qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/vfio/vfio-calxeda-xgmac.h"
  38#include "hw/vfio/vfio-amd-xgbe.h"
  39#include "hw/devices.h"
  40#include "net/net.h"
  41#include "sysemu/block-backend.h"
  42#include "sysemu/device_tree.h"
  43#include "sysemu/numa.h"
  44#include "sysemu/sysemu.h"
  45#include "sysemu/kvm.h"
  46#include "hw/compat.h"
  47#include "hw/loader.h"
  48#include "exec/address-spaces.h"
  49#include "qemu/bitops.h"
  50#include "qemu/error-report.h"
  51#include "hw/pci-host/gpex.h"
  52#include "hw/arm/sysbus-fdt.h"
  53#include "hw/platform-bus.h"
  54#include "hw/arm/fdt.h"
  55#include "hw/intc/arm_gic.h"
  56#include "hw/intc/arm_gicv3_common.h"
  57#include "kvm_arm.h"
  58#include "hw/smbios/smbios.h"
  59#include "qapi/visitor.h"
  60#include "standard-headers/linux/input.h"
  61
  62#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  63    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  64                                                    void *data) \
  65    { \
  66        MachineClass *mc = MACHINE_CLASS(oc); \
  67        virt_machine_##major##_##minor##_options(mc); \
  68        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  69        if (latest) { \
  70            mc->alias = "virt"; \
  71        } \
  72    } \
  73    static const TypeInfo machvirt_##major##_##minor##_info = { \
  74        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  75        .parent = TYPE_VIRT_MACHINE, \
  76        .instance_init = virt_##major##_##minor##_instance_init, \
  77        .class_init = virt_##major##_##minor##_class_init, \
  78    }; \
  79    static void machvirt_machine_##major##_##minor##_init(void) \
  80    { \
  81        type_register_static(&machvirt_##major##_##minor##_info); \
  82    } \
  83    type_init(machvirt_machine_##major##_##minor##_init);
  84
  85#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  86    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  87#define DEFINE_VIRT_MACHINE(major, minor) \
  88    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  89
  90
  91/* Number of external interrupt lines to configure the GIC with */
  92#define NUM_IRQS 256
  93
  94#define PLATFORM_BUS_NUM_IRQS 64
  95
  96static ARMPlatformBusSystemParams platform_bus_params;
  97
  98/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
  99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 100 * address space unallocated and free for future use between 256G and 512G.
 101 * If we need to provide more RAM to VMs in the future then we need to:
 102 *  * allocate a second bank of RAM starting at 2TB and working up
 103 *  * fix the DT and ACPI table generation code in QEMU to correctly
 104 *    report two split lumps of RAM to the guest
 105 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 106 * (We don't want to fill all the way up to 512GB with RAM because
 107 * we might want it for non-RAM purposes later. Conversely it seems
 108 * reasonable to assume that anybody configuring a VM with a quarter
 109 * of a terabyte of RAM will be doing it on a host with more than a
 110 * terabyte of physical address space.)
 111 */
 112#define RAMLIMIT_GB 255
 113#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 114
 115/* Addresses and sizes of our components.
 116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 117 * 128MB..256MB is used for miscellaneous device I/O.
 118 * 256MB..1GB is reserved for possible future PCI support (ie where the
 119 * PCI memory window will go if we add a PCI host controller).
 120 * 1GB and up is RAM (which may happily spill over into the
 121 * high memory region beyond 4GB).
 122 * This represents a compromise between how much RAM can be given to
 123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 124 * Note that devices should generally be placed at multiples of 0x10000,
 125 * to accommodate guests using 64K pages.
 126 */
 127static const MemMapEntry a15memmap[] = {
 128    /* Space up to 0x8000000 is reserved for a boot ROM */
 129    [VIRT_FLASH] =              {          0, 0x08000000 },
 130    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 131    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 132    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 133    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 134    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 135    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 136    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 137    /* This redistributor space allows up to 2*64kB*123 CPUs */
 138    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 139    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 140    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 141    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 142    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 143    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 144    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 145    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 146    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 147    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 148    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 149    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 150    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 151    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 152    /* Second PCIe window, 512GB wide at the 512GB boundary */
 153    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 154};
 155
 156static const int a15irqmap[] = {
 157    [VIRT_UART] = 1,
 158    [VIRT_RTC] = 2,
 159    [VIRT_PCIE] = 3, /* ... to 6 */
 160    [VIRT_GPIO] = 7,
 161    [VIRT_SECURE_UART] = 8,
 162    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 163    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 164    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 165};
 166
 167static const char *valid_cpus[] = {
 168    ARM_CPU_TYPE_NAME("cortex-a15"),
 169    ARM_CPU_TYPE_NAME("cortex-a53"),
 170    ARM_CPU_TYPE_NAME("cortex-a57"),
 171    ARM_CPU_TYPE_NAME("host"),
 172    ARM_CPU_TYPE_NAME("max"),
 173};
 174
 175static bool cpu_type_valid(const char *cpu)
 176{
 177    int i;
 178
 179    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 180        if (strcmp(cpu, valid_cpus[i]) == 0) {
 181            return true;
 182        }
 183    }
 184    return false;
 185}
 186
 187static void create_fdt(VirtMachineState *vms)
 188{
 189    void *fdt = create_device_tree(&vms->fdt_size);
 190
 191    if (!fdt) {
 192        error_report("create_device_tree() failed");
 193        exit(1);
 194    }
 195
 196    vms->fdt = fdt;
 197
 198    /* Header */
 199    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 200    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 201    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 202
 203    /*
 204     * /chosen and /memory nodes must exist for load_dtb
 205     * to fill in necessary properties later
 206     */
 207    qemu_fdt_add_subnode(fdt, "/chosen");
 208    qemu_fdt_add_subnode(fdt, "/memory");
 209    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 210
 211    /* Clock node, for the benefit of the UART. The kernel device tree
 212     * binding documentation claims the PL011 node clock properties are
 213     * optional but in practice if you omit them the kernel refuses to
 214     * probe for the device.
