qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/bitops.h"
  17#include "qemu/main-loop.h"
  18#include "trace.h"
  19#include "gicv3_internal.h"
  20#include "cpu.h"
  21
  22void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
  23{
  24    ARMCPU *arm_cpu = ARM_CPU(cpu);
  25    CPUARMState *env = &arm_cpu->env;
  26
  27    env->gicv3state = (void *)s;
  28};
  29
  30static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  31{
  32    /* Given the CPU, find the right GICv3CPUState struct.
  33     * Since we registered the CPU interface with the EL change hook as
  34     * the opaque pointer, we can just directly get from the CPU to it.
  35     */
  36    return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
  37}
  38
  39static bool gicv3_use_ns_bank(CPUARMState *env)
  40{
  41    /* Return true if we should use the NonSecure bank for a banked GIC
  42     * CPU interface register. Note that this differs from the
  43     * access_secure_reg() function because GICv3 banked registers are
  44     * banked even for AArch64, unlike the other CPU system registers.
  45     */
  46    return !arm_is_secure_below_el3(env);
  47}
  48
  49/* The minimum BPR for the virtual interface is a configurable property */
  50static inline int icv_min_vbpr(GICv3CPUState *cs)
  51{
  52    return 7 - cs->vprebits;
  53}
  54
  55/* Simple accessor functions for LR fields */
  56static uint32_t ich_lr_vintid(uint64_t lr)
  57{
  58    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
  59}
  60
  61static uint32_t ich_lr_pintid(uint64_t lr)
  62{
  63    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
  64}
  65
  66static uint32_t ich_lr_prio(uint64_t lr)
  67{
  68    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
  69}
  70
  71static int ich_lr_state(uint64_t lr)
  72{
  73    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
  74}
  75
  76static bool icv_access(CPUARMState *env, int hcr_flags)
  77{
  78    /* Return true if this ICC_ register access should really be
  79     * directed to an ICV_ access. hcr_flags is a mask of
  80     * HCR_EL2 bits to check: we treat this as an ICV_ access
  81     * if we are in NS EL1 and at least one of the specified
  82     * HCR_EL2 bits is set.
  83     *
  84     * ICV registers fall into four categories:
  85     *  * access if NS EL1 and HCR_EL2.FMO == 1:
  86     *    all ICV regs with '0' in their name
  87     *  * access if NS EL1 and HCR_EL2.IMO == 1:
  88     *    all ICV regs with '1' in their name
  89     *  * access if NS EL1 and either IMO or FMO == 1:
  90     *    CTLR, DIR, PMR, RPR
  91     */
  92    return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
  93        && !arm_is_secure_below_el3(env);
  94}
  95
  96static int read_vbpr(GICv3CPUState *cs, int grp)
  97{
  98    /* Read VBPR value out of the VMCR field (caller must handle
  99     * VCBPR effects if required)
 100     */
 101    if (grp == GICV3_G0) {
 102        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 103                     ICH_VMCR_EL2_VBPR0_LENGTH);
 104    } else {
 105        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 106                         ICH_VMCR_EL2_VBPR1_LENGTH);
 107    }
 108}
 109
 110static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 111{
 112    /* Write new VBPR1 value, handling the "writing a value less than
 113     * the minimum sets it to the minimum" semantics.
 114     */
 115    int min = icv_min_vbpr(cs);
 116
 117    if (grp != GICV3_G0) {
 118        min++;
 119    }
 120
 121    value = MAX(value, min);
 122
 123    if (grp == GICV3_G0) {
 124        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 125                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
 126    } else {
 127        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 128                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
 129    }
 130}
 131
 132static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 133{
 134    /* Return a mask word which clears the unimplemented priority bits
 135     * from a priority value for a virtual interrupt. (Not to be confused
 136     * with the group priority, whose mask depends on the value of VBPR
 137     * for the interrupt group.)
 138     */
 139    return ~0U << (8 - cs->vpribits);
 140}
 141
 142static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 143{
 144    /* Calculate the current running priority based on the set bits
 145     * in the ICH Active Priority Registers.
 146     */
 147    int i;
 148    int aprmax = 1 << (cs->vprebits - 5);
 149
 150    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
 151
 152    for (i = 0; i < aprmax; i++) {
 153        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 154            cs->ich_apr[GICV3_G1NS][i];
 155
 156        if (!apr) {
 157            continue;
 158        }
 159        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 160    }
 161    /* No current active interrupts: return idle priority */
 162    return 0xff;
 163}
 164
 165static int hppvi_index(GICv3CPUState *cs)
 166{
 167    /* Return the list register index of the highest priority pending
 168     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 169     * pseudocode. If no pending virtual interrupts, return -1.
 170     */
 171    int idx = -1;
 172    int i;
 173    /* Note that a list register entry with a priority of 0xff will
 174     * never be reported by this function; this is the architecturally
 175     * correct behaviour.
 176     */
 177    int prio = 0xff;
 178
 179    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 180        /* Both groups disabled, definitely nothing to do */
 181        return idx;
 182    }
 183
 184    for (i = 0; i < cs->num_list_regs; i++) {
 185        uint64_t lr = cs->ich_lr_el2[i];
 186        int thisprio;
 187
 188        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 189            /* Not Pending */
 190            continue;
 191        }
 192
 193        /* Ignore interrupts if relevant group enable not set */
 194        if (lr & ICH_LR_EL2_GROUP) {
 195            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 196                continue;
 197            }
 198        } else {
 199            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 200                continue;
 201            }
 202        }
 203
 204        thisprio = ich_lr_prio(lr);
 205
 206        if (thisprio < prio) {
 207            prio = thisprio;
 208            idx = i;
 209        }
 210    }
 211
 212    return idx;
 213}
 214
 215static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 216{
 217    /* Return a mask word which clears the subpriority bits from
 218     * a priority value for a virtual interrupt in the specified group.
 219     * This depends on the VBPR value.
 220     * If using VBPR0 then:
 221     *  a BPR of 0 means the group priority bits are [7:1];
 222     *  a BPR of 1 means they are [7:2], and so on down to
 223     *  a BPR of 7 meaning no group priority bits at all.
 224     * If using VBPR1 then:
 225     *  a BPR of 0 is impossible (the minimum value is 1)
 226     *  a BPR of 1 means the group priority bits are [7:1];
 227     *  a BPR of 2 means they are [7:2], and so on down to
 228     *  a BPR of 7 meaning the group priority is [7].
 229     *
 230     * Which BPR to use depends on the group of the interrupt and
 231     * the current ICH_VMCR_EL2.VCBPR settings.
 232     *
 233     * This corresponds to the VGroupBits() pseudocode.
 234     */
 235    int bpr;
 236
 237    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 238        group = GICV3_G0;
 239    }
 240
 241    bpr = read_vbpr(cs, group);
 242    if (group == GICV3_G1NS) {
 243        assert(bpr > 0);
 244        bpr--;
 245    }
 246
 247    return ~0U << (bpr + 1);
 248}
 249
 250static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 251{
 252    /* Return true if we can signal this virtual interrupt defined by
 253     * the given list register value; see the pseudocode functions
 254     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 255     * Compare also icc_hppi_can_preempt() which is the non-virtual
 256     * equivalent of these checks.
 257     */
 258    int grp;
 259    uint32_t mask, prio, rprio, vpmr;
 260
 261    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 262        /* Virtual interface disabled */
 263        return false;
 264    }
 265
 266    /* We don't need to check that this LR is in Pending state because
 267     * that has already been done in hppvi_index().
 268     */
 269
 270    prio = ich_lr_prio(lr);
 271    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 272                     ICH_VMCR_EL2_VPMR_LENGTH);
 273
 274    if (prio >= vpmr) {
 275        /* Priority mask masks this interrupt */
 276        return false;
 277    }
 278
 279    rprio = ich_highest_active_virt_prio(cs);
 280    if (rprio == 0xff) {
 281        /* No running interrupt so we can preempt */
 282        return true;
 283    }
 284
 285    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 286
 287    mask = icv_gprio_mask(cs, grp);
 288
 289    /* We only preempt a running interrupt if the pending interrupt's
 290     * group priority is sufficient (the subpriorities are not considered).
 291     */
 292    if ((prio & mask) < (rprio & mask)) {
 293        return true;
 294    }
 295
 296    return false;
 297}
 298
 299static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 300                                                uint32_t *misr)
 301{
 302    /* Return a set of bits indicating the EOI maintenance interrupt status
 303     * for each list register. The EOI maintenance interrupt status is
 304     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 305     * (see the GICv3 spec for the ICH_EISR_EL2 register).
 306     * If misr is not NULL then we should also collect the information
 307     * about the MISR.EOI, MISR.NP and MISR.U bits.
