qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25
  26#if defined(TARGET_AARCH64)
  27  /* AArch64 definitions */
  28#  define TARGET_LONG_BITS 64
  29#else
  30#  define TARGET_LONG_BITS 32
  31#endif
  32
  33/* ARM processors have a weak memory model */
  34#define TCG_GUEST_DEFAULT_MO      (0)
  35
  36#define CPUArchState struct CPUARMState
  37
  38#include "qemu-common.h"
  39#include "cpu-qom.h"
  40#include "exec/cpu-defs.h"
  41
  42#define EXCP_UDEF            1   /* undefined instruction */
  43#define EXCP_SWI             2   /* software interrupt */
  44#define EXCP_PREFETCH_ABORT  3
  45#define EXCP_DATA_ABORT      4
  46#define EXCP_IRQ             5
  47#define EXCP_FIQ             6
  48#define EXCP_BKPT            7
  49#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  50#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  51#define EXCP_HVC            11   /* HyperVisor Call */
  52#define EXCP_HYP_TRAP       12
  53#define EXCP_SMC            13   /* Secure Monitor Call */
  54#define EXCP_VIRQ           14
  55#define EXCP_VFIQ           15
  56#define EXCP_SEMIHOST       16   /* semihosting call */
  57#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  58#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  59/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  60
  61#define ARMV7M_EXCP_RESET   1
  62#define ARMV7M_EXCP_NMI     2
  63#define ARMV7M_EXCP_HARD    3
  64#define ARMV7M_EXCP_MEM     4
  65#define ARMV7M_EXCP_BUS     5
  66#define ARMV7M_EXCP_USAGE   6
  67#define ARMV7M_EXCP_SECURE  7
  68#define ARMV7M_EXCP_SVC     11
  69#define ARMV7M_EXCP_DEBUG   12
  70#define ARMV7M_EXCP_PENDSV  14
  71#define ARMV7M_EXCP_SYSTICK 15
  72
  73/* For M profile, some registers are banked secure vs non-secure;
  74 * these are represented as a 2-element array where the first element
  75 * is the non-secure copy and the second is the secure copy.
  76 * When the CPU does not have implement the security extension then
  77 * only the first element is used.
  78 * This means that the copy for the current security state can be
  79 * accessed via env->registerfield[env->v7m.secure] (whether the security
  80 * extension is implemented or not).
  81 */
  82enum {
  83    M_REG_NS = 0,
  84    M_REG_S = 1,
  85    M_REG_NUM_BANKS = 2,
  86};
  87
  88/* ARM-specific interrupt pending bits.  */
  89#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  90#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  91#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  92
  93/* The usual mapping for an AArch64 system register to its AArch32
  94 * counterpart is for the 32 bit world to have access to the lower
  95 * half only (with writes leaving the upper half untouched). It's
  96 * therefore useful to be able to pass TCG the offset of the least
  97 * significant half of a uint64_t struct member.
  98 */
  99#ifdef HOST_WORDS_BIGENDIAN
 100#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 101#define offsetofhigh32(S, M) offsetof(S, M)
 102#else
 103#define offsetoflow32(S, M) offsetof(S, M)
 104#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 105#endif
 106
 107/* Meanings of the ARMCPU object's four inbound GPIO lines */
 108#define ARM_CPU_IRQ 0
 109#define ARM_CPU_FIQ 1
 110#define ARM_CPU_VIRQ 2
 111#define ARM_CPU_VFIQ 3
 112
 113#define NB_MMU_MODES 8
 114/* ARM-specific extra insn start words:
 115 * 1: Conditional execution bits
 116 * 2: Partial exception syndrome for data aborts
 117 */
 118#define TARGET_INSN_START_EXTRA_WORDS 2
 119
 120/* The 2nd extra word holding syndrome info for data aborts does not use
 121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 122 * help the sleb128 encoder do a better job.
 123 * When restoring the CPU state, we shift it back up.
 124 */
 125#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 126#define ARM_INSN_START_WORD2_SHIFT 14
 127
 128/* We currently assume float and double are IEEE single and double
 129   precision respectively.
 130   Doing runtime conversions is tricky because VFP registers may contain
 131   integer values (eg. as the result of a FTOSI instruction).
 132   s<2n> maps to the least significant half of d<n>
 133   s<2n+1> maps to the most significant half of d<n>
 134 */
 135
 136/* CPU state for each instance of a generic timer (in cp15 c14) */
 137typedef struct ARMGenericTimer {
 138    uint64_t cval; /* Timer CompareValue register */
 139    uint64_t ctl; /* Timer Control register */
 140} ARMGenericTimer;
 141
 142#define GTIMER_PHYS 0
 143#define GTIMER_VIRT 1
 144#define GTIMER_HYP  2
 145#define GTIMER_SEC  3
 146#define NUM_GTIMERS 4
 147
 148typedef struct {
 149    uint64_t raw_tcr;
 150    uint32_t mask;
 151    uint32_t base_mask;
 152} TCR;
 153
 154/* Define a maximum sized vector register.
 155 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 156 * For 64-bit, this is a 2048-bit SVE register.
 157 *
 158 * Note that the mapping between S, D, and Q views of the register bank
 159 * differs between AArch64 and AArch32.
 160 * In AArch32:
 161 *  Qn = regs[n].d[1]:regs[n].d[0]
 162 *  Dn = regs[n / 2].d[n & 1]
 163 *  Sn = regs[n / 4].d[n % 4 / 2],
 164 *       bits 31..0 for even n, and bits 63..32 for odd n
 165 *       (and regs[16] to regs[31] are inaccessible)
 166 * In AArch64:
 167 *  Zn = regs[n].d[*]
 168 *  Qn = regs[n].d[1]:regs[n].d[0]
 169 *  Dn = regs[n].d[0]
 170 *  Sn = regs[n].d[0] bits 31..0
 171 *  Hn = regs[n].d[0] bits 15..0
 172 *
 173 * This corresponds to the architecturally defined mapping between
 174 * the two execution states, and means we do not need to explicitly
 175 * map these registers when changing states.
 176 *
 177 * Align the data for use with TCG host vector operations.
 178 */
 179
 180#ifdef TARGET_AARCH64
 181# define ARM_MAX_VQ    16
 182#else
 183# define ARM_MAX_VQ    1
 184#endif
 185
 186typedef struct ARMVectorReg {
 187    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 188} ARMVectorReg;
 189
 190/* In AArch32 mode, predicate registers do not exist at all.  */
 191#ifdef TARGET_AARCH64
 192typedef struct ARMPredicateReg {
 193    uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
 194} ARMPredicateReg;
 195#endif
 196
 197
 198typedef struct CPUARMState {
 199    /* Regs for current mode.  */
 200    uint32_t regs[16];
 201
 202    /* 32/64 switch only happens when taking and returning from
 203     * exceptions so the overlap semantics are taken care of then
 204     * instead of having a complicated union.
 205     */
 206    /* Regs for A64 mode.  */
 207    uint64_t xregs[32];
 208    uint64_t pc;
 209    /* PSTATE isn't an architectural register for ARMv8. However, it is
 210     * convenient for us to assemble the underlying state into a 32 bit format
 211     * identical to the architectural format used for the SPSR. (This is also
 212     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 213     * 'pstate' register are.) Of the PSTATE bits:
 214     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 215     *    semantics as for AArch32, as described in the comments on each field)
 216     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 217     *  DAIF (exception masks) are kept in env->daif
 218     *  all other bits are stored in their correct places in env->pstate
 219     */
 220    uint32_t pstate;
 221    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 222
 223    /* Frequently accessed CPSR bits are stored separately for efficiency.
 224       This contains all the other bits.  Use cpsr_{read,write} to access
 225       the whole CPSR.  */
 226    uint32_t uncached_cpsr;
 227    uint32_t spsr;
 228
 229    /* Banked registers.  */
 230    uint64_t banked_spsr[8];
 231    uint32_t banked_r13[8];
 232    uint32_t banked_r14[8];
 233
 234    /* These hold r8-r12.  */
 235    uint32_t usr_regs[5];
 236    uint32_t fiq_regs[5];
 237
 238    /* cpsr flag cache for faster execution */
 239    uint32_t CF; /* 0 or 1 */
 240    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 241    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 242    uint32_t ZF; /* Z set if zero.  */
 243    uint32_t QF; /* 0 or 1 */
 244    uint32_t GE; /* cpsr[19:16] */
 245    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 246    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 247    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 248
 249    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 250    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 251
 252    /* System control coprocessor (cp15) */
 253    struct {
 254        uint32_t c0_cpuid;
 255        union { /* Cache size selection */
 256            struct {
 257                uint64_t _unused_csselr0;
 258                uint64_t csselr_ns;
 259                uint64_t _unused_csselr1;
 260                uint64_t csselr_s;
 261            };
 262            uint64_t csselr_el[4];
 263        };
 264        union { /* System control register. */
 265            struct {
 266                uint64_t _unused_sctlr;
 267                uint64_t sctlr_ns;
 268                uint64_t hsctlr;
 269                uint64_t sctlr_s;
 270            };
 271            uint64_t sctlr_el[4];
 272        };
 273        uint64_t cpacr_el1; /* Architectural feature access control register */
 274        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 275        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 276        uint64_t sder; /* Secure debug enable register. */
 277        uint32_t nsacr; /* Non-secure access control register. */
 278        union { /* MMU translation table base 0. */
 279            struct {
 280                uint64_t _unused_ttbr0_0;
 281                uint64_t ttbr0_ns;
 282                uint64_t _unused_ttbr0_1;
 283                uint64_t ttbr0_s;
 284            };
 285            uint64_t ttbr0_el[4];
 286        };
 287        union { /* MMU translation table base 1. */
 288            struct {
 289                uint64_t _unused_ttbr1_0;
 290                uint64_t ttbr1_ns;
 291                uint64_t _unused_ttbr1_1;
 292                uint64_t ttbr1_s;
 293            };
 294            uint64_t ttbr1_el[4];
 295        };
 296        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 297        /* MMU translation table base control. */
 298        TCR tcr_el[4];
 299        TCR vtcr_el2; /* Virtualization Translation Control.  */
 300        uint32_t c2_data; /* MPU data cacheable bits.  */
 301        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 302        union { /* MMU domain access control register
 303                 * MPU write buffer control.
