qemu/hw/ssi/xilinx_spi.c
<<
>>
Prefs
   1/*
   2 * QEMU model of the Xilinx SPI Controller
   3 *
   4 * Copyright (C) 2010 Edgar E. Iglesias.
   5 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   6 * Copyright (C) 2012 PetaLogix
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "hw/sysbus.h"
  29#include "sysemu/sysemu.h"
  30#include "qemu/log.h"
  31#include "qemu/fifo8.h"
  32
  33#include "hw/ssi/ssi.h"
  34
  35#ifdef XILINX_SPI_ERR_DEBUG
  36#define DB_PRINT(...) do { \
  37    fprintf(stderr,  ": %s: ", __func__); \
  38    fprintf(stderr, ## __VA_ARGS__); \
  39    } while (0)
  40#else
  41    #define DB_PRINT(...)
  42#endif
  43
  44#define R_DGIER     (0x1c / 4)
  45#define R_DGIER_IE  (1 << 31)
  46
  47#define R_IPISR     (0x20 / 4)
  48#define IRQ_DRR_NOT_EMPTY    (1 << (31 - 23))
  49#define IRQ_DRR_OVERRUN      (1 << (31 - 26))
  50#define IRQ_DRR_FULL         (1 << (31 - 27))
  51#define IRQ_TX_FF_HALF_EMPTY (1 << 6)
  52#define IRQ_DTR_UNDERRUN     (1 << 3)
  53#define IRQ_DTR_EMPTY        (1 << (31 - 29))
  54
  55#define R_IPIER     (0x28 / 4)
  56#define R_SRR       (0x40 / 4)
  57#define R_SPICR     (0x60 / 4)
  58#define R_SPICR_TXFF_RST     (1 << 5)
  59#define R_SPICR_RXFF_RST     (1 << 6)
  60#define R_SPICR_MTI          (1 << 8)
  61
  62#define R_SPISR     (0x64 / 4)
  63#define SR_TX_FULL    (1 << 3)
  64#define SR_TX_EMPTY   (1 << 2)
  65#define SR_RX_FULL    (1 << 1)
  66#define SR_RX_EMPTY   (1 << 0)
  67
  68#define R_SPIDTR    (0x68 / 4)
  69#define R_SPIDRR    (0x6C / 4)
  70#define R_SPISSR    (0x70 / 4)
  71#define R_TX_FF_OCY (0x74 / 4)
  72#define R_RX_FF_OCY (0x78 / 4)
  73#define R_MAX       (0x7C / 4)
  74
  75#define FIFO_CAPACITY 256
  76
  77#define TYPE_XILINX_SPI "xlnx.xps-spi"
  78#define XILINX_SPI(obj) OBJECT_CHECK(XilinxSPI, (obj), TYPE_XILINX_SPI)
  79
  80typedef struct XilinxSPI {
  81    SysBusDevice parent_obj;
  82
  83    MemoryRegion mmio;
  84
  85    qemu_irq irq;
  86    int irqline;
  87
  88    uint8_t num_cs;
  89    qemu_irq *cs_lines;
  90
  91    SSIBus *spi;
  92
  93    Fifo8 rx_fifo;
  94    Fifo8 tx_fifo;
  95
  96    uint32_t regs[R_MAX];
  97} XilinxSPI;
  98
  99static void txfifo_reset(XilinxSPI *s)
 100{
 101    fifo8_reset(&s->tx_fifo);
 102
 103    s->regs[R_SPISR] &= ~SR_TX_FULL;
 104    s->regs[R_SPISR] |= SR_TX_EMPTY;
 105}
 106
 107static void rxfifo_reset(XilinxSPI *s)
 108{
 109    fifo8_reset(&s->rx_fifo);
 110
 111    s->regs[R_SPISR] |= SR_RX_EMPTY;
 112    s->regs[R_SPISR] &= ~SR_RX_FULL;
 113}
 114
 115static void xlx_spi_update_cs(XilinxSPI *s)
 116{
 117    int i;
 118
 119    for (i = 0; i < s->num_cs; ++i) {
 120        qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
 121    }
 122}
 123
 124static void xlx_spi_update_irq(XilinxSPI *s)
 125{
 126    uint32_t pending;
 127
 128    s->regs[R_IPISR] |=
 129            (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
 130            (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
 131
 132    pending = s->regs[R_IPISR] & s->regs[R_IPIER];
 133
 134    pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
 135    pending = !!pending;
 136
 137    /* This call lies right in the data paths so don't call the
 138       irq chain unless things really changed.  */
 139    if (pending != s->irqline) {
 140        s->irqline = pending;
 141        DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
 142                    pending, s->regs[R_IPISR], s->regs[R_IPIER]);
