qemu/hw/intc/arm_gicv3_kvm.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller using KVM in-kernel support
   3 *
   4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
   5 * Written by Pavel Fedin
   6 * Based on vGICv2 code by Peter Maydell
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation, either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qapi/error.h"
  24#include "hw/intc/arm_gicv3_common.h"
  25#include "hw/sysbus.h"
  26#include "qemu/error-report.h"
  27#include "sysemu/kvm.h"
  28#include "sysemu/sysemu.h"
  29#include "kvm_arm.h"
  30#include "gicv3_internal.h"
  31#include "vgic_common.h"
  32#include "migration/blocker.h"
  33
  34#ifdef DEBUG_GICV3_KVM
  35#define DPRINTF(fmt, ...) \
  36    do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
  37#else
  38#define DPRINTF(fmt, ...) \
  39    do { } while (0)
  40#endif
  41
  42#define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
  43#define KVM_ARM_GICV3(obj) \
  44     OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
  45#define KVM_ARM_GICV3_CLASS(klass) \
  46     OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
  47#define KVM_ARM_GICV3_GET_CLASS(obj) \
  48     OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
  49
  50#define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
  51                             (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
  52                              ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
  53                              ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
  54                              ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
  55                              ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
  56
  57#define ICC_PMR_EL1     \
  58    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
  59#define ICC_BPR0_EL1    \
  60    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
  61#define ICC_AP0R_EL1(n) \
  62    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
  63#define ICC_AP1R_EL1(n) \
  64    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
  65#define ICC_BPR1_EL1    \
  66    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
  67#define ICC_CTLR_EL1    \
  68    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
  69#define ICC_SRE_EL1 \
  70    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
  71#define ICC_IGRPEN0_EL1 \
  72    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
  73#define ICC_IGRPEN1_EL1 \
  74    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
  75
  76typedef struct KVMARMGICv3Class {
  77    ARMGICv3CommonClass parent_class;
  78    DeviceRealize parent_realize;
  79    void (*parent_reset)(DeviceState *dev);
  80} KVMARMGICv3Class;
  81
  82static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
  83{
  84    GICv3State *s = (GICv3State *)opaque;
  85
  86    kvm_arm_gic_set_irq(s->num_irq, irq, level);
  87}
  88
  89#define KVM_VGIC_ATTR(reg, typer) \
  90    ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
  91
  92static inline void kvm_gicd_access(GICv3State *s, int offset,
  93                                   uint32_t *val, bool write)
  94{
  95    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
  96                      KVM_VGIC_ATTR(offset, 0),
  97                      val, write, &error_abort);
  98}
  99
 100static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
 101                                   uint32_t *val, bool write)
 102{
 103    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
 104                      KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
 105                      val, write, &error_abort);
 106}
 107
 108static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
 109                                   uint64_t *val, bool write)
 110{
 111    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
 112                      KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
 113                      val, write, &error_abort);
 114}
 115
 116static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
 117                                             uint32_t *val, bool write)
 118{
 119    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
 120                      KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
 121                      (VGIC_LEVEL_INFO_LINE_LEVEL <<
 122                       KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
 123                      val, write, &error_abort);
 124}
 125
 126/* Loop through each distributor IRQ related register; since bits
 127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
 128 * is enabled, we skip those.
 129 */
 130#define for_each_dist_irq_reg(_irq, _max, _field_width) \
 131    for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
 132
 133static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
 134{
 135    uint32_t reg, *field;
 136    int irq;
 137
 138    /* For the KVM GICv3, affinity routing is always enabled, and the first 8
 139     * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
 140     * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
 141     * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
 142     * offset.
 143     */
 144    field = (uint32_t *)(bmp + GIC_INTERNAL);
 145    offset += (GIC_INTERNAL * 8) / 8;
 146    for_each_dist_irq_reg(irq, s->num_irq, 8) {
 147        kvm_gicd_access(s, offset, &reg, false);
 148        *field = reg;
 149        offset += 4;
 150        field++;
 151    }
 152}
 153
 154static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
 155{
 156    uint32_t reg, *field;
 157    int irq;
 158
 159    /* For the KVM GICv3, affinity routing is always enabled, and the first 8
 160     * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
 161     * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
 162     * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
 163     * offset.