 215     */
 216    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 217    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 218    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 219    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 220    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 221    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 222                                "clk24mhz");
 223    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 224
 225    if (have_numa_distance) {
 226        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 227        uint32_t *matrix = g_malloc0(size);
 228        int idx, i, j;
 229
 230        for (i = 0; i < nb_numa_nodes; i++) {
 231            for (j = 0; j < nb_numa_nodes; j++) {
 232                idx = (i * nb_numa_nodes + j) * 3;
 233                matrix[idx + 0] = cpu_to_be32(i);
 234                matrix[idx + 1] = cpu_to_be32(j);
 235                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 236            }
 237        }
 238
 239        qemu_fdt_add_subnode(fdt, "/distance-map");
 240        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 241                                "numa-distance-map-v1");
 242        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 243                         matrix, size);
 244        g_free(matrix);
 245    }
 246}
 247
 248static void fdt_add_timer_nodes(const VirtMachineState *vms)
 249{
 250    /* On real hardware these interrupts are level-triggered.
 251     * On KVM they were edge-triggered before host kernel version 4.4,
 252     * and level-triggered afterwards.
 253     * On emulated QEMU they are level-triggered.
 254     *
 255     * Getting the DTB info about them wrong is awkward for some
 256     * guest kernels:
 257     *  pre-4.8 ignore the DT and leave the interrupt configured
 258     *   with whatever the GIC reset value (or the bootloader) left it at
 259     *  4.8 before rc6 honour the incorrect data by programming it back
 260     *   into the GIC, causing problems
 261     *  4.8rc6 and later ignore the DT and always write "level triggered"
 262     *   into the GIC
 263     *
 264     * For backwards-compatibility, virt-2.8 and earlier will continue
 265     * to say these are edge-triggered, but later machines will report
 266     * the correct information.
 267     */
 268    ARMCPU *armcpu;
 269    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 270    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 271
 272    if (vmc->claim_edge_triggered_timers) {
 273        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 274    }
 275
 276    if (vms->gic_version == 2) {
 277        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 278                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 279                             (1 << vms->smp_cpus) - 1);
 280    }
 281
 282    qemu_fdt_add_subnode(vms->fdt, "/timer");
 283
 284    armcpu = ARM_CPU(qemu_get_cpu(0));
 285    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 286        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 287        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 288                         compat, sizeof(compat));
 289    } else {
 290        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 291                                "arm,armv7-timer");
 292    }
 293    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 294    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 295                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 296                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 297                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 298                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 299}
 300
 301static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 302{
 303    int cpu;
 304    int addr_cells = 1;
 305    const MachineState *ms = MACHINE(vms);
 306
 307    /*
 308     * From Documentation/devicetree/bindings/arm/cpus.txt
 309     *  On ARM v8 64-bit systems value should be set to 2,
 310     *  that corresponds to the MPIDR_EL1 register size.
 311     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 312     *  in the system, #address-cells can be set to 1, since
 313     *  MPIDR_EL1[63:32] bits are not used for CPUs
 314     *  identification.
 315     *
 316     *  Here we actually don't know whether our system is 32- or 64-bit one.
 317     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 318     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 319     */
 320    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 321        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 322
 323        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 324            addr_cells = 2;
 325            break;
 326        }
 327    }
 328
 329    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 330    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 331    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 332
 333    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 334        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 335        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 336        CPUState *cs = CPU(armcpu);
 337
 338        qemu_fdt_add_subnode(vms->fdt, nodename);
 339        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 340        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 341                                    armcpu->dtb_compatible);
 342
 343        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 344            && vms->smp_cpus > 1) {
 345            qemu_fdt_setprop_string(vms->fdt, nodename,
 346                                        "enable-method", "psci");
 347        }
 348
 349        if (addr_cells == 2) {
 350            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 351                                 armcpu->mp_affinity);
 352        } else {
 353            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 354                                  armcpu->mp_affinity);
 355        }
 356
 357        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 358            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 359                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 360        }
 361
 362        g_free(nodename);
 363    }
 364}
 365
 366static void fdt_add_its_gic_node(VirtMachineState *vms)
 367{
 368    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 369    qemu_fdt_add_subnode(vms->fdt, "/intc/its");
 370    qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
 371                            "arm,gic-v3-its");
 372    qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
 373    qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
 374                                 2, vms->memmap[VIRT_GIC_ITS].base,
 375                                 2, vms->memmap[VIRT_GIC_ITS].size);
 376    qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
 377}
 378
 379static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 380{
 381    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 382    qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
 383    qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
 384                            "arm,gic-v2m-frame");
 385    qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 386    qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
 387                                 2, vms->memmap[VIRT_GIC_V2M].base,
 388                                 2, vms->memmap[VIRT_GIC_V2M].size);
 389    qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
 390}
 391
 392static void fdt_add_gic_node(VirtMachineState *vms)
 393{
 394    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 395    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 396
 397    qemu_fdt_add_subnode(vms->fdt, "/intc");
 398    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
 399    qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
 400    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
 401    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
 402    qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
 403    if (vms->gic_version == 3) {
 404        qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 405                                "arm,gic-v3");
 406        qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 407                                     2, vms->memmap[VIRT_GIC_DIST].base,
 408                                     2, vms->memmap[VIRT_GIC_DIST].size,
 409                                     2, vms->memmap[VIRT_GIC_REDIST].base,
 410                                     2, vms->memmap[VIRT_GIC_REDIST].size);
 411        if (vms->virt) {
 412            qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
 413                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
 414                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 415        }
 416    } else {
 417        /* 'cortex-a15-gic' means 'GIC v2' */
 418        qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 419                                "arm,cortex-a15-gic");
 420        qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 421                                      2, vms->memmap[VIRT_GIC_DIST].base,
 422                                      2, vms->memmap[VIRT_GIC_DIST].size,
 423                                      2, vms->memmap[VIRT_GIC_CPU].base,
 424                                      2, vms->memmap[VIRT_GIC_CPU].size);
 425    }
 426
 427    qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
 428}
 429
 430static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 431{
 432    CPUState *cpu;
 433    ARMCPU *armcpu;
 434    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 435
 436    CPU_FOREACH(cpu) {
 437        armcpu = ARM_CPU(cpu);
 438        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 439            return;
 440        }
 441        if (kvm_enabled()) {
 442            if (kvm_irqchip_in_kernel()) {
 443                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 444            }
 445            kvm_arm_pmu_init(cpu);
 446        }
 447    }
 448
 449    if (vms->gic_version == 2) {
 450        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 451                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 452                             (1 << vms->smp_cpus) - 1);
 453    }
 454
 455    armcpu = ARM_CPU(qemu_get_cpu(0));
 456    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 457    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 458        const char compat[] = "arm,armv8-pmuv3";
 459        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 460                         compat, sizeof(compat));
 461        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 462                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 463    }
 464}
 465
 466static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 467{
 468    const char *itsclass = its_class_name();
 469    DeviceState *dev;
 470
 471    if (!itsclass) {
 472        /* Do nothing if not supported */
 473        return;
 474    }
 475
 476    dev = qdev_create(NULL, itsclass);
 477
 478    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 479                             &error_abort);
 480    qdev_init_nofail(dev);
 481    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 482
 483    fdt_add_its_gic_node(vms);
 484}
 485
 486static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 487{
 488    int i;
 489    int irq = vms->irqmap[VIRT_GIC_V2M];
 490    DeviceState *dev;
 491
 492    dev = qdev_create(NULL, "arm-gicv2m");
 493    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 494    qdev_prop_set_uint32(dev, "base-spi", irq);
 495    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 496    qdev_init_nofail(dev);
 497
 498    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 499        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 500    }
 501
 502    fdt_add_v2m_gic_node(vms);
 503}
 504
 505static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 506{
 507    /* We create a standalone GIC */
 508    DeviceState *gicdev;
 509    SysBusDevice *gicbusdev;
 510    const char *gictype;
 511    int type = vms->gic_version, i;
 512
 513    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 514
 515    gicdev = qdev_create(NULL, gictype);
 516    qdev_prop_set_uint32(gicdev, "revision", type);
 517    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 518    /* Note that the num-irq property counts both internal and external
 519     * interrupts; there are always 32 of the former (mandated by GIC spec).