 304                 */
 305            struct {
 306                uint64_t dacr_ns;
 307                uint64_t dacr_s;
 308            };
 309            struct {
 310                uint64_t dacr32_el2;
 311            };
 312        };
 313        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 314        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 315        uint64_t hcr_el2; /* Hypervisor configuration register */
 316        uint64_t scr_el3; /* Secure configuration register.  */
 317        union { /* Fault status registers.  */
 318            struct {
 319                uint64_t ifsr_ns;
 320                uint64_t ifsr_s;
 321            };
 322            struct {
 323                uint64_t ifsr32_el2;
 324            };
 325        };
 326        union {
 327            struct {
 328                uint64_t _unused_dfsr;
 329                uint64_t dfsr_ns;
 330                uint64_t hsr;
 331                uint64_t dfsr_s;
 332            };
 333            uint64_t esr_el[4];
 334        };
 335        uint32_t c6_region[8]; /* MPU base/size registers.  */
 336        union { /* Fault address registers. */
 337            struct {
 338                uint64_t _unused_far0;
 339#ifdef HOST_WORDS_BIGENDIAN
 340                uint32_t ifar_ns;
 341                uint32_t dfar_ns;
 342                uint32_t ifar_s;
 343                uint32_t dfar_s;
 344#else
 345                uint32_t dfar_ns;
 346                uint32_t ifar_ns;
 347                uint32_t dfar_s;
 348                uint32_t ifar_s;
 349#endif
 350                uint64_t _unused_far3;
 351            };
 352            uint64_t far_el[4];
 353        };
 354        uint64_t hpfar_el2;
 355        uint64_t hstr_el2;
 356        union { /* Translation result. */
 357            struct {
 358                uint64_t _unused_par_0;
 359                uint64_t par_ns;
 360                uint64_t _unused_par_1;
 361                uint64_t par_s;
 362            };
 363            uint64_t par_el[4];
 364        };
 365
 366        uint32_t c9_insn; /* Cache lockdown registers.  */
 367        uint32_t c9_data;
 368        uint64_t c9_pmcr; /* performance monitor control register */
 369        uint64_t c9_pmcnten; /* perf monitor counter enables */
 370        uint32_t c9_pmovsr; /* perf monitor overflow status */
 371        uint32_t c9_pmuserenr; /* perf monitor user enable */
 372        uint64_t c9_pmselr; /* perf monitor counter selection register */
 373        uint64_t c9_pminten; /* perf monitor interrupt enables */
 374        union { /* Memory attribute redirection */
 375            struct {
 376#ifdef HOST_WORDS_BIGENDIAN
 377                uint64_t _unused_mair_0;
 378                uint32_t mair1_ns;
 379                uint32_t mair0_ns;
 380                uint64_t _unused_mair_1;
 381                uint32_t mair1_s;
 382                uint32_t mair0_s;
 383#else
 384                uint64_t _unused_mair_0;
 385                uint32_t mair0_ns;
 386                uint32_t mair1_ns;
 387                uint64_t _unused_mair_1;
 388                uint32_t mair0_s;
 389                uint32_t mair1_s;
 390#endif
 391            };
 392            uint64_t mair_el[4];
 393        };
 394        union { /* vector base address register */
 395            struct {
 396                uint64_t _unused_vbar;
 397                uint64_t vbar_ns;
 398                uint64_t hvbar;
 399                uint64_t vbar_s;
 400            };
 401            uint64_t vbar_el[4];
 402        };
 403        uint32_t mvbar; /* (monitor) vector base address register */
 404        struct { /* FCSE PID. */
 405            uint32_t fcseidr_ns;
 406            uint32_t fcseidr_s;
 407        };
 408        union { /* Context ID. */
 409            struct {
 410                uint64_t _unused_contextidr_0;
 411                uint64_t contextidr_ns;
 412                uint64_t _unused_contextidr_1;
 413                uint64_t contextidr_s;
 414            };
 415            uint64_t contextidr_el[4];
 416        };
 417        union { /* User RW Thread register. */
 418            struct {
 419                uint64_t tpidrurw_ns;
 420                uint64_t tpidrprw_ns;
 421                uint64_t htpidr;
 422                uint64_t _tpidr_el3;
 423            };
 424            uint64_t tpidr_el[4];
 425        };
 426        /* The secure banks of these registers don't map anywhere */
 427        uint64_t tpidrurw_s;
 428        uint64_t tpidrprw_s;
 429        uint64_t tpidruro_s;
 430
 431        union { /* User RO Thread register. */
 432            uint64_t tpidruro_ns;
 433            uint64_t tpidrro_el[1];
 434        };
 435        uint64_t c14_cntfrq; /* Counter Frequency register */
 436        uint64_t c14_cntkctl; /* Timer Control register */
 437        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 438        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 439        ARMGenericTimer c14_timer[NUM_GTIMERS];
 440        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 441        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 442        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 443        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 444        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 445        uint32_t c15_config_base_address; /* SCU base address.  */
 446        uint32_t c15_diagnostic; /* diagnostic register */
 447        uint32_t c15_power_diagnostic;
 448        uint32_t c15_power_control; /* power control */
 449        uint64_t dbgbvr[16]; /* breakpoint value registers */
 450        uint64_t dbgbcr[16]; /* breakpoint control registers */
 451        uint64_t dbgwvr[16]; /* watchpoint value registers */
 452        uint64_t dbgwcr[16]; /* watchpoint control registers */
 453        uint64_t mdscr_el1;
 454        uint64_t oslsr_el1; /* OS Lock Status */
 455        uint64_t mdcr_el2;
 456        uint64_t mdcr_el3;
 457        /* If the counter is enabled, this stores the last time the counter
 458         * was reset. Otherwise it stores the counter value
 459         */
 460        uint64_t c15_ccnt;
 461        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 462        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 463        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 464    } cp15;
 465
 466    struct {
 467        /* M profile has up to 4 stack pointers:
 468         * a Main Stack Pointer and a Process Stack Pointer for each
 469         * of the Secure and Non-Secure states. (If the CPU doesn't support
 470         * the security extension then it has only two SPs.)
 471         * In QEMU we always store the currently active SP in regs[13],
 472         * and the non-active SP for the current security state in
 473         * v7m.other_sp. The stack pointers for the inactive security state
 474         * are stored in other_ss_msp and other_ss_psp.
 475         * switch_v7m_security_state() is responsible for rearranging them
 476         * when we change security state.
 477         */
 478        uint32_t other_sp;
 479        uint32_t other_ss_msp;
 480        uint32_t other_ss_psp;
 481        uint32_t vecbase[M_REG_NUM_BANKS];
 482        uint32_t basepri[M_REG_NUM_BANKS];
 483        uint32_t control[M_REG_NUM_BANKS];
 484        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 485        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 486        uint32_t hfsr; /* HardFault Status */
 487        uint32_t dfsr; /* Debug Fault Status Register */
 488        uint32_t sfsr; /* Secure Fault Status Register */
 489        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 490        uint32_t bfar; /* BusFault Address */
 491        uint32_t sfar; /* Secure Fault Address Register */
 492        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 493        int exception;
 494        uint32_t primask[M_REG_NUM_BANKS];
 495        uint32_t faultmask[M_REG_NUM_BANKS];
 496        uint32_t aircr; /* only holds r/w state if security extn implemented */
 497        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 498        uint32_t csselr[M_REG_NUM_BANKS];
 499        uint32_t scr[M_REG_NUM_BANKS];
 500        uint32_t msplim[M_REG_NUM_BANKS];
 501        uint32_t psplim[M_REG_NUM_BANKS];
 502    } v7m;
 503
 504    /* Information associated with an exception about to be taken:
 505     * code which raises an exception must set cs->exception_index and
 506     * the relevant parts of this structure; the cpu_do_interrupt function
 507     * will then set the guest-visible registers as part of the exception
 508     * entry process.
 509     */
 510    struct {
 511        uint32_t syndrome; /* AArch64 format syndrome register */
 512        uint32_t fsr; /* AArch32 format fault status register info */
 513        uint64_t vaddress; /* virtual addr associated with exception, if any */
 514        uint32_t target_el; /* EL the exception should be targeted for */
 515        /* If we implement EL2 we will also need to store information
 516         * about the intermediate physical address for stage 2 faults.
 517         */
 518    } exception;
 519
 520    /* Thumb-2 EE state.  */
 521    uint32_t teecr;
 522    uint32_t teehbr;
 523
 524    /* VFP coprocessor state.  */
 525    struct {
 526        ARMVectorReg zregs[32];
 527
 528#ifdef TARGET_AARCH64
 529        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 530        ARMPredicateReg pregs[17];
 531#endif
 532
 533        uint32_t xregs[16];
 534        /* We store these fpcsr fields separately for convenience.  */
 535        int vec_len;
 536        int vec_stride;
 537
 538        /* scratch space when Tn are not sufficient.  */
 539        uint32_t scratch[8];
 540
 541        /* There are a number of distinct float control structures:
 542         *
 543         *  fp_status: is the "normal" fp status.
 544         *  fp_status_fp16: used for half-precision calculations
 545         *  standard_fp_status : the ARM "Standard FPSCR Value"
 546         *
 547         * Half-precision operations are governed by a separate
 548         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 549         * status structure to control this.
 550         *
 551         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 552         * round-to-nearest and is used by any operations (generally
 553         * Neon) which the architecture defines as controlled by the
 554         * standard FPSCR value rather than the FPSCR.
 555         *
 556         * To avoid having to transfer exception bits around, we simply
 557         * say that the FPSCR cumulative exception flags are the logical
 558         * OR of the flags in the three fp statuses. This relies on the
 559         * only thing which needs to read the exception flags being
 560         * an explicit FPSCR read.
 561         */
 562        float_status fp_status;
 563        float_status fp_status_f16;
 564        float_status standard_fp_status;
 565
 566        /* ZCR_EL[1-3] */
 567        uint64_t zcr_el[4];
 568    } vfp;
 569    uint64_t exclusive_addr;
 570    uint64_t exclusive_val;
 571    uint64_t exclusive_high;
 572
 573    /* iwMMXt coprocessor state.  */
 574    struct {
 575        uint64_t regs[16];
 576        uint64_t val;
 577
 578        uint32_t cregs[16];
 579    } iwmmxt;
 580
 581#if defined(CONFIG_USER_ONLY)
 582    /* For usermode syscall translation.  */
 583    int eabi;
 584#endif
 585
 586    struct CPUBreakpoint *cpu_breakpoint[16];
 587    struct CPUWatchpoint *cpu_watchpoint[16];
 588
 589    /* Fields up to this point are cleared by a CPU reset */
 590    struct {} end_reset_fields;
 591
 592    CPU_COMMON
 593
 594    /* Fields after CPU_COMMON are preserved across CPU reset. */
 595
 596    /* Internal CPU feature flags.  */
 597    uint64_t features;
 598
 599    /* PMSAv7 MPU */
 600    struct {
 601        uint32_t *drbar;
 602        uint32_t *drsr;
 603        uint32_t *dracr;
 604        uint32_t rnr[M_REG_NUM_BANKS];
 605    } pmsav7;
 606
 607    /* PMSAv8 MPU */
 608    struct {
 609        /* The PMSAv8 implementation also shares some PMSAv7 config
 610         * and state:
 611         *  pmsav7.rnr (region number register)
 612         *  pmsav7_dregion (number of configured regions)
 613         */
 614        uint32_t *rbar[M_REG_NUM_BANKS];
 615        uint32_t *rlar[M_REG_NUM_BANKS];
 616        uint32_t mair0[M_REG_NUM_BANKS];
 617        uint32_t mair1[M_REG_NUM_BANKS];
 618    } pmsav8;
 619
 620    /* v8M SAU */
 621    struct {
 622        uint32_t *rbar;
 623        uint32_t *rlar;
 624        uint32_t rnr;
 625        uint32_t ctrl;
 626    } sau;
 627
 628    void *nvic;
 629    const struct arm_boot_info *boot_info;
 630    /* Store GICv3CPUState to access from this struct */
 631    void *gicv3state;
 632} CPUARMState;
 633
 634/**
 635 * ARMELChangeHook:
 636 * type of a function which can be registered via arm_register_el_change_hook()
 637 * to get callbacks when the CPU changes its exception level or mode.
 638 */
 639typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
 640
 641
 642/* These values map onto the return values for
 643 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 644typedef enum ARMPSCIState {
 645    PSCI_ON = 0,
 646    PSCI_OFF = 1,
 647    PSCI_ON_PENDING = 2
 648} ARMPSCIState;
 649
 650/**
 651 * ARMCPU:
 652 * @env: #CPUARMState
 653 *
 654 * An ARM CPU core.
 655 */
 656struct ARMCPU {
 657    /*< private >*/
 658    CPUState parent_obj;
 659    /*< public >*/
 660
 661    CPUARMState env;
 662
 663    /* Coprocessor information */
 664    GHashTable *cp_regs;
 665    /* For marshalling (mostly coprocessor) register state between the
 666     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 667     * we use these arrays.
 668     */
 669    /* List of register indexes managed via these arrays; (full KVM style
 670     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 671     */
 672    uint64_t *cpreg_indexes;
 673    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 674    uint64_t *cpreg_values;
 675    /* Length of the indexes, values, reset_values arrays */
 676    int32_t cpreg_array_len;
 677    /* These are used only for migration: incoming data arrives in
 678     * these fields and is sanity checked in post_load before copying
 679     * to the working data structures above.