 164     */
 165    field = (uint32_t *)(bmp + GIC_INTERNAL);
 166    offset += (GIC_INTERNAL * 8) / 8;
 167    for_each_dist_irq_reg(irq, s->num_irq, 8) {
 168        reg = *field;
 169        kvm_gicd_access(s, offset, &reg, true);
 170        offset += 4;
 171        field++;
 172    }
 173}
 174
 175static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
 176                                      uint32_t *bmp)
 177{
 178    uint32_t reg;
 179    int irq;
 180
 181    /* For the KVM GICv3, affinity routing is always enabled, and the first 2
 182     * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
 183     * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
 184     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
 185     * This matches the for_each_dist_irq_reg() macro which also skips the
 186     * first GIC_INTERNAL irqs.
 187     */
 188    offset += (GIC_INTERNAL * 2) / 8;
 189    for_each_dist_irq_reg(irq, s->num_irq, 2) {
 190        kvm_gicd_access(s, offset, &reg, false);
 191        reg = half_unshuffle32(reg >> 1);
 192        if (irq % 32 != 0) {
 193            reg = (reg << 16);
 194        }
 195        *gic_bmp_ptr32(bmp, irq) |=  reg;
 196        offset += 4;
 197    }
 198}
 199
 200static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
 201                                      uint32_t *bmp)
 202{
 203    uint32_t reg;
 204    int irq;
 205
 206    /* For the KVM GICv3, affinity routing is always enabled, and the first 2
 207     * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
 208     * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
 209     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
 210     * This matches the for_each_dist_irq_reg() macro which also skips the
 211     * first GIC_INTERNAL irqs.
 212     */
 213    offset += (GIC_INTERNAL * 2) / 8;
 214    for_each_dist_irq_reg(irq, s->num_irq, 2) {
 215        reg = *gic_bmp_ptr32(bmp, irq);
 216        if (irq % 32 != 0) {
 217            reg = (reg & 0xffff0000) >> 16;
 218        } else {
 219            reg = reg & 0xffff;
 220        }
 221        reg = half_shuffle32(reg) << 1;
 222        kvm_gicd_access(s, offset, &reg, true);
 223        offset += 4;
 224    }
 225}
 226
 227static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
 228{
 229    uint32_t reg;
 230    int irq;
 231
 232    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 233        kvm_gic_line_level_access(s, irq, 0, &reg, false);
 234        *gic_bmp_ptr32(bmp, irq) = reg;
 235    }
 236}
 237
 238static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
 239{
 240    uint32_t reg;
 241    int irq;
 242
 243    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 244        reg = *gic_bmp_ptr32(bmp, irq);
 245        kvm_gic_line_level_access(s, irq, 0, &reg, true);
 246    }
 247}
 248
 249/* Read a bitmap register group from the kernel VGIC. */
 250static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
 251{
 252    uint32_t reg;
 253    int irq;
 254
 255    /* For the KVM GICv3, affinity routing is always enabled, and the
 256     * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
 257     * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
 258     * functionality is replaced by the GICR registers. It doesn't need to sync
 259     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
 260     * This matches the for_each_dist_irq_reg() macro which also skips the
 261     * first GIC_INTERNAL irqs.
 262     */
 263    offset += (GIC_INTERNAL * 1) / 8;
 264    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 265        kvm_gicd_access(s, offset, &reg, false);
 266        *gic_bmp_ptr32(bmp, irq) = reg;
 267        offset += 4;
 268    }
 269}
 270
 271static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
 272                            uint32_t clroffset, uint32_t *bmp)
 273{
 274    uint32_t reg;
 275    int irq;
 276
 277    /* For the KVM GICv3, affinity routing is always enabled, and the
 278     * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
 279     * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
 280     * functionality is replaced by the GICR registers. It doesn't need to sync
 281     * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
 282     * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
 283     * first GIC_INTERNAL irqs.
 284     */
 285    offset += (GIC_INTERNAL * 1) / 8;
 286    if (clroffset != 0) {
 287        clroffset += (GIC_INTERNAL * 1) / 8;
 288    }
 289
 290    for_each_dist_irq_reg(irq, s->num_irq, 1) {
 291        /* If this bitmap is a set/clear register pair, first write to the
 292         * clear-reg to clear all bits before using the set-reg to write
 293         * the 1 bits.