 308     */
 309    uint32_t value = 0;
 310    int validcount = 0;
 311    bool seenpending = false;
 312    int i;
 313
 314    for (i = 0; i < cs->num_list_regs; i++) {
 315        uint64_t lr = cs->ich_lr_el2[i];
 316
 317        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 318            == ICH_LR_EL2_EOI) {
 319            value |= (1 << i);
 320        }
 321        if ((lr & ICH_LR_EL2_STATE_MASK)) {
 322            validcount++;
 323        }
 324        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 325            seenpending = true;
 326        }
 327    }
 328
 329    if (misr) {
 330        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 331            *misr |= ICH_MISR_EL2_U;
 332        }
 333        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 334            *misr |= ICH_MISR_EL2_NP;
 335        }
 336        if (value) {
 337            *misr |= ICH_MISR_EL2_EOI;
 338        }
 339    }
 340    return value;
 341}
 342
 343static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 344{
 345    /* Return a set of bits indicating the maintenance interrupt status
 346     * (as seen in the ICH_MISR_EL2 register).
 347     */
 348    uint32_t value = 0;
 349
 350    /* Scan list registers and fill in the U, NP and EOI bits */
 351    eoi_maintenance_interrupt_state(cs, &value);
 352
 353    if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
 354        value |= ICH_MISR_EL2_LRENP;
 355    }
 356
 357    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 358        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 359        value |= ICH_MISR_EL2_VGRP0E;
 360    }
 361
 362    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 363        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 364        value |= ICH_MISR_EL2_VGRP0D;
 365    }
 366    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 367        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 368        value |= ICH_MISR_EL2_VGRP1E;
 369    }
 370
 371    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 372        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 373        value |= ICH_MISR_EL2_VGRP1D;
 374    }
 375
 376    return value;
 377}
 378
 379static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 380{
 381    /* Tell the CPU about any pending virtual interrupts or
 382     * maintenance interrupts, following a change to the state
 383     * of the CPU interface relevant to virtual interrupts.
 384     *
 385     * CAUTION: this function will call qemu_set_irq() on the
 386     * CPU maintenance IRQ line, which is typically wired up
 387     * to the GIC as a per-CPU interrupt. This means that it
 388     * will recursively call back into the GIC code via
 389     * gicv3_redist_set_irq() and thus into the CPU interface code's
 390     * gicv3_cpuif_update(). It is therefore important that this
 391     * function is only called as the final action of a CPU interface
 392     * register write implementation, after all the GIC state
 393     * fields have been updated. gicv3_cpuif_update() also must
 394     * not cause this function to be called, but that happens
 395     * naturally as a result of there being no architectural
 396     * linkage between the physical and virtual GIC logic.
 397     */
 398    int idx;
 399    int irqlevel = 0;
 400    int fiqlevel = 0;
 401    int maintlevel = 0;
 402
 403    idx = hppvi_index(cs);
 404    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
 405    if (idx >= 0) {
 406        uint64_t lr = cs->ich_lr_el2[idx];
 407
 408        if (icv_hppi_can_preempt(cs, lr)) {
 409            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 410            if (lr & ICH_LR_EL2_GROUP) {
 411                irqlevel = 1;
 412            } else {
 413                fiqlevel = 1;
 414            }
 415        }
 416    }
 417
 418    if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
 419        maintlevel = maintenance_interrupt_state(cs);
 420    }
 421
 422    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
 423                                    irqlevel, maintlevel);
 424
 425    qemu_set_irq(cs->parent_vfiq, fiqlevel);
 426    qemu_set_irq(cs->parent_virq, irqlevel);
 427    qemu_set_irq(cs->maintenance_irq, maintlevel);
 428}
 429
 430static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 431{
 432    GICv3CPUState *cs = icc_cs_from_env(env);
 433    int regno = ri->opc2 & 3;
 434    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 435    uint64_t value = cs->ich_apr[grp][regno];
 436
 437    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 438    return value;
 439}
 440
 441static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 442                         uint64_t value)
 443{
 444    GICv3CPUState *cs = icc_cs_from_env(env);
 445    int regno = ri->opc2 & 3;
 446    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 447
 448    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 449
 450    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 451
 452    gicv3_cpuif_virt_update(cs);
 453    return;
 454}
 455
 456static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 457{
 458    GICv3CPUState *cs = icc_cs_from_env(env);
 459    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 460    uint64_t bpr;
 461    bool satinc = false;
 462
 463    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 464        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 465        grp = GICV3_G0;
 466        satinc = true;
 467    }
 468
 469    bpr = read_vbpr(cs, grp);
 470
 471    if (satinc) {
 472        bpr++;
 473        bpr = MIN(bpr, 7);
 474    }
 475
 476    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 477
 478    return bpr;
 479}
 480
 481static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 482                          uint64_t value)
 483{
 484    GICv3CPUState *cs = icc_cs_from_env(env);
 485    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 486
 487    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 488                              gicv3_redist_affid(cs), value);
 489
 490    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 491        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 492        return;
 493    }
 494
 495    write_vbpr(cs, grp, value);
 496
 497    gicv3_cpuif_virt_update(cs);
 498}
 499
 500static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 501{
 502    GICv3CPUState *cs = icc_cs_from_env(env);
 503    uint64_t value;
 504
 505    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 506                      ICH_VMCR_EL2_VPMR_LENGTH);
 507
 508    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 509    return value;
 510}
 511
 512static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 513                          uint64_t value)
 514{
 515    GICv3CPUState *cs = icc_cs_from_env(env);
 516
 517    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 518
 519    value &= icv_fullprio_mask(cs);
 520
 521    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 522                                 ICH_VMCR_EL2_VPMR_LENGTH, value);
 523
 524    gicv3_cpuif_virt_update(cs);
 525}
 526
 527static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 528{
 529    GICv3CPUState *cs = icc_cs_from_env(env);
 530    int enbit;
 531    uint64_t value;
 532
 533    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 534    value = extract64(cs->ich_vmcr_el2, enbit, 1);
 535
 536    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 537                                gicv3_redist_affid(cs), value);
 538    return value;
 539}
 540
 541static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 542                             uint64_t value)
 543{
 544    GICv3CPUState *cs = icc_cs_from_env(env);
 545    int enbit;
 546
 547    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 548                                 gicv3_redist_affid(cs), value);
 549
 550    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 551
 552    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 553    gicv3_cpuif_virt_update(cs);
 554}
 555
 556static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 557{
 558    GICv3CPUState *cs = icc_cs_from_env(env);
 559    uint64_t value;
 560
 561    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 562     * should match the ones reported in ich_vtr_read().
 563     */
 564    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 565        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
 566
 567    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 568        value |= ICC_CTLR_EL1_EOIMODE;
 569    }
 570
 571    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 572        value |= ICC_CTLR_EL1_CBPR;
 573    }
 574
 575    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 576    return value;
 577}
 578
 579static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 580                               uint64_t value)
 581{
 582    GICv3CPUState *cs = icc_cs_from_env(env);
 583
 584    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 585
 586    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 587                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 588    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 589                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 590
 591    gicv3_cpuif_virt_update(cs);
 592}
 593
 594static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 595{
 596    GICv3CPUState *cs = icc_cs_from_env(env);
 597    int prio = ich_highest_active_virt_prio(cs);
 598
 599    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 600    return prio;
 601}
 602
 603static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 604{
 605    GICv3CPUState *cs = icc_cs_from_env(env);
 606    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 607    int idx = hppvi_index(cs);
 608    uint64_t value = INTID_SPURIOUS;
 609
 610    if (idx >= 0) {
 611        uint64_t lr = cs->ich_lr_el2[idx];
 612        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 613
 614        if (grp == thisgrp) {
 615            value = ich_lr_vintid(lr);
 616        }
 617    }
 618
 619    trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
 620    return value;
 621}
 622
 623static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 624{
 625    /* Activate the interrupt in the specified list register
 626     * by moving it from Pending to Active state, and update the
 627     * Active Priority Registers.
 628     */
 629    uint32_t mask = icv_gprio_mask(cs, grp);
 630    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 631    int aprbit = prio >> (8 - cs->vprebits);
 632    int regno = aprbit / 32;
 633    int regbit = aprbit % 32;
 634
 635    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 636    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 637    cs->ich_apr[grp][regno] |= (1 << regbit);
 638}
 639
 640static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 641{
 642    GICv3CPUState *cs = icc_cs_from_env(env);
 643    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 644    int idx = hppvi_index(cs);
 645    uint64_t intid = INTID_SPURIOUS;
 646
 647    if (idx >= 0) {
 648        uint64_t lr = cs->ich_lr_el2[idx];
 649        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 650
 651        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 652            intid = ich_lr_vintid(lr);
 653            if (intid < INTID_SECURE) {
 654                icv_activate_irq(cs, idx, grp);
 655            } else {
 656                /* Interrupt goes from Pending to Invalid */
 657                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 658                /* We will now return the (bogus) ID from the list register,
 659                 * as per the pseudocode.
