qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/block-backend.h"
  27#include "sysemu/blockdev.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31#include "qemu/error-report.h"
  32#include "qapi/error.h"
  33
  34#ifndef M25P80_ERR_DEBUG
  35#define M25P80_ERR_DEBUG 0
  36#endif
  37
  38#define DB_PRINT_L(level, ...) do { \
  39    if (M25P80_ERR_DEBUG > (level)) { \
  40        fprintf(stderr,  ": %s: ", __func__); \
  41        fprintf(stderr, ## __VA_ARGS__); \
  42    } \
  43} while (0)
  44
  45/* Fields for FlashPartInfo->flags */
  46
  47/* erase capabilities */
  48#define ER_4K 1
  49#define ER_32K 2
  50/* set to allow the page program command to write 0s back to 1. Useful for
  51 * modelling EEPROM with SPI flash command set
  52 */
  53#define EEPROM 0x100
  54
  55/* 16 MiB max in 3 byte address mode */
  56#define MAX_3BYTES_SIZE 0x1000000
  57
  58#define SPI_NOR_MAX_ID_LEN 6
  59
  60typedef struct FlashPartInfo {
  61    const char *part_name;
  62    /*
  63     * This array stores the ID bytes.
  64     * The first three bytes are the JEDIC ID.
  65     * JEDEC ID zero means "no ID" (mostly older chips).
  66     */
  67    uint8_t id[SPI_NOR_MAX_ID_LEN];
  68    uint8_t id_len;
  69    /* there is confusion between manufacturers as to what a sector is. In this
  70     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  71     * command (opcode 0xd8).
  72     */
  73    uint32_t sector_size;
  74    uint32_t n_sectors;
  75    uint32_t page_size;
  76    uint16_t flags;
  77    /*
  78     * Big sized spi nor are often stacked devices, thus sometime
  79     * replace chip erase with die erase.
  80     * This field inform how many die is in the chip.
  81     */
  82    uint8_t die_cnt;
  83} FlashPartInfo;
  84
  85/* adapted from linux */
  86/* Used when the "_ext_id" is two bytes at most */
  87#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  88    .part_name = _part_name,\
  89    .id = {\
  90        ((_jedec_id) >> 16) & 0xff,\
  91        ((_jedec_id) >> 8) & 0xff,\
  92        (_jedec_id) & 0xff,\
  93        ((_ext_id) >> 8) & 0xff,\
  94        (_ext_id) & 0xff,\
  95          },\
  96    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  97    .sector_size = (_sector_size),\
  98    .n_sectors = (_n_sectors),\
  99    .page_size = 256,\
 100    .flags = (_flags),\
 101    .die_cnt = 0
 102
 103#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
 104    .part_name = _part_name,\
 105    .id = {\
 106        ((_jedec_id) >> 16) & 0xff,\
 107        ((_jedec_id) >> 8) & 0xff,\
 108        (_jedec_id) & 0xff,\
 109        ((_ext_id) >> 16) & 0xff,\
 110        ((_ext_id) >> 8) & 0xff,\
 111        (_ext_id) & 0xff,\
 112          },\
 113    .id_len = 6,\
 114    .sector_size = (_sector_size),\
 115    .n_sectors = (_n_sectors),\
 116    .page_size = 256,\
 117    .flags = (_flags),\
 118    .die_cnt = 0
 119
 120#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 121                    _flags, _die_cnt)\
 122    .part_name = _part_name,\
 123    .id = {\
 124        ((_jedec_id) >> 16) & 0xff,\
 125        ((_jedec_id) >> 8) & 0xff,\
 126        (_jedec_id) & 0xff,\
 127        ((_ext_id) >> 8) & 0xff,\
 128        (_ext_id) & 0xff,\
 129          },\
 130    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 131    .sector_size = (_sector_size),\
 132    .n_sectors = (_n_sectors),\
 133    .page_size = 256,\
 134    .flags = (_flags),\
 135    .die_cnt = _die_cnt
 136
 137#define JEDEC_NUMONYX 0x20
 138#define JEDEC_WINBOND 0xEF
 139#define JEDEC_SPANSION 0x01
 140
 141/* Numonyx (Micron) Configuration register macros */
 142#define VCFG_DUMMY 0x1
 143#define VCFG_WRAP_SEQUENTIAL 0x2
 144#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 145#define NVCFG_XIP_MODE_MASK (7 << 9)
 146#define VCFG_XIP_MODE_ENABLED (1 << 3)
 147#define CFG_DUMMY_CLK_LEN 4
 148#define NVCFG_DUMMY_CLK_POS 12
 149#define VCFG_DUMMY_CLK_POS 4
 150#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 151#define EVCFG_VPP_ACCELERATOR (1 << 3)
 152#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 153#define NVCFG_DUAL_IO_MASK (1 << 2)
 154#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 155#define NVCFG_QUAD_IO_MASK (1 << 3)
 156#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 157#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 158#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 159
 160/* Numonyx (Micron) Flag Status Register macros */
 161#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 162#define FSR_FLASH_READY (1 << 7)
 163
 164/* Spansion configuration registers macros. */
 165#define SPANSION_QUAD_CFG_POS 0
 166#define SPANSION_QUAD_CFG_LEN 1
 167#define SPANSION_DUMMY_CLK_POS 0
 168#define SPANSION_DUMMY_CLK_LEN 4
 169#define SPANSION_ADDR_LEN_POS 7
 170#define SPANSION_ADDR_LEN_LEN 1
 171
 172/*
 173 * Spansion read mode command length in bytes,
 174 * the mode is currently not supported.