 294         */
 295        if (clroffset != 0) {
 296            reg = 0;
 297            kvm_gicd_access(s, clroffset, &reg, true);
 298            clroffset += 4;
 299        }
 300        reg = *gic_bmp_ptr32(bmp, irq);
 301        kvm_gicd_access(s, offset, &reg, true);
 302        offset += 4;
 303    }
 304}
 305
 306static void kvm_arm_gicv3_check(GICv3State *s)
 307{
 308    uint32_t reg;
 309    uint32_t num_irq;
 310
 311    /* Sanity checking s->num_irq */
 312    kvm_gicd_access(s, GICD_TYPER, &reg, false);
 313    num_irq = ((reg & 0x1f) + 1) * 32;
 314
 315    if (num_irq < s->num_irq) {
 316        error_report("Model requests %u IRQs, but kernel supports max %u",
 317                     s->num_irq, num_irq);
 318        abort();
 319    }
 320}
 321
 322static void kvm_arm_gicv3_put(GICv3State *s)
 323{
 324    uint32_t regl, regh, reg;
 325    uint64_t reg64, redist_typer;
 326    int ncpu, i;
 327
 328    kvm_arm_gicv3_check(s);
 329
 330    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
 331    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
 332    redist_typer = ((uint64_t)regh << 32) | regl;
 333
 334    reg = s->gicd_ctlr;
 335    kvm_gicd_access(s, GICD_CTLR, &reg, true);
 336
 337    if (redist_typer & GICR_TYPER_PLPIS) {
 338        /* Set base addresses before LPIs are enabled by GICR_CTLR write */
 339        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 340            GICv3CPUState *c = &s->cpu[ncpu];
 341
 342            reg64 = c->gicr_propbaser;
 343            regl = (uint32_t)reg64;
 344            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
 345            regh = (uint32_t)(reg64 >> 32);
 346            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
 347
 348            reg64 = c->gicr_pendbaser;
 349            if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 350                /* Setting PTZ is advised if LPIs are disabled, to reduce
 351                 * GIC initialization time.
 352                 */
 353                reg64 |= GICR_PENDBASER_PTZ;
 354            }
 355            regl = (uint32_t)reg64;
 356            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
 357            regh = (uint32_t)(reg64 >> 32);
 358            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
 359        }
 360    }
 361
 362    /* Redistributor state (one per CPU) */
 363
 364    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 365        GICv3CPUState *c = &s->cpu[ncpu];
 366
 367        reg = c->gicr_ctlr;
 368        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
 369
 370        reg = c->gicr_statusr[GICV3_NS];
 371        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
 372
 373        reg = c->gicr_waker;
 374        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
 375
 376        reg = c->gicr_igroupr0;
 377        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
 378
 379        reg = ~0;
 380        kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
 381        reg = c->gicr_ienabler0;
 382        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
 383
 384        /* Restore config before pending so we treat level/edge correctly */
 385        reg = half_shuffle32(c->edge_trigger >> 16) << 1;
 386        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
 387
 388        reg = c->level;
 389        kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
 390
 391        reg = ~0;
 392        kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
 393        reg = c->gicr_ipendr0;
 394        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
 395
 396        reg = ~0;
 397        kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
 398        reg = c->gicr_iactiver0;
 399        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
 400
 401        for (i = 0; i < GIC_INTERNAL; i += 4) {
 402            reg = c->gicr_ipriorityr[i] |
 403                (c->gicr_ipriorityr[i + 1] << 8) |
 404                (c->gicr_ipriorityr[i + 2] << 16) |
 405                (c->gicr_ipriorityr[i + 3] << 24);
 406            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
 407        }
 408    }
 409
 410    /* Distributor state (shared between all CPUs */
 411    reg = s->gicd_statusr[GICV3_NS];
 412    kvm_gicd_access(s, GICD_STATUSR, &reg, true);
 413
 414    /* s->enable bitmap -> GICD_ISENABLERn */
 415    kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
 416
 417    /* s->group bitmap -> GICD_IGROUPRn */
 418    kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
 419
 420    /* Restore targets before pending to ensure the pending state is set on
 421     * the appropriate CPU interfaces in the kernel
 422     */
 423
 424    /* s->gicd_irouter[irq] -> GICD_IROUTERn
 425     * We can't use kvm_dist_put() here because the registers are 64-bit
 426     */
 427    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
 428        uint32_t offset;
 429
 430        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
 431        reg = (uint32_t)s->gicd_irouter[i];
 432        kvm_gicd_access(s, offset, &reg, true);
 433
 434        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
 435        reg = (uint32_t)(s->gicd_irouter[i] >> 32);
 436        kvm_gicd_access(s, offset, &reg, true);
 437    }
 438
 439    /* s->trigger bitmap -> GICD_ICFGRn
 440     * (restore configuration registers before pending IRQs so we treat
 441     * level/edge correctly)
 442     */
 443    kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
 444
 445    /* s->level bitmap ->  line_level */
