351
1352    memory_region_unref(mr);
1353
1354    if (have_sub_page) {
1355        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1356        object_unref(OBJECT(&subpage->iomem));
1357        g_free(subpage);
1358    }
1359}
1360
1361static void phys_sections_free(PhysPageMap *map)
1362{
1363    while (map->sections_nb > 0) {
1364        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1365        phys_section_destroy(section->mr);
1366    }
1367    g_free(map->sections);
1368    g_free(map->nodes);
1369}
1370
1371static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1372{
1373    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1374    subpage_t *subpage;
1375    hwaddr base = section->offset_within_address_space
1376        & TARGET_PAGE_MASK;
1377    MemoryRegionSection *existing = phys_page_find(d, base);
1378    MemoryRegionSection subsection = {
1379        .offset_within_address_space = base,
1380        .size = int128_make64(TARGET_PAGE_SIZE),
1381    };
1382    hwaddr start, end;
1383
1384    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1385
1386    if (!(existing->mr->subpage)) {
1387        subpage = subpage_init(fv, base);
1388        subsection.fv = fv;
1389        subsection.mr = &subpage->iomem;
1390        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1391                      phys_section_add(&d->map, &subsection));
1392    } else {
1393        subpage = container_of(existing->mr, subpage_t, iomem);
1394    }
1395    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1396    end = start + int128_get64(section->size) - 1;
1397    subpage_register(subpage, start, end,
1398                     phys_section_add(&d->map, section));
1399}
1400
1401
1402static void register_multipage(FlatView *fv,
1403                               MemoryRegionSection *section)
1404{
1405    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1406    hwaddr start_addr = section->offset_within_address_space;
1407    uint16_t section_index = phys_section_add(&d->map, section);
1408    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1409                                                    TARGET_PAGE_BITS));
1410
1411    assert(num_pages);
1412    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1413}
1414
1415void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1416{
1417    MemoryRegionSection now = *section, remain = *section;
1418    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1419
1420    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1421        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1422                       - now.offset_within_address_space;
1423
1424        now.size = int128_min(int128_make64(left), now.size);
1425        register_subpage(fv, &now);
1426    } else {
1427        now.size = int128_zero();
1428    }
1429    while (int128_ne(remain.size, now.size)) {
1430        remain.size = int128_sub(remain.size, now.size);
1431        remain.offset_within_address_space += int128_get64(now.size);
1432        remain.offset_within_region += int128_get64(now.size);
1433        now = remain;
1434        if (int128_lt(remain.size, page_size)) {
1435            register_subpage(fv, &now);
1436        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1437            now.size = page_size;
1438            register_subpage(fv, &now);
1439        } else {
1440            now.size = int128_and(now.size, int128_neg(page_size));
1441            register_multipage(fv, &now);
1442        }
1443    }
1444}
1445
1446void qemu_flush_coalesced_mmio_buffer(void)
1447{
1448    if (kvm_enabled())
1449        kvm_flush_coalesced_mmio_buffer();
1450}
1451
1452void qemu_mutex_lock_ramlist(void)
1453{
1454    qemu_mutex_lock(&ram_list.mutex);
1455}
1456
1457void qemu_mutex_unlock_ramlist(void)
1458{
1459    qemu_mutex_unlock(&ram_list.mutex);
1460}
1461
1462void ram_block_dump(Monitor *mon)
1463{
1464    RAMBlock *block;
1465    char *psize;
1466
1467    rcu_read_lock();
1468    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1469                   "Block Name", "PSize", "Offset", "Used", "Total");
1470    RAMBLOCK_FOREACH(block) {
1471        psize = size_to_str(block->page_size);
1472        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1473                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1474                       (uint64_t)block->offset,
1475                       (uint64_t)block->used_length,
1476                       (uint64_t)block->max_length);
1477        g_free(psize);
1478    }
1479    rcu_read_unlock();
1480}
1481
1482#ifdef __linux__
1483/*
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them.  Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1488 */
1489static int find_max_supported_pagesize(Object *obj, void *opaque)
1490{
1491    char *mem_path;
1492    long *hpsize_min = opaque;
1493
1494    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1495        mem_path = object_property_get_str(obj, "mem-path", NULL);
1496        if (mem_path) {
1497            long hpsize = qemu_mempath_getpagesize(mem_path);
1498            g_free(mem_path);
1499            if (hpsize < *hpsize_min) {
1500                *hpsize_min = hpsize;
1501            }
1502        } else {
1503            *hpsize_min = getpagesize();
1504        }
1505    }
1506
1507    return 0;
1508}
1509
1510long qemu_getrampagesize(void)
1511{
1512    long hpsize = LONG_MAX;
1513    long mainrampagesize;
1514    Object *memdev_root;
1515
1516    if (mem_path) {
1517        mainrampagesize = qemu_mempath_getpagesize(mem_path);
1518    } else {
1519        mainrampagesize = getpagesize();
1520    }
1521
1522    /* it's possible we have memory-backend objects with
1523     * hugepage-backed RAM. these may get mapped into system
1524     * address space via -numa parameters or memory hotplug
1525     * hooks. we want to take these into account, but we
1526     * also want to make sure these supported hugepage
1527     * sizes are applicable across the entire range of memory
1528     * we may boot from, so we take the min across all
1529     * backends, and assume normal pages in cases where a
1530     * backend isn't backed by hugepages.
1531     */
1532    memdev_root = object_resolve_path("/objects", NULL);
1533    if (memdev_root) {
1534        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1535    }
1536    if (hpsize == LONG_MAX) {
1537        /* No additional memory regions found ==> Report main RAM page size */
1538        return mainrampagesize;
1539    }
1540
1541    /* If NUMA is disabled or the NUMA nodes are not backed with a
1542     * memory-backend, then there is at least one node using "normal" RAM,
1543     * so if its page size is smaller we have got to report that size instead.
1544     */
1545    if (hpsize > mainrampagesize &&
1546        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1547        static bool warned;
1548        if (!warned) {
1549            error_report("Huge page support disabled (n/a for main memory).");
1550            warned = true;
1551        }
1552        return mainrampagesize;
1553    }
1554
1555    return hpsize;
1556}
1557#else
1558long qemu_getrampagesize(void)
1559{
1560    return getpagesize();
1561}
1562#endif
1563
1564#ifdef __linux__
1565static int64_t get_file_size(int fd)
1566{
1567    int64_t size = lseek(fd, 0, SEEK_END);
1568    if (size < 0) {
1569        return -errno;
1570    }
1571    return size;
1572}
1573
1574static int file_ram_open(const char *path,
1575                         const char *region_name,
1576                         bool *created,
1577                         Error **errp)
1578{
1579    char *filename;
1580    char *sanitized_name;
1581    char *c;
1582    int fd = -1;
1583
1584    *created = false;
1585    for (;;) {
1586        fd = open(path, O_RDWR);
1587        if (fd >= 0) {
1588            /* @path names an existing file, use it */
1589            break;
1590        }
1591        if (errno == ENOENT) {
1592            /* @path names a file that doesn't exist, create it */
1593            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1594            if (fd >= 0) {
1595                *created = true;
1596                break;
1597            }
1598        } else if (errno == EISDIR) {
1599            /* @path names a directory, create a file there */
1600            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1601            sanitized_name = g_strdup(region_name);
1602            for (c = sanitized_name; *c != '\0'; c++) {
1603                if (*c == '/') {
1604                    *c = '_';
1605                }
1606            }
1607
1608            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1609                                       sanitized_name);
1610            g_free(sanitized_name);
1611
1612            fd = mkstemp(filename);
1613            if (fd >= 0) {
1614                unlink(filename);
1615                g_free(filename);
1616                break;
1617            }
1618            g_free(filename);
1619        }
1620        if (errno != EEXIST && errno != EINTR) {
1621            error_setg_errno(errp, errno,
1622                             "can't open backing store %s for guest RAM",
1623                             path);
1624            return -1;
1625        }
1626        /*
1627         * Try again on EINTR and EEXIST.  The latter happens when
1628         * something else creates the file between our two open().
1629         */
1630    }
1631
1632    return fd;
1633}
1634
1635static void *file_ram_alloc(RAMBlock *block,
1636                            ram_addr_t memory,
1637                            int fd,
1638                            bool truncate,
1639                            Error **errp)
1640{
1641    void *area;
1642
1643    block->page_size = qemu_fd_getpagesize(fd);
1644    if (block->mr->align % block->page_size) {
1645        error_setg(errp, "alignment 0x%" PRIx64
1646                   " must be multiples of page size 0x%zx",
1647                   block->mr->align, block->page_size);
1648        return NULL;
1649    }
1650    block->mr->align = MAX(block->page_size, block->mr->align);
1651#if defined(__s390x__)
1652    if (kvm_enabled()) {
1653        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1654    }
1655#endif
1656
1657    if (memory < block->page_size) {
1658        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1659                   "or larger than page size 0x%zx",
1660                   memory, block->page_size);
1661        return NULL;
1662    }
1663
1664    memory = ROUND_UP(memory, block->page_size);
1665
1666    /*
1667     * ftruncate is not supported by hugetlbfs in older
1668     * hosts, so don't bother bailing out on errors.
1669     * If anything goes wrong with it under other filesystems,
1670     * mmap will fail.