 520     */
 521    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 522    if (!kvm_irqchip_in_kernel()) {
 523        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 524    }
 525    qdev_init_nofail(gicdev);
 526    gicbusdev = SYS_BUS_DEVICE(gicdev);
 527    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 528    if (type == 3) {
 529        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 530    } else {
 531        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 532    }
 533
 534    /* Wire the outputs from each CPU's generic timer and the GICv3
 535     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 536     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 537     */
 538    for (i = 0; i < smp_cpus; i++) {
 539        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 540        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 541        int irq;
 542        /* Mapping from the output timer irq lines from the CPU to the
 543         * GIC PPI inputs we use for the virt board.
 544         */
 545        const int timer_irq[] = {
 546            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 547            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 548            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 549            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 550        };
 551
 552        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 553            qdev_connect_gpio_out(cpudev, irq,
 554                                  qdev_get_gpio_in(gicdev,
 555                                                   ppibase + timer_irq[irq]));
 556        }
 557
 558        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 559                                    qdev_get_gpio_in(gicdev, ppibase
 560                                                     + ARCH_GICV3_MAINT_IRQ));
 561        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 562                                    qdev_get_gpio_in(gicdev, ppibase
 563                                                     + VIRTUAL_PMU_IRQ));
 564
 565        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 566        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 567                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 568        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 569                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 570        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 571                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 572    }
 573
 574    for (i = 0; i < NUM_IRQS; i++) {
 575        pic[i] = qdev_get_gpio_in(gicdev, i);
 576    }
 577
 578    fdt_add_gic_node(vms);
 579
 580    if (type == 3 && vms->its) {
 581        create_its(vms, gicdev);
 582    } else if (type == 2) {
 583        create_v2m(vms, pic);
 584    }
 585}
 586
 587static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 588                        MemoryRegion *mem, Chardev *chr)
 589{
 590    char *nodename;
 591    hwaddr base = vms->memmap[uart].base;
 592    hwaddr size = vms->memmap[uart].size;
 593    int irq = vms->irqmap[uart];
 594    const char compat[] = "arm,pl011\0arm,primecell";
 595    const char clocknames[] = "uartclk\0apb_pclk";
 596    DeviceState *dev = qdev_create(NULL, "pl011");
 597    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 598
 599    qdev_prop_set_chr(dev, "chardev", chr);
 600    qdev_init_nofail(dev);
 601    memory_region_add_subregion(mem, base,
 602                                sysbus_mmio_get_region(s, 0));
 603    sysbus_connect_irq(s, 0, pic[irq]);
 604
 605    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 606    qemu_fdt_add_subnode(vms->fdt, nodename);
 607    /* Note that we can't use setprop_string because of the embedded NUL */
 608    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 609                         compat, sizeof(compat));
 610    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 611                                     2, base, 2, size);
 612    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 613                               GIC_FDT_IRQ_TYPE_SPI, irq,
 614                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 615    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 616                               vms->clock_phandle, vms->clock_phandle);
 617    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 618                         clocknames, sizeof(clocknames));
 619
 620    if (uart == VIRT_UART) {
 621        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 622    } else {
 623        /* Mark as not usable by the normal world */
 624        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 625        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 626    }
 627
 628    g_free(nodename);
 629}
 630
 631static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 632{
 633    char *nodename;
 634    hwaddr base = vms->memmap[VIRT_RTC].base;
 635    hwaddr size = vms->memmap[VIRT_RTC].size;
 636    int irq = vms->irqmap[VIRT_RTC];
 637    const char compat[] = "arm,pl031\0arm,primecell";
 638
 639    sysbus_create_simple("pl031", base, pic[irq]);
 640
 641    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 642    qemu_fdt_add_subnode(vms->fdt, nodename);
 643    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 644    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 645                                 2, base, 2, size);
 646    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 647                           GIC_FDT_IRQ_TYPE_SPI, irq,
 648                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 649    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 650    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 651    g_free(nodename);
 652}
 653
 654static DeviceState *gpio_key_dev;
 655static void virt_powerdown_req(Notifier *n, void *opaque)
 656{
 657    /* use gpio Pin 3 for power button event */
 658    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 659}
 660
 661static Notifier virt_system_powerdown_notifier = {
 662    .notify = virt_powerdown_req
 663};
 664
 665static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 666{
 667    char *nodename;
 668    DeviceState *pl061_dev;
 669    hwaddr base = vms->memmap[VIRT_GPIO].base;
 670    hwaddr size = vms->memmap[VIRT_GPIO].size;
 671    int irq = vms->irqmap[VIRT_GPIO];
 672    const char compat[] = "arm,pl061\0arm,primecell";
 673
 674    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 675
 676    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 677    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 678    qemu_fdt_add_subnode(vms->fdt, nodename);
 679    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 680                                 2, base, 2, size);
 681    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 682    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 683    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 684    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 685                           GIC_FDT_IRQ_TYPE_SPI, irq,
 686                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 687    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 688    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 689    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 690
 691    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 692                                        qdev_get_gpio_in(pl061_dev, 3));
 693    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 694    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 695    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 696    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 697
 698    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 699    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 700                            "label", "GPIO Key Poweroff");
 701    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 702                          KEY_POWER);
 703    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 704                           "gpios", phandle, 3, 0);
 705
 706    /* connect powerdown request */
 707    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 708
 709    g_free(nodename);
 710}
 711
 712static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 713{
 714    int i;
 715    hwaddr size = vms->memmap[VIRT_MMIO].size;
 716
 717    /* We create the transports in forwards order. Since qbus_realize()
 718     * prepends (not appends) new child buses, the incrementing loop below will
 719     * create a list of virtio-mmio buses with decreasing base addresses.