 446    kvm_gic_put_line_level_bmp(s, s->level);
 447
 448    /* s->pending bitmap -> GICD_ISPENDRn */
 449    kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
 450
 451    /* s->active bitmap -> GICD_ISACTIVERn */
 452    kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
 453
 454    /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
 455    kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
 456
 457    /* CPU Interface state (one per CPU) */
 458
 459    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 460        GICv3CPUState *c = &s->cpu[ncpu];
 461        int num_pri_bits;
 462
 463        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
 464        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
 465                        &c->icc_ctlr_el1[GICV3_NS], true);
 466        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
 467                        &c->icc_igrpen[GICV3_G0], true);
 468        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
 469                        &c->icc_igrpen[GICV3_G1NS], true);
 470        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
 471        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
 472        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
 473
 474        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
 475                        ICC_CTLR_EL1_PRIBITS_MASK) >>
 476                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
 477
 478        switch (num_pri_bits) {
 479        case 7:
 480            reg64 = c->icc_apr[GICV3_G0][3];
 481            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
 482            reg64 = c->icc_apr[GICV3_G0][2];
 483            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
 484        case 6:
 485            reg64 = c->icc_apr[GICV3_G0][1];
 486            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
 487        default:
 488            reg64 = c->icc_apr[GICV3_G0][0];
 489            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
 490        }
 491
 492        switch (num_pri_bits) {
 493        case 7:
 494            reg64 = c->icc_apr[GICV3_G1NS][3];
 495            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
 496            reg64 = c->icc_apr[GICV3_G1NS][2];
 497            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
 498        case 6:
 499            reg64 = c->icc_apr[GICV3_G1NS][1];
 500            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
 501        default:
 502            reg64 = c->icc_apr[GICV3_G1NS][0];
 503            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
 504        }
 505    }
 506}
 507
 508static void kvm_arm_gicv3_get(GICv3State *s)
 509{
 510    uint32_t regl, regh, reg;
 511    uint64_t reg64, redist_typer;
 512    int ncpu, i;
 513
 514    kvm_arm_gicv3_check(s);
 515
 516    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
 517    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
 518    redist_typer = ((uint64_t)regh << 32) | regl;
 519
 520    kvm_gicd_access(s, GICD_CTLR, &reg, false);
 521    s->gicd_ctlr = reg;
 522
 523    /* Redistributor state (one per CPU) */
 524
 525    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 526        GICv3CPUState *c = &s->cpu[ncpu];
 527
 528        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
 529        c->gicr_ctlr = reg;
 530
 531        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
 532        c->gicr_statusr[GICV3_NS] = reg;
 533
 534        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
 535        c->gicr_waker = reg;
 536
 537        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
 538        c->gicr_igroupr0 = reg;
 539        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
 540        c->gicr_ienabler0 = reg;
 541        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
 542        c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
 543        kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
 544        c->level = reg;
 545        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
 546        c->gicr_ipendr0 = reg;
 547        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
 548        c->gicr_iactiver0 = reg;
 549
 550        for (i = 0; i < GIC_INTERNAL; i += 4) {
 551            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
 552            c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
 553            c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
 554            c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
 555            c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
 556        }
 557    }
 558
 559    if (redist_typer & GICR_TYPER_PLPIS) {
 560        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 561            GICv3CPUState *c = &s->cpu[ncpu];
 562
 563            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
 564            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
 565            c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
 566
 567            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
 568            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
 569            c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
 570        }
 571    }
 572
 573    /* Distributor state (shared between all CPUs */
 574
 575    kvm_gicd_access(s, GICD_STATUSR, &reg, false);
 576    s->gicd_statusr[GICV3_NS] = reg;
 577
 578    /* GICD_IGROUPRn -> s->group bitmap */
 579    kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
 580