 175*/
 176
 177#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 178#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 179
 180static const FlashPartInfo known_devices[] = {
 181    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 182    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 183    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 184
 185    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 186    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 187    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 188
 189    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 190    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 191    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 192    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 193
 194    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 195
 196    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 197     * is set to 0. Block protection is not supported.
 198     */
 199    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 200    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 201
 202    /* EON -- en25xxx */
 203    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 204    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 205    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 206    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 207    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 208
 209    /* GigaDevice */
 210    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 211    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 212
 213    /* Intel/Numonyx -- xxxs33b */
 214    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 215    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 216    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 217    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 218
 219    /* Macronix */
 220    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 221    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 222    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 223    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 224    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 225    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 226    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 227    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 228    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
 229    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 230    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 231    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 232    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 233
 234    /* Micron */
 235    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 236    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 237    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 238    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 239    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 240    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 241    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 242    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 243    { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
 244    { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 245    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 246    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 247    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 248    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 249    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 250    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 251    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 252
 253    /* Spansion -- single (large) sector size only, at least
 254     * for the chips listed here (without boot sectors).
 255     */
 256    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 257    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 258    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 259    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 260    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 261    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 262    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 263    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 264    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 265    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 266    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 267    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 268    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 269    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 270    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 271    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 272    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 273
 274    /* Spansion --  boot sectors support  */
 275    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 276    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 277
 278    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 279    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 280    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 281    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 282    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 283    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 284    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 285    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 286    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 287    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 288