1671     *
1672     * Do not truncate the non-empty backend file to avoid corrupting
1673     * the existing data in the file. Disabling shrinking is not
1674     * enough. For example, the current vNVDIMM implementation stores
1675     * the guest NVDIMM labels at the end of the backend file. If the
1676     * backend file is later extended, QEMU will not be able to find
1677     * those labels. Therefore, extending the non-empty backend file
1678     * is disabled as well.
1679     */
1680    if (truncate && ftruncate(fd, memory)) {
1681        perror("ftruncate");
1682    }
1683
1684    area = qemu_ram_mmap(fd, memory, block->mr->align,
1685                         block->flags & RAM_SHARED);
1686    if (area == MAP_FAILED) {
1687        error_setg_errno(errp, errno,
1688                         "unable to map backing store for guest RAM");
1689        return NULL;
1690    }
1691
1692    if (mem_prealloc) {
1693        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1694        if (errp && *errp) {
1695            qemu_ram_munmap(area, memory);
1696            return NULL;
1697        }
1698    }
1699
1700    block->fd = fd;
1701    return area;
1702}
1703#endif
1704
1705/* Allocate space within the ram_addr_t space that governs the
1706 * dirty bitmaps.
1707 * Called with the ramlist lock held.
1708 */
1709static ram_addr_t find_ram_offset(ram_addr_t size)
1710{
1711    RAMBlock *block, *next_block;
1712    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1713
1714    assert(size != 0); /* it would hand out same offset multiple times */
1715
1716    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1717        return 0;
1718    }
1719
1720    RAMBLOCK_FOREACH(block) {
1721        ram_addr_t candidate, next = RAM_ADDR_MAX;
1722
1723        /* Align blocks to start on a 'long' in the bitmap
1724         * which makes the bitmap sync'ing take the fast path.
1725         */
1726        candidate = block->offset + block->max_length;
1727        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1728
1729        /* Search for the closest following block
1730         * and find the gap.
1731         */
1732        RAMBLOCK_FOREACH(next_block) {
1733            if (next_block->offset >= candidate) {
1734                next = MIN(next, next_block->offset);
1735            }
1736        }
1737
1738        /* If it fits remember our place and remember the size
1739         * of gap, but keep going so that we might find a smaller
1740         * gap to fill so avoiding fragmentation.
1741         */
1742        if (next - candidate >= size && next - candidate < mingap) {
1743            offset = candidate;
1744            mingap = next - candidate;
1745        }
1746
1747        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1748    }
1749
1750    if (offset == RAM_ADDR_MAX) {
1751        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1752                (uint64_t)size);
1753        abort();
1754    }
1755
1756    trace_find_ram_offset(size, offset);
1757
1758    return offset;
1759}
1760
1761unsigned long last_ram_page(void)
1762{
1763    RAMBlock *block;
1764    ram_addr_t last = 0;
1765
1766    rcu_read_lock();
1767    RAMBLOCK_FOREACH(block) {
1768        last = MAX(last, block->offset + block->max_length);
1769    }
1770    rcu_read_unlock();
1771    return last >> TARGET_PAGE_BITS;
1772}
1773
1774static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1775{
1776    int ret;
1777
1778    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1779    if (!machine_dump_guest_core(current_machine)) {
1780        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1781        if (ret) {
1782            perror("qemu_madvise");
1783            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1784                            "but dump_guest_core=off specified\n");
1785        }
1786    }
1787}
1788
1789const char *qemu_ram_get_idstr(RAMBlock *rb)
1790{
1791    return rb->idstr;
1792}
1793
1794bool qemu_ram_is_shared(RAMBlock *rb)
1795{
1796    return rb->flags & RAM_SHARED;
1797}
1798
1799/* Note: Only set at the start of postcopy */
1800bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1801{
1802    return rb->flags & RAM_UF_ZEROPAGE;
1803}
1804
1805void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1806{
1807    rb->flags |= RAM_UF_ZEROPAGE;
1808}
1809
1810/* Called with iothread lock held.  */
1811void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1812{
1813    RAMBlock *block;
1814
1815    assert(new_block);
1816    assert(!new_block->idstr[0]);
1817
1818    if (dev) {
1819        char *id = qdev_get_dev_path(dev);
1820        if (id) {
1821            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1822            g_free(id);
1823        }
1824    }
1825    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1826
1827    rcu_read_lock();
1828    RAMBLOCK_FOREACH(block) {
1829        if (block != new_block &&
1830            !strcmp(block->idstr, new_block->idstr)) {
1831            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1832                    new_block->idstr);
1833            abort();
1834        }
1835    }
1836    rcu_read_unlock();
1837}
1838
1839/* Called with iothread lock held.  */
1840void qemu_ram_unset_idstr(RAMBlock *block)
1841{
1842    /* FIXME: arch_init.c assumes that this is not called throughout
1843     * migration.  Ignore the problem since hot-unplug during migration
1844     * does not work anyway.
1845     */
1846    if (block) {
1847        memset(block->idstr, 0, sizeof(block->idstr));
1848    }
1849}
1850
1851size_t qemu_ram_pagesize(RAMBlock *rb)
1852{
1853    return rb->page_size;
1854}
1855
1856/* Returns the largest size of page in use */
1857size_t qemu_ram_pagesize_largest(void)
1858{
1859    RAMBlock *block;
1860    size_t largest = 0;
1861
1862    RAMBLOCK_FOREACH(block) {
1863        largest = MAX(largest, qemu_ram_pagesize(block));
1864    }
1865
1866    return largest;
1867}
1868
1869static int memory_try_enable_merging(void *addr, size_t len)
1870{
1871    if (!machine_mem_merge(current_machine)) {
1872        /* disabled by the user */
1873        return 0;
1874    }
1875
1876    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1877}
1878
1879/* Only legal before guest might have detected the memory size: e.g. on
1880 * incoming migration, or right after reset.
1881 *
1882 * As memory core doesn't know how is memory accessed, it is up to
1883 * resize callback to update device state and/or add assertions to detect
1884 * misuse, if necessary.
1885 */
1886int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1887{
1888    assert(block);
1889
1890    newsize = HOST_PAGE_ALIGN(newsize);
1891
1892    if (block->used_length == newsize) {
1893        return 0;
1894    }
1895
1896    if (!(block->flags & RAM_RESIZEABLE)) {
1897        error_setg_errno(errp, EINVAL,
1898                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
1899                         " in != 0x" RAM_ADDR_FMT, block->idstr,
1900                         newsize, block->used_length);
1901        return -EINVAL;
1902    }
1903
1904    if (block->max_length < newsize) {
1905        error_setg_errno(errp, EINVAL,
1906                         "Length too large: %s: 0x" RAM_ADDR_FMT
1907                         " > 0x" RAM_ADDR_FMT, block->idstr,
1908                         newsize, block->max_length);
1909        return -EINVAL;
1910    }
1911
1912    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1913    block->used_length = newsize;
1914    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1915                                        DIRTY_CLIENTS_ALL);
1916    memory_region_set_size(block->mr, newsize);
1917    if (block->resized) {
1918        block->resized(block->idstr, newsize, block->host);
1919    }
1920    return 0;
1921}
1922
1923/* Called with ram_list.mutex held */
1924static void dirty_memory_extend(ram_addr_t old_ram_size,
1925                                ram_addr_t new_ram_size)
1926{
1927    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1928                                             DIRTY_MEMORY_BLOCK_SIZE);
1929    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1930                                             DIRTY_MEMORY_BLOCK_SIZE);
1931    int i;
1932
1933    /* Only need to extend if block count increased */
1934    if (new_num_blocks <= old_num_blocks) {
1935        return;
1936    }
1937
1938    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1939        DirtyMemoryBlocks *old_blocks;
1940        DirtyMemoryBlocks *new_blocks;
1941        int j;
1942
1943        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1944        new_blocks = g_malloc(sizeof(*new_blocks) +
1945                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
1946
1947        if (old_num_blocks) {
1948            memcpy(new_blocks->blocks, old_blocks->blocks,
1949                   old_num_blocks * sizeof(old_blocks->blocks[0]));
1950        }
1951
1952        for (j = old_num_blocks; j < new_num_blocks; j++) {
1953            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1954        }
1955
1956        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1957
1958        if (old_blocks) {
1959            g_free_rcu(old_blocks, rcu);
1960        }
1961    }
1962}
1963
1964static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1965{
1966    RAMBlock *block;
1967    RAMBlock *last_block = NULL;
1968    ram_addr_t old_ram_size, new_ram_size;
1969    Error *err = NULL;
1970
1971    old_ram_size = last_ram_page();
1972
1973    qemu_mutex_lock_ramlist();
1974    new_block->offset = find_ram_offset(new_block->max_length);
1975
1976    if (!new_block->host) {
1977        if (xen_enabled()) {
1978            xen_ram_alloc(new_block->offset, new_block->max_length,
1979                          new_block->mr, &err);
1980            if (err) {
1981                error_propagate(errp, err);
1982                qemu_mutex_unlock_ramlist();
1983                return;
1984            }
1985        } else {
1986            new_block->host = phys_mem_alloc(new_block->max_length,
1987                                             &new_block->mr->align, shared);
1988            if (!new_block->host) {
1989                error_setg_errno(errp, errno,
1990                                 "cannot set up guest memory '%s'",
1991                                 memory_region_name(new_block->mr));
1992                qemu_mutex_unlock_ramlist();
1993                return;
1994            }
1995            memory_try_enable_merging(new_block->host, new_block->max_length);
1996        }
1997    }
1998
1999    new_ram_size = MAX(old_ram_size,
2000              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001    if (new_ram_size > old_ram_size) {
2002        dirty_memory_extend(old_ram_size, new_ram_size);
2003    }
2004    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2005     * QLIST (which has an RCU-friendly variant) does not have insertion at
2006     * tail, so save the last element in last_block.