 143        qemu_set_irq(s->irq, pending);
 144    }
 145
 146}
 147
 148static void xlx_spi_do_reset(XilinxSPI *s)
 149{
 150    memset(s->regs, 0, sizeof s->regs);
 151
 152    rxfifo_reset(s);
 153    txfifo_reset(s);
 154
 155    s->regs[R_SPISSR] = ~0;
 156    xlx_spi_update_irq(s);
 157    xlx_spi_update_cs(s);
 158}
 159
 160static void xlx_spi_reset(DeviceState *d)
 161{
 162    xlx_spi_do_reset(XILINX_SPI(d));
 163}
 164
 165static inline int spi_master_enabled(XilinxSPI *s)
 166{
 167    return !(s->regs[R_SPICR] & R_SPICR_MTI);
 168}
 169
 170static void spi_flush_txfifo(XilinxSPI *s)
 171{
 172    uint32_t tx;
 173    uint32_t rx;
 174
 175    while (!fifo8_is_empty(&s->tx_fifo)) {
 176        tx = (uint32_t)fifo8_pop(&s->tx_fifo);
 177        DB_PRINT("data tx:%x\n", tx);
 178        rx = ssi_transfer(s->spi, tx);
 179        DB_PRINT("data rx:%x\n", rx);
 180        if (fifo8_is_full(&s->rx_fifo)) {
 181            s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
 182        } else {
 183            fifo8_push(&s->rx_fifo, (uint8_t)rx);
 184            if (fifo8_is_full(&s->rx_fifo)) {
 185                s->regs[R_SPISR] |= SR_RX_FULL;
 186                s->regs[R_IPISR] |= IRQ_DRR_FULL;
 187            }
 188        }
 189
 190        s->regs[R_SPISR] &= ~SR_RX_EMPTY;
 191        s->regs[R_SPISR] &= ~SR_TX_FULL;
 192        s->regs[R_SPISR] |= SR_TX_EMPTY;
 193
 194        s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
 195        s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
 196    }
 197
 198}
 199
 200static uint64_t
 201spi_read(void *opaque, hwaddr addr, unsigned int size)
 202{
 203    XilinxSPI *s = opaque;
 204    uint32_t r = 0;
 205
 206    addr >>= 2;
 207    switch (addr) {
 208    case R_SPIDRR:
 209        if (fifo8_is_empty(&s->rx_fifo)) {
 210            DB_PRINT("Read from empty FIFO!\n");
 211            return 0xdeadbeef;
 212        }
 213
 214        s->regs[R_SPISR] &= ~SR_RX_FULL;
 215        r = fifo8_pop(&s->rx_fifo);
 216        if (fifo8_is_empty(&s->rx_fifo)) {
 217            s->regs[R_SPISR] |= SR_RX_EMPTY;
 218        }
 219        break;
 220
 221    case R_SPISR:
 222        r = s->regs[addr];
 223        break;
 224
 225    default:
 226        if (addr < ARRAY_SIZE(s->regs)) {
 227            r = s->regs[addr];
 228        }
 229        break;
 230
 231    }
 232    DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
 233    xlx_spi_update_irq(s);
 234    return r;
 235}
 236
 237static void
 238spi_write(void *opaque, hwaddr addr,
 239            uint64_t val64, unsigned int size)
 240{
 241    XilinxSPI *s = opaque;
 242    uint32_t value = val64;
 243
 244    DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
 245    addr >>= 2;
 246    switch (addr) {
 247    case R_SRR:
 248        if (value != 0xa) {
 249            DB_PRINT("Invalid write to SRR %x\n", value);
 250        } else {
 251            xlx_spi_do_reset(s);
 252        }
 253        break;
 254
 255    case R_SPIDTR:
 256        s->regs[R_SPISR] &= ~SR_TX_EMPTY;
 257        fifo8_push(&s->tx_fifo, (uint8_t)value);
 258        if (fifo8_is_full(&s->tx_fifo)) {
 259            s->regs[R_SPISR] |= SR_TX_FULL;
 260        }
 261        if (!spi_master_enabled(s)) {
 262            goto done;
 263        } else {
 264            DB_PRINT("DTR and master enabled\n");
 265        }
 266        spi_flush_txfifo(s);
 267        break;
 268
 269    case R_SPISR:
