qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/error-report.h"
  12#include "qapi/error.h"
  13#include <libfdt.h>
  14#include "hw/hw.h"
  15#include "hw/arm/arm.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/sysemu.h"
  19#include "sysemu/numa.h"
  20#include "hw/boards.h"
  21#include "hw/loader.h"
  22#include "elf.h"
  23#include "sysemu/device_tree.h"
  24#include "qemu/config-file.h"
  25#include "qemu/option.h"
  26#include "exec/address-spaces.h"
  27
  28/* Kernel boot protocol is specified in the kernel docs
  29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  30 * They have different preferred image load offsets from system RAM base.
  31 */
  32#define KERNEL_ARGS_ADDR 0x100
  33#define KERNEL_LOAD_ADDR 0x00010000
  34#define KERNEL64_LOAD_ADDR 0x00080000
  35
  36#define ARM64_TEXT_OFFSET_OFFSET    8
  37#define ARM64_MAGIC_OFFSET          56
  38
  39static AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  40                                            const struct arm_boot_info *info)
  41{
  42    /* Return the address space to use for bootloader reads and writes.
  43     * We prefer the secure address space if the CPU has it and we're
  44     * going to boot the guest into it.
  45     */
  46    int asidx;
  47    CPUState *cs = CPU(cpu);
  48
  49    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  50        asidx = ARMASIdx_S;
  51    } else {
  52        asidx = ARMASIdx_NS;
  53    }
  54
  55    return cpu_get_address_space(cs, asidx);
  56}
  57
  58typedef enum {
  59    FIXUP_NONE = 0,     /* do nothing */
  60    FIXUP_TERMINATOR,   /* end of insns */
  61    FIXUP_BOARDID,      /* overwrite with board ID number */
  62    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  63    FIXUP_ARGPTR,       /* overwrite with pointer to kernel args */
  64    FIXUP_ENTRYPOINT,   /* overwrite with kernel entry point */
  65    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  66    FIXUP_BOOTREG,      /* overwrite with boot register address */
  67    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  68    FIXUP_MAX,
  69} FixupType;
  70
  71typedef struct ARMInsnFixup {
  72    uint32_t insn;
  73    FixupType fixup;
  74} ARMInsnFixup;
  75
  76static const ARMInsnFixup bootloader_aarch64[] = {
  77    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  78    { 0xaa1f03e1 }, /* mov x1, xzr */
  79    { 0xaa1f03e2 }, /* mov x2, xzr */
  80    { 0xaa1f03e3 }, /* mov x3, xzr */
  81    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  82    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  83    { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
  84    { 0 }, /* .word @DTB Higher 32-bits */
  85    { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
  86    { 0 }, /* .word @Kernel Entry Higher 32-bits */
  87    { 0, FIXUP_TERMINATOR }
  88};
  89
  90/* A very small bootloader: call the board-setup code (if needed),
  91 * set r0-r2, then jump to the kernel.
  92 * If we're not calling boot setup code then we don't copy across
  93 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
  94 */
  95
  96static const ARMInsnFixup bootloader[] = {
  97    { 0xe28fe004 }, /* add     lr, pc, #4 */
  98    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
  99    { 0, FIXUP_BOARD_SETUP },
 100#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 101    { 0xe3a00000 }, /* mov     r0, #0 */
 102    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 103    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 104    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 105    { 0, FIXUP_BOARDID },
 106    { 0, FIXUP_ARGPTR },
 107    { 0, FIXUP_ENTRYPOINT },
 108    { 0, FIXUP_TERMINATOR }
 109};
 110
 111/* Handling for secondary CPU boot in a multicore system.
 112 * Unlike the uniprocessor/primary CPU boot, this is platform
 113 * dependent. The default code here is based on the secondary
 114 * CPU boot protocol used on realview/vexpress boards, with
 115 * some parameterisation to increase its flexibility.
 116 * QEMU platform models for which this code is not appropriate
 117 * should override write_secondary_boot and secondary_cpu_reset_hook
 118 * instead.
 119 *
 120 * This code enables the interrupt controllers for the secondary
 121 * CPUs and then puts all the secondary CPUs into a loop waiting
 122 * for an interprocessor interrupt and polling a configurable
 123 * location for the kernel secondary CPU entry point.
 124 */
 125#define DSB_INSN 0xf57ff04f
 126#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 127
 128static const ARMInsnFixup smpboot[] = {
 129    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 130    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 131    { 0xe3a01001 }, /* mov r1, #1 */
 132    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 133    { 0xe3a010ff }, /* mov r1, #0xff */
 134    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 135    { 0, FIXUP_DSB },   /* dsb */
 136    { 0xe320f003 }, /* wfi */
 137    { 0xe5901000 }, /* ldr     r1, [r0] */
 138    { 0xe1110001 }, /* tst     r1, r1 */
 139    { 0x0afffffb }, /* beq     <wfi> */
 140    { 0xe12fff11 }, /* bx      r1 */
 141    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 142    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 143    { 0, FIXUP_TERMINATOR }
 144};
 145
 146static void write_bootloader(const char *name, hwaddr addr,
 147                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 148                             AddressSpace *as)
 149{
 150    /* Fix up the specified bootloader fragment and write it into
 151     * guest memory using rom_add_blob_fixed(). fixupcontext is
 152     * an array giving the values to write in for the fixup types
 153     * which write a value into the code array.