2007     */
2008    RAMBLOCK_FOREACH(block) {
2009        last_block = block;
2010        if (block->max_length < new_block->max_length) {
2011            break;
2012        }
2013    }
2014    if (block) {
2015        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2016    } else if (last_block) {
2017        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2018    } else { /* list is empty */
2019        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2020    }
2021    ram_list.mru_block = NULL;
2022
2023    /* Write list before version */
2024    smp_wmb();
2025    ram_list.version++;
2026    qemu_mutex_unlock_ramlist();
2027
2028    cpu_physical_memory_set_dirty_range(new_block->offset,
2029                                        new_block->used_length,
2030                                        DIRTY_CLIENTS_ALL);
2031
2032    if (new_block->host) {
2033        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2035        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2036        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2037        ram_block_notify_add(new_block->host, new_block->max_length);
2038    }
2039}
2040
2041#ifdef __linux__
2042RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2043                                 bool share, int fd,
2044                                 Error **errp)
2045{
2046    RAMBlock *new_block;
2047    Error *local_err = NULL;
2048    int64_t file_size;
2049
2050    if (xen_enabled()) {
2051        error_setg(errp, "-mem-path not supported with Xen");
2052        return NULL;
2053    }
2054
2055    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2056        error_setg(errp,
2057                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2058        return NULL;
2059    }
2060
2061    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2062        /*
2063         * file_ram_alloc() needs to allocate just like
2064         * phys_mem_alloc, but we haven't bothered to provide
2065         * a hook there.
2066         */
2067        error_setg(errp,
2068                   "-mem-path not supported with this accelerator");
2069        return NULL;
2070    }
2071
2072    size = HOST_PAGE_ALIGN(size);
2073    file_size = get_file_size(fd);
2074    if (file_size > 0 && file_size < size) {
2075        error_setg(errp, "backing store %s size 0x%" PRIx64
2076                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2077                   mem_path, file_size, size);
2078        return NULL;
2079    }
2080
2081    new_block = g_malloc0(sizeof(*new_block));
2082    new_block->mr = mr;
2083    new_block->used_length = size;
2084    new_block->max_length = size;
2085    new_block->flags = share ? RAM_SHARED : 0;
2086    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2087    if (!new_block->host) {
2088        g_free(new_block);
2089        return NULL;
2090    }
2091
2092    ram_block_add(new_block, &local_err, share);
2093    if (local_err) {
2094        g_free(new_block);
2095        error_propagate(errp, local_err);
2096        return NULL;
2097    }
2098    return new_block;
2099
2100}
2101
2102
2103RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2104                                   bool share, const char *mem_path,
2105                                   Error **errp)
2106{
2107    int fd;
2108    bool created;
2109    RAMBlock *block;
2110
2111    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2112    if (fd < 0) {
2113        return NULL;
2114    }
2115
2116    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2117    if (!block) {
2118        if (created) {
2119            unlink(mem_path);
2120        }
2121        close(fd);
2122        return NULL;
2123    }
2124
2125    return block;
2126}
2127#endif
2128
2129static
2130RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2131                                  void (*resized)(const char*,
2132                                                  uint64_t length,
2133                                                  void *host),
2134                                  void *host, bool resizeable, bool share,
2135                                  MemoryRegion *mr, Error **errp)
2136{
2137    RAMBlock *new_block;
2138    Error *local_err = NULL;
2139
2140    size = HOST_PAGE_ALIGN(size);
2141    max_size = HOST_PAGE_ALIGN(max_size);
2142    new_block = g_malloc0(sizeof(*new_block));
2143    new_block->mr = mr;
2144    new_block->resized = resized;
2145    new_block->used_length = size;
2146    new_block->max_length = max_size;
2147    assert(max_size >= size);
2148    new_block->fd = -1;
2149    new_block->page_size = getpagesize();
2150    new_block->host = host;
2151    if (host) {
2152        new_block->flags |= RAM_PREALLOC;
2153    }
2154    if (resizeable) {
2155        new_block->flags |= RAM_RESIZEABLE;
2156    }
2157    ram_block_add(new_block, &local_err, share);
2158    if (local_err) {
2159        g_free(new_block);
2160        error_propagate(errp, local_err);
2161        return NULL;
2162    }
2163    return new_block;
2164}
2165
2166RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2167                                   MemoryRegion *mr, Error **errp)
2168{
2169    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2170                                   false, mr, errp);
2171}
2172
2173RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2174                         MemoryRegion *mr, Error **errp)
2175{
2176    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2177                                   share, mr, errp);
2178}
2179
2180RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2181                                     void (*resized)(const char*,
2182                                                     uint64_t length,
2183                                                     void *host),
2184                                     MemoryRegion *mr, Error **errp)
2185{
2186    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2187                                   false, mr, errp);
2188}
2189
2190static void reclaim_ramblock(RAMBlock *block)
2191{
2192    if (block->flags & RAM_PREALLOC) {
2193        ;
2194    } else if (xen_enabled()) {
2195        xen_invalidate_map_cache_entry(block->host);
2196#ifndef _WIN32
2197    } else if (block->fd >= 0) {
2198        qemu_ram_munmap(block->host, block->max_length);
2199        close(block->fd);
2200#endif
2201    } else {
2202        qemu_anon_ram_free(block->host, block->max_length);
2203    }
2204    g_free(block);
2205}
2206
2207void qemu_ram_free(RAMBlock *block)
2208{
2209    if (!block) {
2210        return;
2211    }
2212
2213    if (block->host) {
2214        ram_block_notify_remove(block->host, block->max_length);
2215    }
2216
2217    qemu_mutex_lock_ramlist();
2218    QLIST_REMOVE_RCU(block, next);
2219    ram_list.mru_block = NULL;
2220    /* Write list before version */
2221    smp_wmb();
2222    ram_list.version++;
2223    call_rcu(block, reclaim_ramblock, rcu);
2224    qemu_mutex_unlock_ramlist();
2225}
2226
2227#ifndef _WIN32
2228void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2229{
2230    RAMBlock *block;
2231    ram_addr_t offset;
2232    int flags;
2233    void *area, *vaddr;
2234
2235    RAMBLOCK_FOREACH(block) {
2236        offset = addr - block->offset;
2237        if (offset < block->max_length) {
2238            vaddr = ramblock_ptr(block, offset);
2239            if (block->flags & RAM_PREALLOC) {
2240                ;
2241            } else if (xen_enabled()) {
2242                abort();
2243            } else {
2244                flags = MAP_FIXED;
2245                if (block->fd >= 0) {
2246                    flags |= (block->flags & RAM_SHARED ?
2247                              MAP_SHARED : MAP_PRIVATE);
2248                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2249                                flags, block->fd, offset);
2250                } else {
2251                    /*
2252                     * Remap needs to match alloc.  Accelerators that
2253                     * set phys_mem_alloc never remap.  If they did,
2254                     * we'd need a remap hook here.
2255                     */
2256                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2257
2258                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2259                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2260                                flags, -1, 0);
2261                }
2262                if (area != vaddr) {
2263                    error_report("Could not remap addr: "
2264                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2265                                 length, addr);
2266                    exit(1);
2267                }
2268                memory_try_enable_merging(vaddr, length);
2269                qemu_ram_setup_dump(vaddr, length);
2270            }
2271        }
2272    }
2273}
2274#endif /* !_WIN32 */
2275
2276/* Return a host pointer to ram allocated with qemu_ram_alloc.
2277 * This should not be used for general purpose DMA.  Use address_space_map
2278 * or address_space_rw instead. For local memory (e.g. video ram) that the
2279 * device owns, use memory_region_get_ram_ptr.
2280 *
2281 * Called within RCU critical section.
2282 */
2283void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2284{
2285    RAMBlock *block = ram_block;
2286
2287    if (block == NULL) {
2288        block = qemu_get_ram_block(addr);
2289        addr -= block->offset;
2290    }
2291
2292    if (xen_enabled() && block->host == NULL) {
2293        /* We need to check if the requested address is in the RAM
2294         * because we don't want to map the entire memory in QEMU.
2295         * In that case just map until the end of the page.
2296         */
2297        if (block->offset == 0) {
2298            return xen_map_cache(addr, 0, 0, false);
2299        }
2300
2301        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2302    }
2303    return ramblock_ptr(block, addr);
2304}
2305
2306/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2307 * but takes a size argument.
2308 *
2309 * Called within RCU critical section.
2310 */
2311static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2312                                 hwaddr *size, bool lock)
2313{
2314    RAMBlock *block = ram_block;
2315    if (*size == 0) {
2316        return NULL;
2317    }
2318
2319    if (block == NULL) {
2320        block = qemu_get_ram_block(addr);
2321        addr -= block->offset;
2322    }
2323    *size = MIN(*size, block->max_length - addr);
2324
2325    if (xen_enabled() && block->host == NULL) {
2326        /* We need to check if the requested address is in the RAM
2327         * because we don't want to map the entire memory in QEMU.
2328         * In that case just map the requested area.