 289    /* ST Microelectronics -- newer production may have feature updates */
 290    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 291    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 292    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 293    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 294    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 295    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 296    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 297    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 298    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 299    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 300
 301    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 302    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 303    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 304
 305    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 306    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 307    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 308
 309    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 310    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 311    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 312    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 313
 314    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 315    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 316    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 317    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 318    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 319    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 320    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 321    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 322    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 323    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 324    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 325    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 326    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 327    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 328};
 329
 330typedef enum {
 331    NOP = 0,
 332    WRSR = 0x1,
 333    WRDI = 0x4,
 334    RDSR = 0x5,
 335    WREN = 0x6,
 336    BRRD = 0x16,
 337    BRWR = 0x17,
 338    JEDEC_READ = 0x9f,
 339    BULK_ERASE_60 = 0x60,
 340    BULK_ERASE = 0xc7,
 341    READ_FSR = 0x70,
 342    RDCR = 0x15,
 343
 344    READ = 0x03,
 345    READ4 = 0x13,
 346    FAST_READ = 0x0b,
 347    FAST_READ4 = 0x0c,
 348    DOR = 0x3b,
 349    DOR4 = 0x3c,
 350    QOR = 0x6b,
 351    QOR4 = 0x6c,
 352    DIOR = 0xbb,
 353    DIOR4 = 0xbc,
 354    QIOR = 0xeb,
 355    QIOR4 = 0xec,
 356
 357    PP = 0x02,
 358    PP4 = 0x12,
 359    PP4_4 = 0x3e,
 360    DPP = 0xa2,
 361    QPP = 0x32,
 362    QPP_4 = 0x34,
 363    RDID_90 = 0x90,
 364    RDID_AB = 0xab,
 365
 366    ERASE_4K = 0x20,
 367    ERASE4_4K = 0x21,
 368    ERASE_32K = 0x52,
 369    ERASE4_32K = 0x5c,
 370    ERASE_SECTOR = 0xd8,
 371    ERASE4_SECTOR = 0xdc,
 372
 373    EN_4BYTE_ADDR = 0xB7,
 374    EX_4BYTE_ADDR = 0xE9,
 375
 376    EXTEND_ADDR_READ = 0xC8,
 377    EXTEND_ADDR_WRITE = 0xC5,
 378
 379    RESET_ENABLE = 0x66,
 380    RESET_MEMORY = 0x99,
 381
 382    /*
 383     * Micron: 0x35 - enable QPI
 384     * Spansion: 0x35 - read control register
 385     */
 386    RDCR_EQIO = 0x35,
 387    RSTQIO = 0xf5,
 388
 389    RNVCR = 0xB5,
 390    WNVCR = 0xB1,
 391
 392    RVCR = 0x85,
 393    WVCR = 0x81,
 394
 395    REVCR = 0x65,
 396    WEVCR = 0x61,
 397
 398    DIE_ERASE = 0xC4,
 399} FlashCMD;
 400
 401typedef enum {
 402    STATE_IDLE,
 403    STATE_PAGE_PROGRAM,
 404    STATE_READ,
 405    STATE_COLLECTING_DATA,
 406    STATE_COLLECTING_VAR_LEN_DATA,
 407    STATE_READING_DATA,
 408} CMDState;
 409
 410typedef enum {
 411    MAN_SPANSION,
 412    MAN_MACRONIX,
 413    MAN_NUMONYX,
 414    MAN_WINBOND,
 415    MAN_SST,
 416    MAN_GENERIC,
 417} Manufacturer;
 418
 419#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 420
 421typedef struct Flash {
 422    SSISlave parent_obj;
 423
 424    BlockBackend *blk;
 425
 426    uint8_t *storage;
 427    uint32_t size;
 428    int page_size;
 429
 430    uint8_t state;
 431    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 432    uint32_t len;
 433    uint32_t pos;
 434    bool data_read_loop;
 435    uint8_t needed_bytes;
 436    uint8_t cmd_in_progress;
 437    uint32_t cur_addr;
 438    uint32_t nonvolatile_cfg;
 439    /* Configuration register for Macronix */
 440    uint32_t volatile_cfg;
 441    uint32_t enh_volatile_cfg;
 442    /* Spansion cfg registers. */
 443    uint8_t spansion_cr1nv;
 444    uint8_t spansion_cr2nv;
 445    uint8_t spansion_cr3nv;
 446    uint8_t spansion_cr4nv;
 447    uint8_t spansion_cr1v;
 448    uint8_t spansion_cr2v;
 449    uint8_t spansion_cr3v;
 450    uint8_t spansion_cr4v;
 451    bool write_enable;
 452    bool four_bytes_address_mode;
 453    bool reset_enable;
 454    bool quad_enable;
 455    uint8_t ear;
 456
 457    int64_t dirty_page;
 458
 459    const FlashPartInfo *pi;
 460
 461} Flash;
 462
 463typedef struct M25P80Class {
 464    SSISlaveClass parent_class;
 465    FlashPartInfo *pi;
 466} M25P80Class;
 467
 468#define TYPE_M25P80 "m25p80-generic"
 469#define M25P80(obj) \
 470     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 471#define M25P80_CLASS(klass) \
 472     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 473#define M25P80_GET_CLASS(obj) \
 474     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 475
 476static inline Manufacturer get_man(Flash *s)