 154     */
 155    int i, len;
 156    uint32_t *code;
 157
 158    len = 0;
 159    while (insns[len].fixup != FIXUP_TERMINATOR) {
 160        len++;
 161    }
 162
 163    code = g_new0(uint32_t, len);
 164
 165    for (i = 0; i < len; i++) {
 166        uint32_t insn = insns[i].insn;
 167        FixupType fixup = insns[i].fixup;
 168
 169        switch (fixup) {
 170        case FIXUP_NONE:
 171            break;
 172        case FIXUP_BOARDID:
 173        case FIXUP_BOARD_SETUP:
 174        case FIXUP_ARGPTR:
 175        case FIXUP_ENTRYPOINT:
 176        case FIXUP_GIC_CPU_IF:
 177        case FIXUP_BOOTREG:
 178        case FIXUP_DSB:
 179            insn = fixupcontext[fixup];
 180            break;
 181        default:
 182            abort();
 183        }
 184        code[i] = tswap32(insn);
 185    }
 186
 187    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 188
 189    g_free(code);
 190}
 191
 192static void default_write_secondary(ARMCPU *cpu,
 193                                    const struct arm_boot_info *info)
 194{
 195    uint32_t fixupcontext[FIXUP_MAX];
 196    AddressSpace *as = arm_boot_address_space(cpu, info);
 197
 198    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 199    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 200    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 201        fixupcontext[FIXUP_DSB] = DSB_INSN;
 202    } else {
 203        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 204    }
 205
 206    write_bootloader("smpboot", info->smp_loader_start,
 207                     smpboot, fixupcontext, as);
 208}
 209
 210void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 211                                            const struct arm_boot_info *info,
 212                                            hwaddr mvbar_addr)
 213{
 214    AddressSpace *as = arm_boot_address_space(cpu, info);
 215    int n;
 216    uint32_t mvbar_blob[] = {
 217        /* mvbar_addr: secure monitor vectors
 218         * Default unimplemented and unused vectors to spin. Makes it
 219         * easier to debug (as opposed to the CPU running away).
 220         */
 221        0xeafffffe, /* (spin) */
 222        0xeafffffe, /* (spin) */
 223        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 224        0xeafffffe, /* (spin) */
 225        0xeafffffe, /* (spin) */
 226        0xeafffffe, /* (spin) */
 227        0xeafffffe, /* (spin) */
 228        0xeafffffe, /* (spin) */
 229    };
 230    uint32_t board_setup_blob[] = {
 231        /* board setup addr */
 232        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 233        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 234        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 235        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 236        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 237        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 238        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 239        0xe1a0f001, /* mov     pc, r1                 ;return */
 240    };
 241
 242    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 243    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 244
 245    /* check that these blobs don't overlap */
 246    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 247          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 248
 249    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 250        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 251    }
 252    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 253                          mvbar_addr, as);
 254
 255    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 256        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 257    }
 258    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 259                          sizeof(board_setup_blob), info->board_setup_addr, as);
 260}
 261
 262static void default_reset_secondary(ARMCPU *cpu,
 263                                    const struct arm_boot_info *info)
 264{
 265    AddressSpace *as = arm_boot_address_space(cpu, info);
 266    CPUState *cs = CPU(cpu);
 267
 268    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 269                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 270    cpu_set_pc(cs, info->smp_loader_start);
 271}
 272
 273static inline bool have_dtb(const struct arm_boot_info *info)
 274{
 275    return info->dtb_filename || info->get_dtb;
 276}
 277
 278#define WRITE_WORD(p, value) do { \
 279    address_space_stl_notdirty(as, p, value, \
 280                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 281    p += 4;                       \
 282} while (0)
 283
 284static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 285{
 286    int initrd_size = info->initrd_size;
 287    hwaddr base = info->loader_start;
 288    hwaddr p;
 289
 290    p = base + KERNEL_ARGS_ADDR;
 291    /* ATAG_CORE */
 292    WRITE_WORD(p, 5);
 293    WRITE_WORD(p, 0x54410001);
 294    WRITE_WORD(p, 1);
 295    WRITE_WORD(p, 0x1000);
 296    WRITE_WORD(p, 0);
 297    /* ATAG_MEM */
 298    /* TODO: handle multiple chips on one ATAG list */
 299    WRITE_WORD(p, 4);
 300    WRITE_WORD(p, 0x54410002);
 301    WRITE_WORD(p, info->ram_size);
 302    WRITE_WORD(p, info->loader_start);
 303    if (initrd_size) {
 304        /* ATAG_INITRD2 */
 305        WRITE_WORD(p, 4);
 306        WRITE_WORD(p, 0x54420005);
 307        WRITE_WORD(p, info->initrd_start);
 308        WRITE_WORD(p, initrd_size);
 309    }
 310    if (info->kernel_cmdline && *info->kernel_cmdline) {
 311        /* ATAG_CMDLINE */
 312        int cmdline_size;
