qemu/hw/i386/kvmvapic.c
<<
>>
Prefs
   1/*
   2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
   3 *
   4 * Copyright (C) 2007-2008 Qumranet Technologies
   5 * Copyright (C) 2012      Jan Kiszka, Siemens AG
   6 *
   7 * This work is licensed under the terms of the GNU GPL version 2, or
   8 * (at your option) any later version. See the COPYING file in the
   9 * top-level directory.
  10 */
  11#include "qemu/osdep.h"
  12#include "qemu-common.h"
  13#include "cpu.h"
  14#include "exec/exec-all.h"
  15#include "sysemu/sysemu.h"
  16#include "sysemu/cpus.h"
  17#include "sysemu/hw_accel.h"
  18#include "sysemu/kvm.h"
  19#include "hw/i386/apic_internal.h"
  20#include "hw/sysbus.h"
  21#include "tcg/tcg.h"
  22
  23#define VAPIC_IO_PORT           0x7e
  24
  25#define VAPIC_CPU_SHIFT         7
  26
  27#define ROM_BLOCK_SIZE          512
  28#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
  29
  30typedef enum VAPICMode {
  31    VAPIC_INACTIVE = 0,
  32    VAPIC_ACTIVE   = 1,
  33    VAPIC_STANDBY  = 2,
  34} VAPICMode;
  35
  36typedef struct VAPICHandlers {
  37    uint32_t set_tpr;
  38    uint32_t set_tpr_eax;
  39    uint32_t get_tpr[8];
  40    uint32_t get_tpr_stack;
  41} QEMU_PACKED VAPICHandlers;
  42
  43typedef struct GuestROMState {
  44    char signature[8];
  45    uint32_t vaddr;
  46    uint32_t fixup_start;
  47    uint32_t fixup_end;
  48    uint32_t vapic_vaddr;
  49    uint32_t vapic_size;
  50    uint32_t vcpu_shift;
  51    uint32_t real_tpr_addr;
  52    VAPICHandlers up;
  53    VAPICHandlers mp;
  54} QEMU_PACKED GuestROMState;
  55
  56typedef struct VAPICROMState {
  57    SysBusDevice busdev;
  58    MemoryRegion io;
  59    MemoryRegion rom;
  60    uint32_t state;
  61    uint32_t rom_state_paddr;
  62    uint32_t rom_state_vaddr;
  63    uint32_t vapic_paddr;
  64    uint32_t real_tpr_addr;
  65    GuestROMState rom_state;
  66    size_t rom_size;
  67    bool rom_mapped_writable;
  68    VMChangeStateEntry *vmsentry;
  69} VAPICROMState;
  70
  71#define TYPE_VAPIC "kvmvapic"
  72#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
  73
  74#define TPR_INSTR_ABS_MODRM             0x1
  75#define TPR_INSTR_MATCH_MODRM_REG       0x2
  76
  77typedef struct TPRInstruction {
  78    uint8_t opcode;
  79    uint8_t modrm_reg;
  80    unsigned int flags;
  81    TPRAccess access;
  82    size_t length;
  83    off_t addr_offset;
  84} TPRInstruction;
  85
  86/* must be sorted by length, shortest first */
  87static const TPRInstruction tpr_instr[] = {
  88    { /* mov abs to eax */
  89        .opcode = 0xa1,
  90        .access = TPR_ACCESS_READ,
  91        .length = 5,
  92        .addr_offset = 1,
  93    },
  94    { /* mov eax to abs */
  95        .opcode = 0xa3,
  96        .access = TPR_ACCESS_WRITE,
  97        .length = 5,
  98        .addr_offset = 1,
  99    },
 100    { /* mov r32 to r/m32 */
 101        .opcode = 0x89,
 102        .flags = TPR_INSTR_ABS_MODRM,
 103        .access = TPR_ACCESS_WRITE,
 104        .length = 6,
 105        .addr_offset = 2,
 106    },
 107    { /* mov r/m32 to r32 */
 108        .opcode = 0x8b,
 109        .flags = TPR_INSTR_ABS_MODRM,
 110        .access = TPR_ACCESS_READ,
 111        .length = 6,
 112        .addr_offset = 2,
 113    },
 114    { /* push r/m32 */
 115        .opcode = 0xff,
 116        .modrm_reg = 6,
 117        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 118        .access = TPR_ACCESS_READ,
 119        .length = 6,
 120        .addr_offset = 2,
 121    },
 122    { /* mov imm32, r/m32 (c7/0) */
 123        .opcode = 0xc7,
 124        .modrm_reg = 0,
 125        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 126        .access = TPR_ACCESS_WRITE,
 127        .length = 10,
 128        .addr_offset = 2,
 129    },
 130};
 131
 132static void read_guest_rom_state(VAPICROMState *s)
 133{
 134    cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
 135                             sizeof(GuestROMState));
 136}
 137
 138static void write_guest_rom_state(VAPICROMState *s)
 139{
 140    cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
 141                              sizeof(GuestROMState));
 142}
 143
 144static void update_guest_rom_state(VAPICROMState *s)
 145{
 146    read_guest_rom_state(s);
 147
 148    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
 149    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
 150
 151    write_guest_rom_state(s);
 152}
 153
 154static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
 155{
 156    CPUState *cs = CPU(x86_env_get_cpu(env));
 157    hwaddr paddr;
 158    target_ulong addr;
 159
 160    if (s->state == VAPIC_ACTIVE) {
 161        return 0;
 162    }
 163    /*
 164     * If there is no prior TPR access instruction we could analyze (which is
 165     * the case after resume from hibernation), we need to scan the possible
 166     * virtual address space for the APIC mapping.