 720     *
 721     * When a -device option is processed from the command line,
 722     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 723     * order. The upshot is that -device options in increasing command line
 724     * order are mapped to virtio-mmio buses with decreasing base addresses.
 725     *
 726     * When this code was originally written, that arrangement ensured that the
 727     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 728     * the first -device on the command line. (The end-to-end order is a
 729     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 730     * guest kernel's name-to-address assignment strategy.)
 731     *
 732     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 733     * the message, if not necessarily the code, of commit 70161ff336.
 734     * Therefore the loop now establishes the inverse of the original intent.
 735     *
 736     * Unfortunately, we can't counteract the kernel change by reversing the
 737     * loop; it would break existing command lines.
 738     *
 739     * In any case, the kernel makes no guarantee about the stability of
 740     * enumeration order of virtio devices (as demonstrated by it changing
 741     * between kernel versions). For reliable and stable identification
 742     * of disks users must use UUIDs or similar mechanisms.
 743     */
 744    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 745        int irq = vms->irqmap[VIRT_MMIO] + i;
 746        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 747
 748        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 749    }
 750
 751    /* We add dtb nodes in reverse order so that they appear in the finished
 752     * device tree lowest address first.
 753     *
 754     * Note that this mapping is independent of the loop above. The previous
 755     * loop influences virtio device to virtio transport assignment, whereas
 756     * this loop controls how virtio transports are laid out in the dtb.
 757     */
 758    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 759        char *nodename;
 760        int irq = vms->irqmap[VIRT_MMIO] + i;
 761        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 762
 763        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 764        qemu_fdt_add_subnode(vms->fdt, nodename);
 765        qemu_fdt_setprop_string(vms->fdt, nodename,
 766                                "compatible", "virtio,mmio");
 767        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 768                                     2, base, 2, size);
 769        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 770                               GIC_FDT_IRQ_TYPE_SPI, irq,
 771                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 772        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 773        g_free(nodename);
 774    }
 775}
 776
 777static void create_one_flash(const char *name, hwaddr flashbase,
 778                             hwaddr flashsize, const char *file,
 779                             MemoryRegion *sysmem)
 780{
 781    /* Create and map a single flash device. We use the same
 782     * parameters as the flash devices on the Versatile Express board.
 783     */
 784    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 785    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 786    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 787    const uint64_t sectorlength = 256 * 1024;
 788
 789    if (dinfo) {
 790        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 791                            &error_abort);
 792    }
 793
 794    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 795    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 796    qdev_prop_set_uint8(dev, "width", 4);
 797    qdev_prop_set_uint8(dev, "device-width", 2);
 798    qdev_prop_set_bit(dev, "big-endian", false);
 799    qdev_prop_set_uint16(dev, "id0", 0x89);
 800    qdev_prop_set_uint16(dev, "id1", 0x18);
 801    qdev_prop_set_uint16(dev, "id2", 0x00);
 802    qdev_prop_set_uint16(dev, "id3", 0x00);
 803    qdev_prop_set_string(dev, "name", name);
 804    qdev_init_nofail(dev);
 805
 806    memory_region_add_subregion(sysmem, flashbase,
 807                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 808
 809    if (file) {
 810        char *fn;
 811        int image_size;
 812
 813        if (drive_get(IF_PFLASH, 0, 0)) {
 814            error_report("The contents of the first flash device may be "
 815                         "specified with -bios or with -drive if=pflash... "
 816                         "but you cannot use both options at once");
 817            exit(1);
 818        }
 819        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 820        if (!fn) {
 821            error_report("Could not find ROM image '%s'", file);
 822            exit(1);
 823        }
 824        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 825        g_free(fn);
 826        if (image_size < 0) {
 827            error_report("Could not load ROM image '%s'", file);
 828            exit(1);
 829        }
 830    }
 831}
 832
 833static void create_flash(const VirtMachineState *vms,
 834                         MemoryRegion *sysmem,
 835                         MemoryRegion *secure_sysmem)
 836{
 837    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 838     * Any file passed via -bios goes in the first of these.
 839     * sysmem is the system memory space. secure_sysmem is the secure view
 840     * of the system, and the first flash device should be made visible only
 841     * there. The second flash device is visible to both secure and nonsecure.
 842     * If sysmem == secure_sysmem this means there is no separate Secure
 843     * address space and both flash devices are generally visible.
 844     */
 845    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 846    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 847    char *nodename;
 848
 849    create_one_flash("virt.flash0", flashbase, flashsize,
 850                     bios_name, secure_sysmem);
 851    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 852                     NULL, sysmem);
 853
 854    if (sysmem == secure_sysmem) {
 855        /* Report both flash devices as a single node in the DT */
 856        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 857        qemu_fdt_add_subnode(vms->fdt, nodename);
 858        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 859        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 860                                     2, flashbase, 2, flashsize,
 861                                     2, flashbase + flashsize, 2, flashsize);
 862        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 863        g_free(nodename);
 864    } else {
 865        /* Report the devices as separate nodes so we can mark one as
 866         * only visible to the secure world.