 313
 314        cmdline_size = strlen(info->kernel_cmdline);
 315        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 316                            (const uint8_t *)info->kernel_cmdline,
 317                            cmdline_size + 1);
 318        cmdline_size = (cmdline_size >> 2) + 1;
 319        WRITE_WORD(p, cmdline_size + 2);
 320        WRITE_WORD(p, 0x54410009);
 321        p += cmdline_size * 4;
 322    }
 323    if (info->atag_board) {
 324        /* ATAG_BOARD */
 325        int atag_board_len;
 326        uint8_t atag_board_buf[0x1000];
 327
 328        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 329        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 330        WRITE_WORD(p, 0x414f4d50);
 331        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 332                            atag_board_buf, atag_board_len);
 333        p += atag_board_len;
 334    }
 335    /* ATAG_END */
 336    WRITE_WORD(p, 0);
 337    WRITE_WORD(p, 0);
 338}
 339
 340static void set_kernel_args_old(const struct arm_boot_info *info,
 341                                AddressSpace *as)
 342{
 343    hwaddr p;
 344    const char *s;
 345    int initrd_size = info->initrd_size;
 346    hwaddr base = info->loader_start;
 347
 348    /* see linux/include/asm-arm/setup.h */
 349    p = base + KERNEL_ARGS_ADDR;
 350    /* page_size */
 351    WRITE_WORD(p, 4096);
 352    /* nr_pages */
 353    WRITE_WORD(p, info->ram_size / 4096);
 354    /* ramdisk_size */
 355    WRITE_WORD(p, 0);
 356#define FLAG_READONLY   1
 357#define FLAG_RDLOAD     4
 358#define FLAG_RDPROMPT   8
 359    /* flags */
 360    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 361    /* rootdev */
 362    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 363    /* video_num_cols */
 364    WRITE_WORD(p, 0);
 365    /* video_num_rows */
 366    WRITE_WORD(p, 0);
 367    /* video_x */
 368    WRITE_WORD(p, 0);
 369    /* video_y */
 370    WRITE_WORD(p, 0);
 371    /* memc_control_reg */
 372    WRITE_WORD(p, 0);
 373    /* unsigned char sounddefault */
 374    /* unsigned char adfsdrives */
 375    /* unsigned char bytes_per_char_h */
 376    /* unsigned char bytes_per_char_v */
 377    WRITE_WORD(p, 0);
 378    /* pages_in_bank[4] */
 379    WRITE_WORD(p, 0);
 380    WRITE_WORD(p, 0);
 381    WRITE_WORD(p, 0);
 382    WRITE_WORD(p, 0);
 383    /* pages_in_vram */
 384    WRITE_WORD(p, 0);
 385    /* initrd_start */
 386    if (initrd_size) {
 387        WRITE_WORD(p, info->initrd_start);
 388    } else {
 389        WRITE_WORD(p, 0);
 390    }
 391    /* initrd_size */
 392    WRITE_WORD(p, initrd_size);
 393    /* rd_start */
 394    WRITE_WORD(p, 0);
 395    /* system_rev */
 396    WRITE_WORD(p, 0);
 397    /* system_serial_low */
 398    WRITE_WORD(p, 0);
 399    /* system_serial_high */
 400    WRITE_WORD(p, 0);
 401    /* mem_fclk_21285 */
 402    WRITE_WORD(p, 0);
 403    /* zero unused fields */
 404    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 405        WRITE_WORD(p, 0);
 406    }
 407    s = info->kernel_cmdline;
 408    if (s) {
 409        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 410                            (const uint8_t *)s, strlen(s) + 1);
 411    } else {
 412        WRITE_WORD(p, 0);
 413    }
 414}
 415
 416static void fdt_add_psci_node(void *fdt)
 417{
 418    uint32_t cpu_suspend_fn;
 419    uint32_t cpu_off_fn;
 420    uint32_t cpu_on_fn;
 421    uint32_t migrate_fn;
 422    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 423    const char *psci_method;
 424    int64_t psci_conduit;
 425    int rc;
 426
 427    psci_conduit = object_property_get_int(OBJECT(armcpu),
 428                                           "psci-conduit",
 429                                           &error_abort);
 430    switch (psci_conduit) {
 431    case QEMU_PSCI_CONDUIT_DISABLED:
 432        return;
 433    case QEMU_PSCI_CONDUIT_HVC:
 434        psci_method = "hvc";
 435        break;
 436    case QEMU_PSCI_CONDUIT_SMC:
 437        psci_method = "smc";
 438        break;
 439    default:
 440        g_assert_not_reached();
 441    }
 442
 443    /*
 444     * If /psci node is present in provided DTB, assume that no fixup
 445     * is necessary and all PSCI configuration should be taken as-is
 446     */
 447    rc = fdt_path_offset(fdt, "/psci");
 448    if (rc >= 0) {
 449        return;
 450    }
 451
 452    qemu_fdt_add_subnode(fdt, "/psci");
 453    if (armcpu->psci_version == 2) {
 454        const char comp[] = "arm,psci-0.2\0arm,psci";
 455        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 456
 457        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 458        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 459            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 460            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 461            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 462        } else {
 463            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 464            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 465            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 466        }
 467    } else {
 468        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 469
 470        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 471        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 472        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 473        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 474    }
 475
 476    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 477     * to the instruction that should be used to invoke PSCI functions.