 167     */
 168    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
 169        paddr = cpu_get_phys_page_debug(cs, addr);
 170        if (paddr != APIC_DEFAULT_ADDRESS) {
 171            continue;
 172        }
 173        s->real_tpr_addr = addr + 0x80;
 174        update_guest_rom_state(s);
 175        return 0;
 176    }
 177    return -1;
 178}
 179
 180static uint8_t modrm_reg(uint8_t modrm)
 181{
 182    return (modrm >> 3) & 7;
 183}
 184
 185static bool is_abs_modrm(uint8_t modrm)
 186{
 187    return (modrm & 0xc7) == 0x05;
 188}
 189
 190static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
 191{
 192    return opcode[0] == instr->opcode &&
 193        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
 194        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
 195         modrm_reg(opcode[1]) == instr->modrm_reg);
 196}
 197
 198static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
 199                                    target_ulong *pip, TPRAccess access)
 200{
 201    CPUState *cs = CPU(cpu);
 202    const TPRInstruction *instr;
 203    target_ulong ip = *pip;
 204    uint8_t opcode[2];
 205    uint32_t real_tpr_addr;
 206    int i;
 207
 208    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
 209        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
 210        return -1;
 211    }
 212
 213    /*
 214     * Early Windows 2003 SMP initialization contains a
 215     *
 216     *   mov imm32, r/m32
 217     *
 218     * instruction that is patched by TPR optimization. The problem is that
 219     * RSP, used by the patched instruction, is zero, so the guest gets a
 220     * double fault and dies.
 221     */
 222    if (cpu->env.regs[R_ESP] == 0) {
 223        return -1;
 224    }
 225
 226    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
 227        /*
 228         * KVM without kernel-based TPR access reporting will pass an IP that
 229         * points after the accessing instruction. So we need to look backward
 230         * to find the reason.
 231         */
 232        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 233            instr = &tpr_instr[i];
 234            if (instr->access != access) {
 235                continue;
 236            }
 237            if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
 238                                    sizeof(opcode), 0) < 0) {
 239                return -1;
 240            }
 241            if (opcode_matches(opcode, instr)) {
 242                ip -= instr->length;
 243                goto instruction_ok;
 244            }
 245        }
 246        return -1;
 247    } else {
 248        if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
 249            return -1;
 250        }
 251        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 252            instr = &tpr_instr[i];
 253            if (opcode_matches(opcode, instr)) {
 254                goto instruction_ok;
 255            }
 256        }
 257        return -1;
 258    }
 259
 260instruction_ok:
 261    /*
 262     * Grab the virtual TPR address from the instruction
 263     * and update the cached values.