 680     */
 681    uint64_t *cpreg_vmstate_indexes;
 682    uint64_t *cpreg_vmstate_values;
 683    int32_t cpreg_vmstate_array_len;
 684
 685    /* Timers used by the generic (architected) timer */
 686    QEMUTimer *gt_timer[NUM_GTIMERS];
 687    /* GPIO outputs for generic timer */
 688    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 689    /* GPIO output for GICv3 maintenance interrupt signal */
 690    qemu_irq gicv3_maintenance_interrupt;
 691    /* GPIO output for the PMU interrupt */
 692    qemu_irq pmu_interrupt;
 693
 694    /* MemoryRegion to use for secure physical accesses */
 695    MemoryRegion *secure_memory;
 696
 697    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 698    Object *idau;
 699
 700    /* 'compatible' string for this CPU for Linux device trees */
 701    const char *dtb_compatible;
 702
 703    /* PSCI version for this CPU
 704     * Bits[31:16] = Major Version
 705     * Bits[15:0] = Minor Version
 706     */
 707    uint32_t psci_version;
 708
 709    /* Should CPU start in PSCI powered-off state? */
 710    bool start_powered_off;
 711
 712    /* Current power state, access guarded by BQL */
 713    ARMPSCIState power_state;
 714
 715    /* CPU has virtualization extension */
 716    bool has_el2;
 717    /* CPU has security extension */
 718    bool has_el3;
 719    /* CPU has PMU (Performance Monitor Unit) */
 720    bool has_pmu;
 721
 722    /* CPU has memory protection unit */
 723    bool has_mpu;
 724    /* PMSAv7 MPU number of supported regions */
 725    uint32_t pmsav7_dregion;
 726    /* v8M SAU number of supported regions */
 727    uint32_t sau_sregion;
 728
 729    /* PSCI conduit used to invoke PSCI methods
 730     * 0 - disabled, 1 - smc, 2 - hvc
 731     */
 732    uint32_t psci_conduit;
 733
 734    /* For v8M, initial value of the Secure VTOR */
 735    uint32_t init_svtor;
 736
 737    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 738     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 739     */
 740    uint32_t kvm_target;
 741
 742    /* KVM init features for this CPU */
 743    uint32_t kvm_init_features[7];
 744
 745    /* Uniprocessor system with MP extensions */
 746    bool mp_is_up;
 747
 748    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 749     * and the probe failed (so we need to report the error in realize)
 750     */
 751    bool host_cpu_probe_failed;
 752
 753    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 754     * register.
 755     */
 756    int32_t core_count;
 757
 758    /* The instance init functions for implementation-specific subclasses
 759     * set these fields to specify the implementation-dependent values of
 760     * various constant registers and reset values of non-constant
 761     * registers.
 762     * Some of these might become QOM properties eventually.
 763     * Field names match the official register names as defined in the
 764     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 765     * is used for reset values of non-constant registers; no reset_
 766     * prefix means a constant register.
 767     */
 768    uint32_t midr;
 769    uint32_t revidr;
 770    uint32_t reset_fpsid;
 771    uint32_t mvfr0;
 772    uint32_t mvfr1;
 773    uint32_t mvfr2;
 774    uint32_t ctr;
 775    uint32_t reset_sctlr;
 776    uint32_t id_pfr0;
 777    uint32_t id_pfr1;
 778    uint32_t id_dfr0;
 779    uint32_t pmceid0;
 780    uint32_t pmceid1;
 781    uint32_t id_afr0;
 782    uint32_t id_mmfr0;
 783    uint32_t id_mmfr1;
 784    uint32_t id_mmfr2;
 785    uint32_t id_mmfr3;
 786    uint32_t id_mmfr4;
 787    uint32_t id_isar0;
 788    uint32_t id_isar1;
 789    uint32_t id_isar2;
 790    uint32_t id_isar3;
 791    uint32_t id_isar4;
 792    uint32_t id_isar5;
 793    uint64_t id_aa64pfr0;
 794    uint64_t id_aa64pfr1;
 795    uint64_t id_aa64dfr0;
 796    uint64_t id_aa64dfr1;
 797    uint64_t id_aa64afr0;
 798    uint64_t id_aa64afr1;
 799    uint64_t id_aa64isar0;
 800    uint64_t id_aa64isar1;
 801    uint64_t id_aa64mmfr0;
 802    uint64_t id_aa64mmfr1;
 803    uint32_t dbgdidr;
 804    uint32_t clidr;
 805    uint64_t mp_affinity; /* MP ID without feature bits */
 806    /* The elements of this array are the CCSIDR values for each cache,
 807     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 808     */
 809    uint32_t ccsidr[16];
 810    uint64_t reset_cbar;
 811    uint32_t reset_auxcr;
 812    bool reset_hivecs;
 813    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 814    uint32_t dcz_blocksize;
 815    uint64_t rvbar;
 816
 817    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 818    int gic_num_lrs; /* number of list registers */
 819    int gic_vpribits; /* number of virtual priority bits */
 820    int gic_vprebits; /* number of virtual preemption bits */
 821
 822    /* Whether the cfgend input is high (i.e. this CPU should reset into
 823     * big-endian mode).  This setting isn't used directly: instead it modifies
 824     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 825     * architecture version.
 826     */
 827    bool cfgend;
 828
 829    ARMELChangeHook *el_change_hook;
 830    void *el_change_hook_opaque;
 831
 832    int32_t node_id; /* NUMA node this CPU belongs to */
 833
 834    /* Used to synchronize KVM and QEMU in-kernel device levels */
 835    uint8_t device_irq_level;
 836};
 837
 838static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 839{
 840    return container_of(env, ARMCPU, env);
 841}
 842
 843uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 844
 845#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 846
 847#define ENV_OFFSET offsetof(ARMCPU, env)
 848
 849#ifndef CONFIG_USER_ONLY
 850extern const struct VMStateDescription vmstate_arm_cpu;
 851#endif
 852
 853void arm_cpu_do_interrupt(CPUState *cpu);
 854void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 855bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 856
 857void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 858                        int flags);
 859
 860hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 861                                         MemTxAttrs *attrs);
 862
 863int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 864int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 865
 866int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 867                             int cpuid, void *opaque);
 868int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 869                             int cpuid, void *opaque);
 870
 871#ifdef TARGET_AARCH64
 872int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 873int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 874void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
 875#endif
 876
 877target_ulong do_arm_semihosting(CPUARMState *env);
 878void aarch64_sync_32_to_64(CPUARMState *env);
 879void aarch64_sync_64_to_32(CPUARMState *env);
 880
 881static inline bool is_a64(CPUARMState *env)
 882{
 883    return env->aarch64;
 884}
 885
 886/* you can call this signal handler from your SIGBUS and SIGSEGV
 887   signal handlers to inform the virtual CPU of exceptions. non zero
 888   is returned if the signal was handled by the virtual CPU.  */
 889int cpu_arm_signal_handler(int host_signum, void *pinfo,
 890                           void *puc);
 891
 892/**
 893 * pmccntr_sync
 894 * @env: CPUARMState
 895 *
 896 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 897 * once before any action that might affect the timer and again afterwards.
 898 * The function is used to swap the state of the register if required.
 899 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 900 */
 901void pmccntr_sync(CPUARMState *env);
 902
 903/* SCTLR bit meanings. Several bits have been reused in newer
 904 * versions of the architecture; in that case we define constants
 905 * for both old and new bit meanings. Code which tests against those
 906 * bits should probably check or otherwise arrange that the CPU
 907 * is the architectural version it expects.
 908 */
 909#define SCTLR_M       (1U << 0)
 910#define SCTLR_A       (1U << 1)
 911#define SCTLR_C       (1U << 2)
 912#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 913#define SCTLR_SA      (1U << 3)
 914#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 915#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 916#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 917#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 918#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 919#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 920#define SCTLR_ITD     (1U << 7) /* v8 onward */
 921#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 922#define SCTLR_SED     (1U << 8) /* v8 onward */
 923#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 924#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 925#define SCTLR_F       (1U << 10) /* up to v6 */
 926#define SCTLR_SW      (1U << 10) /* v7 onward */
 927#define SCTLR_Z       (1U << 11)
 928#define SCTLR_I       (1U << 12)
 929#define SCTLR_V       (1U << 13)
 930#define SCTLR_RR      (1U << 14) /* up to v7 */
 931#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 932#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 933#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 934#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 935#define SCTLR_nTWI    (1U << 16) /* v8 onward */
 936#define SCTLR_HA      (1U << 17)
 937#define SCTLR_BR      (1U << 17) /* PMSA only */
 938#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 939#define SCTLR_nTWE    (1U << 18) /* v8 onward */
 940#define SCTLR_WXN     (1U << 19)
 941#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 942#define SCTLR_UWXN    (1U << 20) /* v7 onward */
 943#define SCTLR_FI      (1U << 21)
 944#define SCTLR_U       (1U << 22)
 945#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 946#define SCTLR_VE      (1U << 24) /* up to v7 */
 947#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 948#define SCTLR_EE      (1U << 25)
 949#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 950#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 951#define SCTLR_NMFI    (1U << 27)
 952#define SCTLR_TRE     (1U << 28)
 953#define SCTLR_AFE     (1U << 29)
 954#define SCTLR_TE      (1U << 30)
 955
 956#define CPTR_TCPAC    (1U << 31)
 957#define CPTR_TTA      (1U << 20)
 958#define CPTR_TFP      (1U << 10)
 959#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
 960#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
 961
 962#define MDCR_EPMAD    (1U << 21)
 963#define MDCR_EDAD     (1U << 20)
 964#define MDCR_SPME     (1U << 17)
 965#define MDCR_SDD      (1U << 16)
 966#define MDCR_SPD      (3U << 14)
 967#define MDCR_TDRA     (1U << 11)
 968#define MDCR_TDOSA    (1U << 10)
 969#define MDCR_TDA      (1U << 9)
 970#define MDCR_TDE      (1U << 8)
 971#define MDCR_HPME     (1U << 7)
 972#define MDCR_TPM      (1U << 6)
 973#define MDCR_TPMCR    (1U << 5)
 974
 975/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
 976#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
 977
 978#define CPSR_M (0x1fU)
 979#define CPSR_T (1U << 5)
 980#define CPSR_F (1U << 6)
 981#define CPSR_I (1U << 7)
 982#define CPSR_A (1U << 8)
 983#define CPSR_E (1U << 9)
 984#define CPSR_IT_2_7 (0xfc00U)
 985#define CPSR_GE (0xfU << 16)
 986#define CPSR_IL (1U << 20)
 987/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 988 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 989 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 990 * where it is live state but not accessible to the AArch32 code.
 991 */
 992#define CPSR_RESERVED (0x7U << 21)
 993#define CPSR_J (1U << 24)
 994#define CPSR_IT_0_1 (3U << 25)
 995#define CPSR_Q (1U << 27)
 996#define CPSR_V (1U << 28)
 997#define CPSR_C (1U << 29)
 998#define CPSR_Z (1U << 30)
 999#define CPSR_N (1U << 31)
1000#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1001#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1002
1003#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1004#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1005    | CPSR_NZCV)
1006/* Bits writable in user mode.  */
1007#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1008/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1009#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1010/* Mask of bits which may be set by exception return copying them from SPSR */
1011#define CPSR_ERET_MASK (~CPSR_RESERVED)
1012
1013/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1014#define XPSR_EXCP 0x1ffU
1015#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1016#define XPSR_IT_2_7 CPSR_IT_2_7
1017#define XPSR_GE CPSR_GE
1018#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1019#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1020#define XPSR_IT_0_1 CPSR_IT_0_1
1021#define XPSR_Q CPSR_Q
1022#define XPSR_V CPSR_V
1023#define XPSR_C CPSR_C
1024#define XPSR_Z CPSR_Z
1025#define XPSR_N CPSR_N
1026#define XPSR_NZCV CPSR_NZCV
1027#define XPSR_IT CPSR_IT
1028
1029#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1030#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1031#define TTBCR_PD0    (1U << 4)
1032#define TTBCR_PD1    (1U << 5)
1033#define TTBCR_EPD0   (1U << 7)
1034#define TTBCR_IRGN0  (3U << 8)
1035#define TTBCR_ORGN0  (3U << 10)
1036#define TTBCR_SH0    (3U << 12)
1037#define TTBCR_T1SZ   (3U << 16)
1038#define TTBCR_A1     (1U << 22)
1039#define TTBCR_EPD1   (1U << 23)
1040#define TTBCR_IRGN1  (3U << 24)
1041#define TTBCR_ORGN1  (3U << 26)
1042#define TTBCR_SH1    (1U << 28)
1043#define TTBCR_EAE    (1U << 31)
1044
1045/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1046 * Only these are valid when in AArch64 mode; in
1047 * AArch32 mode SPSRs are basically CPSR-format.