 478     * However, the device tree binding uses 'method' instead, so that is
 479     * what we should use here.
 480     */
 481    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 482
 483    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 484    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 485    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 486    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 487}
 488
 489/**
 490 * load_dtb() - load a device tree binary image into memory
 491 * @addr:       the address to load the image at
 492 * @binfo:      struct describing the boot environment
 493 * @addr_limit: upper limit of the available memory area at @addr
 494 * @as:         address space to load image to
 495 *
 496 * Load a device tree supplied by the machine or by the user  with the
 497 * '-dtb' command line option, and put it at offset @addr in target
 498 * memory.
 499 *
 500 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
 501 * than @addr), the device tree is only loaded if its size does not exceed
 502 * the limit.
 503 *
 504 * Returns: the size of the device tree image on success,
 505 *          0 if the image size exceeds the limit,
 506 *          -1 on errors.
 507 *
 508 * Note: Must not be called unless have_dtb(binfo) is true.
 509 */
 510static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 511                    hwaddr addr_limit, AddressSpace *as)
 512{
 513    void *fdt = NULL;
 514    int size, rc;
 515    uint32_t acells, scells;
 516    char *nodename;
 517    unsigned int i;
 518    hwaddr mem_base, mem_len;
 519
 520    if (binfo->dtb_filename) {
 521        char *filename;
 522        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 523        if (!filename) {
 524            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 525            goto fail;
 526        }
 527
 528        fdt = load_device_tree(filename, &size);
 529        if (!fdt) {
 530            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 531            g_free(filename);
 532            goto fail;
 533        }
 534        g_free(filename);
 535    } else {
 536        fdt = binfo->get_dtb(binfo, &size);
 537        if (!fdt) {
 538            fprintf(stderr, "Board was unable to create a dtb blob\n");
 539            goto fail;
 540        }
 541    }
 542
 543    if (addr_limit > addr && size > (addr_limit - addr)) {
 544        /* Installing the device tree blob at addr would exceed addr_limit.
 545         * Whether this constitutes failure is up to the caller to decide,
 546         * so just return 0 as size, i.e., no error.
 547         */
 548        g_free(fdt);
 549        return 0;
 550    }
 551
 552    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 553                                   NULL, &error_fatal);
 554    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 555                                   NULL, &error_fatal);
 556    if (acells == 0 || scells == 0) {
 557        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 558        goto fail;
 559    }
 560
 561    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
 562        /* This is user error so deserves a friendlier error message
 563         * than the failure of setprop_sized_cells would provide
 564         */
 565        fprintf(stderr, "qemu: dtb file not compatible with "
 566                "RAM size > 4GB\n");
 567        goto fail;
 568    }
 569
 570    if (nb_numa_nodes > 0) {
 571        /*
 572         * Turn the /memory node created before into a NOP node, then create
 573         * /memory@addr nodes for all numa nodes respectively.