2329         */
2330        if (block->offset == 0) {
2331            return xen_map_cache(addr, *size, lock, lock);
2332        }
2333
2334        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2335    }
2336
2337    return ramblock_ptr(block, addr);
2338}
2339
2340/* Return the offset of a hostpointer within a ramblock */
2341ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2342{
2343    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2344    assert((uintptr_t)host >= (uintptr_t)rb->host);
2345    assert(res < rb->max_length);
2346
2347    return res;
2348}
2349
2350/*
2351 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2352 * in that RAMBlock.
2353 *
2354 * ptr: Host pointer to look up
2355 * round_offset: If true round the result offset down to a page boundary
2356 * *ram_addr: set to result ram_addr
2357 * *offset: set to result offset within the RAMBlock
2358 *
2359 * Returns: RAMBlock (or NULL if not found)
2360 *
2361 * By the time this function returns, the returned pointer is not protected
2362 * by RCU anymore.  If the caller is not within an RCU critical section and
2363 * does not hold the iothread lock, it must have other means of protecting the
2364 * pointer, such as a reference to the region that includes the incoming
2365 * ram_addr_t.
2366 */
2367RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2368                                   ram_addr_t *offset)
2369{
2370    RAMBlock *block;
2371    uint8_t *host = ptr;
2372
2373    if (xen_enabled()) {
2374        ram_addr_t ram_addr;
2375        rcu_read_lock();
2376        ram_addr = xen_ram_addr_from_mapcache(ptr);
2377        block = qemu_get_ram_block(ram_addr);
2378        if (block) {
2379            *offset = ram_addr - block->offset;
2380        }
2381        rcu_read_unlock();
2382        return block;
2383    }
2384
2385    rcu_read_lock();
2386    block = atomic_rcu_read(&ram_list.mru_block);
2387    if (block && block->host && host - block->host < block->max_length) {
2388        goto found;
2389    }
2390
2391    RAMBLOCK_FOREACH(block) {
2392        /* This case append when the block is not mapped. */
2393        if (block->host == NULL) {
2394            continue;
2395        }
2396        if (host - block->host < block->max_length) {
2397            goto found;
2398        }
2399    }
2400
2401    rcu_read_unlock();
2402    return NULL;
2403
2404found:
2405    *offset = (host - block->host);
2406    if (round_offset) {
2407        *offset &= TARGET_PAGE_MASK;
2408    }
2409    rcu_read_unlock();
2410    return block;
2411}
2412
2413/*
2414 * Finds the named RAMBlock
2415 *
2416 * name: The name of RAMBlock to find
2417 *
2418 * Returns: RAMBlock (or NULL if not found)
2419 */
2420RAMBlock *qemu_ram_block_by_name(const char *name)
2421{
2422    RAMBlock *block;
2423
2424    RAMBLOCK_FOREACH(block) {
2425        if (!strcmp(name, block->idstr)) {
2426            return block;
2427        }
2428    }
2429
2430    return NULL;
2431}
2432
2433/* Some of the softmmu routines need to translate from a host pointer
2434   (typically a TLB entry) back to a ram offset.  */
2435ram_addr_t qemu_ram_addr_from_host(void *ptr)
2436{
2437    RAMBlock *block;
2438    ram_addr_t offset;
2439
2440    block = qemu_ram_block_from_host(ptr, false, &offset);
2441    if (!block) {
2442        return RAM_ADDR_INVALID;
2443    }
2444
2445    return block->offset + offset;
2446}
2447
2448/* Called within RCU critical section. */
2449void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2450                          CPUState *cpu,
2451                          vaddr mem_vaddr,
2452                          ram_addr_t ram_addr,
2453                          unsigned size)
2454{
2455    ndi->cpu = cpu;
2456    ndi->ram_addr = ram_addr;
2457    ndi->mem_vaddr = mem_vaddr;
2458    ndi->size = size;
2459    ndi->locked = false;
2460
2461    assert(tcg_enabled());
2462    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2463        ndi->locked = true;
2464        tb_lock();
2465        tb_invalidate_phys_page_fast(ram_addr, size);
2466    }
2467}
2468
2469/* Called within RCU critical section. */
2470void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2471{
2472    if (ndi->locked) {
2473        tb_unlock();
2474    }
2475
2476    /* Set both VGA and migration bits for simplicity and to remove
2477     * the notdirty callback faster.
2478     */
2479    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2480                                        DIRTY_CLIENTS_NOCODE);
2481    /* we remove the notdirty callback only if the code has been
2482       flushed */
2483    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2484        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2485    }
2486}
2487
2488/* Called within RCU critical section.  */
2489static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2490                               uint64_t val, unsigned size)
2491{
2492    NotDirtyInfo ndi;
2493
2494    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2495                         ram_addr, size);
2496
2497    switch (size) {
2498    case 1:
2499        stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2500        break;
2501    case 2:
2502        stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2503        break;
2504    case 4:
2505        stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2506        break;
2507    case 8:
2508        stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2509        break;
2510    default:
2511        abort();
2512    }
2513    memory_notdirty_write_complete(&ndi);
2514}
2515
2516static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2517                                 unsigned size, bool is_write)
2518{
2519    return is_write;
2520}
2521
2522static const MemoryRegionOps notdirty_mem_ops = {
2523    .write = notdirty_mem_write,
2524    .valid.accepts = notdirty_mem_accepts,
2525    .endianness = DEVICE_NATIVE_ENDIAN,
2526    .valid = {
2527        .min_access_size = 1,
2528        .max_access_size = 8,
2529        .unaligned = false,
2530    },
2531    .impl = {
2532        .min_access_size = 1,
2533        .max_access_size = 8,
2534        .unaligned = false,
2535    },
2536};
2537
2538/* Generate a debug exception if a watchpoint has been hit.  */
2539static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2540{
2541    CPUState *cpu = current_cpu;
2542    CPUClass *cc = CPU_GET_CLASS(cpu);
2543    target_ulong vaddr;
2544    CPUWatchpoint *wp;
2545
2546    assert(tcg_enabled());
2547    if (cpu->watchpoint_hit) {
2548        /* We re-entered the check after replacing the TB. Now raise
2549         * the debug interrupt so that is will trigger after the
2550         * current instruction. */
2551        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2552        return;
2553    }
2554    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2555    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2556    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2557        if (cpu_watchpoint_address_matches(wp, vaddr, len)
2558            && (wp->flags & flags)) {
2559            if (flags == BP_MEM_READ) {
2560                wp->flags |= BP_WATCHPOINT_HIT_READ;
2561            } else {
2562                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2563            }
2564            wp->hitaddr = vaddr;
2565            wp->hitattrs = attrs;
2566            if (!cpu->watchpoint_hit) {
2567                if (wp->flags & BP_CPU &&
2568                    !cc->debug_check_watchpoint(cpu, wp)) {
2569                    wp->flags &= ~BP_WATCHPOINT_HIT;
2570                    continue;
2571                }
2572                cpu->watchpoint_hit = wp;
2573
2574                /* Both tb_lock and iothread_mutex will be reset when
2575                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2576                 * back into the cpu_exec main loop.