 477{
 478    switch (s->pi->id[0]) {
 479    case 0x20:
 480        return MAN_NUMONYX;
 481    case 0xEF:
 482        return MAN_WINBOND;
 483    case 0x01:
 484        return MAN_SPANSION;
 485    case 0xC2:
 486        return MAN_MACRONIX;
 487    case 0xBF:
 488        return MAN_SST;
 489    default:
 490        return MAN_GENERIC;
 491    }
 492}
 493
 494static void blk_sync_complete(void *opaque, int ret)
 495{
 496    QEMUIOVector *iov = opaque;
 497
 498    qemu_iovec_destroy(iov);
 499    g_free(iov);
 500
 501    /* do nothing. Masters do not directly interact with the backing store,
 502     * only the working copy so no mutexing required.
 503     */
 504}
 505
 506static void flash_sync_page(Flash *s, int page)
 507{
 508    QEMUIOVector *iov;
 509
 510    if (!s->blk || blk_is_read_only(s->blk)) {
 511        return;
 512    }
 513
 514    iov = g_new(QEMUIOVector, 1);
 515    qemu_iovec_init(iov, 1);
 516    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 517                   s->pi->page_size);
 518    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 519                    blk_sync_complete, iov);
 520}
 521
 522static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 523{
 524    QEMUIOVector *iov;
 525
 526    if (!s->blk || blk_is_read_only(s->blk)) {
 527        return;
 528    }
 529
 530    assert(!(len % BDRV_SECTOR_SIZE));
 531    iov = g_new(QEMUIOVector, 1);
 532    qemu_iovec_init(iov, 1);
 533    qemu_iovec_add(iov, s->storage + off, len);
 534    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 535}
 536
 537static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 538{
 539    uint32_t len;
 540    uint8_t capa_to_assert = 0;
 541
 542    switch (cmd) {
 543    case ERASE_4K:
 544    case ERASE4_4K:
 545        len = 4 << 10;
 546        capa_to_assert = ER_4K;
 547        break;
 548    case ERASE_32K:
 549    case ERASE4_32K:
 550        len = 32 << 10;
 551        capa_to_assert = ER_32K;
 552        break;
 553    case ERASE_SECTOR:
 554    case ERASE4_SECTOR:
 555        len = s->pi->sector_size;
 556        break;
 557    case BULK_ERASE:
 558        len = s->size;
 559        break;
 560    case DIE_ERASE:
 561        if (s->pi->die_cnt) {
 562            len = s->size / s->pi->die_cnt;
 563            offset = offset & (~(len - 1));
 564        } else {
 565            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 566                          " by device\n");
 567            return;
 568        }
 569        break;
 570    default:
 571        abort();
 572    }
 573
 574    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 575    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 576        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 577                      " device\n", len);
 578    }
 579
 580    if (!s->write_enable) {
 581        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 582        return;
 583    }
 584    memset(s->storage + offset, 0xff, len);
 585    flash_sync_area(s, offset, len);
 586}
 587
 588static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 589{
 590    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 591        flash_sync_page(s, s->dirty_page);
 592        s->dirty_page = newpage;
 593    }
 594}
 595
 596static inline
 597void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 598{
 599    uint32_t page = addr / s->pi->page_size;
 600    uint8_t prev = s->storage[s->cur_addr];
 601
 602    if (!s->write_enable) {
 603        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 604    }
 605
 606    if ((prev ^ data) & data) {
 607        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
 608                   " -> %" PRIx8 "\n", addr, prev, data);
 609    }
 610
 611    if (s->pi->flags & EEPROM) {
 612        s->storage[s->cur_addr] = data;
 613    } else {
 614        s->storage[s->cur_addr] &= data;
 615    }
 616
 617    flash_sync_dirty(s, page);
 618    s->dirty_page = page;
 619}
 620
 621static inline int get_addr_length(Flash *s)
 622{
 623   /* check if eeprom is in use */
 624    if (s->pi->flags == EEPROM) {
 625        return 2;
 626    }
 627
 628   switch (s->cmd_in_progress) {
 629   case PP4:
 630   case PP4_4:
 631   case QPP_4:
 632   case READ4:
 633   case QIOR4:
 634   case ERASE4_4K:
 635   case ERASE4_32K:
 636   case ERASE4_SECTOR:
 637   case FAST_READ4:
 638   case DOR4:
 639   case QOR4:
 640   case DIOR4:
 641       return 4;
 642   default:
 643       return s->four_bytes_address_mode ? 4 : 3;
 644   }
 645}
 646
 647static void complete_collecting_data(Flash *s)
 648{
 649    int i, n;
 650
 651    n = get_addr_length(s);
 652    s->cur_addr = (n == 3 ? s->ear : 0);
 653    for (i = 0; i < n; ++i) {
 654        s->cur_addr <<= 8;
 655        s->cur_addr |= s->data[i];
 656    }
 657
 658    s->cur_addr &= s->size - 1;
 659
 660    s->state = STATE_IDLE;
 661
 662    switch (s->cmd_in_progress) {
 663    case DPP:
 664    case QPP:
 665    case QPP_4:
 666    case PP:
 667    case PP4:
 668    case PP4_4:
 669        s->state = STATE_PAGE_PROGRAM;
 670        break;
 671    case READ:
 672    case READ4:
 673    case FAST_READ:
 674    case FAST_READ4:
 675    case DOR:
 676    case DOR4:
 677    case QOR:
 678    case QOR4:
 679    case DIOR:
 680    case DIOR4:
 681    case QIOR:
 682    case QIOR4:
 683        s->state = STATE_READ;
 684        break;
 685    case ERASE_4K:
 686    case ERASE4_4K:
 687    case ERASE_32K:
 688    case ERASE4_32K:
 689    case ERASE_SECTOR:
 690    case ERASE4_SECTOR:
 691    case DIE_ERASE:
 692        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 693        break;