 581    /* GICD_ISENABLERn -> s->enabled bitmap */
 582    kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
 583
 584    /* Line level of irq */
 585    kvm_gic_get_line_level_bmp(s, s->level);
 586    /* GICD_ISPENDRn -> s->pending bitmap */
 587    kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
 588
 589    /* GICD_ISACTIVERn -> s->active bitmap */
 590    kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
 591
 592    /* GICD_ICFGRn -> s->trigger bitmap */
 593    kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
 594
 595    /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
 596    kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
 597
 598    /* GICD_IROUTERn -> s->gicd_irouter[irq] */
 599    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
 600        uint32_t offset;
 601
 602        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
 603        kvm_gicd_access(s, offset, &regl, false);
 604        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
 605        kvm_gicd_access(s, offset, &regh, false);
 606        s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
 607    }
 608
 609    /*****************************************************************
 610     * CPU Interface(s) State
 611     */
 612
 613    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
 614        GICv3CPUState *c = &s->cpu[ncpu];
 615        int num_pri_bits;
 616
 617        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
 618        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
 619                        &c->icc_ctlr_el1[GICV3_NS], false);
 620        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
 621                        &c->icc_igrpen[GICV3_G0], false);
 622        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
 623                        &c->icc_igrpen[GICV3_G1NS], false);
 624        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
 625        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
 626        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
 627        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
 628                        ICC_CTLR_EL1_PRIBITS_MASK) >>
 629                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
 630
 631        switch (num_pri_bits) {
 632        case 7:
 633            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
 634            c->icc_apr[GICV3_G0][3] = reg64;
 635            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
 636            c->icc_apr[GICV3_G0][2] = reg64;
 637        case 6:
 638            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
 639            c->icc_apr[GICV3_G0][1] = reg64;
 640        default:
 641            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
 642            c->icc_apr[GICV3_G0][0] = reg64;
 643        }
 644
 645        switch (num_pri_bits) {
 646        case 7:
 647            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
 648            c->icc_apr[GICV3_G1NS][3] = reg64;
 649            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
 650            c->icc_apr[GICV3_G1NS][2] = reg64;
 651        case 6:
 652            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
 653            c->icc_apr[GICV3_G1NS][1] = reg64;
 654        default:
 655            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
 656            c->icc_apr[GICV3_G1NS][0] = reg64;
 657        }
 658    }
 659}
 660
 661static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 662{
 663    ARMCPU *cpu;
 664    GICv3State *s;
 665    GICv3CPUState *c;
 666
 667    c = (GICv3CPUState *)env->gicv3state;
 668    s = c->gic;
 669    cpu = ARM_CPU(c->cpu);
 670
 671    c->icc_pmr_el1 = 0;
 672    c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
 673    c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
 674    c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
 675
 676    c->icc_sre_el1 = 0x7;
 677    memset(c->icc_apr, 0, sizeof(c->icc_apr));
 678    memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
 679
 680    if (s->migration_blocker) {
 681        return;
 682    }
 683
 684    /* Initialize to actual HW supported configuration */
 685    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
 686                      KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
 687                      &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
 688
 689    c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
 690}
 691
 692static void kvm_arm_gicv3_reset(DeviceState *dev)
 693{
 694    GICv3State *s = ARM_GICV3_COMMON(dev);
 695    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
 696
 697    DPRINTF("Reset\n");
 698
 699    kgc->parent_reset(dev);
 700
 701    if (s->migration_blocker) {
 702        DPRINTF("Cannot put kernel gic state, no kernel interface\n");
 703        return;
 704    }
 705
 706    kvm_arm_gicv3_put(s);
 707}
 708
 709/*
 710 * CPU interface registers of GIC needs to be reset on CPU reset.
 711 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
 712 * below ARMCPRegInfo. As we reset the whole cpu interface under single
 713 * register reset, we define only one register of CPU interface instead
 714 * of defining all the registers.
 715 */
 716static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
 717    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
 718      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
 719      /*
 720       * If ARM_CP_NOP is used, resetfn is not called,
 721       * So ARM_CP_NO_RAW is appropriate type.