 574         */
 575        qemu_fdt_nop_node(fdt, "/memory");
 576        mem_base = binfo->loader_start;
 577        for (i = 0; i < nb_numa_nodes; i++) {
 578            mem_len = numa_info[i].node_mem;
 579            nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 580            qemu_fdt_add_subnode(fdt, nodename);
 581            qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 582            rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
 583                                              acells, mem_base,
 584                                              scells, mem_len);
 585            if (rc < 0) {
 586                fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
 587                        i);
 588                goto fail;
 589            }
 590
 591            qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
 592            mem_base += mem_len;
 593            g_free(nodename);
 594        }
 595    } else {
 596        Error *err = NULL;
 597
 598        rc = fdt_path_offset(fdt, "/memory");
 599        if (rc < 0) {
 600            qemu_fdt_add_subnode(fdt, "/memory");
 601        }
 602
 603        if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
 604            qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 605        }
 606
 607        rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
 608                                          acells, binfo->loader_start,
 609                                          scells, binfo->ram_size);
 610        if (rc < 0) {
 611            fprintf(stderr, "couldn't set /memory/reg\n");
 612            goto fail;
 613        }
 614    }
 615
 616    rc = fdt_path_offset(fdt, "/chosen");
 617    if (rc < 0) {
 618        qemu_fdt_add_subnode(fdt, "/chosen");
 619    }
 620
 621    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
 622        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 623                                     binfo->kernel_cmdline);
 624        if (rc < 0) {
 625            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 626            goto fail;
 627        }
 628    }
 629
 630    if (binfo->initrd_size) {
 631        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 632                                   binfo->initrd_start);
 633        if (rc < 0) {
 634            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 635            goto fail;
 636        }
 637
 638        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 639                                   binfo->initrd_start + binfo->initrd_size);
 640        if (rc < 0) {
 641            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 642            goto fail;
 643        }
 644    }
 645
 646    fdt_add_psci_node(fdt);
 647
 648    if (binfo->modify_dtb) {
 649        binfo->modify_dtb(binfo, fdt);
 650    }
 651
 652    qemu_fdt_dumpdtb(fdt, size);
 653
 654    /* Put the DTB into the memory map as a ROM image: this will ensure
 655     * the DTB is copied again upon reset, even if addr points into RAM.
 656     */
 657    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 658
 659    g_free(fdt);
 660
 661    return size;
 662
 663fail:
 664    g_free(fdt);
 665    return -1;
 666}
 667
 668static void do_cpu_reset(void *opaque)
 669{
 670    ARMCPU *cpu = opaque;
 671    CPUState *cs = CPU(cpu);
 672    CPUARMState *env = &cpu->env;
 673    const struct arm_boot_info *info = env->boot_info;
 674
 675    cpu_reset(cs);
 676    if (info) {
 677        if (!info->is_linux) {
 678            int i;
 679            /* Jump to the entry point.  */
 680            uint64_t entry = info->entry;
 681
 682            switch (info->endianness) {
 683            case ARM_ENDIANNESS_LE:
 684                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 685                for (i = 1; i < 4; ++i) {
 686                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 687                }
 688                env->uncached_cpsr &= ~CPSR_E;
 689                break;
 690            case ARM_ENDIANNESS_BE8:
 691                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 692                for (i = 1; i < 4; ++i) {
 693                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 694                }
 695                env->uncached_cpsr |= CPSR_E;
 696                break;
 697            case ARM_ENDIANNESS_BE32:
 698                env->cp15.sctlr_el[1] |= SCTLR_B;
 699                break;
 700            case ARM_ENDIANNESS_UNKNOWN:
 701                break; /* Board's decision */
 702            default:
 703                g_assert_not_reached();
 704            }
 705
 706            if (!env->aarch64) {
 707                env->thumb = info->entry & 1;
 708                entry &= 0xfffffffe;
 709            }
 710            cpu_set_pc(cs, entry);
 711        } else {
 712            /* If we are booting Linux then we need to check whether we are
 713             * booting into secure or non-secure state and adjust the state
 714             * accordingly.  Out of reset, ARM is defined to be in secure state
 715             * (SCR.NS = 0), we change that here if non-secure boot has been
 716             * requested.
 717             */
 718            if (arm_feature(env, ARM_FEATURE_EL3)) {
 719                /* AArch64 is defined to come out of reset into EL3 if enabled.
 720                 * If we are booting Linux then we need to adjust our EL as
 721                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 722                 * SVC, which Linux expects, so no privilege/exception level to
 723                 * adjust.
 724                 */
 725                if (env->aarch64) {
 726                    env->cp15.scr_el3 |= SCR_RW;
 727                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 728                        env->cp15.hcr_el2 |= HCR_RW;
 729                        env->pstate = PSTATE_MODE_EL2h;
 730                    } else {
 731                        env->pstate = PSTATE_MODE_EL1h;
 732                    }
 733                    /* AArch64 kernels never boot in secure mode */
 734                    assert(!info->secure_boot);
 735                    /* This hook is only supported for AArch32 currently:
 736                     * bootloader_aarch64[] will not call the hook, and
 737                     * the code above has already dropped us into EL2 or EL1.
 738                     */
 739                    assert(!info->secure_board_setup);
 740                }
 741
 742                if (arm_feature(env, ARM_FEATURE_EL2)) {
 743                    /* If we have EL2 then Linux expects the HVC insn to work */
 744                    env->cp15.scr_el3 |= SCR_HCE;
 745                }
 746
 747                /* Set to non-secure if not a secure boot */
 748                if (!info->secure_boot &&
 749                    (cs != first_cpu || !info->secure_board_setup)) {
 750                    /* Linux expects non-secure state */
 751                    env->cp15.scr_el3 |= SCR_NS;
 752                }
 753            }
 754
 755            if (cs == first_cpu) {
 756                AddressSpace *as = arm_boot_address_space(cpu, info);
 757
 758                cpu_set_pc(cs, info->loader_start);
 759
 760                if (!have_dtb(info)) {
 761                    if (old_param) {
 762                        set_kernel_args_old(info, as);
 763                    } else {
 764                        set_kernel_args(info, as);
 765                    }
 766                }
 767            } else {
 768                info->secondary_cpu_reset_hook(cpu, info);
 769            }
 770        }
 771    }
 772}
 773
 774/**
 775 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 776 *                          by key.