 660                 */
 661            }
 662        }
 663    }
 664
 665    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 666                             gicv3_redist_affid(cs), intid);
 667    return intid;
 668}
 669
 670static int icc_highest_active_prio(GICv3CPUState *cs)
 671{
 672    /* Calculate the current running priority based on the set bits
 673     * in the Active Priority Registers.
 674     */
 675    int i;
 676
 677    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 678        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 679            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 680
 681        if (!apr) {
 682            continue;
 683        }
 684        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 685    }
 686    /* No current active interrupts: return idle priority */
 687    return 0xff;
 688}
 689
 690static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 691{
 692    /* Return a mask word which clears the subpriority bits from
 693     * a priority value for an interrupt in the specified group.
 694     * This depends on the BPR value. For CBPR0 (S or NS):
 695     *  a BPR of 0 means the group priority bits are [7:1];
 696     *  a BPR of 1 means they are [7:2], and so on down to
 697     *  a BPR of 7 meaning no group priority bits at all.
 698     * For CBPR1 NS:
 699     *  a BPR of 0 is impossible (the minimum value is 1)
 700     *  a BPR of 1 means the group priority bits are [7:1];
 701     *  a BPR of 2 means they are [7:2], and so on down to
 702     *  a BPR of 7 meaning the group priority is [7].
 703     *
 704     * Which BPR to use depends on the group of the interrupt and
 705     * the current ICC_CTLR.CBPR settings.
 706     *
 707     * This corresponds to the GroupBits() pseudocode.
 708     */
 709    int bpr;
 710
 711    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 712        (group == GICV3_G1NS &&
 713         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 714        group = GICV3_G0;
 715    }
 716
 717    bpr = cs->icc_bpr[group] & 7;
 718
 719    if (group == GICV3_G1NS) {
 720        assert(bpr > 0);
 721        bpr--;
 722    }
 723
 724    return ~0U << (bpr + 1);
 725}
 726
 727static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 728{
 729    /* Return true if there is no pending interrupt, or the
 730     * highest priority pending interrupt is in a group which has been
 731     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 732     */
 733    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 734}
 735
 736static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 737{
 738    /* Return true if we have a pending interrupt of sufficient
 739     * priority to preempt.
 740     */
 741    int rprio;
 742    uint32_t mask;
 743
 744    if (icc_no_enabled_hppi(cs)) {
 745        return false;
 746    }
 747
 748    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 749        /* Priority mask masks this interrupt */
 750        return false;
 751    }
 752
 753    rprio = icc_highest_active_prio(cs);
 754    if (rprio == 0xff) {
 755        /* No currently running interrupt so we can preempt */
 756        return true;
 757    }
 758
 759    mask = icc_gprio_mask(cs, cs->hppi.grp);
 760
 761    /* We only preempt a running interrupt if the pending interrupt's
 762     * group priority is sufficient (the subpriorities are not considered).
 763     */
 764    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 765        return true;
 766    }
 767
 768    return false;
 769}
 770
 771void gicv3_cpuif_update(GICv3CPUState *cs)
 772{
 773    /* Tell the CPU about its highest priority pending interrupt */
 774    int irqlevel = 0;
 775    int fiqlevel = 0;
 776    ARMCPU *cpu = ARM_CPU(cs->cpu);
 777    CPUARMState *env = &cpu->env;
 778
 779    g_assert(qemu_mutex_iothread_locked());
 780
 781    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 782                             cs->hppi.grp, cs->hppi.prio);
 783
 784    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 785        /* If a Security-enabled GIC sends a G1S interrupt to a
 786         * Security-disabled CPU, we must treat it as if it were G0.
 787         */
 788        cs->hppi.grp = GICV3_G0;
 789    }
 790
 791    if (icc_hppi_can_preempt(cs)) {
 792        /* We have an interrupt: should we signal it as IRQ or FIQ?
 793         * This is described in the GICv3 spec section 4.6.2.
 794         */
 795        bool isfiq;
 796
 797        switch (cs->hppi.grp) {
 798        case GICV3_G0:
 799            isfiq = true;
 800            break;
 801        case GICV3_G1:
 802            isfiq = (!arm_is_secure(env) ||
 803                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 804            break;
 805        case GICV3_G1NS:
 806            isfiq = arm_is_secure(env);
 807            break;
 808        default:
 809            g_assert_not_reached();
 810        }
 811
 812        if (isfiq) {
 813            fiqlevel = 1;
 814        } else {
 815            irqlevel = 1;
 816        }
 817    }
 818
 819    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 820
 821    qemu_set_irq(cs->parent_fiq, fiqlevel);
 822    qemu_set_irq(cs->parent_irq, irqlevel);
 823}
 824
 825static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 826{
 827    GICv3CPUState *cs = icc_cs_from_env(env);
 828    uint32_t value = cs->icc_pmr_el1;
 829
 830    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 831        return icv_pmr_read(env, ri);
 832    }
 833
 834    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 835        (env->cp15.scr_el3 & SCR_FIQ)) {
 836        /* NS access and Group 0 is inaccessible to NS: return the
 837         * NS view of the current priority
 838         */
 839        if ((value & 0x80) == 0) {
 840            /* Secure priorities not visible to NS */
 841            value = 0;
 842        } else if (value != 0xff) {
 843            value = (value << 1) & 0xff;
 844        }
 845    }
 846
 847    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 848
 849    return value;
 850}
 851
 852static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 853                          uint64_t value)
 854{
 855    GICv3CPUState *cs = icc_cs_from_env(env);
 856
 857    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 858        return icv_pmr_write(env, ri, value);
 859    }
 860
 861    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 862
 863    value &= 0xff;
 864
 865    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 866        (env->cp15.scr_el3 & SCR_FIQ)) {
 867        /* NS access and Group 0 is inaccessible to NS: return the
 868         * NS view of the current priority
 869         */
 870        if (!(cs->icc_pmr_el1 & 0x80)) {
 871            /* Current PMR in the secure range, don't allow NS to change it */
 872            return;
 873        }
 874        value = (value >> 1) | 0x80;
 875    }
 876    cs->icc_pmr_el1 = value;
 877    gicv3_cpuif_update(cs);
 878}
 879
 880static void icc_activate_irq(GICv3CPUState *cs, int irq)
 881{
 882    /* Move the interrupt from the Pending state to Active, and update
 883     * the Active Priority Registers
 884     */
 885    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 886    int prio = cs->hppi.prio & mask;
 887    int aprbit = prio >> 1;
 888    int regno = aprbit / 32;
 889    int regbit = aprbit % 32;
 890
 891    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 892
 893    if (irq < GIC_INTERNAL) {
 894        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 895        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 896        gicv3_redist_update(cs);
 897    } else {
 898        gicv3_gicd_active_set(cs->gic, irq);
 899        gicv3_gicd_pending_clear(cs->gic, irq);
 900        gicv3_update(cs->gic, irq, 1);
 901    }
 902}
 903
 904static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 905{
 906    /* Return the highest priority pending interrupt register value
 907     * for group 0.
 908     */
 909    bool irq_is_secure;
 910
 911    if (cs->hppi.prio == 0xff) {
 912        return INTID_SPURIOUS;
 913    }
 914
 915    /* Check whether we can return the interrupt or if we should return
 916     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 917     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 918     * is always zero.)
 919     */
 920    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 921                     (cs->hppi.grp != GICV3_G1NS));
 922
 923    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 924        return INTID_SPURIOUS;
 925    }
 926    if (irq_is_secure && !arm_is_secure(env)) {
 927        /* Secure interrupts not visible to Nonsecure */
 928        return INTID_SPURIOUS;
 929    }
 930
 931    if (cs->hppi.grp != GICV3_G0) {
 932        /* Indicate to EL3 that there's a Group 1 interrupt for the other
 933         * state pending.
 934         */
 935        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 936    }
 937
 938    return cs->hppi.irq;
 939}
 940
 941static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 942{
 943    /* Return the highest priority pending interrupt register value
 944     * for group 1.
 945     */
 946    bool irq_is_secure;
 947
 948    if (cs->hppi.prio == 0xff) {
 949        return INTID_SPURIOUS;
 950    }
 951
 952    /* Check whether we can return the interrupt or if we should return
 953     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 954     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 955     * is always zero.)