1048 */
1049#define PSTATE_SP (1U)
1050#define PSTATE_M (0xFU)
1051#define PSTATE_nRW (1U << 4)
1052#define PSTATE_F (1U << 6)
1053#define PSTATE_I (1U << 7)
1054#define PSTATE_A (1U << 8)
1055#define PSTATE_D (1U << 9)
1056#define PSTATE_IL (1U << 20)
1057#define PSTATE_SS (1U << 21)
1058#define PSTATE_V (1U << 28)
1059#define PSTATE_C (1U << 29)
1060#define PSTATE_Z (1U << 30)
1061#define PSTATE_N (1U << 31)
1062#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1063#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1064#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1065/* Mode values for AArch64 */
1066#define PSTATE_MODE_EL3h 13
1067#define PSTATE_MODE_EL3t 12
1068#define PSTATE_MODE_EL2h 9
1069#define PSTATE_MODE_EL2t 8
1070#define PSTATE_MODE_EL1h 5
1071#define PSTATE_MODE_EL1t 4
1072#define PSTATE_MODE_EL0t 0
1073
1074/* Write a new value to v7m.exception, thus transitioning into or out
1075 * of Handler mode; this may result in a change of active stack pointer.
1076 */
1077void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1078
1079/* Map EL and handler into a PSTATE_MODE.  */
1080static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1081{
1082    return (el << 2) | handler;
1083}
1084
1085/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1086 * interprocessing, so we don't attempt to sync with the cpsr state used by
1087 * the 32 bit decoder.
1088 */
1089static inline uint32_t pstate_read(CPUARMState *env)
1090{
1091    int ZF;
1092
1093    ZF = (env->ZF == 0);
1094    return (env->NF & 0x80000000) | (ZF << 30)
1095        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1096        | env->pstate | env->daif;
1097}
1098
1099static inline void pstate_write(CPUARMState *env, uint32_t val)
1100{
1101    env->ZF = (~val) & PSTATE_Z;
1102    env->NF = val;
1103    env->CF = (val >> 29) & 1;
1104    env->VF = (val << 3) & 0x80000000;
1105    env->daif = val & PSTATE_DAIF;
1106    env->pstate = val & ~CACHED_PSTATE_BITS;
1107}
1108
1109/* Return the current CPSR value.  */
1110uint32_t cpsr_read(CPUARMState *env);
1111
1112typedef enum CPSRWriteType {
1113    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1114    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1115    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1116    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1117} CPSRWriteType;
1118
1119/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1120void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1121                CPSRWriteType write_type);
1122
1123/* Return the current xPSR value.  */
1124static inline uint32_t xpsr_read(CPUARMState *env)
1125{
1126    int ZF;
1127    ZF = (env->ZF == 0);
1128    return (env->NF & 0x80000000) | (ZF << 30)
1129        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1130        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1131        | ((env->condexec_bits & 0xfc) << 8)
1132        | env->v7m.exception;
1133}
1134
1135/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1136static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1137{
1138    if (mask & XPSR_NZCV) {
1139        env->ZF = (~val) & XPSR_Z;
1140        env->NF = val;
1141        env->CF = (val >> 29) & 1;
1142        env->VF = (val << 3) & 0x80000000;
1143    }
1144    if (mask & XPSR_Q) {
1145        env->QF = ((val & XPSR_Q) != 0);
1146    }
1147    if (mask & XPSR_T) {
1148        env->thumb = ((val & XPSR_T) != 0);
1149    }
1150    if (mask & XPSR_IT_0_1) {
1151        env->condexec_bits &= ~3;
1152        env->condexec_bits |= (val >> 25) & 3;
1153    }
1154    if (mask & XPSR_IT_2_7) {
1155        env->condexec_bits &= 3;
1156        env->condexec_bits |= (val >> 8) & 0xfc;
1157    }
1158    if (mask & XPSR_EXCP) {
1159        /* Note that this only happens on exception exit */
1160        write_v7m_exception(env, val & XPSR_EXCP);
1161    }
1162}
1163
1164#define HCR_VM        (1ULL << 0)
1165#define HCR_SWIO      (1ULL << 1)
1166#define HCR_PTW       (1ULL << 2)
1167#define HCR_FMO       (1ULL << 3)
1168#define HCR_IMO       (1ULL << 4)
1169#define HCR_AMO       (1ULL << 5)
1170#define HCR_VF        (1ULL << 6)
1171#define HCR_VI        (1ULL << 7)
1172#define HCR_VSE       (1ULL << 8)
1173#define HCR_FB        (1ULL << 9)
1174#define HCR_BSU_MASK  (3ULL << 10)
1175#define HCR_DC        (1ULL << 12)
1176#define HCR_TWI       (1ULL << 13)
1177#define HCR_TWE       (1ULL << 14)
1178#define HCR_TID0      (1ULL << 15)
1179#define HCR_TID1      (1ULL << 16)
1180#define HCR_TID2      (1ULL << 17)
1181#define HCR_TID3      (1ULL << 18)
1182#define HCR_TSC       (1ULL << 19)
1183#define HCR_TIDCP     (1ULL << 20)
1184#define HCR_TACR      (1ULL << 21)
1185#define HCR_TSW       (1ULL << 22)
1186#define HCR_TPC       (1ULL << 23)
1187#define HCR_TPU       (1ULL << 24)
1188#define HCR_TTLB      (1ULL << 25)
1189#define HCR_TVM       (1ULL << 26)
1190#define HCR_TGE       (1ULL << 27)
1191#define HCR_TDZ       (1ULL << 28)
1192#define HCR_HCD       (1ULL << 29)
1193#define HCR_TRVM      (1ULL << 30)
1194#define HCR_RW        (1ULL << 31)
1195#define HCR_CD        (1ULL << 32)
1196#define HCR_ID        (1ULL << 33)
1197#define HCR_MASK      ((1ULL << 34) - 1)
1198
1199#define SCR_NS                (1U << 0)
1200#define SCR_IRQ               (1U << 1)
1201#define SCR_FIQ               (1U << 2)
1202#define SCR_EA                (1U << 3)
1203#define SCR_FW                (1U << 4)
1204#define SCR_AW                (1U << 5)
1205#define SCR_NET               (1U << 6)
1206#define SCR_SMD               (1U << 7)
1207#define SCR_HCE               (1U << 8)
1208#define SCR_SIF               (1U << 9)
1209#define SCR_RW                (1U << 10)
1210#define SCR_ST                (1U << 11)
1211#define SCR_TWI               (1U << 12)
1212#define SCR_TWE               (1U << 13)
1213#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1214#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1215
1216/* Return the current FPSCR value.  */
1217uint32_t vfp_get_fpscr(CPUARMState *env);
1218void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1219
1220/* FPCR, Floating Point Control Register
1221 * FPSR, Floating Poiht Status Register
1222 *
1223 * For A64 the FPSCR is split into two logically distinct registers,
1224 * FPCR and FPSR. However since they still use non-overlapping bits
1225 * we store the underlying state in fpscr and just mask on read/write.
1226 */
1227#define FPSR_MASK 0xf800009f
1228#define FPCR_MASK 0x07f79f00
1229
1230#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1231#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1232#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1233
1234static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1235{
1236    return vfp_get_fpscr(env) & FPSR_MASK;
1237}
1238
1239static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1240{
1241    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1242    vfp_set_fpscr(env, new_fpscr);
1243}
1244
1245static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1246{
1247    return vfp_get_fpscr(env) & FPCR_MASK;
1248}
1249
1250static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1251{
1252    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1253    vfp_set_fpscr(env, new_fpscr);
1254}
1255
1256enum arm_cpu_mode {
1257  ARM_CPU_MODE_USR = 0x10,
1258  ARM_CPU_MODE_FIQ = 0x11,
1259  ARM_CPU_MODE_IRQ = 0x12,
1260  ARM_CPU_MODE_SVC = 0x13,
1261  ARM_CPU_MODE_MON = 0x16,
1262  ARM_CPU_MODE_ABT = 0x17,
1263  ARM_CPU_MODE_HYP = 0x1a,
1264  ARM_CPU_MODE_UND = 0x1b,
1265  ARM_CPU_MODE_SYS = 0x1f
1266};
1267
1268/* VFP system registers.  */
1269#define ARM_VFP_FPSID   0
1270#define ARM_VFP_FPSCR   1
1271#define ARM_VFP_MVFR2   5
1272#define ARM_VFP_MVFR1   6
1273#define ARM_VFP_MVFR0   7
1274#define ARM_VFP_FPEXC   8
1275#define ARM_VFP_FPINST  9
1276#define ARM_VFP_FPINST2 10
1277
1278/* iwMMXt coprocessor control registers.  */
1279#define ARM_IWMMXT_wCID         0
1280#define ARM_IWMMXT_wCon         1
1281#define ARM_IWMMXT_wCSSF        2
1282#define ARM_IWMMXT_wCASF        3
1283#define ARM_IWMMXT_wCGR0        8
1284#define ARM_IWMMXT_wCGR1        9
1285#define ARM_IWMMXT_wCGR2        10
1286#define ARM_IWMMXT_wCGR3        11
1287
1288/* V7M CCR bits */
1289FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1290FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1291FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1292FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1293FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1294FIELD(V7M_CCR, STKALIGN, 9, 1)
1295FIELD(V7M_CCR, DC, 16, 1)
1296FIELD(V7M_CCR, IC, 17, 1)
1297
1298/* V7M SCR bits */
1299FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1300FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1301FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1302FIELD(V7M_SCR, SEVONPEND, 4, 1)
1303
1304/* V7M AIRCR bits */
1305FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1306FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1307FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1308FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1309FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1310FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1311FIELD(V7M_AIRCR, PRIS, 14, 1)
1312FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1313FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1314
1315/* V7M CFSR bits for MMFSR */
1316FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1317FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1318FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1319FIELD(V7M_CFSR, MSTKERR, 4, 1)
1320FIELD(V7M_CFSR, MLSPERR, 5, 1)
1321FIELD(V7M_CFSR, MMARVALID, 7, 1)
1322
1323/* V7M CFSR bits for BFSR */
1324FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1325FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1326FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1327FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1328FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1329FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1330FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1331
1332/* V7M CFSR bits for UFSR */
1333FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1334FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1335FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1336FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1337FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1338FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1339
1340/* V7M CFSR bit masks covering all of the subregister bits */
1341FIELD(V7M_CFSR, MMFSR, 0, 8)
1342FIELD(V7M_CFSR, BFSR, 8, 8)
1343FIELD(V7M_CFSR, UFSR, 16, 16)
1344
1345/* V7M HFSR bits */
1346FIELD(V7M_HFSR, VECTTBL, 1, 1)
1347FIELD(V7M_HFSR, FORCED, 30, 1)
1348FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1349
1350/* V7M DFSR bits */
1351FIELD(V7M_DFSR, HALTED, 0, 1)
1352FIELD(V7M_DFSR, BKPT, 1, 1)
1353FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1354FIELD(V7M_DFSR, VCATCH, 3, 1)
1355FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1356
1357/* V7M SFSR bits */
1358FIELD(V7M_SFSR, INVEP, 0, 1)
1359FIELD(V7M_SFSR, INVIS, 1, 1)
1360FIELD(V7M_SFSR, INVER, 2, 1)
1361FIELD(V7M_SFSR, AUVIOL, 3, 1)
1362FIELD(V7M_SFSR, INVTRAN, 4, 1)
1363FIELD(V7M_SFSR, LSPERR, 5, 1)
1364FIELD(V7M_SFSR, SFARVALID, 6, 1)
1365FIELD(V7M_SFSR, LSERR, 7, 1)
1366
1367/* v7M MPU_CTRL bits */
1368FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1369FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1370FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1371
1372/* v7M CLIDR bits */
1373FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1374FIELD(V7M_CLIDR, LOUIS, 21, 3)
1375FIELD(V7M_CLIDR, LOC, 24, 3)
1376FIELD(V7M_CLIDR, LOUU, 27, 3)
1377FIELD(V7M_CLIDR, ICB, 30, 2)
1378
1379FIELD(V7M_CSSELR, IND, 0, 1)
1380FIELD(V7M_CSSELR, LEVEL, 1, 3)
1381/* We use the combination of InD and Level to index into cpu->ccsidr[];
1382 * define a mask for this and check that it doesn't permit running off
1383 * the end of the array.