 777 * @fw_cfg:         The firmware config instance to store the data in.
 778 * @size_key:       The firmware config key to store the size of the loaded
 779 *                  data under, with fw_cfg_add_i32().
 780 * @data_key:       The firmware config key to store the loaded data under,
 781 *                  with fw_cfg_add_bytes().
 782 * @image_name:     The name of the image file to load. If it is NULL, the
 783 *                  function returns without doing anything.
 784 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 785 *                  adding it to fw_cfg. If decompression fails, the image is
 786 *                  loaded as-is.
 787 *
 788 * In case of failure, the function prints an error message to stderr and the
 789 * process exits with status 1.
 790 */
 791static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 792                                 uint16_t data_key, const char *image_name,
 793                                 bool try_decompress)
 794{
 795    size_t size = -1;
 796    uint8_t *data;
 797
 798    if (image_name == NULL) {
 799        return;
 800    }
 801
 802    if (try_decompress) {
 803        size = load_image_gzipped_buffer(image_name,
 804                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 805    }
 806
 807    if (size == (size_t)-1) {
 808        gchar *contents;
 809        gsize length;
 810
 811        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 812            error_report("failed to load \"%s\"", image_name);
 813            exit(1);
 814        }
 815        size = length;
 816        data = (uint8_t *)contents;
 817    }
 818
 819    fw_cfg_add_i32(fw_cfg, size_key, size);
 820    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 821}
 822
 823static int do_arm_linux_init(Object *obj, void *opaque)
 824{
 825    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 826        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 827        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 828        struct arm_boot_info *info = opaque;
 829
 830        if (albifc->arm_linux_init) {
 831            albifc->arm_linux_init(albif, info->secure_boot);
 832        }
 833    }
 834    return 0;
 835}
 836
 837static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 838                             uint64_t *lowaddr, uint64_t *highaddr,
 839                             int elf_machine, AddressSpace *as)
 840{
 841    bool elf_is64;
 842    union {
 843        Elf32_Ehdr h32;
 844        Elf64_Ehdr h64;
 845    } elf_header;
 846    int data_swab = 0;
 847    bool big_endian;
 848    uint64_t ret = -1;
 849    Error *err = NULL;
 850
 851
 852    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 853    if (err) {
 854        error_free(err);
 855        return ret;
 856    }
 857
 858    if (elf_is64) {
 859        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 860        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 861                                      : ARM_ENDIANNESS_LE;
 862    } else {
 863        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 864        if (big_endian) {
 865            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 866                info->endianness = ARM_ENDIANNESS_BE8;
 867            } else {
 868                info->endianness = ARM_ENDIANNESS_BE32;
 869                /* In BE32, the CPU has a different view of the per-byte
 870                 * address map than the rest of the system. BE32 ELF files
 871                 * are organised such that they can be programmed through
 872                 * the CPU's per-word byte-reversed view of the world. QEMU
 873                 * however loads ELF files independently of the CPU. So
 874                 * tell the ELF loader to byte reverse the data for us.
 875                 */
 876                data_swab = 2;
 877            }
 878        } else {
 879            info->endianness = ARM_ENDIANNESS_LE;
 880        }
 881    }
 882
 883    ret = load_elf_as(info->kernel_filename, NULL, NULL,
 884                      pentry, lowaddr, highaddr, big_endian, elf_machine,
 885                      1, data_swab, as);
 886    if (ret <= 0) {
 887        /* The header loaded but the image didn't */
 888        exit(1);
 889    }
 890
 891    return ret;
 892}
 893
 894static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 895                                   hwaddr *entry, AddressSpace *as)
 896{
 897    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 898    uint8_t *buffer;
 899    int size;
 900
 901    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 902    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 903                                     &buffer);
 904
 905    if (size < 0) {
 906        gsize len;
 907
 908        /* Load as raw file otherwise */
 909        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 910            return -1;
 911        }
 912        size = len;
 913    }
 914
 915    /* check the arm64 magic header value -- very old kernels may not have it */
 916    if (size > ARM64_MAGIC_OFFSET + 4 &&
 917        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 918        uint64_t hdrvals[2];
 919
 920        /* The arm64 Image header has text_offset and image_size fields at 8 and
 921         * 16 bytes into the Image header, respectively. The text_offset field
 922         * is only valid if the image_size is non-zero.