 956     */
 957    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 958                     (cs->hppi.grp != GICV3_G1NS));
 959
 960    if (cs->hppi.grp == GICV3_G0) {
 961        /* Group 0 interrupts not visible via HPPIR1 */
 962        return INTID_SPURIOUS;
 963    }
 964    if (irq_is_secure) {
 965        if (!arm_is_secure(env)) {
 966            /* Secure interrupts not visible in Non-secure */
 967            return INTID_SPURIOUS;
 968        }
 969    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 970        /* Group 1 non-secure interrupts not visible in Secure EL1 */
 971        return INTID_SPURIOUS;
 972    }
 973
 974    return cs->hppi.irq;
 975}
 976
 977static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 978{
 979    GICv3CPUState *cs = icc_cs_from_env(env);
 980    uint64_t intid;
 981
 982    if (icv_access(env, HCR_FMO)) {
 983        return icv_iar_read(env, ri);
 984    }
 985
 986    if (!icc_hppi_can_preempt(cs)) {
 987        intid = INTID_SPURIOUS;
 988    } else {
 989        intid = icc_hppir0_value(cs, env);
 990    }
 991
 992    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 993        icc_activate_irq(cs, intid);
 994    }
 995
 996    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
 997    return intid;
 998}
 999
1000static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1001{
1002    GICv3CPUState *cs = icc_cs_from_env(env);
1003    uint64_t intid;
1004
1005    if (icv_access(env, HCR_IMO)) {
1006        return icv_iar_read(env, ri);
1007    }
1008
1009    if (!icc_hppi_can_preempt(cs)) {
1010        intid = INTID_SPURIOUS;
1011    } else {
1012        intid = icc_hppir1_value(cs, env);
1013    }
1014
1015    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1016        icc_activate_irq(cs, intid);
1017    }
1018
1019    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1020    return intid;
1021}
1022
1023static void icc_drop_prio(GICv3CPUState *cs, int grp)
1024{
1025    /* Drop the priority of the currently active interrupt in
1026     * the specified group.
1027     *
1028     * Note that we can guarantee (because of the requirement to nest
1029     * ICC_IAR reads [which activate an interrupt and raise priority]
1030     * with ICC_EOIR writes [which drop the priority for the interrupt])
1031     * that the interrupt we're being called for is the highest priority
1032     * active interrupt, meaning that it has the lowest set bit in the
1033     * APR registers.
1034     *
1035     * If the guest does not honour the ordering constraints then the
1036     * behaviour of the GIC is UNPREDICTABLE, which for us means that
1037     * the values of the APR registers might become incorrect and the
1038     * running priority will be wrong, so interrupts that should preempt
1039     * might not do so, and interrupts that should not preempt might do so.
1040     */
1041    int i;
1042
1043    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1044        uint64_t *papr = &cs->icc_apr[grp][i];
1045
1046        if (!*papr) {
1047            continue;
1048        }
1049        /* Clear the lowest set bit */
1050        *papr &= *papr - 1;
1051        break;
1052    }
1053
1054    /* running priority change means we need an update for this cpu i/f */
1055    gicv3_cpuif_update(cs);
1056}
1057
1058static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1059{
1060    /* Return true if we should split priority drop and interrupt
1061     * deactivation, ie whether the relevant EOIMode bit is set.
1062     */
1063    if (arm_is_el3_or_mon(env)) {
1064        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1065    }
1066    if (arm_is_secure_below_el3(env)) {
1067        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1068    } else {
1069        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1070    }
1071}
1072
1073static int icc_highest_active_group(GICv3CPUState *cs)
1074{
1075    /* Return the group with the highest priority active interrupt.
1076     * We can do this by just comparing the APRs to see which one
1077     * has the lowest set bit.
1078     * (If more than one group is active at the same priority then
1079     * we're in UNPREDICTABLE territory.)
1080     */
1081    int i;
1082
1083    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1084        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1085        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1086        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1087
1088        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1089            return GICV3_G1NS;
1090        }
1091        if (g1ctz < g0ctz) {
1092            return GICV3_G1;
1093        }
1094        if (g0ctz < 32) {
1095            return GICV3_G0;
1096        }
1097    }
1098    /* No set active bits? UNPREDICTABLE; return -1 so the caller
1099     * ignores the spurious EOI attempt.
1100     */
1101    return -1;
1102}
1103
1104static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1105{
1106    if (irq < GIC_INTERNAL) {
1107        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1108        gicv3_redist_update(cs);
1109    } else {
1110        gicv3_gicd_active_clear(cs->gic, irq);
1111        gicv3_update(cs->gic, irq, 1);
1112    }
1113}
1114
1115static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1116{
1117    /* Return true if we should split priority drop and interrupt
1118     * deactivation, ie whether the virtual EOIMode bit is set.
1119     */
1120    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1121}
1122
1123static int icv_find_active(GICv3CPUState *cs, int irq)
1124{
1125    /* Given an interrupt number for an active interrupt, return the index
1126     * of the corresponding list register, or -1 if there is no match.
1127     * Corresponds to FindActiveVirtualInterrupt pseudocode.
1128     */
1129    int i;
1130
1131    for (i = 0; i < cs->num_list_regs; i++) {
1132        uint64_t lr = cs->ich_lr_el2[i];
1133
1134        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1135            return i;
1136        }
1137    }
1138
1139    return -1;
1140}
1141
1142static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1143{
1144    /* Deactivate the interrupt in the specified list register index */
1145    uint64_t lr = cs->ich_lr_el2[idx];
1146
1147    if (lr & ICH_LR_EL2_HW) {
1148        /* Deactivate the associated physical interrupt */
1149        int pirq = ich_lr_pintid(lr);
1150
1151        if (pirq < INTID_SECURE) {
1152            icc_deactivate_irq(cs, pirq);
1153        }
1154    }
1155
1156    /* Clear the 'active' part of the state, so ActivePending->Pending
1157     * and Active->Invalid.
1158     */
1159    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1160    cs->ich_lr_el2[idx] = lr;
1161}
1162
1163static void icv_increment_eoicount(GICv3CPUState *cs)
1164{
1165    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1166    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1167                             ICH_HCR_EL2_EOICOUNT_LENGTH);
1168
1169    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1170                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1171}
1172
1173static int icv_drop_prio(GICv3CPUState *cs)
1174{
1175    /* Drop the priority of the currently active virtual interrupt
1176     * (favouring group 0 if there is a set active bit at
1177     * the same priority for both group 0 and group 1).
1178     * Return the priority value for the bit we just cleared,
1179     * or 0xff if no bits were set in the AP registers at all.
1180     * Note that though the ich_apr[] are uint64_t only the low
1181     * 32 bits are actually relevant.
1182     */
1183    int i;
1184    int aprmax = 1 << (cs->vprebits - 5);
1185
1186    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1187
1188    for (i = 0; i < aprmax; i++) {
1189        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1190        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1191        int apr0count, apr1count;
1192
1193        if (!*papr0 && !*papr1) {
1194            continue;
1195        }
1196
1197        /* We can't just use the bit-twiddling hack icc_drop_prio() does
1198         * because we need to return the bit number we cleared so
1199         * it can be compared against the list register's priority field.
1200         */
1201        apr0count = ctz32(*papr0);
1202        apr1count = ctz32(*papr1);
1203
1204        if (apr0count <= apr1count) {
1205            *papr0 &= *papr0 - 1;
1206            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1207        } else {
1208            *papr1 &= *papr1 - 1;
1209            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1210        }
1211    }
1212    return 0xff;
1213}
1214
1215static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1216                          uint64_t value)
1217{
1218    /* Deactivate interrupt */
1219    GICv3CPUState *cs = icc_cs_from_env(env);
1220    int idx;
1221    int irq = value & 0xffffff;
1222
1223    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1224
1225    if (irq >= cs->gic->num_irq) {
1226        /* Also catches special interrupt numbers and LPIs */
1227        return;
1228    }
1229
1230    if (!icv_eoi_split(env, cs)) {
1231        return;
1232    }
1233
1234    idx = icv_find_active(cs, irq);
1235
1236    if (idx < 0) {
1237        /* No list register matching this, so increment the EOI count
1238         * (might trigger a maintenance interrupt)
1239         */
1240        icv_increment_eoicount(cs);
1241    } else {
1242        icv_deactivate_irq(cs, idx);
1243    }
1244
1245    gicv3_cpuif_virt_update(cs);
1246}
1247
1248static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1249                           uint64_t value)
1250{
1251    /* End of Interrupt */
1252    GICv3CPUState *cs = icc_cs_from_env(env);
1253    int irq = value & 0xffffff;
1254    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1255    int idx, dropprio;
1256
1257    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1258                               gicv3_redist_affid(cs), value);
1259
1260    if (irq >= cs->gic->num_irq) {
1261        /* Also catches special interrupt numbers and LPIs */
1262        return;
1263    }
1264
1265    /* We implement the IMPDEF choice of "drop priority before doing
1266     * error checks" (because that lets us avoid scanning the AP
1267     * registers twice).
1268     */
1269    dropprio = icv_drop_prio(cs);
1270    if (dropprio == 0xff) {
1271        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1272         * whether the list registers are checked in this
1273         * situation; we choose not to.