1384 */
1385FIELD(V7M_CSSELR, INDEX, 0, 4)
1386
1387QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1388
1389/* If adding a feature bit which corresponds to a Linux ELF
1390 * HWCAP bit, remember to update the feature-bit-to-hwcap
1391 * mapping in linux-user/elfload.c:get_elf_hwcap().
1392 */
1393enum arm_features {
1394    ARM_FEATURE_VFP,
1395    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1396    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1397    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1398    ARM_FEATURE_V6,
1399    ARM_FEATURE_V6K,
1400    ARM_FEATURE_V7,
1401    ARM_FEATURE_THUMB2,
1402    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1403    ARM_FEATURE_VFP3,
1404    ARM_FEATURE_VFP_FP16,
1405    ARM_FEATURE_NEON,
1406    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1407    ARM_FEATURE_M, /* Microcontroller profile.  */
1408    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1409    ARM_FEATURE_THUMB2EE,
1410    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1411    ARM_FEATURE_V4T,
1412    ARM_FEATURE_V5,
1413    ARM_FEATURE_STRONGARM,
1414    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1415    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1416    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1417    ARM_FEATURE_GENERIC_TIMER,
1418    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1419    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1420    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1421    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1422    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1423    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1424    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1425    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1426    ARM_FEATURE_V8,
1427    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1428    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1429    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1430    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1431    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1432    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1433    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1434    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1435    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1436    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1437    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1438    ARM_FEATURE_PMU, /* has PMU support */
1439    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1440    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1441    ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1442    ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1443    ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1444    ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1445    ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1446    ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1447    ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1448    ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1449    ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
1450};
1451
1452static inline int arm_feature(CPUARMState *env, int feature)
1453{
1454    return (env->features & (1ULL << feature)) != 0;
1455}
1456
1457#if !defined(CONFIG_USER_ONLY)
1458/* Return true if exception levels below EL3 are in secure state,
1459 * or would be following an exception return to that level.
1460 * Unlike arm_is_secure() (which is always a question about the
1461 * _current_ state of the CPU) this doesn't care about the current
1462 * EL or mode.
1463 */
1464static inline bool arm_is_secure_below_el3(CPUARMState *env)
1465{
1466    if (arm_feature(env, ARM_FEATURE_EL3)) {
1467        return !(env->cp15.scr_el3 & SCR_NS);
1468    } else {
1469        /* If EL3 is not supported then the secure state is implementation
1470         * defined, in which case QEMU defaults to non-secure.
1471         */
1472        return false;
1473    }
1474}
1475
1476/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1477static inline bool arm_is_el3_or_mon(CPUARMState *env)
1478{
1479    if (arm_feature(env, ARM_FEATURE_EL3)) {
1480        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1481            /* CPU currently in AArch64 state and EL3 */
1482            return true;
1483        } else if (!is_a64(env) &&
1484                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1485            /* CPU currently in AArch32 state and monitor mode */
1486            return true;
1487        }
1488    }
1489    return false;
1490}
1491
1492/* Return true if the processor is in secure state */
1493static inline bool arm_is_secure(CPUARMState *env)
1494{
1495    if (arm_is_el3_or_mon(env)) {
1496        return true;
1497    }
1498    return arm_is_secure_below_el3(env);
1499}
1500
1501#else
1502static inline bool arm_is_secure_below_el3(CPUARMState *env)
1503{
1504    return false;
1505}
1506
1507static inline bool arm_is_secure(CPUARMState *env)
1508{
1509    return false;
1510}
1511#endif
1512
1513/* Return true if the specified exception level is running in AArch64 state. */
1514static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1515{
1516    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1517     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1518     */
1519    assert(el >= 1 && el <= 3);
1520    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1521
1522    /* The highest exception level is always at the maximum supported
1523     * register width, and then lower levels have a register width controlled
1524     * by bits in the SCR or HCR registers.
1525     */
1526    if (el == 3) {
1527        return aa64;
1528    }
1529
1530    if (arm_feature(env, ARM_FEATURE_EL3)) {
1531        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1532    }
1533
1534    if (el == 2) {
1535        return aa64;
1536    }
1537
1538    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1539        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1540    }
1541
1542    return aa64;
1543}
1544
1545/* Function for determing whether guest cp register reads and writes should
1546 * access the secure or non-secure bank of a cp register.  When EL3 is
1547 * operating in AArch32 state, the NS-bit determines whether the secure
1548 * instance of a cp register should be used. When EL3 is AArch64 (or if
1549 * it doesn't exist at all) then there is no register banking, and all
1550 * accesses are to the non-secure version.
1551 */
1552static inline bool access_secure_reg(CPUARMState *env)
1553{
1554    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1555                !arm_el_is_aa64(env, 3) &&
1556                !(env->cp15.scr_el3 & SCR_NS));
1557
1558    return ret;
1559}
1560
1561/* Macros for accessing a specified CP register bank */
1562#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1563    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1564
1565#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1566    do {                                                \
1567        if (_secure) {                                   \
1568            (_env)->cp15._regname##_s = (_val);            \
1569        } else {                                        \
1570            (_env)->cp15._regname##_ns = (_val);           \
1571        }                                               \
1572    } while (0)
1573
1574/* Macros for automatically accessing a specific CP register bank depending on
1575 * the current secure state of the system.  These macros are not intended for
1576 * supporting instruction translation reads/writes as these are dependent
1577 * solely on the SCR.NS bit and not the mode.
1578 */
1579#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1580    A32_BANKED_REG_GET((_env), _regname,                \
1581                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1582
1583#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1584    A32_BANKED_REG_SET((_env), _regname,                                    \
1585                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1586                       (_val))
1587
1588void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1589uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1590                                 uint32_t cur_el, bool secure);
1591
1592/* Interface between CPU and Interrupt controller.  */
1593#ifndef CONFIG_USER_ONLY
1594bool armv7m_nvic_can_take_pending_exception(void *opaque);
1595#else
1596static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1597{
1598    return true;
1599}
1600#endif
1601/**
1602 * armv7m_nvic_set_pending: mark the specified exception as pending
1603 * @opaque: the NVIC
1604 * @irq: the exception number to mark pending
1605 * @secure: false for non-banked exceptions or for the nonsecure
1606 * version of a banked exception, true for the secure version of a banked
1607 * exception.
1608 *
1609 * Marks the specified exception as pending. Note that we will assert()
1610 * if @secure is true and @irq does not specify one of the fixed set
1611 * of architecturally banked exceptions.
1612 */
1613void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1614/**
1615 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1616 * @opaque: the NVIC
1617 * @irq: the exception number to mark pending
1618 * @secure: false for non-banked exceptions or for the nonsecure
1619 * version of a banked exception, true for the secure version of a banked
1620 * exception.
1621 *
1622 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1623 * exceptions (exceptions generated in the course of trying to take
1624 * a different exception).
1625 */
1626void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1627/**
1628 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1629 *    exception, and whether it targets Secure state
1630 * @opaque: the NVIC
1631 * @pirq: set to pending exception number
1632 * @ptargets_secure: set to whether pending exception targets Secure
1633 *
1634 * This function writes the number of the highest priority pending
1635 * exception (the one which would be made active by
1636 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1637 * to true if the current highest priority pending exception should
1638 * be taken to Secure state, false for NS.
1639 */
1640void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1641                                      bool *ptargets_secure);
1642/**
1643 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1644 * @opaque: the NVIC
1645 *
1646 * Move the current highest priority pending exception from the pending
1647 * state to the active state, and update v7m.exception to indicate that
1648 * it is the exception currently being handled.
1649 */
1650void armv7m_nvic_acknowledge_irq(void *opaque);
1651/**
1652 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1653 * @opaque: the NVIC
1654 * @irq: the exception number to complete
1655 * @secure: true if this exception was secure
1656 *
1657 * Returns: -1 if the irq was not active
1658 *           1 if completing this irq brought us back to base (no active irqs)
1659 *           0 if there is still an irq active after this one was completed
1660 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1661 */
1662int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1663/**
1664 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1665 * @opaque: the NVIC
1666 *
1667 * Returns: the raw execution priority as defined by the v8M architecture.
1668 * This is the execution priority minus the effects of AIRCR.PRIS,
1669 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1670 * (v8M ARM ARM I_PKLD.)
1671 */
1672int armv7m_nvic_raw_execution_priority(void *opaque);
1673/**
1674 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1675 * priority is negative for the specified security state.
1676 * @opaque: the NVIC
1677 * @secure: the security state to test
1678 * This corresponds to the pseudocode IsReqExecPriNeg().
1679 */
1680#ifndef CONFIG_USER_ONLY
1681bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1682#else
1683static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1684{
1685    return false;
1686}
1687#endif
1688
1689/* Interface for defining coprocessor registers.
1690 * Registers are defined in tables of arm_cp_reginfo structs
1691 * which are passed to define_arm_cp_regs().
1692 */
1693
1694/* When looking up a coprocessor register we look for it
1695 * via an integer which encodes all of:
1696 *  coprocessor number
1697 *  Crn, Crm, opc1, opc2 fields
1698 *  32 or 64 bit register (ie is it accessed via MRC/MCR
1699 *    or via MRRC/MCRR?)
1700 *  non-secure/secure bank (AArch32 only)
1701 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1702 * (In this case crn and opc2 should be zero.)
1703 * For AArch64, there is no 32/64 bit size distinction;
1704 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1705 * and 4 bit CRn and CRm. The encoding patterns are chosen
1706 * to be easy to convert to and from the KVM encodings, and also
1707 * so that the hashtable can contain both AArch32 and AArch64
1708 * registers (to allow for interprocessing where we might run
1709 * 32 bit code on a 64 bit core).
1710 */
1711/* This bit is private to our hashtable cpreg; in KVM register
1712 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1713 * in the upper bits of the 64 bit ID.
1714 */
1715#define CP_REG_AA64_SHIFT 28
1716#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1717
1718/* To enable banking of coprocessor registers depending on ns-bit we
1719 * add a bit to distinguish between secure and non-secure cpregs in the
1720 * hashtable.
1721 */
1722#define CP_REG_NS_SHIFT 29
1723#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1724
1725#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1726    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1727     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1728
1729#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1730    (CP_REG_AA64_MASK |                                 \
1731     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1732     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1733     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1734     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1735     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1736     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1737
1738/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1739 * version used as a key for the coprocessor register hashtable
1740 */
1741static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1742{
1743    uint32_t cpregid = kvmid;
1744    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1745        cpregid |= CP_REG_AA64_MASK;
1746    } else {
1747        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1748            cpregid |= (1 << 15);
1749        }
1750
1751        /* KVM is always non-secure so add the NS flag on AArch32 register
1752         * entries.
1753         */
1754         cpregid |= 1 << CP_REG_NS_SHIFT;
1755    }
1756    return cpregid;
1757}
1758
1759/* Convert a truncated 32 bit hashtable key into the full
1760 * 64 bit KVM register ID.
1761 */
1762static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1763{
1764    uint64_t kvmid;
1765
1766    if (cpregid & CP_REG_AA64_MASK) {
1767        kvmid = cpregid & ~CP_REG_AA64_MASK;
1768        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1769    } else {
1770        kvmid = cpregid & ~(1 << 15);
1771        if (cpregid & (1 << 15)) {
1772            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1773        } else {
1774            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1775        }
1776    }
1777    return kvmid;
1778}
1779
1780/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1781 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1782 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1783 * TCG can assume the value to be constant (ie load at translate time)
1784 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1785 * indicates that the TB should not be ended after a write to this register
1786 * (the default is that the TB ends after cp writes). OVERRIDE permits
1787 * a register definition to override a previous definition for the
1788 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1789 * old must have the OVERRIDE bit set.
1790 * ALIAS indicates that this register is an alias view of some underlying
1791 * state which is also visible via another register, and that the other
1792 * register is handling migration and reset; registers marked ALIAS will not be
1793 * migrated but may have their state set by syncing of register state from KVM.
1794 * NO_RAW indicates that this register has no underlying state and does not
1795 * support raw access for state saving/loading; it will not be used for either
1796 * migration or KVM state synchronization. (Typically this is for "registers"
1797 * which are actually used as instructions for cache maintenance and so on.)