 694    case WRSR:
 695        switch (get_man(s)) {
 696        case MAN_SPANSION:
 697            s->quad_enable = !!(s->data[1] & 0x02);
 698            break;
 699        case MAN_MACRONIX:
 700            s->quad_enable = extract32(s->data[0], 6, 1);
 701            if (s->len > 1) {
 702                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 703            }
 704            break;
 705        default:
 706            break;
 707        }
 708        if (s->write_enable) {
 709            s->write_enable = false;
 710        }
 711        break;
 712    case BRWR:
 713    case EXTEND_ADDR_WRITE:
 714        s->ear = s->data[0];
 715        break;
 716    case WNVCR:
 717        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 718        break;
 719    case WVCR:
 720        s->volatile_cfg = s->data[0];
 721        break;
 722    case WEVCR:
 723        s->enh_volatile_cfg = s->data[0];
 724        break;
 725    case RDID_90:
 726    case RDID_AB:
 727        if (get_man(s) == MAN_SST) {
 728            if (s->cur_addr <= 1) {
 729                if (s->cur_addr) {
 730                    s->data[0] = s->pi->id[2];
 731                    s->data[1] = s->pi->id[0];
 732                } else {
 733                    s->data[0] = s->pi->id[0];
 734                    s->data[1] = s->pi->id[2];
 735                }
 736                s->pos = 0;
 737                s->len = 2;
 738                s->data_read_loop = true;
 739                s->state = STATE_READING_DATA;
 740            } else {
 741                qemu_log_mask(LOG_GUEST_ERROR,
 742                              "M25P80: Invalid read id address\n");
 743            }
 744        } else {
 745            qemu_log_mask(LOG_GUEST_ERROR,
 746                          "M25P80: Read id (command 0x90/0xAB) is not supported"
 747                          " by device\n");
 748        }
 749        break;
 750    default:
 751        break;
 752    }
 753}
 754
 755static void reset_memory(Flash *s)
 756{
 757    s->cmd_in_progress = NOP;
 758    s->cur_addr = 0;
 759    s->ear = 0;
 760    s->four_bytes_address_mode = false;
 761    s->len = 0;
 762    s->needed_bytes = 0;
 763    s->pos = 0;
 764    s->state = STATE_IDLE;
 765    s->write_enable = false;
 766    s->reset_enable = false;
 767    s->quad_enable = false;
 768
 769    switch (get_man(s)) {
 770    case MAN_NUMONYX:
 771        s->volatile_cfg = 0;
 772        s->volatile_cfg |= VCFG_DUMMY;
 773        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 774        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 775                                != NVCFG_XIP_MODE_DISABLED) {
 776            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 777        }
 778        s->volatile_cfg |= deposit32(s->volatile_cfg,
 779                            VCFG_DUMMY_CLK_POS,
 780                            CFG_DUMMY_CLK_LEN,
 781                            extract32(s->nonvolatile_cfg,
 782                                        NVCFG_DUMMY_CLK_POS,
 783                                        CFG_DUMMY_CLK_LEN)
 784                            );
 785
 786        s->enh_volatile_cfg = 0;
 787        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 788        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 789        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 790        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 791            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 792        }
 793        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 794            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 795        }
 796        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 797            s->four_bytes_address_mode = true;
 798        }
 799        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 800            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 801        }
 802        break;
 803    case MAN_MACRONIX:
 804        s->volatile_cfg = 0x7;
 805        break;
 806    case MAN_SPANSION:
 807        s->spansion_cr1v = s->spansion_cr1nv;
 808        s->spansion_cr2v = s->spansion_cr2nv;
 809        s->spansion_cr3v = s->spansion_cr3nv;
 810        s->spansion_cr4v = s->spansion_cr4nv;
 811        s->quad_enable = extract32(s->spansion_cr1v,
 812                                   SPANSION_QUAD_CFG_POS,
 813                                   SPANSION_QUAD_CFG_LEN
 814                                   );
 815        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 816                SPANSION_ADDR_LEN_POS,
 817                SPANSION_ADDR_LEN_LEN
 818                );
 819        break;
 820    default:
 821        break;
 822    }
 823
 824    DB_PRINT_L(0, "Reset done.\n");
 825}
 826
 827static void decode_fast_read_cmd(Flash *s)
 828{
 829    s->needed_bytes = get_addr_length(s);
 830    switch (get_man(s)) {
 831    /* Dummy cycles - modeled with bytes writes instead of bits */
 832    case MAN_WINBOND:
 833        s->needed_bytes += 8;
 834        break;
 835    case MAN_NUMONYX:
 836        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 837        break;
 838    case MAN_MACRONIX:
 839        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 840            s->needed_bytes += 6;
 841        } else {
 842            s->needed_bytes += 8;
 843        }
 844        break;
 845    case MAN_SPANSION:
 846        s->needed_bytes += extract32(s->spansion_cr2v,
 847                                    SPANSION_DUMMY_CLK_POS,
 848                                    SPANSION_DUMMY_CLK_LEN
 849                                    );
 850        break;
 851    default:
 852        break;