 264     */
 265    if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
 266                            (void *)&real_tpr_addr,
 267                            sizeof(real_tpr_addr), 0) < 0) {
 268        return -1;
 269    }
 270    real_tpr_addr = le32_to_cpu(real_tpr_addr);
 271    if ((real_tpr_addr & 0xfff) != 0x80) {
 272        return -1;
 273    }
 274    s->real_tpr_addr = real_tpr_addr;
 275    update_guest_rom_state(s);
 276
 277    *pip = ip;
 278    return 0;
 279}
 280
 281static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
 282{
 283    CPUState *cs = CPU(x86_env_get_cpu(env));
 284    hwaddr paddr;
 285    uint32_t rom_state_vaddr;
 286    uint32_t pos, patch, offset;
 287
 288    /* nothing to do if already activated */
 289    if (s->state == VAPIC_ACTIVE) {
 290        return 0;
 291    }
 292
 293    /* bail out if ROM init code was not executed (missing ROM?) */
 294    if (s->state == VAPIC_INACTIVE) {
 295        return -1;
 296    }
 297
 298    /* find out virtual address of the ROM */
 299    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
 300    paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
 301    if (paddr == -1) {
 302        return -1;
 303    }
 304    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
 305    if (paddr != s->rom_state_paddr) {
 306        return -1;
 307    }
 308    read_guest_rom_state(s);
 309    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
 310        return -1;
 311    }
 312    s->rom_state_vaddr = rom_state_vaddr;
 313
 314    /* fixup addresses in ROM if needed */
 315    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
 316        return 0;
 317    }
 318    for (pos = le32_to_cpu(s->rom_state.fixup_start);
 319         pos < le32_to_cpu(s->rom_state.fixup_end);
 320         pos += 4) {
 321        cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
 322                                 &offset, sizeof(offset));
 323        offset = le32_to_cpu(offset);
 324        cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
 325        patch = le32_to_cpu(patch);
 326        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
 327        patch = cpu_to_le32(patch);
 328        cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
 329    }
 330    read_guest_rom_state(s);
 331    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
 332        le32_to_cpu(s->rom_state.vaddr);
 333
 334    return 0;
 335}
 336
 337/*
 338 * Tries to read the unique processor number from the Kernel Processor Control
 339 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
 340 * cannot be accessed or is considered invalid. This also ensures that we are
 341 * not patching the wrong guest.
 342 */
 343static int get_kpcr_number(X86CPU *cpu)
 344{
 345    CPUX86State *env = &cpu->env;
 346    struct kpcr {
 347        uint8_t  fill1[0x1c];
 348        uint32_t self;
 349        uint8_t  fill2[0x31];
 350        uint8_t  number;
 351    } QEMU_PACKED kpcr;
 352
 353    if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
 354                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
 355        kpcr.self != env->segs[R_FS].base) {
 356        return -1;
 357    }
 358    return kpcr.number;
 359}
 360
 361static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
 362{
 363    int cpu_number = get_kpcr_number(cpu);
 364    hwaddr vapic_paddr;
 365    static const uint8_t enabled = 1;
 366
 367    if (cpu_number < 0) {
 368        return -1;
 369    }
 370    vapic_paddr = s->vapic_paddr +
 371        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
 372    cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
 373                              &enabled, sizeof(enabled));
 374    apic_enable_vapic(cpu->apic_state, vapic_paddr);
 375
 376    s->state = VAPIC_ACTIVE;
 377
 378    return 0;
 379}
 380
 381static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
 382{
 383    cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
 384}
 385
 386static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
 387{
 388    uint32_t offset;
 389
 390    offset = cpu_to_le32(target - ip - 5);
 391    patch_byte(cpu, ip, 0xe8); /* call near */
 392    cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
 393}
 394
 395typedef struct PatchInfo {
 396    VAPICHandlers *handler;
 397    target_ulong ip;
 398} PatchInfo;
 399
 400static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
 401{
 402    X86CPU *x86_cpu = X86_CPU(cs);
 403    PatchInfo *info = (PatchInfo *) data.host_ptr;
 404    VAPICHandlers *handlers = info->handler;
 405    target_ulong ip = info->ip;
 406    uint8_t opcode[2];
 407    uint32_t imm32 = 0;
 408
 409    cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
 410
 411    switch (opcode[0]) {
 412    case 0x89: /* mov r32 to r/m32 */
 413        patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
 414        patch_call(x86_cpu, ip + 1, handlers->set_tpr);
 415        break;
 416    case 0x8b: /* mov r/m32 to r32 */
 417        patch_byte(x86_cpu, ip, 0x90);