1798 * IO indicates that this register does I/O and therefore its accesses
1799 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1800 * registers which implement clocks or timers require this.
1801 */
1802#define ARM_CP_SPECIAL           0x0001
1803#define ARM_CP_CONST             0x0002
1804#define ARM_CP_64BIT             0x0004
1805#define ARM_CP_SUPPRESS_TB_END   0x0008
1806#define ARM_CP_OVERRIDE          0x0010
1807#define ARM_CP_ALIAS             0x0020
1808#define ARM_CP_IO                0x0040
1809#define ARM_CP_NO_RAW            0x0080
1810#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1811#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1812#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1813#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1814#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1815#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1816#define ARM_CP_FPU               0x1000
1817#define ARM_CP_SVE               0x2000
1818/* Used only as a terminator for ARMCPRegInfo lists */
1819#define ARM_CP_SENTINEL          0xffff
1820/* Mask of only the flag bits in a type field */
1821#define ARM_CP_FLAG_MASK         0x30ff
1822
1823/* Valid values for ARMCPRegInfo state field, indicating which of
1824 * the AArch32 and AArch64 execution states this register is visible in.
1825 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1826 * If the reginfo is declared to be visible in both states then a second
1827 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1828 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1829 * Note that we rely on the values of these enums as we iterate through
1830 * the various states in some places.
1831 */
1832enum {
1833    ARM_CP_STATE_AA32 = 0,
1834    ARM_CP_STATE_AA64 = 1,
1835    ARM_CP_STATE_BOTH = 2,
1836};
1837
1838/* ARM CP register secure state flags.  These flags identify security state
1839 * attributes for a given CP register entry.
1840 * The existence of both or neither secure and non-secure flags indicates that
1841 * the register has both a secure and non-secure hash entry.  A single one of
1842 * these flags causes the register to only be hashed for the specified
1843 * security state.
1844 * Although definitions may have any combination of the S/NS bits, each
1845 * registered entry will only have one to identify whether the entry is secure
1846 * or non-secure.
1847 */
1848enum {
1849    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1850    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1851};
1852
1853/* Return true if cptype is a valid type field. This is used to try to
1854 * catch errors where the sentinel has been accidentally left off the end
1855 * of a list of registers.
1856 */
1857static inline bool cptype_valid(int cptype)
1858{
1859    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1860        || ((cptype & ARM_CP_SPECIAL) &&
1861            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1862}
1863
1864/* Access rights:
1865 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1866 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1867 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1868 * (ie any of the privileged modes in Secure state, or Monitor mode).
1869 * If a register is accessible in one privilege level it's always accessible
1870 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1871 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1872 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1873 * terminology a little and call this PL3.
1874 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1875 * with the ELx exception levels.
1876 *
1877 * If access permissions for a register are more complex than can be
1878 * described with these bits, then use a laxer set of restrictions, and
1879 * do the more restrictive/complex check inside a helper function.
1880 */
1881#define PL3_R 0x80
1882#define PL3_W 0x40
1883#define PL2_R (0x20 | PL3_R)
1884#define PL2_W (0x10 | PL3_W)
1885#define PL1_R (0x08 | PL2_R)
1886#define PL1_W (0x04 | PL2_W)
1887#define PL0_R (0x02 | PL1_R)
1888#define PL0_W (0x01 | PL1_W)
1889
1890#define PL3_RW (PL3_R | PL3_W)
1891#define PL2_RW (PL2_R | PL2_W)
1892#define PL1_RW (PL1_R | PL1_W)
1893#define PL0_RW (PL0_R | PL0_W)
1894
1895/* Return the highest implemented Exception Level */
1896static inline int arm_highest_el(CPUARMState *env)
1897{
1898    if (arm_feature(env, ARM_FEATURE_EL3)) {
1899        return 3;
1900    }
1901    if (arm_feature(env, ARM_FEATURE_EL2)) {
1902        return 2;
1903    }
1904    return 1;
1905}
1906
1907/* Return true if a v7M CPU is in Handler mode */
1908static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1909{
1910    return env->v7m.exception != 0;
1911}
1912
1913/* Return the current Exception Level (as per ARMv8; note that this differs
1914 * from the ARMv7 Privilege Level).
1915 */
1916static inline int arm_current_el(CPUARMState *env)
1917{
1918    if (arm_feature(env, ARM_FEATURE_M)) {
1919        return arm_v7m_is_handler_mode(env) ||
1920            !(env->v7m.control[env->v7m.secure] & 1);
1921    }
1922
1923    if (is_a64(env)) {
1924        return extract32(env->pstate, 2, 2);
1925    }
1926
1927    switch (env->uncached_cpsr & 0x1f) {
1928    case ARM_CPU_MODE_USR:
1929        return 0;
1930    case ARM_CPU_MODE_HYP:
1931        return 2;
1932    case ARM_CPU_MODE_MON:
1933        return 3;
1934    default:
1935        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1936            /* If EL3 is 32-bit then all secure privileged modes run in
1937             * EL3
1938             */
1939            return 3;
1940        }
1941
1942        return 1;
1943    }
1944}
1945
1946typedef struct ARMCPRegInfo ARMCPRegInfo;
1947
1948typedef enum CPAccessResult {
1949    /* Access is permitted */
1950    CP_ACCESS_OK = 0,
1951    /* Access fails due to a configurable trap or enable which would
1952     * result in a categorized exception syndrome giving information about
1953     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1954     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1955     * PL1 if in EL0, otherwise to the current EL).
1956     */
1957    CP_ACCESS_TRAP = 1,
1958    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1959     * Note that this is not a catch-all case -- the set of cases which may
1960     * result in this failure is specifically defined by the architecture.
1961     */
1962    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1963    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1964    CP_ACCESS_TRAP_EL2 = 3,
1965    CP_ACCESS_TRAP_EL3 = 4,
1966    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1967    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1968    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1969    /* Access fails and results in an exception syndrome for an FP access,
1970     * trapped directly to EL2 or EL3
1971     */
1972    CP_ACCESS_TRAP_FP_EL2 = 7,
1973    CP_ACCESS_TRAP_FP_EL3 = 8,
1974} CPAccessResult;
1975
1976/* Access functions for coprocessor registers. These cannot fail and
1977 * may not raise exceptions.
1978 */
1979typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1980typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1981                       uint64_t value);
1982/* Access permission check functions for coprocessor registers. */
1983typedef CPAccessResult CPAccessFn(CPUARMState *env,
1984                                  const ARMCPRegInfo *opaque,
1985                                  bool isread);
1986/* Hook function for register reset */
1987typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1988
1989#define CP_ANY 0xff
1990
1991/* Definition of an ARM coprocessor register */
1992struct ARMCPRegInfo {
1993    /* Name of register (useful mainly for debugging, need not be unique) */
1994    const char *name;
1995    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1996     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1997     * 'wildcard' field -- any value of that field in the MRC/MCR insn
1998     * will be decoded to this register. The register read and write
1999     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2000     * used by the program, so it is possible to register a wildcard and
2001     * then behave differently on read/write if necessary.
2002     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2003     * must both be zero.
2004     * For AArch64-visible registers, opc0 is also used.
2005     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2006     * way to distinguish (for KVM's benefit) guest-visible system registers
2007     * from demuxed ones provided to preserve the "no side effects on
2008     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2009     * visible (to match KVM's encoding); cp==0 will be converted to
2010     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2011     */
2012    uint8_t cp;
2013    uint8_t crn;
2014    uint8_t crm;
2015    uint8_t opc0;
2016    uint8_t opc1;
2017    uint8_t opc2;
2018    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2019    int state;
2020    /* Register type: ARM_CP_* bits/values */
2021    int type;
2022    /* Access rights: PL*_[RW] */
2023    int access;
2024    /* Security state: ARM_CP_SECSTATE_* bits/values */
2025    int secure;
2026    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2027     * this register was defined: can be used to hand data through to the
2028     * register read/write functions, since they are passed the ARMCPRegInfo*.
2029     */
2030    void *opaque;
2031    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2032     * fieldoffset is non-zero, the reset value of the register.
2033     */
2034    uint64_t resetvalue;
2035    /* Offset of the field in CPUARMState for this register.
2036     *
2037     * This is not needed if either:
2038     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2039     *  2. both readfn and writefn are specified
2040     */
2041    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2042
2043    /* Offsets of the secure and non-secure fields in CPUARMState for the
2044     * register if it is banked.  These fields are only used during the static
2045     * registration of a register.  During hashing the bank associated
2046     * with a given security state is copied to fieldoffset which is used from
2047     * there on out.
2048     *
2049     * It is expected that register definitions use either fieldoffset or
2050     * bank_fieldoffsets in the definition but not both.  It is also expected
2051     * that both bank offsets are set when defining a banked register.  This
2052     * use indicates that a register is banked.
2053     */
2054    ptrdiff_t bank_fieldoffsets[2];
2055
2056    /* Function for making any access checks for this register in addition to
2057     * those specified by the 'access' permissions bits. If NULL, no extra
2058     * checks required. The access check is performed at runtime, not at
2059     * translate time.
2060     */
2061    CPAccessFn *accessfn;
2062    /* Function for handling reads of this register. If NULL, then reads
2063     * will be done by loading from the offset into CPUARMState specified
2064     * by fieldoffset.
2065     */
2066    CPReadFn *readfn;
2067    /* Function for handling writes of this register. If NULL, then writes
2068     * will be done by writing to the offset into CPUARMState specified
2069     * by fieldoffset.
2070     */
2071    CPWriteFn *writefn;
2072    /* Function for doing a "raw" read; used when we need to copy
2073     * coprocessor state to the kernel for KVM or out for
2074     * migration. This only needs to be provided if there is also a
2075     * readfn and it has side effects (for instance clear-on-read bits).
2076     */
2077    CPReadFn *raw_readfn;
2078    /* Function for doing a "raw" write; used when we need to copy KVM
2079     * kernel coprocessor state into userspace, or for inbound
2080     * migration. This only needs to be provided if there is also a
2081     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2082     * or similar behaviour.
2083     */
2084    CPWriteFn *raw_writefn;
2085    /* Function for resetting the register. If NULL, then reset will be done
2086     * by writing resetvalue to the field specified in fieldoffset. If
2087     * fieldoffset is 0 then no reset will be done.
2088     */
2089    CPResetFn *resetfn;
2090};
2091
2092/* Macros which are lvalues for the field in CPUARMState for the
2093 * ARMCPRegInfo *ri.
2094 */
2095#define CPREG_FIELD32(env, ri) \
2096    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2097#define CPREG_FIELD64(env, ri) \
2098    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2099
2100#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2101
2102void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2103                                    const ARMCPRegInfo *regs, void *opaque);
2104void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2105                                       const ARMCPRegInfo *regs, void *opaque);
2106static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2107{
2108    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2109}
2110static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2111{
2112    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2113}
2114const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2115
2116/* CPWriteFn that can be used to implement writes-ignored behaviour */
2117void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2118                         uint64_t value);
2119/* CPReadFn that can be used for read-as-zero behaviour */
2120uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2121
2122/* CPResetFn that does nothing, for use if no reset is required even
2123 * if fieldoffset is non zero.
2124 */
2125void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2126
2127/* Return true if this reginfo struct's field in the cpu state struct
2128 * is 64 bits wide.
2129 */
2130static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2131{
2132    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2133}
2134
2135static inline bool cp_access_ok(int current_el,
2136                                const ARMCPRegInfo *ri, int isread)
2137{
2138    return (ri->access >> ((current_el * 2) + isread)) & 1;
2139}
2140
2141/* Raw read of a coprocessor register (as needed for migration, etc) */
2142uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2143
2144/**
2145 * write_list_to_cpustate
2146 * @cpu: ARMCPU
2147 *
2148 * For each register listed in the ARMCPU cpreg_indexes list, write
2149 * its value from the cpreg_values list into the ARMCPUState structure.
2150 * This updates TCG's working data structures from KVM data or
2151 * from incoming migration state.
2152 *
2153 * Returns: true if all register values were updated correctly,
2154 * false if some register was unknown or could not be written.
2155 * Note that we do not stop early on failure -- we will attempt
2156 * writing all registers in the list.