2577                 */
2578                tb_lock();
2579                tb_check_watchpoint(cpu);
2580                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2581                    cpu->exception_index = EXCP_DEBUG;
2582                    cpu_loop_exit(cpu);
2583                } else {
2584                    /* Force execution of one insn next time.  */
2585                    cpu->cflags_next_tb = 1 | curr_cflags();
2586                    cpu_loop_exit_noexc(cpu);
2587                }
2588            }
2589        } else {
2590            wp->flags &= ~BP_WATCHPOINT_HIT;
2591        }
2592    }
2593}
2594
2595/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
2596   so these check for a hit then pass through to the normal out-of-line
2597   phys routines.  */
2598static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2599                                  unsigned size, MemTxAttrs attrs)
2600{
2601    MemTxResult res;
2602    uint64_t data;
2603    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2604    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2605
2606    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2607    switch (size) {
2608    case 1:
2609        data = address_space_ldub(as, addr, attrs, &res);
2610        break;
2611    case 2:
2612        data = address_space_lduw(as, addr, attrs, &res);
2613        break;
2614    case 4:
2615        data = address_space_ldl(as, addr, attrs, &res);
2616        break;
2617    case 8:
2618        data = address_space_ldq(as, addr, attrs, &res);
2619        break;
2620    default: abort();
2621    }
2622    *pdata = data;
2623    return res;
2624}
2625
2626static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2627                                   uint64_t val, unsigned size,
2628                                   MemTxAttrs attrs)
2629{
2630    MemTxResult res;
2631    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2632    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2633
2634    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2635    switch (size) {
2636    case 1:
2637        address_space_stb(as, addr, val, attrs, &res);
2638        break;
2639    case 2:
2640        address_space_stw(as, addr, val, attrs, &res);
2641        break;
2642    case 4:
2643        address_space_stl(as, addr, val, attrs, &res);
2644        break;
2645    case 8:
2646        address_space_stq(as, addr, val, attrs, &res);
2647        break;
2648    default: abort();
2649    }
2650    return res;
2651}
2652
2653static const MemoryRegionOps watch_mem_ops = {
2654    .read_with_attrs = watch_mem_read,
2655    .write_with_attrs = watch_mem_write,
2656    .endianness = DEVICE_NATIVE_ENDIAN,
2657    .valid = {
2658        .min_access_size = 1,
2659        .max_access_size = 8,
2660        .unaligned = false,
2661    },
2662    .impl = {
2663        .min_access_size = 1,
2664        .max_access_size = 8,
2665        .unaligned = false,
2666    },
2667};
2668
2669static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2670                                      MemTxAttrs attrs, uint8_t *buf, int len);
2671static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2672                                  const uint8_t *buf, int len);
2673static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2674                                  bool is_write);
2675
2676static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2677                                unsigned len, MemTxAttrs attrs)
2678{
2679    subpage_t *subpage = opaque;
2680    uint8_t buf[8];
2681    MemTxResult res;
2682
2683#if defined(DEBUG_SUBPAGE)
2684    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2685           subpage, len, addr);
2686#endif
2687    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2688    if (res) {
2689        return res;
2690    }
2691    switch (len) {
2692    case 1:
2693        *data = ldub_p(buf);
2694        return MEMTX_OK;
2695    case 2:
2696        *data = lduw_p(buf);
2697        return MEMTX_OK;
2698    case 4:
2699        *data = ldl_p(buf);
2700        return MEMTX_OK;
2701    case 8:
2702        *data = ldq_p(buf);
2703        return MEMTX_OK;
2704    default:
2705        abort();
2706    }
2707}
2708
2709static MemTxResult subpage_write(void *opaque, hwaddr addr,
2710                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2711{
2712    subpage_t *subpage = opaque;
2713    uint8_t buf[8];
2714
2715#if defined(DEBUG_SUBPAGE)
2716    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2717           " value %"PRIx64"\n",
2718           __func__, subpage, len, addr, value);
2719#endif
2720    switch (len) {
2721    case 1:
2722        stb_p(buf, value);
2723        break;
2724    case 2:
2725        stw_p(buf, value);
2726        break;
2727    case 4:
2728        stl_p(buf, value);
2729        break;
2730    case 8:
2731        stq_p(buf, value);
2732        break;
2733    default:
2734        abort();
2735    }
2736    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2737}
2738
2739static bool subpage_accepts(void *opaque, hwaddr addr,
2740                            unsigned len, bool is_write)
2741{
2742    subpage_t *subpage = opaque;
2743#if defined(DEBUG_SUBPAGE)
2744    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2745           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2746#endif
2747
2748    return flatview_access_valid(subpage->fv, addr + subpage->base,
2749                                 len, is_write);
2750}
2751
2752static const MemoryRegionOps subpage_ops = {
2753    .read_with_attrs = subpage_read,
2754    .write_with_attrs = subpage_write,
2755    .impl.min_access_size = 1,
2756    .impl.max_access_size = 8,
2757    .valid.min_access_size = 1,
2758    .valid.max_access_size = 8,
2759    .valid.accepts = subpage_accepts,
2760    .endianness = DEVICE_NATIVE_ENDIAN,
2761};
2762
2763static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2764                             uint16_t section)
2765{
2766    int idx, eidx;
2767
2768    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2769        return -1;
2770    idx = SUBPAGE_IDX(start);
2771    eidx = SUBPAGE_IDX(end);
2772#if defined(DEBUG_SUBPAGE)
2773    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2774           __func__, mmio, start, end, idx, eidx, section);
2775#endif
2776    for (; idx <= eidx; idx++) {
2777        mmio->sub_section[idx] = section;
2778    }
2779
2780    return 0;
2781}
2782
2783static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2784{
2785    subpage_t *mmio;
2786
2787    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2788    mmio->fv = fv;
2789    mmio->base = base;
2790    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2791                          NULL, TARGET_PAGE_SIZE);
2792    mmio->iomem.subpage = true;
2793#if defined(DEBUG_SUBPAGE)
2794    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2795           mmio, base, TARGET_PAGE_SIZE);
2796#endif
2797    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2798
2799    return mmio;
2800}
2801
2802static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2803{
2804    assert(fv);
2805    MemoryRegionSection section = {
2806        .fv = fv,
2807        .mr = mr,
2808        .offset_within_address_space = 0,
2809        .offset_within_region = 0,
2810        .size = int128_2_64(),
2811    };
2812
2813    return phys_section_add(map, &section);
2814}
2815
2816static void readonly_mem_write(void *opaque, hwaddr addr,
2817                               uint64_t val, unsigned size)
2818{
2819    /* Ignore any write to ROM. */
2820}
2821
2822static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2823                                 unsigned size, bool is_write)
2824{
2825    return is_write;
2826}
2827
2828/* This will only be used for writes, because reads are special cased
2829 * to directly access the underlying host ram.
2830 */
2831static const MemoryRegionOps readonly_mem_ops = {
2832    .write = readonly_mem_write,
2833    .valid.accepts = readonly_mem_accepts,
2834    .endianness = DEVICE_NATIVE_ENDIAN,
2835    .valid = {
2836        .min_access_size = 1,
2837        .max_access_size = 8,
2838        .unaligned = false,
2839    },
2840    .impl = {
2841        .min_access_size = 1,
2842        .max_access_size = 8,
2843        .unaligned = false,
2844    },
2845};
2846
2847MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2848{
2849    int asidx = cpu_asidx_from_attrs(cpu, attrs);
2850    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2851    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2852    MemoryRegionSection *sections = d->map.sections;
2853
2854    return sections[index & ~TARGET_PAGE_MASK].mr;
2855}
2856
2857static void io_mem_init(void)
2858{
2859    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2860                          NULL, NULL, UINT64_MAX);
2861    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2862                          NULL, UINT64_MAX);
2863
2864    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2865     * which can be called without the iothread mutex.
2866     */
2867    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2868                          NULL, UINT64_MAX);
2869    memory_region_clear_global_locking(&io_mem_notdirty);
2870
2871    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2872                          NULL, UINT64_MAX);
2873}
2874
2875AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2876{
2877    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2878    uint16_t n;
2879
2880    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2881    assert(n == PHYS_SECTION_UNASSIGNED);
2882    n = dummy_section(&d->map, fv, &io_mem_notdirty);
2883    assert(n == PHYS_SECTION_NOTDIRTY);
2884    n = dummy_section(&d->map, fv, &io_mem_rom);
2885    assert(n == PHYS_SECTION_ROM);
2886    n = dummy_section(&d->map, fv, &io_mem_watch);
2887    assert(n == PHYS_SECTION_WATCH);
2888
2889    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2890
2891    return d;
2892}
2893
2894void address_space_dispatch_free(AddressSpaceDispatch *d)
2895{
2896    phys_sections_free(&d->map);
2897    g_free(d);
2898}
2899
2900static void tcg_commit(MemoryListener *listener)
2901{
2902    CPUAddressSpace *cpuas;
2903    AddressSpaceDispatch *d;
2904
2905    /* since each CPU stores ram addresses in its TLB cache, we must
2906       reset the modified entries */
2907    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2908    cpu_reloading_memory_map();
2909    /* The CPU and TLB are protected by the iothread lock.
2910     * We reload the dispatch pointer now because cpu_reloading_memory_map()
2911     * may have split the RCU critical section.
2912     */
2913    d = address_space_to_dispatch(cpuas->as);
2914    atomic_rcu_set(&cpuas->memory_dispatch, d);
2915    tlb_flush(cpuas->cpu);
2916}
2917
2918static void memory_map_init(void)
2919{
2920    system_memory = g_malloc(sizeof(*system_memory));
2921
2922    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2923    address_space_init(&address_space_memory, system_memory, "memory");
2924
2925    system_io = g_malloc(sizeof(*system_io));
2926    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2927                          65536);
2928    address_space_init(&address_space_io, system_io, "I/O");
2929}
2930
2931MemoryRegion *get_system_memory(void)
2932{
2933    return system_memory;
2934}
2935
2936MemoryRegion *get_system_io(void)
2937{
2938    return system_io;
2939}
2940
2941#endif /* !defined(CONFIG_USER_ONLY) */
2942
2943/* physical memory access (slow version, mainly for debug) */
2944#if defined(CONFIG_USER_ONLY)
2945int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2946                        uint8_t *buf, int len, int is_write)
2947{
2948    int l, flags;
2949    target_ulong page;
2950    void * p;
2951
2952    while (len > 0) {
2953        page = addr & TARGET_PAGE_MASK;
2954        l = (page + TARGET_PAGE_SIZE) - addr;
2955        if (l > len)
2956            l = len;
2957        flags = page_get_flags(page);
2958        if (!(flags & PAGE_VALID))
2959            return -1;
2960        if (is_write) {
2961            if (!(flags & PAGE_WRITE))
2962                return -1;
2963            /* XXX: this code should not depend on lock_user */
2964            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2965                return -1;
2966            memcpy(p, buf, l);
2967            unlock_user(p, addr, l);
2968        } else {
2969            if (!(flags & PAGE_READ))
2970                return -1;
2971            /* XXX: this code should not depend on lock_user */
2972            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2973                return -1;
2974            memcpy(buf, p, l);
2975            unlock_user(p, addr, 0);
2976        }
2977        len -= l;
2978        buf += l;
2979        addr += l;
2980    }
2981    return 0;
2982}
2983
2984#else
2985
2986static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2987                                     hwaddr length)
2988{
2989    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2990    addr += memory_region_get_ram_addr(mr);
2991
2992    /* No early return if dirty_log_mask is or becomes 0, because
2993     * cpu_physical_memory_set_dirty_range will still call
2994     * xen_modified_memory.