 270        DB_PRINT("Invalid write to SPISR %x\n", value);
 271        break;
 272
 273    case R_IPISR:
 274        /* Toggle the bits.  */
 275        s->regs[addr] ^= value;
 276        break;
 277
 278    /* Slave Select Register.  */
 279    case R_SPISSR:
 280        s->regs[addr] = value;
 281        xlx_spi_update_cs(s);
 282        break;
 283
 284    case R_SPICR:
 285        /* FIXME: reset irq and sr state to empty queues.  */
 286        if (value & R_SPICR_RXFF_RST) {
 287            rxfifo_reset(s);
 288        }
 289
 290        if (value & R_SPICR_TXFF_RST) {
 291            txfifo_reset(s);
 292        }
 293        value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
 294        s->regs[addr] = value;
 295
 296        if (!(value & R_SPICR_MTI)) {
 297            spi_flush_txfifo(s);
 298        }
 299        break;
 300
 301    default:
 302        if (addr < ARRAY_SIZE(s->regs)) {
 303            s->regs[addr] = value;
 304        }
 305        break;
 306    }
 307
 308done:
 309    xlx_spi_update_irq(s);
 310}
 311
 312static const MemoryRegionOps spi_ops = {
 313    .read = spi_read,
 314    .write = spi_write,
 315    .endianness = DEVICE_NATIVE_ENDIAN,
 316    .valid = {
 317        .min_access_size = 4,
 318        .max_access_size = 4
 319    }
 320};
 321
 322static int xilinx_spi_init(SysBusDevice *sbd)
 323{
 324    DeviceState *dev = DEVICE(sbd);
 325    XilinxSPI *s = XILINX_SPI(dev);
 326    int i;
 327
 328    DB_PRINT("\n");
 329
 330    s->spi = ssi_create_bus(dev, "spi");
 331
 332    sysbus_init_irq(sbd, &s->irq);
 333    s->cs_lines = g_new0(qemu_irq, s->num_cs);
 334    ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
 335    for (i = 0; i < s->num_cs; ++i) {
 336        sysbus_init_irq(sbd, &s->cs_lines[i]);
 337    }
 338
 339    memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
 340                          "xilinx-spi", R_MAX * 4);
 341    sysbus_init_mmio(sbd, &s->mmio);
 342
 343    s->irqline = -1;
 344
 345    fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
 346    fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
 347
 348    return 0;
 349}
 350
 351static const VMStateDescription vmstate_xilinx_spi = {
 352    .name = "xilinx_spi",
 353    .version_id = 1,
 354    .minimum_version_id = 1,
 355    .fields = (VMStateField[]) {
 356        VMSTATE_FIFO8(tx_fifo, XilinxSPI),
 357        VMSTATE_FIFO8(rx_fifo, XilinxSPI),
 358        VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
 359        VMSTATE_END_OF_LIST()
 360    }
 361};
 362
 363static Property xilinx_spi_properties[] = {
 364    DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
 365    DEFINE_PROP_END_OF_LIST(),
 366};
 367
 368static void xilinx_spi_class_init(ObjectClass *klass, void *data)
 369{
 370    DeviceClass *dc = DEVICE_CLASS(klass);
 371    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
 372
 373    k->init = xilinx_spi_init;
 374    dc->reset = xlx_spi_reset;
 375    dc->props = xilinx_spi_properties;
 376    dc->vmsd = &vmstate_xilinx_spi;
 377}
 378
 379static const TypeInfo xilinx_spi_info = {
 380    .name           = TYPE_XILINX_SPI,
 381    .parent         = TYPE_SYS_BUS_DEVICE,
 382    .instance_size  = sizeof(XilinxSPI),
 383    .class_init     = xilinx_spi_class_init,
 384};
 385
 386static void xilinx_spi_register_types(void)
 387{
 388    type_register_static(&xilinx_spi_info);
 389}
 390
 391type_init(xilinx_spi_register_types)
 392