2157 */
2158bool write_list_to_cpustate(ARMCPU *cpu);
2159
2160/**
2161 * write_cpustate_to_list:
2162 * @cpu: ARMCPU
2163 *
2164 * For each register listed in the ARMCPU cpreg_indexes list, write
2165 * its value from the ARMCPUState structure into the cpreg_values list.
2166 * This is used to copy info from TCG's working data structures into
2167 * KVM or for outbound migration.
2168 *
2169 * Returns: true if all register values were read correctly,
2170 * false if some register was unknown or could not be read.
2171 * Note that we do not stop early on failure -- we will attempt
2172 * reading all registers in the list.
2173 */
2174bool write_cpustate_to_list(ARMCPU *cpu);
2175
2176#define ARM_CPUID_TI915T      0x54029152
2177#define ARM_CPUID_TI925T      0x54029252
2178
2179#if defined(CONFIG_USER_ONLY)
2180#define TARGET_PAGE_BITS 12
2181#else
2182/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2183 * have to support 1K tiny pages.
2184 */
2185#define TARGET_PAGE_BITS_VARY
2186#define TARGET_PAGE_BITS_MIN 10
2187#endif
2188
2189#if defined(TARGET_AARCH64)
2190#  define TARGET_PHYS_ADDR_SPACE_BITS 48
2191#  define TARGET_VIRT_ADDR_SPACE_BITS 64
2192#else
2193#  define TARGET_PHYS_ADDR_SPACE_BITS 40
2194#  define TARGET_VIRT_ADDR_SPACE_BITS 32
2195#endif
2196
2197static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2198                                     unsigned int target_el)
2199{
2200    CPUARMState *env = cs->env_ptr;
2201    unsigned int cur_el = arm_current_el(env);
2202    bool secure = arm_is_secure(env);
2203    bool pstate_unmasked;
2204    int8_t unmasked = 0;
2205
2206    /* Don't take exceptions if they target a lower EL.
2207     * This check should catch any exceptions that would not be taken but left
2208     * pending.
2209     */
2210    if (cur_el > target_el) {
2211        return false;
2212    }
2213
2214    switch (excp_idx) {
2215    case EXCP_FIQ:
2216        pstate_unmasked = !(env->daif & PSTATE_F);
2217        break;
2218
2219    case EXCP_IRQ:
2220        pstate_unmasked = !(env->daif & PSTATE_I);
2221        break;
2222
2223    case EXCP_VFIQ:
2224        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2225            /* VFIQs are only taken when hypervized and non-secure.  */
2226            return false;
2227        }
2228        return !(env->daif & PSTATE_F);
2229    case EXCP_VIRQ:
2230        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2231            /* VIRQs are only taken when hypervized and non-secure.  */
2232            return false;
2233        }
2234        return !(env->daif & PSTATE_I);
2235    default:
2236        g_assert_not_reached();
2237    }
2238
2239    /* Use the target EL, current execution state and SCR/HCR settings to
2240     * determine whether the corresponding CPSR bit is used to mask the
2241     * interrupt.
2242     */
2243    if ((target_el > cur_el) && (target_el != 1)) {
2244        /* Exceptions targeting a higher EL may not be maskable */
2245        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2246            /* 64-bit masking rules are simple: exceptions to EL3
2247             * can't be masked, and exceptions to EL2 can only be
2248             * masked from Secure state. The HCR and SCR settings
2249             * don't affect the masking logic, only the interrupt routing.
2250             */
2251            if (target_el == 3 || !secure) {
2252                unmasked = 1;
2253            }
2254        } else {
2255            /* The old 32-bit-only environment has a more complicated
2256             * masking setup. HCR and SCR bits not only affect interrupt
2257             * routing but also change the behaviour of masking.
2258             */
2259            bool hcr, scr;
2260
2261            switch (excp_idx) {
2262            case EXCP_FIQ:
2263                /* If FIQs are routed to EL3 or EL2 then there are cases where
2264                 * we override the CPSR.F in determining if the exception is
2265                 * masked or not. If neither of these are set then we fall back
2266                 * to the CPSR.F setting otherwise we further assess the state
2267                 * below.
2268                 */
2269                hcr = (env->cp15.hcr_el2 & HCR_FMO);
2270                scr = (env->cp15.scr_el3 & SCR_FIQ);
2271
2272                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2273                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2274                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2275                 * when non-secure but only when FIQs are only routed to EL3.
2276                 */
2277                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2278                break;
2279            case EXCP_IRQ:
2280                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2281                 * we may override the CPSR.I masking when in non-secure state.
2282                 * The SCR.IRQ setting has already been taken into consideration
2283                 * when setting the target EL, so it does not have a further
2284                 * affect here.
2285                 */
2286                hcr = (env->cp15.hcr_el2 & HCR_IMO);
2287                scr = false;
2288                break;
2289            default:
2290                g_assert_not_reached();
2291            }
2292
2293            if ((scr || hcr) && !secure) {
2294                unmasked = 1;
2295            }
2296        }
2297    }
2298
2299    /* The PSTATE bits only mask the interrupt if we have not overriden the
2300     * ability above.
2301     */
2302    return unmasked || pstate_unmasked;
2303}
2304
2305#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2306#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2307#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2308
2309#define cpu_signal_handler cpu_arm_signal_handler
2310#define cpu_list arm_cpu_list
2311
2312/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2313 *
2314 * If EL3 is 64-bit:
2315 *  + NonSecure EL1 & 0 stage 1
2316 *  + NonSecure EL1 & 0 stage 2
2317 *  + NonSecure EL2
2318 *  + Secure EL1 & EL0
2319 *  + Secure EL3
2320 * If EL3 is 32-bit:
2321 *  + NonSecure PL1 & 0 stage 1
2322 *  + NonSecure PL1 & 0 stage 2
2323 *  + NonSecure PL2
2324 *  + Secure PL0 & PL1
2325 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2326 *
2327 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2328 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2329 *     may differ in access permissions even if the VA->PA map is the same
2330 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2331 *     translation, which means that we have one mmu_idx that deals with two
2332 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2333 *     architecturally permitted]
2334 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2335 *     handling via the TLB. The only way to do a stage 1 translation without
2336 *     the immediate stage 2 translation is via the ATS or AT system insns,
2337 *     which can be slow-pathed and always do a page table walk.
2338 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2339 *     translation regimes, because they map reasonably well to each other
2340 *     and they can't both be active at the same time.
2341 * This gives us the following list of mmu_idx values:
2342 *
2343 * NS EL0 (aka NS PL0) stage 1+2
2344 * NS EL1 (aka NS PL1) stage 1+2
2345 * NS EL2 (aka NS PL2)
2346 * S EL3 (aka S PL1)
2347 * S EL0 (aka S PL0)
2348 * S EL1 (not used if EL3 is 32 bit)
2349 * NS EL0+1 stage 2
2350 *
2351 * (The last of these is an mmu_idx because we want to be able to use the TLB
2352 * for the accesses done as part of a stage 1 page table walk, rather than
2353 * having to walk the stage 2 page table over and over.)
2354 *
2355 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2356 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2357 * NS EL2 if we ever model a Cortex-R52).
2358 *
2359 * M profile CPUs are rather different as they do not have a true MMU.
2360 * They have the following different MMU indexes:
2361 *  User
2362 *  Privileged
2363 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2364 *  Privileged, execution priority negative (ditto)
2365 * If the CPU supports the v8M Security Extension then there are also:
2366 *  Secure User
2367 *  Secure Privileged
2368 *  Secure User, execution priority negative
2369 *  Secure Privileged, execution priority negative
2370 *
2371 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2372 * are not quite the same -- different CPU types (most notably M profile
2373 * vs A/R profile) would like to use MMU indexes with different semantics,
2374 * but since we don't ever need to use all of those in a single CPU we
2375 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2376 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2377 * the same for any particular CPU.
2378 * Variables of type ARMMUIdx are always full values, and the core
2379 * index values are in variables of type 'int'.
2380 *
2381 * Our enumeration includes at the end some entries which are not "true"
2382 * mmu_idx values in that they don't have corresponding TLBs and are only
2383 * valid for doing slow path page table walks.
2384 *
2385 * The constant names here are patterned after the general style of the names
2386 * of the AT/ATS operations.
2387 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2388 * For M profile we arrange them to have a bit for priv, a bit for negpri
2389 * and a bit for secure.
2390 */
2391#define ARM_MMU_IDX_A 0x10 /* A profile */
2392#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2393#define ARM_MMU_IDX_M 0x40 /* M profile */
2394
2395/* meanings of the bits for M profile mmu idx values */
2396#define ARM_MMU_IDX_M_PRIV 0x1
2397#define ARM_MMU_IDX_M_NEGPRI 0x2
2398#define ARM_MMU_IDX_M_S 0x4
2399
2400#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2401#define ARM_MMU_IDX_COREIDX_MASK 0x7
2402
2403typedef enum ARMMMUIdx {
2404    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2405    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2406    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2407    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2408    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2409    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2410    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2411    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2412    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2413    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2414    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2415    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2416    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2417    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2418    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2419    /* Indexes below here don't have TLBs and are used only for AT system
2420     * instructions or for the first stage of an S12 page table walk.
2421     */
2422    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2423    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2424} ARMMMUIdx;
2425
2426/* Bit macros for the core-mmu-index values for each index,
2427 * for use when calling tlb_flush_by_mmuidx() and friends.
2428 */
2429typedef enum ARMMMUIdxBit {
2430    ARMMMUIdxBit_S12NSE0 = 1 << 0,
2431    ARMMMUIdxBit_S12NSE1 = 1 << 1,
2432    ARMMMUIdxBit_S1E2 = 1 << 2,
2433    ARMMMUIdxBit_S1E3 = 1 << 3,
2434    ARMMMUIdxBit_S1SE0 = 1 << 4,
2435    ARMMMUIdxBit_S1SE1 = 1 << 5,
2436    ARMMMUIdxBit_S2NS = 1 << 6,
2437    ARMMMUIdxBit_MUser = 1 << 0,
2438    ARMMMUIdxBit_MPriv = 1 << 1,
2439    ARMMMUIdxBit_MUserNegPri = 1 << 2,
2440    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2441    ARMMMUIdxBit_MSUser = 1 << 4,
2442    ARMMMUIdxBit_MSPriv = 1 << 5,
2443    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2444    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2445} ARMMMUIdxBit;
2446
2447#define MMU_USER_IDX 0
2448
2449static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2450{
2451    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2452}
2453
2454static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2455{
2456    if (arm_feature(env, ARM_FEATURE_M)) {
2457        return mmu_idx | ARM_MMU_IDX_M;
2458    } else {
2459        return mmu_idx | ARM_MMU_IDX_A;
2460    }
2461}
2462
2463/* Return the exception level we're running at if this is our mmu_idx */
2464static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2465{
2466    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2467    case ARM_MMU_IDX_A:
2468        return mmu_idx & 3;
2469    case ARM_MMU_IDX_M:
2470        return mmu_idx & ARM_MMU_IDX_M_PRIV;
2471    default:
2472        g_assert_not_reached();
2473    }
2474}
2475
2476/* Return the MMU index for a v7M CPU in the specified security and
2477 * privilege state
2478 */
2479static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2480                                                              bool secstate,
2481                                                              bool priv)
2482{
2483    ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2484
2485    if (priv) {
2486        mmu_idx |= ARM_MMU_IDX_M_PRIV;
2487    }
2488
2489    if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2490        mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2491    }
2492
2493    if (secstate) {
2494        mmu_idx |= ARM_MMU_IDX_M_S;
2495    }
2496
2497    return mmu_idx;
2498}
2499
2500/* Return the MMU index for a v7M CPU in the specified security state */
2501static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2502                                                     bool secstate)
2503{
2504    bool priv = arm_current_el(env) != 0;
2505
2506    return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2507}
2508
2509/* Determine the current mmu_idx to use for normal loads/stores */
2510static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2511{
2512    int el = arm_current_el(env);
2513
2514    if (arm_feature(env, ARM_FEATURE_M)) {
2515        ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2516
2517        return arm_to_core_mmu_idx(mmu_idx);
2518    }
2519
2520    if (el < 2 && arm_is_secure_below_el3(env)) {
2521        return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2522    }
2523    return el;
2524}
2525
2526/* Indexes used when registering address spaces with cpu_address_space_init */
2527typedef enum ARMASIdx {
2528    ARMASIdx_NS = 0,
2529    ARMASIdx_S = 1,
2530} ARMASIdx;
2531
2532/* Return the Exception Level targeted by debug exceptions. */
2533static inline int arm_debug_target_el(CPUARMState *env)
2534{
2535    bool secure = arm_is_secure(env);
2536    bool route_to_el2 = false;
2537
2538    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2539        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2540                       env->cp15.mdcr_el2 & (1 << 8);
2541    }
2542
2543    if (route_to_el2) {
2544        return 2;
2545    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2546               !arm_el_is_aa64(env, 3) && secure) {
2547        return 3;
2548    } else {
2549        return 1;
2550    }
2551}
2552
2553static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2554{
2555    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2556     * CSSELR is RAZ/WI.