 853    }
 854    s->pos = 0;
 855    s->len = 0;
 856    s->state = STATE_COLLECTING_DATA;
 857}
 858
 859static void decode_dio_read_cmd(Flash *s)
 860{
 861    s->needed_bytes = get_addr_length(s);
 862    /* Dummy cycles modeled with bytes writes instead of bits */
 863    switch (get_man(s)) {
 864    case MAN_WINBOND:
 865        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 866        break;
 867    case MAN_SPANSION:
 868        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 869        s->needed_bytes += extract32(s->spansion_cr2v,
 870                                    SPANSION_DUMMY_CLK_POS,
 871                                    SPANSION_DUMMY_CLK_LEN
 872                                    );
 873        break;
 874    case MAN_NUMONYX:
 875        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 876        break;
 877    case MAN_MACRONIX:
 878        switch (extract32(s->volatile_cfg, 6, 2)) {
 879        case 1:
 880            s->needed_bytes += 6;
 881            break;
 882        case 2:
 883            s->needed_bytes += 8;
 884            break;
 885        default:
 886            s->needed_bytes += 4;
 887            break;
 888        }
 889        break;
 890    default:
 891        break;
 892    }
 893    s->pos = 0;
 894    s->len = 0;
 895    s->state = STATE_COLLECTING_DATA;
 896}
 897
 898static void decode_qio_read_cmd(Flash *s)
 899{
 900    s->needed_bytes = get_addr_length(s);
 901    /* Dummy cycles modeled with bytes writes instead of bits */
 902    switch (get_man(s)) {
 903    case MAN_WINBOND:
 904        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 905        s->needed_bytes += 4;
 906        break;
 907    case MAN_SPANSION:
 908        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 909        s->needed_bytes += extract32(s->spansion_cr2v,
 910                                    SPANSION_DUMMY_CLK_POS,
 911                                    SPANSION_DUMMY_CLK_LEN
 912                                    );
 913        break;
 914    case MAN_NUMONYX:
 915        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 916        break;
 917    case MAN_MACRONIX:
 918        switch (extract32(s->volatile_cfg, 6, 2)) {
 919        case 1:
 920            s->needed_bytes += 4;
 921            break;
 922        case 2:
 923            s->needed_bytes += 8;
 924            break;
 925        default:
 926            s->needed_bytes += 6;
 927            break;
 928        }
 929        break;
 930    default:
 931        break;
 932    }
 933    s->pos = 0;
 934    s->len = 0;
 935    s->state = STATE_COLLECTING_DATA;
 936}
 937
 938static void decode_new_cmd(Flash *s, uint32_t value)
 939{
 940    s->cmd_in_progress = value;
 941    int i;
 942    DB_PRINT_L(0, "decoded new command:%x\n", value);
 943
 944    if (value != RESET_MEMORY) {
 945        s->reset_enable = false;
 946    }
 947
 948    switch (value) {
 949
 950    case ERASE_4K:
 951    case ERASE4_4K:
 952    case ERASE_32K:
 953    case ERASE4_32K:
 954    case ERASE_SECTOR:
 955    case ERASE4_SECTOR:
 956    case READ:
 957    case READ4:
 958    case DPP:
 959    case QPP:
 960    case QPP_4:
 961    case PP:
 962    case PP4:
 963    case PP4_4:
 964    case DIE_ERASE:
 965    case RDID_90:
 966    case RDID_AB:
 967        s->needed_bytes = get_addr_length(s);
 968        s->pos = 0;
 969        s->len = 0;
 970        s->state = STATE_COLLECTING_DATA;
 971        break;
 972
 973    case FAST_READ:
 974    case FAST_READ4:
 975    case DOR:
 976    case DOR4:
 977    case QOR:
 978    case QOR4:
 979        decode_fast_read_cmd(s);
 980        break;
 981
 982    case DIOR:
 983    case DIOR4:
 984        decode_dio_read_cmd(s);
 985        break;
 986
 987    case QIOR:
 988    case QIOR4:
 989        decode_qio_read_cmd(s);
 990        break;
 991
 992    case WRSR:
 993        if (s->write_enable) {
 994            switch (get_man(s)) {
 995            case MAN_SPANSION:
 996                s->needed_bytes = 2;
 997                s->state = STATE_COLLECTING_DATA;
 998                break;
 999            case MAN_MACRONIX:
1000                s->needed_bytes = 2;
1001                s->state = STATE_COLLECTING_VAR_LEN_DATA;
1002                break;
1003            default:
1004                s->needed_bytes = 1;
1005                s->state = STATE_COLLECTING_DATA;
1006            }
1007            s->pos = 0;
1008        }
1009        break;
1010
1011    case WRDI:
1012        s->write_enable = false;
1013        break;
1014    case WREN:
1015        s->write_enable = true;
1016        break;
1017
1018    case RDSR:
1019        s->data[0] = (!!s->write_enable) << 1;
1020        if (get_man(s) == MAN_MACRONIX) {
1021            s->data[0] |= (!!s->quad_enable) << 6;
1022        }
1023        s->pos = 0;
1024        s->len = 1;
1025        s->data_read_loop = true;
1026        s->state = STATE_READING_DATA;
1027        break;
1028
1029    case READ_FSR:
1030        s->data[0] = FSR_FLASH_READY;
1031        if (s->four_bytes_address_mode) {
1032            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1033        }
1034        s->pos = 0;
1035        s->len = 1;
1036        s->data_read_loop = true;
1037        s->state = STATE_READING_DATA;
1038        break;
1039
1040    case JEDEC_READ:
1041        DB_PRINT_L(0, "populated jedec code\n");
1042        for (i = 0; i < s->pi->id_len; i++) {
1043            s->data[i] = s->pi->id[i];
1044        }
1045
1046        s->len = s->pi->id_len;
1047        s->pos = 0;
1048        s->state = STATE_READING_DATA;
1049        break;
1050
1051    case RDCR:
1052        s->data[0] = s->volatile_cfg & 0xFF;