 923         */
 924        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 925        if (hdrvals[1] != 0) {
 926            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 927        }
 928    }
 929
 930    *entry = mem_base + kernel_load_offset;
 931    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 932
 933    g_free(buffer);
 934
 935    return size;
 936}
 937
 938static void arm_load_kernel_notify(Notifier *notifier, void *data)
 939{
 940    CPUState *cs;
 941    int kernel_size;
 942    int initrd_size;
 943    int is_linux = 0;
 944    uint64_t elf_entry, elf_low_addr, elf_high_addr;
 945    int elf_machine;
 946    hwaddr entry;
 947    static const ARMInsnFixup *primary_loader;
 948    ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
 949                                         notifier, notifier);
 950    ARMCPU *cpu = n->cpu;
 951    struct arm_boot_info *info =
 952        container_of(n, struct arm_boot_info, load_kernel_notifier);
 953    AddressSpace *as = arm_boot_address_space(cpu, info);
 954
 955    /* The board code is not supposed to set secure_board_setup unless
 956     * running its code in secure mode is actually possible, and KVM
 957     * doesn't support secure.
 958     */
 959    assert(!(info->secure_board_setup && kvm_enabled()));
 960
 961    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
 962
 963    /* Load the kernel.  */
 964    if (!info->kernel_filename || info->firmware_loaded) {
 965
 966        if (have_dtb(info)) {
 967            /* If we have a device tree blob, but no kernel to supply it to (or
 968             * the kernel is supposed to be loaded by the bootloader), copy the
 969             * DTB to the base of RAM for the bootloader to pick up.
 970             */
 971            if (load_dtb(info->loader_start, info, 0, as) < 0) {
 972                exit(1);
 973            }
 974        }
 975
 976        if (info->kernel_filename) {
 977            FWCfgState *fw_cfg;
 978            bool try_decompressing_kernel;
 979
 980            fw_cfg = fw_cfg_find();
 981            try_decompressing_kernel = arm_feature(&cpu->env,
 982                                                   ARM_FEATURE_AARCH64);
 983
 984            /* Expose the kernel, the command line, and the initrd in fw_cfg.
 985             * We don't process them here at all, it's all left to the
 986             * firmware.
 987             */
 988            load_image_to_fw_cfg(fw_cfg,
 989                                 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 990                                 info->kernel_filename,
 991                                 try_decompressing_kernel);
 992            load_image_to_fw_cfg(fw_cfg,
 993                                 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 994                                 info->initrd_filename, false);
 995
 996            if (info->kernel_cmdline) {
 997                fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 998                               strlen(info->kernel_cmdline) + 1);
 999                fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1000                                  info->kernel_cmdline);
1001            }
1002        }
1003
1004        /* We will start from address 0 (typically a boot ROM image) in the
1005         * same way as hardware.
1006         */
1007        return;
1008    }
1009
1010    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1011        primary_loader = bootloader_aarch64;
1012        elf_machine = EM_AARCH64;
1013    } else {
1014        primary_loader = bootloader;
1015        if (!info->write_board_setup) {
1016            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1017        }
1018        elf_machine = EM_ARM;
1019    }
1020
1021    if (!info->secondary_cpu_reset_hook) {
1022        info->secondary_cpu_reset_hook = default_reset_secondary;
1023    }
1024    if (!info->write_secondary_boot) {
1025        info->write_secondary_boot = default_write_secondary;
1026    }
1027
1028    if (info->nb_cpus == 0)
1029        info->nb_cpus = 1;
1030
1031    /* We want to put the initrd far enough into RAM that when the
1032     * kernel is uncompressed it will not clobber the initrd. However
1033     * on boards without much RAM we must ensure that we still leave
1034     * enough room for a decent sized initrd, and on boards with large
1035     * amounts of RAM we must avoid the initrd being so far up in RAM
1036     * that it is outside lowmem and inaccessible to the kernel.
1037     * So for boards with less  than 256MB of RAM we put the initrd
1038     * halfway into RAM, and for boards with 256MB of RAM or more we put
1039     * the initrd at 128MB.
1040     */
1041    info->initrd_start = info->loader_start +
1042        MIN(info->ram_size / 2, 128 * 1024 * 1024);
1043
1044    /* Assume that raw images are linux kernels, and ELF images are not.  */
1045    kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1046                               &elf_high_addr, elf_machine, as);
1047    if (kernel_size > 0 && have_dtb(info)) {
1048        /* If there is still some room left at the base of RAM, try and put
1049         * the DTB there like we do for images loaded with -bios or -pflash.