 867         */
 868        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 869        qemu_fdt_add_subnode(vms->fdt, nodename);
 870        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 871        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 872                                     2, flashbase, 2, flashsize);
 873        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 874        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 875        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 876        g_free(nodename);
 877
 878        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 879        qemu_fdt_add_subnode(vms->fdt, nodename);
 880        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 881        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 882                                     2, flashbase + flashsize, 2, flashsize);
 883        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 884        g_free(nodename);
 885    }
 886}
 887
 888static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 889{
 890    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 891    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 892    FWCfgState *fw_cfg;
 893    char *nodename;
 894
 895    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 896    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 897
 898    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 899    qemu_fdt_add_subnode(vms->fdt, nodename);
 900    qemu_fdt_setprop_string(vms->fdt, nodename,
 901                            "compatible", "qemu,fw-cfg-mmio");
 902    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 903                                 2, base, 2, size);
 904    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 905    g_free(nodename);
 906    return fw_cfg;
 907}
 908
 909static void create_pcie_irq_map(const VirtMachineState *vms,
 910                                uint32_t gic_phandle,
 911                                int first_irq, const char *nodename)
 912{
 913    int devfn, pin;
 914    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 915    uint32_t *irq_map = full_irq_map;
 916
 917    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 918        for (pin = 0; pin < 4; pin++) {
 919            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 920            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 921            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 922            int i;
 923
 924            uint32_t map[] = {
 925                devfn << 8, 0, 0,                           /* devfn */
 926                pin + 1,                                    /* PCI pin */
 927                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 928
 929            /* Convert map to big endian */
 930            for (i = 0; i < 10; i++) {
 931                irq_map[i] = cpu_to_be32(map[i]);
 932            }
 933            irq_map += 10;
 934        }
 935    }
 936
 937    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
 938                     full_irq_map, sizeof(full_irq_map));
 939
 940    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
 941                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 942                           0x7           /* PCI irq */);
 943}
 944
 945static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
 946{
 947    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
 948    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
 949    hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
 950    hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
 951    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
 952    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
 953    hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
 954    hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
 955    hwaddr base = base_mmio;
 956    int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 957    int irq = vms->irqmap[VIRT_PCIE];
 958    MemoryRegion *mmio_alias;
 959    MemoryRegion *mmio_reg;
 960    MemoryRegion *ecam_alias;
 961    MemoryRegion *ecam_reg;
 962    DeviceState *dev;
 963    char *nodename;
 964    int i;
 965    PCIHostState *pci;
 966
 967    dev = qdev_create(NULL, TYPE_GPEX_HOST);
 968    qdev_init_nofail(dev);
 969
 970    /* Map only the first size_ecam bytes of ECAM space */
 971    ecam_alias = g_new0(MemoryRegion, 1);
 972    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 973    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 974                             ecam_reg, 0, size_ecam);
 975    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 976
 977    /* Map the MMIO window into system address space so as to expose
 978     * the section of PCI MMIO space which starts at the same base address
 979     * (ie 1:1 mapping for that part of PCI MMIO space visible through
 980     * the window).
 981     */
 982    mmio_alias = g_new0(MemoryRegion, 1);
 983    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 984    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 985                             mmio_reg, base_mmio, size_mmio);
 986    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 987
 988    if (vms->highmem) {
 989        /* Map high MMIO space */
 990        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
 991
 992        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
 993                                 mmio_reg, base_mmio_high, size_mmio_high);
 994        memory_region_add_subregion(get_system_memory(), base_mmio_high,
 995                                    high_mmio_alias);
 996    }
 997
 998    /* Map IO port space */
 999    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1000
1001    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1002        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1003        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1004    }
1005
1006    pci = PCI_HOST_BRIDGE(dev);
1007    if (pci->bus) {
1008        for (i = 0; i < nb_nics; i++) {
1009            NICInfo *nd = &nd_table[i];
1010
1011            if (!nd->model) {
1012                nd->model = g_strdup("virtio");
1013            }
1014
1015            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1016        }
1017    }
1018
1019    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1020    qemu_fdt_add_subnode(vms->fdt, nodename);
1021    qemu_fdt_setprop_string(vms->fdt, nodename,
1022                            "compatible", "pci-host-ecam-generic");
1023    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1024    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1025    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1026    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1027                           nr_pcie_buses - 1);
1028    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1029
1030    if (vms->msi_phandle) {
1031        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1032                               vms->msi_phandle);
1033    }
1034
1035    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1036                                 2, base_ecam, 2, size_ecam);
1037
1038    if (vms->highmem) {
1039        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1040                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1041                                     2, base_pio, 2, size_pio,
1042                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1043                                     2, base_mmio, 2, size_mmio,
1044                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1045                                     2, base_mmio_high,
1046                                     2, base_mmio_high, 2, size_mmio_high);
1047    } else {
1048        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1049                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1050                                     2, base_pio, 2, size_pio,
1051                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1052                                     2, base_mmio, 2, size_mmio);
1053    }
1054
1055    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1056    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1057
1058    g_free(nodename);
1059}
1060
1061static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1062{
1063    DeviceState *dev;
1064    SysBusDevice *s;
1065    int i;
1066    ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1067    MemoryRegion *sysmem = get_system_memory();
1068
1069    platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1070    platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1071    platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1072    platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1073
1074    fdt_params->system_params = &platform_bus_params;
1075    fdt_params->binfo = &vms->bootinfo;
1076    fdt_params->intc = "/intc";
1077    /*
1078     * register a machine init done notifier that creates the device tree
1079     * nodes of the platform bus and its children dynamic sysbus devices
1080     */
1081    arm_register_platform_bus_fdt_creator(fdt_params);
1082
1083    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1084    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1085    qdev_prop_set_uint32(dev, "num_irqs",
1086        platform_bus_params.platform_bus_num_irqs);
1087    qdev_prop_set_uint32(dev, "mmio_size",
1088        platform_bus_params.platform_bus_size);
1089    qdev_init_nofail(dev);
1090    s = SYS_BUS_DEVICE(dev);
1091
1092    for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1093        int irqn = platform_bus_params.platform_bus_first_irq + i;
1094        sysbus_connect_irq(s, i, pic[irqn]);
1095    }
1096
1097    memory_region_add_subregion(sysmem,
1098                                platform_bus_params.platform_bus_base,
1099                                sysbus_mmio_get_region(s, 0));
1100}
1101
1102static void create_secure_ram(VirtMachineState *vms,
1103                              MemoryRegion *secure_sysmem)
1104{
1105    MemoryRegion *secram = g_new(MemoryRegion, 1);
1106    char *nodename;
1107    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1108    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1109
1110    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1111                           &error_fatal);
1112    memory_region_add_subregion(secure_sysmem, base, secram);
1113
1114    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1115    qemu_fdt_add_subnode(vms->fdt, nodename);
1116    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1117    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1118    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1119    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1120
1121    g_free(nodename);
1122}
1123
1124static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1125{
1126    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1127                                                 bootinfo);
1128
1129    *fdt_size = board->fdt_size;
1130    return board->fdt;
1131}
1132
1133static void virt_build_smbios(VirtMachineState *vms)
1134{
1135    MachineClass *mc = MACHINE_GET_CLASS(vms);
1136    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1137    uint8_t *smbios_tables, *smbios_anchor;
1138    size_t smbios_tables_len, smbios_anchor_len;
1139    const char *product = "QEMU Virtual Machine";
1140
1141    if (!vms->fw_cfg) {
1142        return;
1143    }
1144
1145    if (kvm_enabled()) {
1146        product = "KVM Virtual Machine";
1147    }
1148
1149    smbios_set_defaults("QEMU", product,
1150                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1151                        true, SMBIOS_ENTRY_POINT_30);
1152
1153    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1154                      &smbios_anchor, &smbios_anchor_len);
1155
1156    if (smbios_anchor) {
1157        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1158                        smbios_tables, smbios_tables_len);
1159        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1160                        smbios_anchor, smbios_anchor_len);
1161    }
1162}
1163
1164static
1165void virt_machine_done(Notifier *notifier, void *data)
1166{
1167    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1168                                         machine_done);
1169
1170    virt_acpi_setup(vms);
1171    virt_build_smbios(vms);
1172}
1173
1174static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1175{
1176    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1177    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1178
1179    if (!vmc->disallow_affinity_adjustment) {
1180        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1181         * GIC's target-list limitations. 32-bit KVM hosts currently
1182         * always create clusters of 4 CPUs, but that is expected to
1183         * change when they gain support for gicv3. When KVM is enabled
1184         * it will override the changes we make here, therefore our
1185         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1186         * and to improve SGI efficiency.