2995     */
2996    if (dirty_log_mask) {
2997        dirty_log_mask =
2998            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2999    }
3000    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3001        assert(tcg_enabled());
3002        tb_lock();
3003        tb_invalidate_phys_range(addr, addr + length);
3004        tb_unlock();
3005        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3006    }
3007    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3008}
3009
3010static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3011{
3012    unsigned access_size_max = mr->ops->valid.max_access_size;
3013
3014    /* Regions are assumed to support 1-4 byte accesses unless
3015       otherwise specified.  */
3016    if (access_size_max == 0) {
3017        access_size_max = 4;
3018    }
3019
3020    /* Bound the maximum access by the alignment of the address.  */
3021    if (!mr->ops->impl.unaligned) {
3022        unsigned align_size_max = addr & -addr;
3023        if (align_size_max != 0 && align_size_max < access_size_max) {
3024            access_size_max = align_size_max;
3025        }
3026    }
3027
3028    /* Don't attempt accesses larger than the maximum.  */
3029    if (l > access_size_max) {
3030        l = access_size_max;
3031    }
3032    l = pow2floor(l);
3033
3034    return l;
3035}
3036
3037static bool prepare_mmio_access(MemoryRegion *mr)
3038{
3039    bool unlocked = !qemu_mutex_iothread_locked();
3040    bool release_lock = false;
3041
3042    if (unlocked && mr->global_locking) {
3043        qemu_mutex_lock_iothread();
3044        unlocked = false;
3045        release_lock = true;
3046    }
3047    if (mr->flush_coalesced_mmio) {
3048        if (unlocked) {
3049            qemu_mutex_lock_iothread();
3050        }
3051        qemu_flush_coalesced_mmio_buffer();
3052        if (unlocked) {
3053            qemu_mutex_unlock_iothread();
3054        }
3055    }
3056
3057    return release_lock;
3058}
3059
3060/* Called within RCU critical section.  */
3061static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3062                                           MemTxAttrs attrs,
3063                                           const uint8_t *buf,
3064                                           int len, hwaddr addr1,
3065                                           hwaddr l, MemoryRegion *mr)
3066{
3067    uint8_t *ptr;
3068    uint64_t val;
3069    MemTxResult result = MEMTX_OK;
3070    bool release_lock = false;
3071
3072    for (;;) {
3073        if (!memory_access_is_direct(mr, true)) {
3074            release_lock |= prepare_mmio_access(mr);
3075            l = memory_access_size(mr, l, addr1);
3076            /* XXX: could force current_cpu to NULL to avoid
3077               potential bugs */
3078            switch (l) {
3079            case 8:
3080                /* 64 bit write access */
3081                val = ldq_p(buf);
3082                result |= memory_region_dispatch_write(mr, addr1, val, 8,
3083                                                       attrs);
3084                break;
3085            case 4:
3086                /* 32 bit write access */
3087                val = (uint32_t)ldl_p(buf);
3088                result |= memory_region_dispatch_write(mr, addr1, val, 4,
3089                                                       attrs);
3090                break;
3091            case 2:
3092                /* 16 bit write access */
3093                val = lduw_p(buf);
3094                result |= memory_region_dispatch_write(mr, addr1, val, 2,
3095                                                       attrs);
3096                break;
3097            case 1:
3098                /* 8 bit write access */
3099                val = ldub_p(buf);
3100                result |= memory_region_dispatch_write(mr, addr1, val, 1,
3101                                                       attrs);
3102                break;
3103            default:
3104                abort();
3105            }
3106        } else {
3107            /* RAM case */
3108            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3109            memcpy(ptr, buf, l);
3110            invalidate_and_set_dirty(mr, addr1, l);
3111        }
3112
3113        if (release_lock) {
3114            qemu_mutex_unlock_iothread();
3115            release_lock = false;
3116        }
3117
3118        len -= l;
3119        buf += l;
3120        addr += l;
3121
3122        if (!len) {
3123            break;
3124        }
3125
3126        l = len;
3127        mr = flatview_translate(fv, addr, &addr1, &l, true);
3128    }
3129
3130    return result;
3131}
3132
3133/* Called from RCU critical section.  */
3134static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3135                                  const uint8_t *buf, int len)
3136{
3137    hwaddr l;
3138    hwaddr addr1;
3139    MemoryRegion *mr;
3140    MemTxResult result = MEMTX_OK;
3141
3142    l = len;
3143    mr = flatview_translate(fv, addr, &addr1, &l, true);
3144    result = flatview_write_continue(fv, addr, attrs, buf, len,
3145                                     addr1, l, mr);
3146
3147    return result;
3148}
3149
3150/* Called within RCU critical section.  */
3151MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3152                                   MemTxAttrs attrs, uint8_t *buf,
3153                                   int len, hwaddr addr1, hwaddr l,
3154                                   MemoryRegion *mr)
3155{
3156    uint8_t *ptr;
3157    uint64_t val;
3158    MemTxResult result = MEMTX_OK;
3159    bool release_lock = false;
3160
3161    for (;;) {
3162        if (!memory_access_is_direct(mr, false)) {
3163            /* I/O case */
3164            release_lock |= prepare_mmio_access(mr);
3165            l = memory_access_size(mr, l, addr1);
3166            switch (l) {
3167            case 8:
3168                /* 64 bit read access */
3169                result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3170                                                      attrs);
3171                stq_p(buf, val);
3172                break;
3173            case 4:
3174                /* 32 bit read access */
3175                result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3176                                                      attrs);
3177                stl_p(buf, val);
3178                break;
3179            case 2:
3180                /* 16 bit read access */
3181                result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3182                                                      attrs);
3183                stw_p(buf, val);
3184                break;
3185            case 1:
3186                /* 8 bit read access */
3187                result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3188                                                      attrs);
3189                stb_p(buf, val);
3190                break;
3191            default:
3192                abort();
3193            }
3194        } else {
3195            /* RAM case */
3196            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3197            memcpy(buf, ptr, l);
3198        }
3199
3200        if (release_lock) {
3201            qemu_mutex_unlock_iothread();
3202            release_lock = false;
3203        }
3204
3205        len -= l;
3206        buf += l;
3207        addr += l;
3208
3209        if (!len) {
3210            break;
3211        }
3212
3213        l = len;
3214        mr = flatview_translate(fv, addr, &addr1, &l, false);
3215    }
3216
3217    return result;
3218}
3219
3220/* Called from RCU critical section.  */
3221static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3222                                 MemTxAttrs attrs, uint8_t *buf, int len)
3223{
3224    hwaddr l;
3225    hwaddr addr1;
3226    MemoryRegion *mr;
3227
3228    l = len;
3229    mr = flatview_translate(fv, addr, &addr1, &l, false);
3230    return flatview_read_continue(fv, addr, attrs, buf, len,
3231                                  addr1, l, mr);
3232}
3233
3234MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3235                                    MemTxAttrs attrs, uint8_t *buf, int len)
3236{
3237    MemTxResult result = MEMTX_OK;
3238    FlatView *fv;
3239
3240    if (len > 0) {
3241        rcu_read_lock();
3242        fv = address_space_to_flatview(as);
3243        result = flatview_read(fv, addr, attrs, buf, len);
3244        rcu_read_unlock();
3245    }
3246
3247    return result;
3248}
3249
3250MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3251                                MemTxAttrs attrs,
3252                                const uint8_t *buf, int len)
3253{
3254    MemTxResult result = MEMTX_OK;
3255    FlatView *fv;
3256
3257    if (len > 0) {
3258        rcu_read_lock();
3259        fv = address_space_to_flatview(as);
3260        result = flatview_write(fv, addr, attrs, buf, len);
3261        rcu_read_unlock();
3262    }
3263
3264    return result;
3265}
3266
3267MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3268                             uint8_t *buf, int len, bool is_write)
3269{
3270    if (is_write) {
3271        return address_space_write(as, addr, attrs, buf, len);
3272    } else {
3273        return address_space_read_full(as, addr, attrs, buf, len);
3274    }
3275}
3276
3277void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3278                            int len, int is_write)
3279{
3280    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3281                     buf, len, is_write);
3282}
3283
3284enum write_rom_type {
3285    WRITE_DATA,
3286    FLUSH_CACHE,
3287};
3288
3289static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3290    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3291{
3292    hwaddr l;
3293    uint8_t *ptr;
3294    hwaddr addr1;
3295    MemoryRegion *mr;
3296
3297    rcu_read_lock();
3298    while (len > 0) {
3299        l = len;
3300        mr = address_space_translate(as, addr, &addr1, &l, true);
3301
3302        if (!(memory_region_is_ram(mr) ||
3303              memory_region_is_romd(mr))) {
3304            l = memory_access_size(mr, l, addr1);
3305        } else {
3306            /* ROM/RAM case */
3307            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3308            switch (type) {
3309            case WRITE_DATA:
3310                memcpy(ptr, buf, l);
3311                invalidate_and_set_dirty(mr, addr1, l);
3312                break;
3313            case FLUSH_CACHE:
3314                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3315                break;
3316            }
3317        }
3318        len -= l;
3319        buf += l;
3320        addr += l;
3321    }
3322    rcu_read_unlock();
3323}
3324
3325/* used for ROM loading : can write in RAM and ROM */
3326void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3327                                   const uint8_t *buf, int len)
3328{
3329    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3330}
3331
3332void cpu_flush_icache_range(hwaddr start, int len)
3333{
3334    /*
3335     * This function should do the same thing as an icache flush that was
3336     * triggered from within the guest. For TCG we are always cache coherent,
3337     * so there is no need to flush anything. For KVM / Xen we need to flush
3338     * the host's instruction cache at least.