1053        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1054        s->pos = 0;
1055        s->len = 1;
1056        s->state = STATE_READING_DATA;
1057        break;
1058
1059    case BULK_ERASE_60:
1060    case BULK_ERASE:
1061        if (s->write_enable) {
1062            DB_PRINT_L(0, "chip erase\n");
1063            flash_erase(s, 0, BULK_ERASE);
1064        } else {
1065            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1066                          "protect!\n");
1067        }
1068        break;
1069    case NOP:
1070        break;
1071    case EN_4BYTE_ADDR:
1072        s->four_bytes_address_mode = true;
1073        break;
1074    case EX_4BYTE_ADDR:
1075        s->four_bytes_address_mode = false;
1076        break;
1077    case BRRD:
1078    case EXTEND_ADDR_READ:
1079        s->data[0] = s->ear;
1080        s->pos = 0;
1081        s->len = 1;
1082        s->state = STATE_READING_DATA;
1083        break;
1084    case BRWR:
1085    case EXTEND_ADDR_WRITE:
1086        if (s->write_enable) {
1087            s->needed_bytes = 1;
1088            s->pos = 0;
1089            s->len = 0;
1090            s->state = STATE_COLLECTING_DATA;
1091        }
1092        break;
1093    case RNVCR:
1094        s->data[0] = s->nonvolatile_cfg & 0xFF;
1095        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1096        s->pos = 0;
1097        s->len = 2;
1098        s->state = STATE_READING_DATA;
1099        break;
1100    case WNVCR:
1101        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1102            s->needed_bytes = 2;
1103            s->pos = 0;
1104            s->len = 0;
1105            s->state = STATE_COLLECTING_DATA;
1106        }
1107        break;
1108    case RVCR:
1109        s->data[0] = s->volatile_cfg & 0xFF;
1110        s->pos = 0;
1111        s->len = 1;
1112        s->state = STATE_READING_DATA;
1113        break;
1114    case WVCR:
1115        if (s->write_enable) {
1116            s->needed_bytes = 1;
1117            s->pos = 0;
1118            s->len = 0;
1119            s->state = STATE_COLLECTING_DATA;
1120        }
1121        break;
1122    case REVCR:
1123        s->data[0] = s->enh_volatile_cfg & 0xFF;
1124        s->pos = 0;
1125        s->len = 1;
1126        s->state = STATE_READING_DATA;
1127        break;
1128    case WEVCR:
1129        if (s->write_enable) {
1130            s->needed_bytes = 1;
1131            s->pos = 0;
1132            s->len = 0;
1133            s->state = STATE_COLLECTING_DATA;
1134        }
1135        break;
1136    case RESET_ENABLE:
1137        s->reset_enable = true;
1138        break;
1139    case RESET_MEMORY:
1140        if (s->reset_enable) {
1141            reset_memory(s);
1142        }
1143        break;
1144    case RDCR_EQIO:
1145        switch (get_man(s)) {
1146        case MAN_SPANSION:
1147            s->data[0] = (!!s->quad_enable) << 1;
1148            s->pos = 0;
1149            s->len = 1;
1150            s->state = STATE_READING_DATA;
1151            break;
1152        case MAN_MACRONIX:
1153            s->quad_enable = true;
1154            break;
1155        default:
1156            break;
1157        }
1158        break;
1159    case RSTQIO:
1160        s->quad_enable = false;
1161        break;
1162    default:
1163        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1164        break;
1165    }
1166}
1167
1168static int m25p80_cs(SSISlave *ss, bool select)
1169{
1170    Flash *s = M25P80(ss);
1171
1172    if (select) {
1173        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1174            complete_collecting_data(s);
1175        }
1176        s->len = 0;
1177        s->pos = 0;
1178        s->state = STATE_IDLE;
1179        flash_sync_dirty(s, -1);
1180        s->data_read_loop = false;
1181    }
1182
1183    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1184
1185    return 0;
1186}
1187
1188static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1189{
1190    Flash *s = M25P80(ss);
1191    uint32_t r = 0;
1192
1193    switch (s->state) {
1194
1195    case STATE_PAGE_PROGRAM:
1196        DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1197                   s->cur_addr, (uint8_t)tx);
1198        flash_write8(s, s->cur_addr, (uint8_t)tx);
1199        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1200        break;
1201
1202    case STATE_READ:
1203        r = s->storage[s->cur_addr];
1204        DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1205                   (uint8_t)r);
1206        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1207        break;
1208
1209    case STATE_COLLECTING_DATA:
1210    case STATE_COLLECTING_VAR_LEN_DATA:
1211
1212        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1213            qemu_log_mask(LOG_GUEST_ERROR,
1214                          "M25P80: Write overrun internal data buffer. "
1215                          "SPI controller (QEMU emulator or guest driver) "
1216                          "is misbehaving\n");
1217            s->len = s->pos = 0;
1218            s->state = STATE_IDLE;
1219            break;
1220        }
1221
1222        s->data[s->len] = (uint8_t)tx;
1223        s->len++;
1224
1225        if (s->len == s->needed_bytes) {
1226            complete_collecting_data(s);
1227        }
1228        break;
1229
1230    case STATE_READING_DATA:
1231
1232        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1233            qemu_log_mask(LOG_GUEST_ERROR,
1234                          "M25P80: Read overrun internal data buffer. "
1235                          "SPI controller (QEMU emulator or guest driver) "
1236                          "is misbehaving\n");
1237            s->len = s->pos = 0;