1187         */
1188        if (vms->gic_version == 3) {
1189            clustersz = GICV3_TARGETLIST_BITS;
1190        } else {
1191            clustersz = GIC_TARGETLIST_BITS;
1192        }
1193    }
1194    return arm_cpu_mp_affinity(idx, clustersz);
1195}
1196
1197static void machvirt_init(MachineState *machine)
1198{
1199    VirtMachineState *vms = VIRT_MACHINE(machine);
1200    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1201    MachineClass *mc = MACHINE_GET_CLASS(machine);
1202    const CPUArchIdList *possible_cpus;
1203    qemu_irq pic[NUM_IRQS];
1204    MemoryRegion *sysmem = get_system_memory();
1205    MemoryRegion *secure_sysmem = NULL;
1206    int n, virt_max_cpus;
1207    MemoryRegion *ram = g_new(MemoryRegion, 1);
1208    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1209
1210    /* We can probe only here because during property set
1211     * KVM is not available yet
1212     */
1213    if (vms->gic_version <= 0) {
1214        /* "host" or "max" */
1215        if (!kvm_enabled()) {
1216            if (vms->gic_version == 0) {
1217                error_report("gic-version=host requires KVM");
1218                exit(1);
1219            } else {
1220                /* "max": currently means 3 for TCG */
1221                vms->gic_version = 3;
1222            }
1223        } else {
1224            vms->gic_version = kvm_arm_vgic_probe();
1225            if (!vms->gic_version) {
1226                error_report(
1227                    "Unable to determine GIC version supported by host");
1228                exit(1);
1229            }
1230        }
1231    }
1232
1233    if (!cpu_type_valid(machine->cpu_type)) {
1234        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1235        exit(1);
1236    }
1237
1238    /* If we have an EL3 boot ROM then the assumption is that it will
1239     * implement PSCI itself, so disable QEMU's internal implementation
1240     * so it doesn't get in the way. Instead of starting secondary
1241     * CPUs in PSCI powerdown state we will start them all running and
1242     * let the boot ROM sort them out.
1243     * The usual case is that we do use QEMU's PSCI implementation;
1244     * if the guest has EL2 then we will use SMC as the conduit,
1245     * and otherwise we will use HVC (for backwards compatibility and
1246     * because if we're using KVM then we must use HVC).
1247     */
1248    if (vms->secure && firmware_loaded) {
1249        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1250    } else if (vms->virt) {
1251        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1252    } else {
1253        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1254    }
1255
1256    /* The maximum number of CPUs depends on the GIC version, or on how
1257     * many redistributors we can fit into the memory map.
1258     */
1259    if (vms->gic_version == 3) {
1260        virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1261    } else {
1262        virt_max_cpus = GIC_NCPU;
1263    }
1264
1265    if (max_cpus > virt_max_cpus) {
1266        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1267                     "supported by machine 'mach-virt' (%d)",
1268                     max_cpus, virt_max_cpus);
1269        exit(1);
1270    }
1271
1272    vms->smp_cpus = smp_cpus;
1273
1274    if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1275        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1276        exit(1);
1277    }
1278
1279    if (vms->virt && kvm_enabled()) {
1280        error_report("mach-virt: KVM does not support providing "
1281                     "Virtualization extensions to the guest CPU");
1282        exit(1);
1283    }
1284
1285    if (vms->secure) {
1286        if (kvm_enabled()) {
1287            error_report("mach-virt: KVM does not support Security extensions");
1288            exit(1);
1289        }
1290
1291        /* The Secure view of the world is the same as the NonSecure,
1292         * but with a few extra devices. Create it as a container region
1293         * containing the system memory at low priority; any secure-only
1294         * devices go in at higher priority and take precedence.
1295         */
1296        secure_sysmem = g_new(MemoryRegion, 1);
1297        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1298                           UINT64_MAX);
1299        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1300    }
1301
1302    create_fdt(vms);
1303
1304    possible_cpus = mc->possible_cpu_arch_ids(machine);
1305    for (n = 0; n < possible_cpus->len; n++) {
1306        Object *cpuobj;
1307        CPUState *cs;
1308
1309        if (n >= smp_cpus) {
1310            break;
1311        }
1312
1313        cpuobj = object_new(possible_cpus->cpus[n].type);
1314        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1315                                "mp-affinity", NULL);
1316
1317        cs = CPU(cpuobj);
1318        cs->cpu_index = n;
1319
1320        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1321                          &error_fatal);
1322
1323        if (!vms->secure) {
1324            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1325        }
1326
1327        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1328            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1329        }
1330
1331        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1332            object_property_set_int(cpuobj, vms->psci_conduit,
1333                                    "psci-conduit", NULL);
1334
1335            /* Secondary CPUs start in PSCI powered-down state */
1336            if (n > 0) {
1337                object_property_set_bool(cpuobj, true,
1338                                         "start-powered-off", NULL);
1339            }
1340        }
1341
1342        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1343            object_property_set_bool(cpuobj, false, "pmu", NULL);
1344        }
1345
1346        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1347            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1348                                    "reset-cbar", &error_abort);
1349        }
1350
1351        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1352                                 &error_abort);
1353        if (vms->secure) {
1354            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1355                                     "secure-memory", &error_abort);
1356        }
1357
1358        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1359        object_unref(cpuobj);
1360    }
1361    fdt_add_timer_nodes(vms);
1362    fdt_add_cpu_nodes(vms);
1363
1364    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1365                                         machine->ram_size);
1366    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1367
1368    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1369
1370    create_gic(vms, pic);
1371
1372    fdt_add_pmu_nodes(vms);
1373
1374    create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1375
1376    if (vms->secure) {
1377        create_secure_ram(vms, secure_sysmem);
1378        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1379    }
1380
1381    create_rtc(vms, pic);
1382
1383    create_pcie(vms, pic);
1384
1385    create_gpio(vms, pic);
1386
1387    /* Create mmio transports, so the user can create virtio backends
1388     * (which will be automatically plugged in to the transports). If
1389     * no backend is created the transport will just sit harmlessly idle.