 722       */
 723      .type = ARM_CP_NO_RAW,
 724      .access = PL1_RW,
 725      .readfn = arm_cp_read_zero,
 726      .writefn = arm_cp_write_ignore,
 727      /*
 728       * We hang the whole cpu interface reset routine off here
 729       * rather than parcelling it out into one little function
 730       * per register
 731       */
 732      .resetfn = arm_gicv3_icc_reset,
 733    },
 734    REGINFO_SENTINEL
 735};
 736
 737/**
 738 * vm_change_state_handler - VM change state callback aiming at flushing
 739 * RDIST pending tables into guest RAM
 740 *
 741 * The tables get flushed to guest RAM whenever the VM gets stopped.
 742 */
 743static void vm_change_state_handler(void *opaque, int running,
 744                                    RunState state)
 745{
 746    GICv3State *s = (GICv3State *)opaque;
 747    Error *err = NULL;
 748    int ret;
 749
 750    if (running) {
 751        return;
 752    }
 753
 754    ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 755                           KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
 756                           NULL, true, &err);
 757    if (err) {
 758        error_report_err(err);
 759    }
 760    if (ret < 0 && ret != -EFAULT) {
 761        abort();
 762    }
 763}
 764
 765
 766static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
 767{
 768    GICv3State *s = KVM_ARM_GICV3(dev);
 769    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
 770    Error *local_err = NULL;
 771    int i;
 772
 773    DPRINTF("kvm_arm_gicv3_realize\n");
 774
 775    kgc->parent_realize(dev, &local_err);
 776    if (local_err) {
 777        error_propagate(errp, local_err);
 778        return;
 779    }
 780
 781    if (s->security_extn) {
 782        error_setg(errp, "the in-kernel VGICv3 does not implement the "
 783                   "security extensions");
 784        return;
 785    }
 786
 787    gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
 788
 789    for (i = 0; i < s->num_cpu; i++) {
 790        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
 791
 792        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
 793    }
 794
 795    /* Try to create the device via the device control API */
 796    s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
 797    if (s->dev_fd < 0) {
 798        error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
 799        return;
 800    }
 801
 802    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
 803                      0, &s->num_irq, true, &error_abort);
 804
 805    /* Tell the kernel to complete VGIC initialization now */
 806    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 807                      KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
 808
 809    kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
 810                            KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
 811    kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
 812                            KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
 813
 814    if (kvm_has_gsi_routing()) {
 815        /* set up irq routing */
 816        kvm_init_irq_routing(kvm_state);
 817        for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
 818            kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
 819        }
 820
 821        kvm_gsi_routing_allowed = true;
 822
 823        kvm_irqchip_commit_routes(kvm_state);
 824    }
 825
 826    if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
 827                               GICD_CTLR)) {
 828        error_setg(&s->migration_blocker, "This operating system kernel does "
 829                                          "not support vGICv3 migration");
 830        migrate_add_blocker(s->migration_blocker, &local_err);
 831        if (local_err) {
 832            error_propagate(errp, local_err);
 833            error_free(s->migration_blocker);
 834            return;
 835        }
 836    }
 837    if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
 838                              KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
 839        qemu_add_vm_change_state_handler(vm_change_state_handler, s);
 840    }
 841}
 842
 843static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
 844{
 845    DeviceClass *dc = DEVICE_CLASS(klass);
 846    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
 847    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
 848
 849    agcc->pre_save = kvm_arm_gicv3_get;
 850    agcc->post_load = kvm_arm_gicv3_put;
 851    device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
 852                                    &kgc->parent_realize);
 853    device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
 854}
 855
 856static const TypeInfo kvm_arm_gicv3_info = {
 857    .name = TYPE_KVM_ARM_GICV3,
 858    .parent = TYPE_ARM_GICV3_COMMON,
 859    .instance_size = sizeof(GICv3State),
 860    .class_init = kvm_arm_gicv3_class_init,
 861    .class_size = sizeof(KVMARMGICv3Class),
 862};
 863
 864static void kvm_arm_gicv3_register_types(void)
 865{
 866    type_register_static(&kvm_arm_gicv3_info);
 867}
 868
 869type_init(kvm_arm_gicv3_register_types)
 870