1274         */
1275        return;
1276    }
1277
1278    idx = icv_find_active(cs, irq);
1279
1280    if (idx < 0) {
1281        /* No valid list register corresponding to EOI ID */
1282        icv_increment_eoicount(cs);
1283    } else {
1284        uint64_t lr = cs->ich_lr_el2[idx];
1285        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1286        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1287
1288        if (thisgrp == grp && lr_gprio == dropprio) {
1289            if (!icv_eoi_split(env, cs)) {
1290                /* Priority drop and deactivate not split: deactivate irq now */
1291                icv_deactivate_irq(cs, idx);
1292            }
1293        }
1294    }
1295
1296    gicv3_cpuif_virt_update(cs);
1297}
1298
1299static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1300                           uint64_t value)
1301{
1302    /* End of Interrupt */
1303    GICv3CPUState *cs = icc_cs_from_env(env);
1304    int irq = value & 0xffffff;
1305    int grp;
1306
1307    if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1308        icv_eoir_write(env, ri, value);
1309        return;
1310    }
1311
1312    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1313                               gicv3_redist_affid(cs), value);
1314
1315    if (ri->crm == 8) {
1316        /* EOIR0 */
1317        grp = GICV3_G0;
1318    } else {
1319        /* EOIR1 */
1320        if (arm_is_secure(env)) {
1321            grp = GICV3_G1;
1322        } else {
1323            grp = GICV3_G1NS;
1324        }
1325    }
1326
1327    if (irq >= cs->gic->num_irq) {
1328        /* This handles two cases:
1329         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1330         * to the GICC_EOIR, the GIC ignores that write.
1331         * 2. If software writes the number of a non-existent interrupt
1332         * this must be a subcase of "value written does not match the last
1333         * valid interrupt value read from the Interrupt Acknowledge
1334         * register" and so this is UNPREDICTABLE. We choose to ignore it.
1335         */
1336        return;
1337    }
1338
1339    if (icc_highest_active_group(cs) != grp) {
1340        return;
1341    }
1342
1343    icc_drop_prio(cs, grp);
1344
1345    if (!icc_eoi_split(env, cs)) {
1346        /* Priority drop and deactivate not split: deactivate irq now */
1347        icc_deactivate_irq(cs, irq);
1348    }
1349}
1350
1351static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1352{
1353    GICv3CPUState *cs = icc_cs_from_env(env);
1354    uint64_t value;
1355
1356    if (icv_access(env, HCR_FMO)) {
1357        return icv_hppir_read(env, ri);
1358    }
1359
1360    value = icc_hppir0_value(cs, env);
1361    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1362    return value;
1363}
1364
1365static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1366{
1367    GICv3CPUState *cs = icc_cs_from_env(env);
1368    uint64_t value;
1369
1370    if (icv_access(env, HCR_IMO)) {
1371        return icv_hppir_read(env, ri);
1372    }
1373
1374    value = icc_hppir1_value(cs, env);
1375    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1376    return value;
1377}
1378
1379static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1380{
1381    GICv3CPUState *cs = icc_cs_from_env(env);
1382    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1383    bool satinc = false;
1384    uint64_t bpr;
1385
1386    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1387        return icv_bpr_read(env, ri);
1388    }
1389
1390    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1391        grp = GICV3_G1NS;
1392    }
1393
1394    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1395        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1396        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1397         * modify BPR0
1398         */
1399        grp = GICV3_G0;
1400    }
1401
1402    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1403        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1404        /* reads return bpr0 + 1 sat to 7, writes ignored */
1405        grp = GICV3_G0;
1406        satinc = true;
1407    }
1408
1409    bpr = cs->icc_bpr[grp];
1410    if (satinc) {
1411        bpr++;
1412        bpr = MIN(bpr, 7);
1413    }
1414
1415    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1416
1417    return bpr;
1418}
1419
1420static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1421                          uint64_t value)
1422{
1423    GICv3CPUState *cs = icc_cs_from_env(env);
1424    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1425    uint64_t minval;
1426
1427    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1428        icv_bpr_write(env, ri, value);
1429        return;
1430    }
1431
1432    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1433                              gicv3_redist_affid(cs), value);
1434
1435    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1436        grp = GICV3_G1NS;
1437    }
1438
1439    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1440        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1441        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1442         * modify BPR0
1443         */
1444        grp = GICV3_G0;
1445    }
1446
1447    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1448        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1449        /* reads return bpr0 + 1 sat to 7, writes ignored */
1450        return;
1451    }
1452
1453    minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1454    if (value < minval) {
1455        value = minval;
1456    }
1457
1458    cs->icc_bpr[grp] = value & 7;
1459    gicv3_cpuif_update(cs);
1460}
1461
1462static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1463{
1464    GICv3CPUState *cs = icc_cs_from_env(env);
1465    uint64_t value;
1466
1467    int regno = ri->opc2 & 3;
1468    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1469
1470    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1471        return icv_ap_read(env, ri);
1472    }
1473
1474    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1475        grp = GICV3_G1NS;
1476    }
1477
1478    value = cs->icc_apr[grp][regno];
1479
1480    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1481    return value;
1482}
1483
1484static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485                         uint64_t value)
1486{
1487    GICv3CPUState *cs = icc_cs_from_env(env);
1488
1489    int regno = ri->opc2 & 3;
1490    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1491
1492    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1493        icv_ap_write(env, ri, value);
1494        return;
1495    }
1496
1497    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1498
1499    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1500        grp = GICV3_G1NS;
1501    }
1502
1503    /* It's not possible to claim that a Non-secure interrupt is active
1504     * at a priority outside the Non-secure range (128..255), since this
1505     * would otherwise allow malicious NS code to block delivery of S interrupts
1506     * by writing a bad value to these registers.
1507     */
1508    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1509        return;
1510    }
1511
1512    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1513    gicv3_cpuif_update(cs);
1514}
1515
1516static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517                          uint64_t value)
1518{
1519    /* Deactivate interrupt */
1520    GICv3CPUState *cs = icc_cs_from_env(env);
1521    int irq = value & 0xffffff;
1522    bool irq_is_secure, single_sec_state, irq_is_grp0;
1523    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1524
1525    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1526        icv_dir_write(env, ri, value);
1527        return;
1528    }
1529
1530    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1531
1532    if (irq >= cs->gic->num_irq) {
1533        /* Also catches special interrupt numbers and LPIs */
1534        return;
1535    }
1536
1537    if (!icc_eoi_split(env, cs)) {
1538        return;
1539    }
1540
1541    int grp = gicv3_irq_group(cs->gic, cs, irq);
1542
1543    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1544    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1545    irq_is_grp0 = grp == GICV3_G0;
1546
1547    /* Check whether we're allowed to deactivate this interrupt based
1548     * on its group and the current CPU state.
1549     * These checks are laid out to correspond to the spec's pseudocode.
1550     */
1551    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1552    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1553    /* No need to include !IsSecure in route_*_to_el2 as it's only
1554     * tested in cases where we know !IsSecure is true.
1555     */
1556    route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1557    route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1558
1559    switch (arm_current_el(env)) {
1560    case 3:
1561        break;
1562    case 2:
1563        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1564            break;
1565        }
1566        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1567            break;
1568        }
1569        return;
1570    case 1:
1571        if (!arm_is_secure_below_el3(env)) {
1572            if (single_sec_state && irq_is_grp0 &&
1573                !route_fiq_to_el3 && !route_fiq_to_el2) {
1574                break;
1575            }
1576            if (!irq_is_secure && !irq_is_grp0 &&
1577                !route_irq_to_el3 && !route_irq_to_el2) {
1578                break;
1579            }
1580        } else {
1581            if (irq_is_grp0 && !route_fiq_to_el3) {
1582                break;
1583            }
1584            if (!irq_is_grp0 &&
1585                (!irq_is_secure || !single_sec_state) &&
1586                !route_irq_to_el3) {
1587                break;
1588            }
1589        }
1590        return;
1591    default:
1592        g_assert_not_reached();
1593    }
1594
1595    icc_deactivate_irq(cs, irq);
1596}
1597
1598static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1599{
1600    GICv3CPUState *cs = icc_cs_from_env(env);
1601    int prio;
1602
1603    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1604        return icv_rpr_read(env, ri);
1605    }
1606
1607    prio = icc_highest_active_prio(cs);
1608
1609    if (arm_feature(env, ARM_FEATURE_EL3) &&
1610        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1611        /* NS GIC access and Group 0 is inaccessible to NS */
1612        if ((prio & 0x80) == 0) {
1613            /* NS mustn't see priorities in the Secure half of the range */
1614            prio = 0;
1615        } else if (prio != 0xff) {
1616            /* Non-idle priority: show the Non-secure view of it */
1617            prio = (prio << 1) & 0xff;
1618        }
1619    }
1620
1621    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1622    return prio;
1623}
1624
1625static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1626                             uint64_t value, int grp, bool ns)
1627{
1628    GICv3State *s = cs->gic;
1629
1630    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631    uint64_t aff = extract64(value, 48, 8) << 16 |
1632        extract64(value, 32, 8) << 8 |
1633        extract64(value, 16, 8);
1634    uint32_t targetlist = extract64(value, 0, 16);
1635    uint32_t irq = extract64(value, 24, 4);
1636    bool irm = extract64(value, 40, 1);
1637    int i;
1638
1639    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1640        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641         * interrupts as Group 0 interrupts and must send Secure Group 0
1642         * interrupts to the target CPUs.