 418        patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
 419        break;
 420    case 0xa1: /* mov abs to eax */
 421        patch_call(x86_cpu, ip, handlers->get_tpr[0]);
 422        break;
 423    case 0xa3: /* mov eax to abs */
 424        patch_call(x86_cpu, ip, handlers->set_tpr_eax);
 425        break;
 426    case 0xc7: /* mov imm32, r/m32 (c7/0) */
 427        patch_byte(x86_cpu, ip, 0x68);  /* push imm32 */
 428        cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
 429        cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
 430        patch_call(x86_cpu, ip + 5, handlers->set_tpr);
 431        break;
 432    case 0xff: /* push r/m32 */
 433        patch_byte(x86_cpu, ip, 0x50); /* push eax */
 434        patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
 435        break;
 436    default:
 437        abort();
 438    }
 439
 440    g_free(info);
 441}
 442
 443static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
 444{
 445    CPUState *cs = CPU(cpu);
 446    VAPICHandlers *handlers;
 447    PatchInfo *info;
 448
 449    if (smp_cpus == 1) {
 450        handlers = &s->rom_state.up;
 451    } else {
 452        handlers = &s->rom_state.mp;
 453    }
 454
 455    info  = g_new(PatchInfo, 1);
 456    info->handler = handlers;
 457    info->ip = ip;
 458
 459    async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
 460}
 461
 462void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
 463                             TPRAccess access)
 464{
 465    VAPICROMState *s = VAPIC(dev);
 466    X86CPU *cpu = X86_CPU(cs);
 467    CPUX86State *env = &cpu->env;
 468
 469    cpu_synchronize_state(cs);
 470
 471    if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
 472        if (s->state == VAPIC_ACTIVE) {
 473            vapic_enable(s, cpu);
 474        }
 475        return;
 476    }
 477    if (update_rom_mapping(s, env, ip) < 0) {
 478        return;
 479    }
 480    if (vapic_enable(s, cpu) < 0) {
 481        return;
 482    }
 483    patch_instruction(s, cpu, ip);
 484}
 485
 486typedef struct VAPICEnableTPRReporting {
 487    DeviceState *apic;
 488    bool enable;
 489} VAPICEnableTPRReporting;
 490
 491static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
 492{
 493    VAPICEnableTPRReporting *info = data.host_ptr;
 494    apic_enable_tpr_access_reporting(info->apic, info->enable);
 495}
 496
 497static void vapic_enable_tpr_reporting(bool enable)
 498{
 499    VAPICEnableTPRReporting info = {
 500        .enable = enable,
 501    };
 502    CPUState *cs;
 503    X86CPU *cpu;
 504
 505    CPU_FOREACH(cs) {
 506        cpu = X86_CPU(cs);
 507        info.apic = cpu->apic_state;
 508        run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
 509    }
 510}
 511
 512static void vapic_reset(DeviceState *dev)
 513{
 514    VAPICROMState *s = VAPIC(dev);
 515
 516    s->state = VAPIC_INACTIVE;
 517    s->rom_state_paddr = 0;
 518    vapic_enable_tpr_reporting(false);
 519}
 520
 521/*
 522 * Set the IRQ polling hypercalls to the supported variant:
 523 *  - vmcall if using KVM in-kernel irqchip
 524 *  - 32-bit VAPIC port write otherwise
 525 */
 526static int patch_hypercalls(VAPICROMState *s)
 527{
 528    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 529    static const uint8_t vmcall_pattern[] = { /* vmcall */
 530        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
 531    };
 532    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
 533        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
 534    };
 535    uint8_t alternates[2];
 536    const uint8_t *pattern;
 537    const uint8_t *patch;
 538    off_t pos;
 539    uint8_t *rom;
 540
 541    rom = g_malloc(s->rom_size);
 542    cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
 543
 544    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
 545        if (kvm_irqchip_in_kernel()) {
 546            pattern = outl_pattern;
 547            alternates[0] = outl_pattern[7];
 548            alternates[1] = outl_pattern[7];
 549            patch = &vmcall_pattern[5];
 550        } else {
 551            pattern = vmcall_pattern;
 552            alternates[0] = vmcall_pattern[7];
 553            alternates[1] = 0xd9; /* AMD's VMMCALL */
 554            patch = &outl_pattern[5];
 555        }
 556        if (memcmp(rom + pos, pattern, 7) == 0 &&
 557            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
 558            cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
 559            /*
 560             * Don't flush the tb here. Under ordinary conditions, the patched
 561             * calls are miles away from the current IP. Under malicious
 562             * conditions, the guest could trick us to crash.
 563             */
 564        }
 565    }
 566
 567    g_free(rom);
 568    return 0;
 569}
 570
 571/*
 572 * For TCG mode or the time KVM honors read-only memory regions, we need to
 573 * enable write access to the option ROM so that variables can be updated by
 574 * the guest.