3339     */
3340    if (tcg_enabled()) {
3341        return;
3342    }
3343
3344    cpu_physical_memory_write_rom_internal(&address_space_memory,
3345                                           start, NULL, len, FLUSH_CACHE);
3346}
3347
3348typedef struct {
3349    MemoryRegion *mr;
3350    void *buffer;
3351    hwaddr addr;
3352    hwaddr len;
3353    bool in_use;
3354} BounceBuffer;
3355
3356static BounceBuffer bounce;
3357
3358typedef struct MapClient {
3359    QEMUBH *bh;
3360    QLIST_ENTRY(MapClient) link;
3361} MapClient;
3362
3363QemuMutex map_client_list_lock;
3364static QLIST_HEAD(map_client_list, MapClient) map_client_list
3365    = QLIST_HEAD_INITIALIZER(map_client_list);
3366
3367static void cpu_unregister_map_client_do(MapClient *client)
3368{
3369    QLIST_REMOVE(client, link);
3370    g_free(client);
3371}
3372
3373static void cpu_notify_map_clients_locked(void)
3374{
3375    MapClient *client;
3376
3377    while (!QLIST_EMPTY(&map_client_list)) {
3378        client = QLIST_FIRST(&map_client_list);
3379        qemu_bh_schedule(client->bh);
3380        cpu_unregister_map_client_do(client);
3381    }
3382}
3383
3384void cpu_register_map_client(QEMUBH *bh)
3385{
3386    MapClient *client = g_malloc(sizeof(*client));
3387
3388    qemu_mutex_lock(&map_client_list_lock);
3389    client->bh = bh;
3390    QLIST_INSERT_HEAD(&map_client_list, client, link);
3391    if (!atomic_read(&bounce.in_use)) {
3392        cpu_notify_map_clients_locked();
3393    }
3394    qemu_mutex_unlock(&map_client_list_lock);
3395}
3396
3397void cpu_exec_init_all(void)
3398{
3399    qemu_mutex_init(&ram_list.mutex);
3400    /* The data structures we set up here depend on knowing the page size,
3401     * so no more changes can be made after this point.
3402     * In an ideal world, nothing we did before we had finished the
3403     * machine setup would care about the target page size, and we could
3404     * do this much later, rather than requiring board models to state
3405     * up front what their requirements are.
3406     */
3407    finalize_target_page_bits();
3408    io_mem_init();
3409    memory_map_init();
3410    qemu_mutex_init(&map_client_list_lock);
3411}
3412
3413void cpu_unregister_map_client(QEMUBH *bh)
3414{
3415    MapClient *client;
3416
3417    qemu_mutex_lock(&map_client_list_lock);
3418    QLIST_FOREACH(client, &map_client_list, link) {
3419        if (client->bh == bh) {
3420            cpu_unregister_map_client_do(client);
3421            break;
3422        }
3423    }
3424    qemu_mutex_unlock(&map_client_list_lock);
3425}
3426
3427static void cpu_notify_map_clients(void)
3428{
3429    qemu_mutex_lock(&map_client_list_lock);
3430    cpu_notify_map_clients_locked();
3431    qemu_mutex_unlock(&map_client_list_lock);
3432}
3433
3434static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3435                                  bool is_write)
3436{
3437    MemoryRegion *mr;
3438    hwaddr l, xlat;
3439
3440    while (len > 0) {
3441        l = len;
3442        mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3443        if (!memory_access_is_direct(mr, is_write)) {
3444            l = memory_access_size(mr, l, addr);
3445            if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3446                return false;
3447            }
3448        }
3449
3450        len -= l;
3451        addr += l;
3452    }
3453    return true;
3454}
3455
3456bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3457                                int len, bool is_write)
3458{
3459    FlatView *fv;
3460    bool result;
3461
3462    rcu_read_lock();
3463    fv = address_space_to_flatview(as);
3464    result = flatview_access_valid(fv, addr, len, is_write);
3465    rcu_read_unlock();
3466    return result;
3467}
3468
3469static hwaddr
3470flatview_extend_translation(FlatView *fv, hwaddr addr,
3471                                 hwaddr target_len,
3472                                 MemoryRegion *mr, hwaddr base, hwaddr len,
3473                                 bool is_write)
3474{
3475    hwaddr done = 0;
3476    hwaddr xlat;
3477    MemoryRegion *this_mr;
3478
3479    for (;;) {
3480        target_len -= len;
3481        addr += len;
3482        done += len;
3483        if (target_len == 0) {
3484            return done;
3485        }
3486
3487        len = target_len;
3488        this_mr = flatview_translate(fv, addr, &xlat,
3489                                                   &len, is_write);
3490        if (this_mr != mr || xlat != base + done) {
3491            return done;
3492        }
3493    }
3494}
3495
3496/* Map a physical memory region into a host virtual address.
3497 * May map a subset of the requested range, given by and returned in *plen.
3498 * May return NULL if resources needed to perform the mapping are exhausted.
3499 * Use only for reads OR writes - not for read-modify-write operations.
3500 * Use cpu_register_map_client() to know when retrying the map operation is
3501 * likely to succeed.
3502 */
3503void *address_space_map(AddressSpace *as,
3504                        hwaddr addr,
3505                        hwaddr *plen,
3506                        bool is_write)
3507{
3508    hwaddr len = *plen;
3509    hwaddr l, xlat;
3510    MemoryRegion *mr;
3511    void *ptr;
3512    FlatView *fv;
3513
3514    if (len == 0) {
3515        return NULL;
3516    }
3517
3518    l = len;
3519    rcu_read_lock();
3520    fv = address_space_to_flatview(as);
3521    mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3522
3523    if (!memory_access_is_direct(mr, is_write)) {
3524        if (atomic_xchg(&bounce.in_use, true)) {
3525            rcu_read_unlock();
3526            return NULL;
3527        }
3528        /* Avoid unbounded allocations */
3529        l = MIN(l, TARGET_PAGE_SIZE);
3530        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3531        bounce.addr = addr;
3532        bounce.len = l;
3533
3534        memory_region_ref(mr);
3535        bounce.mr = mr;
3536        if (!is_write) {
3537            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3538                               bounce.buffer, l);
3539        }
3540
3541        rcu_read_unlock();
3542        *plen = l;
3543        return bounce.buffer;
3544    }
3545
3546
3547    memory_region_ref(mr);
3548    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3549                                             l, is_write);
3550    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3551    rcu_read_unlock();
3552
3553    return ptr;
3554}
3555
3556/* Unmaps a memory region previously mapped by address_space_map().
3557 * Will also mark the memory as dirty if is_write == 1.  access_len gives
3558 * the amount of memory that was actually read or written by the caller.
3559 */
3560void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3561                         int is_write, hwaddr access_len)
3562{
3563    if (buffer != bounce.buffer) {
3564        MemoryRegion *mr;
3565        ram_addr_t addr1;
3566
3567        mr = memory_region_from_host(buffer, &addr1);
3568        assert(mr != NULL);
3569        if (is_write) {
3570            invalidate_and_set_dirty(mr, addr1, access_len);
3571        }
3572        if (xen_enabled()) {
3573            xen_invalidate_map_cache_entry(buffer);
3574        }
3575        memory_region_unref(mr);
3576        return;
3577    }
3578    if (is_write) {
3579        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3580                            bounce.buffer, access_len);
3581    }
3582    qemu_vfree(bounce.buffer);
3583    bounce.buffer = NULL;
3584    memory_region_unref(bounce.mr);
3585    atomic_mb_set(&bounce.in_use, false);
3586    cpu_notify_map_clients();
3587}
3588
3589void *cpu_physical_memory_map(hwaddr addr,
3590                              hwaddr *plen,
3591                              int is_write)
3592{
3593    return address_space_map(&address_space_memory, addr, plen, is_write);
3594}
3595
3596void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3597                               int is_write, hwaddr access_len)
3598{
3599    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3600}
3601
3602#define ARG1_DECL                AddressSpace *as
3603#define ARG1                     as
3604#define SUFFIX
3605#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3606#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
3607#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
3608#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3609#define RCU_READ_LOCK(...)       rcu_read_lock()
3610#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3611#include "memory_ldst.inc.c"
3612
3613int64_t address_space_cache_init(MemoryRegionCache *cache,
3614                                 AddressSpace *as,
3615                                 hwaddr addr,
3616                                 hwaddr len,
3617                                 bool is_write)
3618{
3619    cache->len = len;
3620    cache->as = as;
3621    cache->xlat = addr;
3622    return len;
3623}
3624
3625void address_space_cache_invalidate(MemoryRegionCache *cache,
3626                                    hwaddr addr,
3627                                    hwaddr access_len)
3628{
3629}
3630
3631void address_space_cache_destroy(MemoryRegionCache *cache)
3632{
3633    cache->as = NULL;
3634}
3635
3636#define ARG1_DECL                MemoryRegionCache *cache
3637#define ARG1                     cache
3638#define SUFFIX                   _cached
3639#define TRANSLATE(addr, ...)     \
3640    address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3641#define IS_DIRECT(mr, is_write)  true
3642#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
3643#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3644#define RCU_READ_LOCK()          rcu_read_lock()
3645#define RCU_READ_UNLOCK()        rcu_read_unlock()
3646#include "memory_ldst.inc.c"
3647
3648/* virtual memory access for debug (includes writing to ROM) */
3649int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3650                        uint8_t *buf, int len, int is_write)
3651{
3652    int l;
3653    hwaddr phys_addr;
3654    target_ulong page;
3655
3656    cpu_synchronize_state(cpu);
3657    while (len > 0) {
3658        int asidx;
3659        MemTxAttrs attrs;
3660
3661        page = addr & TARGET_PAGE_MASK;
3662        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3663        asidx = cpu_asidx_from_attrs(cpu, attrs);
3664        /* if no physical page mapped, return an error */
3665        if (phys_addr == -1)
3666            return -1;
3667        l = (page + TARGET_PAGE_SIZE) - addr;
3668        if (l > len)
3669            l = len;
3670        phys_addr += (addr & ~TARGET_PAGE_MASK);
3671        if (is_write) {
3672            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3673                                          phys_addr, buf, l);
3674        } else {
3675            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3676                             MEMTXATTRS_UNSPECIFIED,
3677                             buf, l, 0);
3678        }
3679        len -= l;
3680        buf += l;
3681        addr += l;
3682    }
3683    return 0;
3684}
3685
3686/*
3687 * Allows code that needs to deal with migration bitmaps etc to still be built
3688 * target independent.