1643         */
1644        grp = GICV3_G0;
1645    }
1646
1647    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1648                                 aff, targetlist);
1649
1650    for (i = 0; i < s->num_cpu; i++) {
1651        GICv3CPUState *ocs = &s->cpu[i];
1652
1653        if (irm) {
1654            /* IRM == 1 : route to all CPUs except self */
1655            if (cs == ocs) {
1656                continue;
1657            }
1658        } else {
1659            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660             * where the corresponding bit is set in targetlist
1661             */
1662            int aff0;
1663
1664            if (ocs->gicr_typer >> 40 != aff) {
1665                continue;
1666            }
1667            aff0 = extract64(ocs->gicr_typer, 32, 8);
1668            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1669                continue;
1670            }
1671        }
1672
1673        /* The redistributor will check against its own GICR_NSACR as needed */
1674        gicv3_redist_send_sgi(ocs, grp, irq, ns);
1675    }
1676}
1677
1678static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679                           uint64_t value)
1680{
1681    /* Generate Secure Group 0 SGI. */
1682    GICv3CPUState *cs = icc_cs_from_env(env);
1683    bool ns = !arm_is_secure(env);
1684
1685    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1686}
1687
1688static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689                           uint64_t value)
1690{
1691    /* Generate Group 1 SGI for the current Security state */
1692    GICv3CPUState *cs = icc_cs_from_env(env);
1693    int grp;
1694    bool ns = !arm_is_secure(env);
1695
1696    grp = ns ? GICV3_G1NS : GICV3_G1;
1697    icc_generate_sgi(env, cs, value, grp, ns);
1698}
1699
1700static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701                             uint64_t value)
1702{
1703    /* Generate Group 1 SGI for the Security state that is not
1704     * the current state
1705     */
1706    GICv3CPUState *cs = icc_cs_from_env(env);
1707    int grp;
1708    bool ns = !arm_is_secure(env);
1709
1710    grp = ns ? GICV3_G1 : GICV3_G1NS;
1711    icc_generate_sgi(env, cs, value, grp, ns);
1712}
1713
1714static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715{
1716    GICv3CPUState *cs = icc_cs_from_env(env);
1717    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1718    uint64_t value;
1719
1720    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1721        return icv_igrpen_read(env, ri);
1722    }
1723
1724    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1725        grp = GICV3_G1NS;
1726    }
1727
1728    value = cs->icc_igrpen[grp];
1729    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1730                                gicv3_redist_affid(cs), value);
1731    return value;
1732}
1733
1734static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735                             uint64_t value)
1736{
1737    GICv3CPUState *cs = icc_cs_from_env(env);
1738    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1739
1740    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1741        icv_igrpen_write(env, ri, value);
1742        return;
1743    }
1744
1745    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1746                                 gicv3_redist_affid(cs), value);
1747
1748    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749        grp = GICV3_G1NS;
1750    }
1751
1752    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1753    gicv3_cpuif_update(cs);
1754}
1755
1756static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1757{
1758    GICv3CPUState *cs = icc_cs_from_env(env);
1759    uint64_t value;
1760
1761    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1763    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1764    return value;
1765}
1766
1767static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768                                  uint64_t value)
1769{
1770    GICv3CPUState *cs = icc_cs_from_env(env);
1771
1772    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1773
1774    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1776    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1777    gicv3_cpuif_update(cs);
1778}
1779
1780static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781{
1782    GICv3CPUState *cs = icc_cs_from_env(env);
1783    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1784    uint64_t value;
1785
1786    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1787        return icv_ctlr_read(env, ri);
1788    }
1789
1790    value = cs->icc_ctlr_el1[bank];
1791    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1792    return value;
1793}
1794
1795static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796                               uint64_t value)
1797{
1798    GICv3CPUState *cs = icc_cs_from_env(env);
1799    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1800    uint64_t mask;
1801
1802    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1803        icv_ctlr_write(env, ri, value);
1804        return;
1805    }
1806
1807    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1808
1809    /* Only CBPR and EOIMODE can be RW;
1810     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811     * the asseciated priority-based routing of them);
1812     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1813     */
1814    if (arm_feature(env, ARM_FEATURE_EL3) &&
1815        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1816        mask = ICC_CTLR_EL1_EOIMODE;
1817    } else {
1818        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1819    }
1820
1821    cs->icc_ctlr_el1[bank] &= ~mask;
1822    cs->icc_ctlr_el1[bank] |= (value & mask);
1823    gicv3_cpuif_update(cs);
1824}
1825
1826
1827static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1828{
1829    GICv3CPUState *cs = icc_cs_from_env(env);
1830    uint64_t value;
1831
1832    value = cs->icc_ctlr_el3;
1833    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1834        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1835    }
1836    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1837        value |= ICC_CTLR_EL3_CBPR_EL1NS;
1838    }
1839    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1840        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1841    }
1842    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1843        value |= ICC_CTLR_EL3_CBPR_EL1S;
1844    }
1845
1846    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1847    return value;
1848}
1849
1850static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851                               uint64_t value)
1852{
1853    GICv3CPUState *cs = icc_cs_from_env(env);
1854    uint64_t mask;
1855
1856    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1857
1858    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859    cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1860    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1861        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1862    }
1863    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1864        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1865    }
1866
1867    cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1868    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1869        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1870    }
1871    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1872        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1873    }
1874
1875    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876    mask = ICC_CTLR_EL3_EOIMODE_EL3;
1877
1878    cs->icc_ctlr_el3 &= ~mask;
1879    cs->icc_ctlr_el3 |= (value & mask);
1880    gicv3_cpuif_update(cs);
1881}
1882
1883static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1884                                          const ARMCPRegInfo *ri, bool isread)
1885{
1886    CPAccessResult r = CP_ACCESS_OK;
1887    GICv3CPUState *cs = icc_cs_from_env(env);
1888    int el = arm_current_el(env);
1889
1890    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1891        el == 1 && !arm_is_secure_below_el3(env)) {
1892        /* Takes priority over a possible EL3 trap */
1893        return CP_ACCESS_TRAP_EL2;
1894    }
1895
1896    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1897        switch (el) {
1898        case 1:
1899            if (arm_is_secure_below_el3(env) ||
1900                ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1901                r = CP_ACCESS_TRAP_EL3;
1902            }
1903            break;
1904        case 2:
1905            r = CP_ACCESS_TRAP_EL3;
1906            break;
1907        case 3:
1908            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1909                r = CP_ACCESS_TRAP_EL3;
1910            }
1911            break;
1912        default:
1913            g_assert_not_reached();
1914        }
1915    }
1916
1917    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1918        r = CP_ACCESS_TRAP;
1919    }
1920    return r;
1921}
1922
1923static CPAccessResult gicv3_dir_access(CPUARMState *env,
1924                                       const ARMCPRegInfo *ri, bool isread)
1925{
1926    GICv3CPUState *cs = icc_cs_from_env(env);
1927
1928    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1929        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1930        /* Takes priority over a possible EL3 trap */
1931        return CP_ACCESS_TRAP_EL2;
1932    }
1933
1934    return gicv3_irqfiq_access(env, ri, isread);
1935}
1936
1937static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1938                                       const ARMCPRegInfo *ri, bool isread)
1939{
1940    if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1941        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1942        /* Takes priority over a possible EL3 trap */
1943        return CP_ACCESS_TRAP_EL2;
1944    }
1945
1946    return gicv3_irqfiq_access(env, ri, isread);
1947}
1948
1949static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1950                                       const ARMCPRegInfo *ri, bool isread)
1951{
1952    CPAccessResult r = CP_ACCESS_OK;
1953    GICv3CPUState *cs = icc_cs_from_env(env);
1954    int el = arm_current_el(env);
1955
1956    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1957        el == 1 && !arm_is_secure_below_el3(env)) {
1958        /* Takes priority over a possible EL3 trap */
1959        return CP_ACCESS_TRAP_EL2;
1960    }
1961
1962    if (env->cp15.scr_el3 & SCR_FIQ) {
1963        switch (el) {
1964        case 1:
1965            if (arm_is_secure_below_el3(env) ||
1966                ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1967                r = CP_ACCESS_TRAP_EL3;
1968            }
1969            break;
1970        case 2:
1971            r = CP_ACCESS_TRAP_EL3;
1972            break;
1973        case 3:
1974            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1975                r = CP_ACCESS_TRAP_EL3;
1976            }
1977            break;
1978        default:
1979            g_assert_not_reached();
1980        }
1981    }
1982
1983    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1984        r = CP_ACCESS_TRAP;
1985    }
1986    return r;
1987}
1988
1989static CPAccessResult gicv3_irq_access(CPUARMState *env,
1990                                       const ARMCPRegInfo *ri, bool isread)
1991{
1992    CPAccessResult r = CP_ACCESS_OK;
1993    GICv3CPUState *cs = icc_cs_from_env(env);
1994    int el = arm_current_el(env);
1995
1996    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1997        el == 1 && !arm_is_secure_below_el3(env)) {
1998        /* Takes priority over a possible EL3 trap */
1999        return CP_ACCESS_TRAP_EL2;
2000    }
2001
2002    if (env->cp15.scr_el3 & SCR_IRQ) {
2003        switch (el) {
2004        case 1:
2005            if (arm_is_secure_below_el3(env) ||
2006                ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
2007                r = CP_ACCESS_TRAP_EL3;
2008            }
2009            break;
2010        case 2:
2011            r = CP_ACCESS_TRAP_EL3;
2012            break;
2013        case 3:
2014            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2015                r = CP_ACCESS_TRAP_EL3;
2016            }
2017            break;
2018        default:
2019            g_assert_not_reached();
2020        }
2021    }
2022
2023    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2024        r = CP_ACCESS_TRAP;
2025    }
2026    return r;
2027}
2028
2029static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2030{
2031    GICv3CPUState *cs = icc_cs_from_env(env);
2032
2033    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2034        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2035        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2036    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2037        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2038        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2039    cs->icc_pmr_el1 = 0;
2040    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2041    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2042    cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2043    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2044    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2045    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2046        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2047        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2048
2049    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2050    cs->ich_hcr_el2 = 0;