1390     */
1391    create_virtio_devices(vms, pic);
1392
1393    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1394    rom_set_fw(vms->fw_cfg);
1395
1396    vms->machine_done.notify = virt_machine_done;
1397    qemu_add_machine_init_done_notifier(&vms->machine_done);
1398
1399    vms->bootinfo.ram_size = machine->ram_size;
1400    vms->bootinfo.kernel_filename = machine->kernel_filename;
1401    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1402    vms->bootinfo.initrd_filename = machine->initrd_filename;
1403    vms->bootinfo.nb_cpus = smp_cpus;
1404    vms->bootinfo.board_id = -1;
1405    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1406    vms->bootinfo.get_dtb = machvirt_dtb;
1407    vms->bootinfo.firmware_loaded = firmware_loaded;
1408    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1409
1410    /*
1411     * arm_load_kernel machine init done notifier registration must
1412     * happen before the platform_bus_create call. In this latter,
1413     * another notifier is registered which adds platform bus nodes.
1414     * Notifiers are executed in registration reverse order.
1415     */
1416    create_platform_bus(vms, pic);
1417}
1418
1419static bool virt_get_secure(Object *obj, Error **errp)
1420{
1421    VirtMachineState *vms = VIRT_MACHINE(obj);
1422
1423    return vms->secure;
1424}
1425
1426static void virt_set_secure(Object *obj, bool value, Error **errp)
1427{
1428    VirtMachineState *vms = VIRT_MACHINE(obj);
1429
1430    vms->secure = value;
1431}
1432
1433static bool virt_get_virt(Object *obj, Error **errp)
1434{
1435    VirtMachineState *vms = VIRT_MACHINE(obj);
1436
1437    return vms->virt;
1438}
1439
1440static void virt_set_virt(Object *obj, bool value, Error **errp)
1441{
1442    VirtMachineState *vms = VIRT_MACHINE(obj);
1443
1444    vms->virt = value;
1445}
1446
1447static bool virt_get_highmem(Object *obj, Error **errp)
1448{
1449    VirtMachineState *vms = VIRT_MACHINE(obj);
1450
1451    return vms->highmem;
1452}
1453
1454static void virt_set_highmem(Object *obj, bool value, Error **errp)
1455{
1456    VirtMachineState *vms = VIRT_MACHINE(obj);
1457
1458    vms->highmem = value;
1459}
1460
1461static bool virt_get_its(Object *obj, Error **errp)
1462{
1463    VirtMachineState *vms = VIRT_MACHINE(obj);
1464
1465    return vms->its;
1466}
1467
1468static void virt_set_its(Object *obj, bool value, Error **errp)
1469{
1470    VirtMachineState *vms = VIRT_MACHINE(obj);
1471
1472    vms->its = value;
1473}
1474
1475static char *virt_get_gic_version(Object *obj, Error **errp)
1476{
1477    VirtMachineState *vms = VIRT_MACHINE(obj);
1478    const char *val = vms->gic_version == 3 ? "3" : "2";
1479
1480    return g_strdup(val);
1481}
1482
1483static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1484{
1485    VirtMachineState *vms = VIRT_MACHINE(obj);
1486
1487    if (!strcmp(value, "3")) {
1488        vms->gic_version = 3;
1489    } else if (!strcmp(value, "2")) {
1490        vms->gic_version = 2;
1491    } else if (!strcmp(value, "host")) {
1492        vms->gic_version = 0; /* Will probe later */
1493    } else if (!strcmp(value, "max")) {
1494        vms->gic_version = -1; /* Will probe later */
1495    } else {
1496        error_setg(errp, "Invalid gic-version value");
1497        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1498    }
1499}
1500
1501static CpuInstanceProperties
1502virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1503{
1504    MachineClass *mc = MACHINE_GET_CLASS(ms);
1505    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1506
1507    assert(cpu_index < possible_cpus->len);
1508    return possible_cpus->cpus[cpu_index].props;
1509}
1510
1511static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1512{
1513    return idx % nb_numa_nodes;
1514}
1515
1516static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1517{
1518    int n;
1519    VirtMachineState *vms = VIRT_MACHINE(ms);
1520
1521    if (ms->possible_cpus) {
1522        assert(ms->possible_cpus->len == max_cpus);
1523        return ms->possible_cpus;
1524    }
1525
1526    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1527                                  sizeof(CPUArchId) * max_cpus);
1528    ms->possible_cpus->len = max_cpus;
1529    for (n = 0; n < ms->possible_cpus->len; n++) {
1530        ms->possible_cpus->cpus[n].type = ms->cpu_type;
1531        ms->possible_cpus->cpus[n].arch_id =
1532            virt_cpu_mp_affinity(vms, n);
1533        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1534        ms->possible_cpus->cpus[n].props.thread_id = n;
1535    }
1536    return ms->possible_cpus;
1537}
1538
1539static void virt_machine_class_init(ObjectClass *oc, void *data)
1540{
1541    MachineClass *mc = MACHINE_CLASS(oc);
1542
1543    mc->init = machvirt_init;
1544    /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1545     * it later in machvirt_init, where we have more information about the
1546     * configuration of the particular instance.