 575 */
 576static int vapic_map_rom_writable(VAPICROMState *s)
 577{
 578    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 579    MemoryRegionSection section;
 580    MemoryRegion *as;
 581    size_t rom_size;
 582    uint8_t *ram;
 583
 584    as = sysbus_address_space(&s->busdev);
 585
 586    if (s->rom_mapped_writable) {
 587        memory_region_del_subregion(as, &s->rom);
 588        object_unparent(OBJECT(&s->rom));
 589    }
 590
 591    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
 592    section = memory_region_find(as, 0, 1);
 593
 594    /* read ROM size from RAM region */
 595    if (rom_paddr + 2 >= memory_region_size(section.mr)) {
 596        return -1;
 597    }
 598    ram = memory_region_get_ram_ptr(section.mr);
 599    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
 600    if (rom_size == 0) {
 601        return -1;
 602    }
 603    s->rom_size = rom_size;
 604
 605    /* We need to round to avoid creating subpages
 606     * from which we cannot run code. */
 607    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
 608    rom_paddr &= TARGET_PAGE_MASK;
 609    rom_size = TARGET_PAGE_ALIGN(rom_size);
 610
 611    memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
 612                             rom_paddr, rom_size);
 613    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
 614    s->rom_mapped_writable = true;
 615    memory_region_unref(section.mr);
 616
 617    return 0;
 618}
 619
 620static int vapic_prepare(VAPICROMState *s)
 621{
 622    if (vapic_map_rom_writable(s) < 0) {
 623        return -1;
 624    }
 625
 626    if (patch_hypercalls(s) < 0) {
 627        return -1;
 628    }
 629
 630    vapic_enable_tpr_reporting(true);
 631
 632    return 0;
 633}
 634
 635static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
 636                        unsigned int size)
 637{
 638    VAPICROMState *s = opaque;
 639    X86CPU *cpu;
 640    CPUX86State *env;
 641    hwaddr rom_paddr;
 642
 643    if (!current_cpu) {
 644        return;
 645    }
 646
 647    cpu_synchronize_state(current_cpu);
 648    cpu = X86_CPU(current_cpu);
 649    env = &cpu->env;
 650
 651    /*
 652     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
 653     *  o 16-bit write access:
 654     *    Reports the option ROM initialization to the hypervisor. Written
 655     *    value is the offset of the state structure in the ROM.
 656     *  o 8-bit write access:
 657     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
 658     *    option ROM content has been re-initialized by a guest power cycle.
 659     *  o 32-bit write access:
 660     *    Poll for pending IRQs, considering the current VAPIC state.
 661     */
 662    switch (size) {
 663    case 2:
 664        if (s->state == VAPIC_INACTIVE) {
 665            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
 666            s->rom_state_paddr = rom_paddr + data;
 667
 668            s->state = VAPIC_STANDBY;
 669        }
 670        if (vapic_prepare(s) < 0) {
 671            s->state = VAPIC_INACTIVE;
 672            s->rom_state_paddr = 0;
 673            break;
 674        }
 675        break;
 676    case 1:
 677        if (kvm_enabled()) {
 678            /*
 679             * Disable triggering instruction in ROM by writing a NOP.
 680             *
 681             * We cannot do this in TCG mode as the reported IP is not
 682             * accurate.