2051    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2052    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2053        ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2054        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2055}
2056
2057static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2058    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2059      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2060      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2061      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2062      .readfn = icc_pmr_read,
2063      .writefn = icc_pmr_write,
2064      /* We hang the whole cpu interface reset routine off here
2065       * rather than parcelling it out into one little function
2066       * per register
2067       */
2068      .resetfn = icc_reset,
2069    },
2070    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2071      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2072      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2073      .access = PL1_R, .accessfn = gicv3_fiq_access,
2074      .readfn = icc_iar0_read,
2075    },
2076    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2077      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2078      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2079      .access = PL1_W, .accessfn = gicv3_fiq_access,
2080      .writefn = icc_eoir_write,
2081    },
2082    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2083      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2084      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2085      .access = PL1_R, .accessfn = gicv3_fiq_access,
2086      .readfn = icc_hppir0_read,
2087    },
2088    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2089      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2090      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2091      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2092      .readfn = icc_bpr_read,
2093      .writefn = icc_bpr_write,
2094    },
2095    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2096      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2097      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2098      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2099      .readfn = icc_ap_read,
2100      .writefn = icc_ap_write,
2101    },
2102    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2103      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2104      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2105      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2106      .readfn = icc_ap_read,
2107      .writefn = icc_ap_write,
2108    },
2109    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2110      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2111      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2112      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2113      .readfn = icc_ap_read,
2114      .writefn = icc_ap_write,
2115    },
2116    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2117      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2118      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2119      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2120      .readfn = icc_ap_read,
2121      .writefn = icc_ap_write,
2122    },
2123    /* All the ICC_AP1R*_EL1 registers are banked */
2124    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2125      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2126      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2127      .access = PL1_RW, .accessfn = gicv3_irq_access,
2128      .readfn = icc_ap_read,
2129      .writefn = icc_ap_write,
2130    },
2131    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2132      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2133      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2134      .access = PL1_RW, .accessfn = gicv3_irq_access,
2135      .readfn = icc_ap_read,
2136      .writefn = icc_ap_write,
2137    },
2138    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2139      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2140      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2141      .access = PL1_RW, .accessfn = gicv3_irq_access,
2142      .readfn = icc_ap_read,
2143      .writefn = icc_ap_write,
2144    },
2145    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2146      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2147      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2148      .access = PL1_RW, .accessfn = gicv3_irq_access,
2149      .readfn = icc_ap_read,
2150      .writefn = icc_ap_write,
2151    },
2152    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2153      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2154      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2155      .access = PL1_W, .accessfn = gicv3_dir_access,
2156      .writefn = icc_dir_write,
2157    },
2158    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2159      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2160      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2161      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2162      .readfn = icc_rpr_read,
2163    },
2164    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2165      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2166      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2167      .access = PL1_W, .accessfn = gicv3_sgi_access,
2168      .writefn = icc_sgi1r_write,
2169    },
2170    { .name = "ICC_SGI1R",
2171      .cp = 15, .opc1 = 0, .crm = 12,
2172      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2173      .access = PL1_W, .accessfn = gicv3_sgi_access,
2174      .writefn = icc_sgi1r_write,
2175    },
2176    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2177      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2178      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2179      .access = PL1_W, .accessfn = gicv3_sgi_access,
2180      .writefn = icc_asgi1r_write,
2181    },
2182    { .name = "ICC_ASGI1R",
2183      .cp = 15, .opc1 = 1, .crm = 12,
2184      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2185      .access = PL1_W, .accessfn = gicv3_sgi_access,
2186      .writefn = icc_asgi1r_write,
2187    },
2188    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2189      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2190      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2191      .access = PL1_W, .accessfn = gicv3_sgi_access,
2192      .writefn = icc_sgi0r_write,
2193    },
2194    { .name = "ICC_SGI0R",
2195      .cp = 15, .opc1 = 2, .crm = 12,
2196      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2197      .access = PL1_W, .accessfn = gicv3_sgi_access,
2198      .writefn = icc_sgi0r_write,
2199    },
2200    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2201      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2202      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2203      .access = PL1_R, .accessfn = gicv3_irq_access,
2204      .readfn = icc_iar1_read,
2205    },
2206    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2207      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2208      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2209      .access = PL1_W, .accessfn = gicv3_irq_access,
2210      .writefn = icc_eoir_write,
2211    },
2212    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2213      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2214      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2215      .access = PL1_R, .accessfn = gicv3_irq_access,
2216      .readfn = icc_hppir1_read,
2217    },
2218    /* This register is banked */
2219    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2220      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2221      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2222      .access = PL1_RW, .accessfn = gicv3_irq_access,
2223      .readfn = icc_bpr_read,
2224      .writefn = icc_bpr_write,
2225    },
2226    /* This register is banked */
2227    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2228      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2229      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2230      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2231      .readfn = icc_ctlr_el1_read,
2232      .writefn = icc_ctlr_el1_write,
2233    },
2234    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2235      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2236      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2237      .access = PL1_RW,
2238      /* We don't support IRQ/FIQ bypass and system registers are
2239       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2240       * This register is banked but since it's constant we don't
2241       * need to do anything special.
2242       */
2243      .resetvalue = 0x7,
2244    },
2245    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2246      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2247      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2248      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2249      .readfn = icc_igrpen_read,
2250      .writefn = icc_igrpen_write,
2251    },
2252    /* This register is banked */
2253    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2254      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2255      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2256      .access = PL1_RW, .accessfn = gicv3_irq_access,
2257      .readfn = icc_igrpen_read,
2258      .writefn = icc_igrpen_write,
2259    },
2260    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2261      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2262      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2263      .access = PL2_RW,
2264      /* We don't support IRQ/FIQ bypass and system registers are
2265       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2266       */
2267      .resetvalue = 0xf,
2268    },
2269    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2270      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2271      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2272      .access = PL3_RW,
2273      .readfn = icc_ctlr_el3_read,
2274      .writefn = icc_ctlr_el3_write,
2275    },
2276    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2277      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2278      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2279      .access = PL3_RW,
2280      /* We don't support IRQ/FIQ bypass and system registers are
2281       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2282       */
2283      .resetvalue = 0xf,
2284    },
2285    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2286      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2287      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2288      .access = PL3_RW,
2289      .readfn = icc_igrpen1_el3_read,
2290      .writefn = icc_igrpen1_el3_write,
2291    },
2292    REGINFO_SENTINEL
2293};
2294
2295static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2296{
2297    GICv3CPUState *cs = icc_cs_from_env(env);
2298    int regno = ri->opc2 & 3;
2299    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2300    uint64_t value;
2301
2302    value = cs->ich_apr[grp][regno];
2303    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2304    return value;
2305}
2306
2307static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308                         uint64_t value)
2309{
2310    GICv3CPUState *cs = icc_cs_from_env(env);
2311    int regno = ri->opc2 & 3;
2312    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2313
2314    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2315
2316    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2317    gicv3_cpuif_virt_update(cs);
2318}
2319
2320static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2321{
2322    GICv3CPUState *cs = icc_cs_from_env(env);
2323    uint64_t value = cs->ich_hcr_el2;
2324
2325    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2326    return value;
2327}
2328
2329static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330                          uint64_t value)
2331{
2332    GICv3CPUState *cs = icc_cs_from_env(env);
2333
2334    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2335
2336    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2337        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2338        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2339        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2340        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2341
2342    cs->ich_hcr_el2 = value;
2343    gicv3_cpuif_virt_update(cs);
2344}
2345
2346static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2347{
2348    GICv3CPUState *cs = icc_cs_from_env(env);
2349    uint64_t value = cs->ich_vmcr_el2;
2350
2351    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2352    return value;
2353}
2354
2355static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2356                         uint64_t value)
2357{
2358    GICv3CPUState *cs = icc_cs_from_env(env);
2359
2360    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2361
2362    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2363        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2364        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2365    value |= ICH_VMCR_EL2_VFIQEN;
2366
2367    cs->ich_vmcr_el2 = value;
2368    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2369     * by reading and writing back the fields.