1238            s->state = STATE_IDLE;
1239            break;
1240        }
1241
1242        r = s->data[s->pos];
1243        s->pos++;
1244        if (s->pos == s->len) {
1245            s->pos = 0;
1246            if (!s->data_read_loop) {
1247                s->state = STATE_IDLE;
1248            }
1249        }
1250        break;
1251
1252    default:
1253    case STATE_IDLE:
1254        decode_new_cmd(s, (uint8_t)tx);
1255        break;
1256    }
1257
1258    return r;
1259}
1260
1261static void m25p80_realize(SSISlave *ss, Error **errp)
1262{
1263    Flash *s = M25P80(ss);
1264    M25P80Class *mc = M25P80_GET_CLASS(s);
1265    int ret;
1266
1267    s->pi = mc->pi;
1268
1269    s->size = s->pi->sector_size * s->pi->n_sectors;
1270    s->dirty_page = -1;
1271
1272    if (s->blk) {
1273        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1274                        (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1275        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1276        if (ret < 0) {
1277            return;
1278        }
1279
1280        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1281        s->storage = blk_blockalign(s->blk, s->size);
1282
1283        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1284            error_setg(errp, "failed to read the initial flash content");
1285            return;
1286        }
1287    } else {
1288        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1289        s->storage = blk_blockalign(NULL, s->size);
1290        memset(s->storage, 0xFF, s->size);
1291    }
1292}
1293
1294static void m25p80_reset(DeviceState *d)
1295{
1296    Flash *s = M25P80(d);
1297
1298    reset_memory(s);
1299}
1300
1301static int m25p80_pre_save(void *opaque)
1302{
1303    flash_sync_dirty((Flash *)opaque, -1);
1304
1305    return 0;
1306}
1307
1308static Property m25p80_properties[] = {
1309    /* This is default value for Micron flash */
1310    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1311    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1312    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1313    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1314    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1315    DEFINE_PROP_DRIVE("drive", Flash, blk),
1316    DEFINE_PROP_END_OF_LIST(),
1317};
1318
1319static int m25p80_pre_load(void *opaque)
1320{
1321    Flash *s = (Flash *)opaque;
1322
1323    s->data_read_loop = false;
1324    return 0;
1325}
1326
1327static bool m25p80_data_read_loop_needed(void *opaque)
1328{
1329    Flash *s = (Flash *)opaque;
1330
1331    return s->data_read_loop;
1332}
1333
1334static const VMStateDescription vmstate_m25p80_data_read_loop = {
1335    .name = "m25p80/data_read_loop",
1336    .version_id = 1,
1337    .minimum_version_id = 1,
1338    .needed = m25p80_data_read_loop_needed,
1339    .fields = (VMStateField[]) {
1340        VMSTATE_BOOL(data_read_loop, Flash),
1341        VMSTATE_END_OF_LIST()
1342    }
1343};
1344
1345static const VMStateDescription vmstate_m25p80 = {
1346    .name = "m25p80",
1347    .version_id = 0,
1348    .minimum_version_id = 0,
1349    .pre_save = m25p80_pre_save,
1350    .pre_load = m25p80_pre_load,
1351    .fields = (VMStateField[]) {
1352        VMSTATE_UINT8(state, Flash),
1353        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1354        VMSTATE_UINT32(len, Flash),
1355        VMSTATE_UINT32(pos, Flash),
1356        VMSTATE_UINT8(needed_bytes, Flash),
1357        VMSTATE_UINT8(cmd_in_progress, Flash),
1358        VMSTATE_UINT32(cur_addr, Flash),
1359        VMSTATE_BOOL(write_enable, Flash),
1360        VMSTATE_BOOL(reset_enable, Flash),
1361        VMSTATE_UINT8(ear, Flash),
1362        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1363        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1364        VMSTATE_UINT32(volatile_cfg, Flash),
1365        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1366        VMSTATE_BOOL(quad_enable, Flash),
1367        VMSTATE_UINT8(spansion_cr1nv, Flash),
1368        VMSTATE_UINT8(spansion_cr2nv, Flash),
1369        VMSTATE_UINT8(spansion_cr3nv, Flash),
1370        VMSTATE_UINT8(spansion_cr4nv, Flash),
1371        VMSTATE_END_OF_LIST()
1372    },
1373    .subsections = (const VMStateDescription * []) {
1374        &vmstate_m25p80_data_read_loop,
1375        NULL
1376    }
1377};
1378
1379static void m25p80_class_init(ObjectClass *klass, void *data)
1380{
1381    DeviceClass *dc = DEVICE_CLASS(klass);
1382    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1383    M25P80Class *mc = M25P80_CLASS(klass);
1384
1385    k->realize = m25p80_realize;
1386    k->transfer = m25p80_transfer8;
1387    k->set_cs = m25p80_cs;
1388    k->cs_polarity = SSI_CS_LOW;
1389    dc->vmsd = &vmstate_m25p80;
1390    dc->props = m25p80_properties;
1391    dc->reset = m25p80_reset;
1392    mc->pi = data;
1393}
1394
1395static const TypeInfo m25p80_info = {
1396    .name           = TYPE_M25P80,
1397    .parent         = TYPE_SSI_SLAVE,
1398    .instance_size  = sizeof(Flash),
1399    .class_size     = sizeof(M25P80Class),
1400    .abstract       = true,
1401};
1402
1403static void m25p80_register_types(void)
1404{
1405    int i;
1406
1407    type_register_static(&m25p80_info);
1408    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1409        TypeInfo ti = {
1410            .name       = known_devices[i].part_name,
1411            .parent     = TYPE_M25P80,
1412            .class_init = m25p80_class_init,
1413            .class_data = (void *)&known_devices[i],
1414        };
1415        type_register(&ti);
1416    }
1417}
1418
1419type_init(m25p80_register_types)
1420