 683             */
 684            pause_all_vcpus();
 685            patch_byte(cpu, env->eip - 2, 0x66);
 686            patch_byte(cpu, env->eip - 1, 0x90);
 687            resume_all_vcpus();
 688        }
 689
 690        if (s->state == VAPIC_ACTIVE) {
 691            break;
 692        }
 693        if (update_rom_mapping(s, env, env->eip) < 0) {
 694            break;
 695        }
 696        if (find_real_tpr_addr(s, env) < 0) {
 697            break;
 698        }
 699        vapic_enable(s, cpu);
 700        break;
 701    default:
 702    case 4:
 703        if (!kvm_irqchip_in_kernel()) {
 704            apic_poll_irq(cpu->apic_state);
 705        }
 706        break;
 707    }
 708}
 709
 710static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
 711{
 712    return 0xffffffff;
 713}
 714
 715static const MemoryRegionOps vapic_ops = {
 716    .write = vapic_write,
 717    .read = vapic_read,
 718    .endianness = DEVICE_NATIVE_ENDIAN,
 719};
 720
 721static void vapic_realize(DeviceState *dev, Error **errp)
 722{
 723    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 724    VAPICROMState *s = VAPIC(dev);
 725
 726    memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
 727    sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
 728    sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
 729
 730    option_rom[nb_option_roms].name = "kvmvapic.bin";
 731    option_rom[nb_option_roms].bootindex = -1;
 732    nb_option_roms++;
 733}
 734
 735static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
 736{
 737    VAPICROMState *s = data.host_ptr;
 738    X86CPU *cpu = X86_CPU(cs);
 739
 740    static const uint8_t enabled = 1;
 741    cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
 742                              &enabled, sizeof(enabled));
 743    apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
 744    s->state = VAPIC_ACTIVE;
 745}
 746
 747static void kvmvapic_vm_state_change(void *opaque, int running,
 748                                     RunState state)
 749{
 750    VAPICROMState *s = opaque;
 751    uint8_t *zero;
 752
 753    if (!running) {
 754        return;
 755    }
 756
 757    if (s->state == VAPIC_ACTIVE) {
 758        if (smp_cpus == 1) {
 759            run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
 760        } else {
 761            zero = g_malloc0(s->rom_state.vapic_size);
 762            cpu_physical_memory_write(s->vapic_paddr, zero,
 763                                      s->rom_state.vapic_size);
 764            g_free(zero);
 765        }
 766    }
 767
 768    qemu_del_vm_change_state_handler(s->vmsentry);
 769    s->vmsentry = NULL;
 770}
 771
 772static int vapic_post_load(void *opaque, int version_id)
 773{
 774    VAPICROMState *s = opaque;
 775
 776    /*
 777     * The old implementation of qemu-kvm did not provide the state
 778     * VAPIC_STANDBY. Reconstruct it.
 779     */
 780    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
 781        s->state = VAPIC_STANDBY;
 782    }
 783
 784    if (s->state != VAPIC_INACTIVE) {
 785        if (vapic_prepare(s) < 0) {
 786            return -1;
 787        }
 788    }
 789
 790    if (!s->vmsentry) {
 791        s->vmsentry =
 792            qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
 793    }
 794    return 0;
 795}
 796
 797static const VMStateDescription vmstate_handlers = {
 798    .name = "kvmvapic-handlers",
 799    .version_id = 1,
 800    .minimum_version_id = 1,
 801    .fields = (VMStateField[]) {
 802        VMSTATE_UINT32(set_tpr, VAPICHandlers),
 803        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
 804        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
 805        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
 806        VMSTATE_END_OF_LIST()
 807    }
 808};
 809
 810static const VMStateDescription vmstate_guest_rom = {
 811    .name = "kvmvapic-guest-rom",
 812    .version_id = 1,
 813    .minimum_version_id = 1,
 814    .fields = (VMStateField[]) {
 815        VMSTATE_UNUSED(8),     /* signature */
 816        VMSTATE_UINT32(vaddr, GuestROMState),
 817        VMSTATE_UINT32(fixup_start, GuestROMState),
 818        VMSTATE_UINT32(fixup_end, GuestROMState),
 819        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
 820        VMSTATE_UINT32(vapic_size, GuestROMState),
 821        VMSTATE_UINT32(vcpu_shift, GuestROMState),
 822        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
 823        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 824        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 825        VMSTATE_END_OF_LIST()
 826    }
 827};
 828
 829static const VMStateDescription vmstate_vapic = {
 830    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
 831    .version_id = 1,
 832    .minimum_version_id = 1,
 833    .post_load = vapic_post_load,
 834    .fields = (VMStateField[]) {
 835        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
 836                       GuestROMState),
 837        VMSTATE_UINT32(state, VAPICROMState),
 838        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
 839        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
 840        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
 841        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
 842        VMSTATE_END_OF_LIST()
 843    }
 844};
 845
 846static void vapic_class_init(ObjectClass *klass, void *data)
 847{
 848    DeviceClass *dc = DEVICE_CLASS(klass);
 849
 850    dc->reset   = vapic_reset;
 851    dc->vmsd    = &vmstate_vapic;
 852    dc->realize = vapic_realize;
 853}
 854
 855static const TypeInfo vapic_type = {
 856    .name          = TYPE_VAPIC,
 857    .parent        = TYPE_SYS_BUS_DEVICE,
 858    .instance_size = sizeof(VAPICROMState),
 859    .class_init    = vapic_class_init,
 860};
 861
 862static void vapic_register(void)
 863{
 864    type_register_static(&vapic_type);
 865}
 866
 867type_init(vapic_register);
 868