1050         */
1051        if (elf_low_addr > info->loader_start
1052            || elf_high_addr < info->loader_start) {
1053            /* Pass elf_low_addr as address limit to load_dtb if it may be
1054             * pointing into RAM, otherwise pass '0' (no limit)
1055             */
1056            if (elf_low_addr < info->loader_start) {
1057                elf_low_addr = 0;
1058            }
1059            if (load_dtb(info->loader_start, info, elf_low_addr, as) < 0) {
1060                exit(1);
1061            }
1062        }
1063    }
1064    entry = elf_entry;
1065    if (kernel_size < 0) {
1066        kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1067                                     &is_linux, NULL, NULL, as);
1068    }
1069    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1070        kernel_size = load_aarch64_image(info->kernel_filename,
1071                                         info->loader_start, &entry, as);
1072        is_linux = 1;
1073    } else if (kernel_size < 0) {
1074        /* 32-bit ARM */
1075        entry = info->loader_start + KERNEL_LOAD_ADDR;
1076        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1077                                             info->ram_size - KERNEL_LOAD_ADDR,
1078                                             as);
1079        is_linux = 1;
1080    }
1081    if (kernel_size < 0) {
1082        error_report("could not load kernel '%s'", info->kernel_filename);
1083        exit(1);
1084    }
1085    info->entry = entry;
1086    if (is_linux) {
1087        uint32_t fixupcontext[FIXUP_MAX];
1088
1089        if (info->initrd_filename) {
1090            initrd_size = load_ramdisk_as(info->initrd_filename,
1091                                          info->initrd_start,
1092                                          info->ram_size - info->initrd_start,
1093                                          as);
1094            if (initrd_size < 0) {
1095                initrd_size = load_image_targphys_as(info->initrd_filename,
1096                                                     info->initrd_start,
1097                                                     info->ram_size -
1098                                                     info->initrd_start,
1099                                                     as);
1100            }
1101            if (initrd_size < 0) {
1102                error_report("could not load initrd '%s'",
1103                             info->initrd_filename);
1104                exit(1);
1105            }
1106        } else {
1107            initrd_size = 0;
1108        }
1109        info->initrd_size = initrd_size;
1110
1111        fixupcontext[FIXUP_BOARDID] = info->board_id;
1112        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1113
1114        /* for device tree boot, we pass the DTB directly in r2. Otherwise
1115         * we point to the kernel args.
1116         */
1117        if (have_dtb(info)) {
1118            hwaddr align;
1119            hwaddr dtb_start;
1120
1121            if (elf_machine == EM_AARCH64) {
1122                /*
1123                 * Some AArch64 kernels on early bootup map the fdt region as
1124                 *
1125                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1126                 *
1127                 * Let's play safe and prealign it to 2MB to give us some space.
1128                 */
1129                align = 2 * 1024 * 1024;
1130            } else {
1131                /*
1132                 * Some 32bit kernels will trash anything in the 4K page the
1133                 * initrd ends in, so make sure the DTB isn't caught up in that.
1134                 */
1135                align = 4096;
1136            }
1137
1138            /* Place the DTB after the initrd in memory with alignment. */
1139            dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
1140            if (load_dtb(dtb_start, info, 0, as) < 0) {
1141                exit(1);
1142            }
1143            fixupcontext[FIXUP_ARGPTR] = dtb_start;
1144        } else {
1145            fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1146            if (info->ram_size >= (1ULL << 32)) {
1147                error_report("RAM size must be less than 4GB to boot"
1148                             " Linux kernel using ATAGS (try passing a device tree"
1149                             " using -dtb)");
1150                exit(1);
1151            }
1152        }
1153        fixupcontext[FIXUP_ENTRYPOINT] = entry;
1154
1155        write_bootloader("bootloader", info->loader_start,
1156                         primary_loader, fixupcontext, as);
1157
1158        if (info->nb_cpus > 1) {
1159            info->write_secondary_boot(cpu, info);
1160        }
1161        if (info->write_board_setup) {
1162            info->write_board_setup(cpu, info);
1163        }
1164
1165        /* Notify devices which need to fake up firmware initialization
1166         * that we're doing a direct kernel boot.
1167         */
1168        object_child_foreach_recursive(object_get_root(),
1169                                       do_arm_linux_init, info);
1170    }
1171    info->is_linux = is_linux;
1172
1173    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1174        ARM_CPU(cs)->env.boot_info = info;
1175    }
1176}
1177
1178void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1179{
1180    CPUState *cs;
1181
1182    info->load_kernel_notifier.cpu = cpu;
1183    info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1184    qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1185
1186    /* CPU objects (unlike devices) are not automatically reset on system
1187     * reset, so we must always register a handler to do so. If we're
1188     * actually loading a kernel, the handler is also responsible for
1189     * arranging that we start it correctly.
1190     */
1191    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1192        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1193    }
1194}
1195
1196static const TypeInfo arm_linux_boot_if_info = {
1197    .name = TYPE_ARM_LINUX_BOOT_IF,
1198    .parent = TYPE_INTERFACE,
1199    .class_size = sizeof(ARMLinuxBootIfClass),
1200};
1201
1202static void arm_linux_boot_register_types(void)
1203{
1204    type_register_static(&arm_linux_boot_if_info);
1205}
1206
1207type_init(arm_linux_boot_register_types)
1208