2370     */
2371    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2372    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2373
2374    gicv3_cpuif_virt_update(cs);
2375}
2376
2377static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2378{
2379    GICv3CPUState *cs = icc_cs_from_env(env);
2380    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2381    uint64_t value;
2382
2383    /* This read function handles all of:
2384     * 64-bit reads of the whole LR
2385     * 32-bit reads of the low half of the LR
2386     * 32-bit reads of the high half of the LR
2387     */
2388    if (ri->state == ARM_CP_STATE_AA32) {
2389        if (ri->crm >= 14) {
2390            value = extract64(cs->ich_lr_el2[regno], 32, 32);
2391            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2392        } else {
2393            value = extract64(cs->ich_lr_el2[regno], 0, 32);
2394            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2395        }
2396    } else {
2397        value = cs->ich_lr_el2[regno];
2398        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2399    }
2400
2401    return value;
2402}
2403
2404static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405                         uint64_t value)
2406{
2407    GICv3CPUState *cs = icc_cs_from_env(env);
2408    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2409
2410    /* This write function handles all of:
2411     * 64-bit writes to the whole LR
2412     * 32-bit writes to the low half of the LR
2413     * 32-bit writes to the high half of the LR
2414     */
2415    if (ri->state == ARM_CP_STATE_AA32) {
2416        if (ri->crm >= 14) {
2417            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2418            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2419        } else {
2420            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2421            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2422        }
2423    } else {
2424        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2425    }
2426
2427    /* Enforce RES0 bits in priority field */
2428    if (cs->vpribits < 8) {
2429        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2430                          8 - cs->vpribits, 0);
2431    }
2432
2433    cs->ich_lr_el2[regno] = value;
2434    gicv3_cpuif_virt_update(cs);
2435}
2436
2437static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2438{
2439    GICv3CPUState *cs = icc_cs_from_env(env);
2440    uint64_t value;
2441
2442    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2443        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2444        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2445        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2446        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2447
2448    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2449    return value;
2450}
2451
2452static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2453{
2454    GICv3CPUState *cs = icc_cs_from_env(env);
2455    uint64_t value = maintenance_interrupt_state(cs);
2456
2457    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2458    return value;
2459}
2460
2461static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2462{
2463    GICv3CPUState *cs = icc_cs_from_env(env);
2464    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2465
2466    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2467    return value;
2468}
2469
2470static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2471{
2472    GICv3CPUState *cs = icc_cs_from_env(env);
2473    uint64_t value = 0;
2474    int i;
2475
2476    for (i = 0; i < cs->num_list_regs; i++) {
2477        uint64_t lr = cs->ich_lr_el2[i];
2478
2479        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2480            ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2481            value |= (1 << i);
2482        }
2483    }
2484
2485    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2486    return value;
2487}
2488
2489static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2490    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2491      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2492      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2493      .access = PL2_RW,
2494      .readfn = ich_ap_read,
2495      .writefn = ich_ap_write,
2496    },
2497    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2498      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2499      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2500      .access = PL2_RW,
2501      .readfn = ich_ap_read,
2502      .writefn = ich_ap_write,
2503    },
2504    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2505      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2506      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2507      .access = PL2_RW,
2508      .readfn = ich_hcr_read,
2509      .writefn = ich_hcr_write,
2510    },
2511    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2512      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2513      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2514      .access = PL2_R,
2515      .readfn = ich_vtr_read,
2516    },
2517    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2518      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2519      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2520      .access = PL2_R,
2521      .readfn = ich_misr_read,
2522    },
2523    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2524      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2525      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2526      .access = PL2_R,
2527      .readfn = ich_eisr_read,
2528    },
2529    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2530      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2531      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2532      .access = PL2_R,
2533      .readfn = ich_elrsr_read,
2534    },
2535    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2536      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2537      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2538      .access = PL2_RW,
2539      .readfn = ich_vmcr_read,
2540      .writefn = ich_vmcr_write,
2541    },
2542    REGINFO_SENTINEL
2543};
2544
2545static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2546    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2547      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2548      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2549      .access = PL2_RW,
2550      .readfn = ich_ap_read,
2551      .writefn = ich_ap_write,
2552    },
2553    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2554      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2555      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2556      .access = PL2_RW,
2557      .readfn = ich_ap_read,
2558      .writefn = ich_ap_write,
2559    },
2560    REGINFO_SENTINEL
2561};
2562
2563static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2564    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2565      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2566      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2567      .access = PL2_RW,
2568      .readfn = ich_ap_read,
2569      .writefn = ich_ap_write,
2570    },
2571    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2572      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2573      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2574      .access = PL2_RW,
2575      .readfn = ich_ap_read,
2576      .writefn = ich_ap_write,
2577    },
2578    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2579      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2580      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2581      .access = PL2_RW,
2582      .readfn = ich_ap_read,
2583      .writefn = ich_ap_write,
2584    },
2585    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2586      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2587      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2588      .access = PL2_RW,
2589      .readfn = ich_ap_read,
2590      .writefn = ich_ap_write,
2591    },
2592    REGINFO_SENTINEL
2593};
2594
2595static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2596{
2597    GICv3CPUState *cs = opaque;
2598
2599    gicv3_cpuif_update(cs);
2600}
2601
2602void gicv3_init_cpuif(GICv3State *s)
2603{
2604    /* Called from the GICv3 realize function; register our system
2605     * registers with the CPU
2606     */
2607    int i;
2608
2609    for (i = 0; i < s->num_cpu; i++) {
2610        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2611        GICv3CPUState *cs = &s->cpu[i];
2612
2613        /* Note that we can't just use the GICv3CPUState as an opaque pointer
2614         * in define_arm_cp_regs_with_opaque(), because when we're called back
2615         * it might be with code translated by CPU 0 but run by CPU 1, in
2616         * which case we'd get the wrong value.
2617         * So instead we define the regs with no ri->opaque info, and
2618         * get back to the GICv3CPUState from the ARMCPU by reading back
2619         * the opaque pointer from the el_change_hook, which we're going
2620         * to need to register anyway.
2621         */
2622        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2623        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2624            && cpu->gic_num_lrs) {
2625            int j;
2626
2627            cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2628
2629            cs->num_list_regs = cpu->gic_num_lrs;
2630            cs->vpribits = cpu->gic_vpribits;
2631            cs->vprebits = cpu->gic_vprebits;
2632
2633            /* Check against architectural constraints: getting these
2634             * wrong would be a bug in the CPU code defining these,
2635             * and the implementation relies on them holding.
2636             */
2637            g_assert(cs->vprebits <= cs->vpribits);
2638            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2639            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2640
2641            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2642
2643            for (j = 0; j < cs->num_list_regs; j++) {
2644                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2645                 * are split into two cp15 regs, LR (the low part, with the
2646                 * same encoding as the AArch64 LR) and LRC (the high part).
2647                 */
2648                ARMCPRegInfo lr_regset[] = {
2649                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2650                      .opc0 = 3, .opc1 = 4, .crn = 12,
2651                      .crm = 12 + (j >> 3), .opc2 = j & 7,
2652                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2653                      .access = PL2_RW,
2654                      .readfn = ich_lr_read,
2655                      .writefn = ich_lr_write,
2656                    },
2657                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2658                      .cp = 15, .opc1 = 4, .crn = 12,
2659                      .crm = 14 + (j >> 3), .opc2 = j & 7,
2660                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2661                      .access = PL2_RW,
2662                      .readfn = ich_lr_read,
2663                      .writefn = ich_lr_write,
2664                    },
2665                    REGINFO_SENTINEL
2666                };
2667                define_arm_cp_regs(cpu, lr_regset);
2668            }
2669            if (cs->vprebits >= 6) {
2670                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2671            }
2672            if (cs->vprebits == 7) {
2673                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2674            }
2675        }
2676        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2677    }
2678}
2679