1547     */
1548    mc->max_cpus = 255;
1549    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1550    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1551    mc->block_default_type = IF_VIRTIO;
1552    mc->no_cdrom = 1;
1553    mc->pci_allow_0_address = true;
1554    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1555    mc->minimum_page_bits = 12;
1556    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1557    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1558    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1559    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1560}
1561
1562static const TypeInfo virt_machine_info = {
1563    .name          = TYPE_VIRT_MACHINE,
1564    .parent        = TYPE_MACHINE,
1565    .abstract      = true,
1566    .instance_size = sizeof(VirtMachineState),
1567    .class_size    = sizeof(VirtMachineClass),
1568    .class_init    = virt_machine_class_init,
1569};
1570
1571static void machvirt_machine_init(void)
1572{
1573    type_register_static(&virt_machine_info);
1574}
1575type_init(machvirt_machine_init);
1576
1577static void virt_2_12_instance_init(Object *obj)
1578{
1579    VirtMachineState *vms = VIRT_MACHINE(obj);
1580    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1581
1582    /* EL3 is disabled by default on virt: this makes us consistent
1583     * between KVM and TCG for this board, and it also allows us to
1584     * boot UEFI blobs which assume no TrustZone support.
1585     */
1586    vms->secure = false;
1587    object_property_add_bool(obj, "secure", virt_get_secure,
1588                             virt_set_secure, NULL);
1589    object_property_set_description(obj, "secure",
1590                                    "Set on/off to enable/disable the ARM "
1591                                    "Security Extensions (TrustZone)",
1592                                    NULL);
1593
1594    /* EL2 is also disabled by default, for similar reasons */
1595    vms->virt = false;
1596    object_property_add_bool(obj, "virtualization", virt_get_virt,
1597                             virt_set_virt, NULL);
1598    object_property_set_description(obj, "virtualization",
1599                                    "Set on/off to enable/disable emulating a "
1600                                    "guest CPU which implements the ARM "
1601                                    "Virtualization Extensions",
1602                                    NULL);
1603
1604    /* High memory is enabled by default */
1605    vms->highmem = true;
1606    object_property_add_bool(obj, "highmem", virt_get_highmem,
1607                             virt_set_highmem, NULL);
1608    object_property_set_description(obj, "highmem",
1609                                    "Set on/off to enable/disable using "
1610                                    "physical address space above 32 bits",
1611                                    NULL);
1612    /* Default GIC type is v2 */
1613    vms->gic_version = 2;
1614    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1615                        virt_set_gic_version, NULL);
1616    object_property_set_description(obj, "gic-version",
1617                                    "Set GIC version. "
1618                                    "Valid values are 2, 3 and host", NULL);
1619
1620    if (vmc->no_its) {
1621        vms->its = false;
1622    } else {
1623        /* Default allows ITS instantiation */
1624        vms->its = true;
1625        object_property_add_bool(obj, "its", virt_get_its,
1626                                 virt_set_its, NULL);
1627        object_property_set_description(obj, "its",
1628                                        "Set on/off to enable/disable "
1629                                        "ITS instantiation",
1630                                        NULL);
1631    }
1632
1633    vms->memmap = a15memmap;
1634    vms->irqmap = a15irqmap;
1635}
1636
1637static void virt_machine_2_12_options(MachineClass *mc)
1638{
1639}
1640DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1641
1642#define VIRT_COMPAT_2_11 \
1643    HW_COMPAT_2_11
1644
1645static void virt_2_11_instance_init(Object *obj)
1646{
1647    virt_2_12_instance_init(obj);
1648}
1649
1650static void virt_machine_2_11_options(MachineClass *mc)
1651{
1652    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1653
1654    virt_machine_2_12_options(mc);
1655    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1656    vmc->smbios_old_sys_ver = true;
1657}
1658DEFINE_VIRT_MACHINE(2, 11)
1659
1660#define VIRT_COMPAT_2_10 \
1661    HW_COMPAT_2_10
1662
1663static void virt_2_10_instance_init(Object *obj)
1664{
1665    virt_2_11_instance_init(obj);
1666}
1667
1668static void virt_machine_2_10_options(MachineClass *mc)
1669{
1670    virt_machine_2_11_options(mc);
1671    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1672}
1673DEFINE_VIRT_MACHINE(2, 10)
1674
1675#define VIRT_COMPAT_2_9 \
1676    HW_COMPAT_2_9
1677
1678static void virt_2_9_instance_init(Object *obj)
1679{
1680    virt_2_10_instance_init(obj);
1681}
1682
1683static void virt_machine_2_9_options(MachineClass *mc)
1684{
1685    virt_machine_2_10_options(mc);
1686    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1687}
1688DEFINE_VIRT_MACHINE(2, 9)
1689
1690#define VIRT_COMPAT_2_8 \
1691    HW_COMPAT_2_8
1692
1693static void virt_2_8_instance_init(Object *obj)
1694{
1695    virt_2_9_instance_init(obj);
1696}
1697
1698static void virt_machine_2_8_options(MachineClass *mc)
1699{
1700    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1701
1702    virt_machine_2_9_options(mc);
1703    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1704    /* For 2.8 and earlier we falsely claimed in the DT that
1705     * our timers were edge-triggered, not level-triggered.
1706     */
1707    vmc->claim_edge_triggered_timers = true;
1708}
1709DEFINE_VIRT_MACHINE(2, 8)
1710
1711#define VIRT_COMPAT_2_7 \
1712    HW_COMPAT_2_7
1713
1714static void virt_2_7_instance_init(Object *obj)
1715{
1716    virt_2_8_instance_init(obj);
1717}
1718
1719static void virt_machine_2_7_options(MachineClass *mc)
1720{
1721    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1722
1723    virt_machine_2_8_options(mc);
1724    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1725    /* ITS was introduced with 2.8 */
1726    vmc->no_its = true;
1727    /* Stick with 1K pages for migration compatibility */
1728    mc->minimum_page_bits = 0;
1729}
1730DEFINE_VIRT_MACHINE(2, 7)
1731
1732#define VIRT_COMPAT_2_6 \
1733    HW_COMPAT_2_6
1734
1735static void virt_2_6_instance_init(Object *obj)
1736{
1737    virt_2_7_instance_init(obj);
1738}
1739
1740static void virt_machine_2_6_options(MachineClass *mc)
1741{
1742    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1743
1744    virt_machine_2_7_options(mc);
1745    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1746    vmc->disallow_affinity_adjustment = true;
1747    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1748    vmc->no_pmu = true;
1749}
1750DEFINE_VIRT_MACHINE(2, 6)
1751