3689 */
3690size_t qemu_target_page_size(void)
3691{
3692    return TARGET_PAGE_SIZE;
3693}
3694
3695int qemu_target_page_bits(void)
3696{
3697    return TARGET_PAGE_BITS;
3698}
3699
3700int qemu_target_page_bits_min(void)
3701{
3702    return TARGET_PAGE_BITS_MIN;
3703}
3704#endif
3705
3706/*
3707 * A helper function for the _utterly broken_ virtio device model to find out if
3708 * it's running on a big endian machine. Don't do this at home kids!
3709 */
3710bool target_words_bigendian(void);
3711bool target_words_bigendian(void)
3712{
3713#if defined(TARGET_WORDS_BIGENDIAN)
3714    return true;
3715#else
3716    return false;
3717#endif
3718}
3719
3720#ifndef CONFIG_USER_ONLY
3721bool cpu_physical_memory_is_io(hwaddr phys_addr)
3722{
3723    MemoryRegion*mr;
3724    hwaddr l = 1;
3725    bool res;
3726
3727    rcu_read_lock();
3728    mr = address_space_translate(&address_space_memory,
3729                                 phys_addr, &phys_addr, &l, false);
3730
3731    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3732    rcu_read_unlock();
3733    return res;
3734}
3735
3736int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3737{
3738    RAMBlock *block;
3739    int ret = 0;
3740
3741    rcu_read_lock();
3742    RAMBLOCK_FOREACH(block) {
3743        ret = func(block->idstr, block->host, block->offset,
3744                   block->used_length, opaque);
3745        if (ret) {
3746            break;
3747        }
3748    }
3749    rcu_read_unlock();
3750    return ret;
3751}
3752
3753/*
3754 * Unmap pages of memory from start to start+length such that
3755 * they a) read as 0, b) Trigger whatever fault mechanism
3756 * the OS provides for postcopy.
3757 * The pages must be unmapped by the end of the function.
3758 * Returns: 0 on success, none-0 on failure
3759 *
3760 */
3761int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3762{
3763    int ret = -1;
3764
3765    uint8_t *host_startaddr = rb->host + start;
3766
3767    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3768        error_report("ram_block_discard_range: Unaligned start address: %p",
3769                     host_startaddr);
3770        goto err;
3771    }
3772
3773    if ((start + length) <= rb->used_length) {
3774        bool need_madvise, need_fallocate;
3775        uint8_t *host_endaddr = host_startaddr + length;
3776        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3777            error_report("ram_block_discard_range: Unaligned end address: %p",
3778                         host_endaddr);
3779            goto err;
3780        }
3781
3782        errno = ENOTSUP; /* If we are missing MADVISE etc */
3783
3784        /* The logic here is messy;
3785         *    madvise DONTNEED fails for hugepages
3786         *    fallocate works on hugepages and shmem
3787         */
3788        need_madvise = (rb->page_size == qemu_host_page_size);
3789        need_fallocate = rb->fd != -1;
3790        if (need_fallocate) {
3791            /* For a file, this causes the area of the file to be zero'd
3792             * if read, and for hugetlbfs also causes it to be unmapped
3793             * so a userfault will trigger.
3794             */
3795#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3796            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3797                            start, length);
3798            if (ret) {
3799                ret = -errno;
3800                error_report("ram_block_discard_range: Failed to fallocate "
3801                             "%s:%" PRIx64 " +%zx (%d)",
3802                             rb->idstr, start, length, ret);
3803                goto err;
3804            }
3805#else
3806            ret = -ENOSYS;
3807            error_report("ram_block_discard_range: fallocate not available/file"
3808                         "%s:%" PRIx64 " +%zx (%d)",
3809                         rb->idstr, start, length, ret);
3810            goto err;
3811#endif
3812        }
3813        if (need_madvise) {
3814            /* For normal RAM this causes it to be unmapped,
3815             * for shared memory it causes the local mapping to disappear
3816             * and to fall back on the file contents (which we just
3817             * fallocate'd away).
3818             */
3819#if defined(CONFIG_MADVISE)
3820            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
3821            if (ret) {
3822                ret = -errno;
3823                error_report("ram_block_discard_range: Failed to discard range "
3824                             "%s:%" PRIx64 " +%zx (%d)",
3825                             rb->idstr, start, length, ret);
3826                goto err;
3827            }
3828#else
3829            ret = -ENOSYS;
3830            error_report("ram_block_discard_range: MADVISE not available"
3831                         "%s:%" PRIx64 " +%zx (%d)",
3832                         rb->idstr, start, length, ret);
3833            goto err;
3834#endif
3835        }
3836        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3837                                      need_madvise, need_fallocate, ret);
3838    } else {
3839        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3840                     "/%zx/" RAM_ADDR_FMT")",
3841                     rb->idstr, start, length, rb->used_length);
3842    }
3843
3844err:
3845    return ret;
3846}
3847
3848#endif
3849
3850void page_size_init(void)
3851{
3852    /* NOTE: we can always suppose that qemu_host_page_size >=
3853       TARGET_PAGE_SIZE */
3854    if (qemu_host_page_size == 0) {
3855        qemu_host_page_size = qemu_real_host_page_size;
3856    }
3857    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3858        qemu_host_page_size = TARGET_PAGE_SIZE;
3859    }
3860    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3861}
3862
3863#if !defined(CONFIG_USER_ONLY)
3864
3865static void mtree_print_phys_entries(fprintf_function mon, void *f,
3866                                     int start, int end, int skip, int ptr)
3867{
3868    if (start == end - 1) {
3869        mon(f, "\t%3d      ", start);
3870    } else {
3871        mon(f, "\t%3d..%-3d ", start, end - 1);
3872    }
3873    mon(f, " skip=%d ", skip);
3874    if (ptr == PHYS_MAP_NODE_NIL) {
3875        mon(f, " ptr=NIL");
3876    } else if (!skip) {
3877        mon(f, " ptr=#%d", ptr);
3878    } else {
3879        mon(f, " ptr=[%d]", ptr);
3880    }
3881    mon(f, "\n");
3882}
3883
3884#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3885                           int128_sub((size), int128_one())) : 0)
3886
3887void mtree_print_dispatch(fprintf_function mon, void *f,
3888                          AddressSpaceDispatch *d, MemoryRegion *root)
3889{
3890    int i;
3891
3892    mon(f, "  Dispatch\n");
3893    mon(f, "    Physical sections\n");
3894
3895    for (i = 0; i < d->map.sections_nb; ++i) {
3896        MemoryRegionSection *s = d->map.sections + i;
3897        const char *names[] = { " [unassigned]", " [not dirty]",
3898                                " [ROM]", " [watch]" };
3899
3900        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3901            i,
3902            s->offset_within_address_space,
3903            s->offset_within_address_space + MR_SIZE(s->mr->size),
3904            s->mr->name ? s->mr->name : "(noname)",
3905            i < ARRAY_SIZE(names) ? names[i] : "",
3906            s->mr == root ? " [ROOT]" : "",
3907            s == d->mru_section ? " [MRU]" : "",
3908            s->mr->is_iommu ? " [iommu]" : "");
3909
3910        if (s->mr->alias) {
3911            mon(f, " alias=%s", s->mr->alias->name ?
3912                    s->mr->alias->name : "noname");
3913        }
3914        mon(f, "\n");
3915    }
3916
3917    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3918               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3919    for (i = 0; i < d->map.nodes_nb; ++i) {
3920        int j, jprev;
3921        PhysPageEntry prev;
3922        Node *n = d->map.nodes + i;
3923
3924        mon(f, "      [%d]\n", i);
3925
3926        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3927            PhysPageEntry *pe = *n + j;
3928
3929            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3930                continue;
3931            }
3932
3933            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3934
3935            jprev = j;
3936            prev = *pe;
3937        }
3938
3939        if (jprev != ARRAY_SIZE(*n)) {
3940            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3941        }
3942    }
3943}
3944
3945#endif
3946