2557     */
2558    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2559}
2560
2561static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2562{
2563    if (arm_is_secure(env)) {
2564        /* MDCR_EL3.SDD disables debug events from Secure state */
2565        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2566            || arm_current_el(env) == 3) {
2567            return false;
2568        }
2569    }
2570
2571    if (arm_current_el(env) == arm_debug_target_el(env)) {
2572        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2573            || (env->daif & PSTATE_D)) {
2574            return false;
2575        }
2576    }
2577    return true;
2578}
2579
2580static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2581{
2582    int el = arm_current_el(env);
2583
2584    if (el == 0 && arm_el_is_aa64(env, 1)) {
2585        return aa64_generate_debug_exceptions(env);
2586    }
2587
2588    if (arm_is_secure(env)) {
2589        int spd;
2590
2591        if (el == 0 && (env->cp15.sder & 1)) {
2592            /* SDER.SUIDEN means debug exceptions from Secure EL0
2593             * are always enabled. Otherwise they are controlled by
2594             * SDCR.SPD like those from other Secure ELs.
2595             */
2596            return true;
2597        }
2598
2599        spd = extract32(env->cp15.mdcr_el3, 14, 2);
2600        switch (spd) {
2601        case 1:
2602            /* SPD == 0b01 is reserved, but behaves as 0b00. */
2603        case 0:
2604            /* For 0b00 we return true if external secure invasive debug
2605             * is enabled. On real hardware this is controlled by external
2606             * signals to the core. QEMU always permits debug, and behaves
2607             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2608             */
2609            return true;
2610        case 2:
2611            return false;
2612        case 3:
2613            return true;
2614        }
2615    }
2616
2617    return el != 2;
2618}
2619
2620/* Return true if debugging exceptions are currently enabled.
2621 * This corresponds to what in ARM ARM pseudocode would be
2622 *    if UsingAArch32() then
2623 *        return AArch32.GenerateDebugExceptions()
2624 *    else
2625 *        return AArch64.GenerateDebugExceptions()
2626 * We choose to push the if() down into this function for clarity,
2627 * since the pseudocode has it at all callsites except for the one in
2628 * CheckSoftwareStep(), where it is elided because both branches would
2629 * always return the same value.
2630 *
2631 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2632 * don't yet implement those exception levels or their associated trap bits.
2633 */
2634static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2635{
2636    if (env->aarch64) {
2637        return aa64_generate_debug_exceptions(env);
2638    } else {
2639        return aa32_generate_debug_exceptions(env);
2640    }
2641}
2642
2643/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2644 * implicitly means this always returns false in pre-v8 CPUs.)
2645 */
2646static inline bool arm_singlestep_active(CPUARMState *env)
2647{
2648    return extract32(env->cp15.mdscr_el1, 0, 1)
2649        && arm_el_is_aa64(env, arm_debug_target_el(env))
2650        && arm_generate_debug_exceptions(env);
2651}
2652
2653static inline bool arm_sctlr_b(CPUARMState *env)
2654{
2655    return
2656        /* We need not implement SCTLR.ITD in user-mode emulation, so
2657         * let linux-user ignore the fact that it conflicts with SCTLR_B.
2658         * This lets people run BE32 binaries with "-cpu any".
2659         */
2660#ifndef CONFIG_USER_ONLY
2661        !arm_feature(env, ARM_FEATURE_V7) &&
2662#endif
2663        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2664}
2665
2666/* Return true if the processor is in big-endian mode. */
2667static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2668{
2669    int cur_el;
2670
2671    /* In 32bit endianness is determined by looking at CPSR's E bit */
2672    if (!is_a64(env)) {
2673        return
2674#ifdef CONFIG_USER_ONLY
2675            /* In system mode, BE32 is modelled in line with the
2676             * architecture (as word-invariant big-endianness), where loads
2677             * and stores are done little endian but from addresses which
2678             * are adjusted by XORing with the appropriate constant. So the
2679             * endianness to use for the raw data access is not affected by
2680             * SCTLR.B.
2681             * In user mode, however, we model BE32 as byte-invariant
2682             * big-endianness (because user-only code cannot tell the
2683             * difference), and so we need to use a data access endianness
2684             * that depends on SCTLR.B.
2685             */
2686            arm_sctlr_b(env) ||
2687#endif
2688                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2689    }
2690
2691    cur_el = arm_current_el(env);
2692
2693    if (cur_el == 0) {
2694        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2695    }
2696
2697    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2698}
2699
2700#include "exec/cpu-all.h"
2701
2702/* Bit usage in the TB flags field: bit 31 indicates whether we are
2703 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2704 * We put flags which are shared between 32 and 64 bit mode at the top
2705 * of the word, and flags which apply to only one mode at the bottom.
2706 */
2707#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2708#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2709#define ARM_TBFLAG_MMUIDX_SHIFT 28
2710#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2711#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2712#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2713#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2714#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2715/* Target EL if we take a floating-point-disabled exception */
2716#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2717#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2718
2719/* Bit usage when in AArch32 state: */
2720#define ARM_TBFLAG_THUMB_SHIFT      0
2721#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2722#define ARM_TBFLAG_VECLEN_SHIFT     1
2723#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2724#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2725#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2726#define ARM_TBFLAG_VFPEN_SHIFT      7
2727#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2728#define ARM_TBFLAG_CONDEXEC_SHIFT   8
2729#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2730#define ARM_TBFLAG_SCTLR_B_SHIFT    16
2731#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2732/* We store the bottom two bits of the CPAR as TB flags and handle
2733 * checks on the other bits at runtime
2734 */
2735#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2736#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2737/* Indicates whether cp register reads and writes by guest code should access
2738 * the secure or nonsecure bank of banked registers; note that this is not
2739 * the same thing as the current security state of the processor!
2740 */
2741#define ARM_TBFLAG_NS_SHIFT         19
2742#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2743#define ARM_TBFLAG_BE_DATA_SHIFT    20
2744#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2745/* For M profile only, Handler (ie not Thread) mode */
2746#define ARM_TBFLAG_HANDLER_SHIFT    21
2747#define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2748
2749/* Bit usage when in AArch64 state */
2750#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2751#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2752#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2753#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2754#define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2755#define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2756#define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2757#define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2758
2759/* some convenience accessor macros */
2760#define ARM_TBFLAG_AARCH64_STATE(F) \
2761    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2762#define ARM_TBFLAG_MMUIDX(F) \
2763    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2764#define ARM_TBFLAG_SS_ACTIVE(F) \
2765    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2766#define ARM_TBFLAG_PSTATE_SS(F) \
2767    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2768#define ARM_TBFLAG_FPEXC_EL(F) \
2769    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2770#define ARM_TBFLAG_THUMB(F) \
2771    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2772#define ARM_TBFLAG_VECLEN(F) \
2773    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2774#define ARM_TBFLAG_VECSTRIDE(F) \
2775    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2776#define ARM_TBFLAG_VFPEN(F) \
2777    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2778#define ARM_TBFLAG_CONDEXEC(F) \
2779    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2780#define ARM_TBFLAG_SCTLR_B(F) \
2781    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2782#define ARM_TBFLAG_XSCALE_CPAR(F) \
2783    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2784#define ARM_TBFLAG_NS(F) \
2785    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2786#define ARM_TBFLAG_BE_DATA(F) \
2787    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2788#define ARM_TBFLAG_HANDLER(F) \
2789    (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2790#define ARM_TBFLAG_TBI0(F) \
2791    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2792#define ARM_TBFLAG_TBI1(F) \
2793    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2794#define ARM_TBFLAG_SVEEXC_EL(F) \
2795    (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2796#define ARM_TBFLAG_ZCR_LEN(F) \
2797    (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2798
2799static inline bool bswap_code(bool sctlr_b)
2800{
2801#ifdef CONFIG_USER_ONLY
2802    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2803     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2804     * would also end up as a mixed-endian mode with BE code, LE data.
2805     */
2806    return
2807#ifdef TARGET_WORDS_BIGENDIAN
2808        1 ^
2809#endif
2810        sctlr_b;
2811#else
2812    /* All code access in ARM is little endian, and there are no loaders
2813     * doing swaps that need to be reversed
2814     */
2815    return 0;
2816#endif
2817}
2818
2819#ifdef CONFIG_USER_ONLY
2820static inline bool arm_cpu_bswap_data(CPUARMState *env)
2821{
2822    return
2823#ifdef TARGET_WORDS_BIGENDIAN
2824       1 ^
2825#endif
2826       arm_cpu_data_is_big_endian(env);
2827}
2828#endif
2829
2830#ifndef CONFIG_USER_ONLY
2831/**
2832 * arm_regime_tbi0:
2833 * @env: CPUARMState
2834 * @mmu_idx: MMU index indicating required translation regime
2835 *
2836 * Extracts the TBI0 value from the appropriate TCR for the current EL
2837 *
2838 * Returns: the TBI0 value.
2839 */
2840uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2841
2842/**
2843 * arm_regime_tbi1:
2844 * @env: CPUARMState
2845 * @mmu_idx: MMU index indicating required translation regime
2846 *
2847 * Extracts the TBI1 value from the appropriate TCR for the current EL
2848 *
2849 * Returns: the TBI1 value.
2850 */
2851uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2852#else
2853/* We can't handle tagged addresses properly in user-only mode */
2854static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2855{
2856    return 0;
2857}
2858
2859static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2860{
2861    return 0;
2862}
2863#endif
2864
2865void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2866                          target_ulong *cs_base, uint32_t *flags);
2867
2868enum {
2869    QEMU_PSCI_CONDUIT_DISABLED = 0,
2870    QEMU_PSCI_CONDUIT_SMC = 1,
2871    QEMU_PSCI_CONDUIT_HVC = 2,
2872};
2873
2874#ifndef CONFIG_USER_ONLY
2875/* Return the address space index to use for a memory access */
2876static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2877{
2878    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2879}
2880
2881/* Return the AddressSpace to use for a memory access
2882 * (which depends on whether the access is S or NS, and whether
2883 * the board gave us a separate AddressSpace for S accesses).
2884 */
2885static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2886{
2887    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2888}
2889#endif
2890
2891/**
2892 * arm_register_el_change_hook:
2893 * Register a hook function which will be called back whenever this
2894 * CPU changes exception level or mode. The hook function will be
2895 * passed a pointer to the ARMCPU and the opaque data pointer passed
2896 * to this function when the hook was registered.
2897 *
2898 * Note that we currently only support registering a single hook function,
2899 * and will assert if this function is called twice.
2900 * This facility is intended for the use of the GICv3 emulation.
2901 */
2902void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2903                                 void *opaque);
2904
2905/**
2906 * arm_get_el_change_hook_opaque:
2907 * Return the opaque data that will be used by the el_change_hook
2908 * for this CPU.
2909 */
2910static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2911{
2912    return cpu->el_change_hook_opaque;
2913}
2914
2915/**
2916 * aa32_vfp_dreg:
2917 * Return a pointer to the Dn register within env in 32-bit mode.
2918 */
2919static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2920{
2921    return &env->vfp.zregs[regno >> 1].d[regno & 1];
2922}
2923
2924/**
2925 * aa32_vfp_qreg:
2926 * Return a pointer to the Qn register within env in 32-bit mode.
2927 */
2928static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2929{
2930    return &env->vfp.zregs[regno].d[0];
2931}
2932
2933/**
2934 * aa64_vfp_qreg:
2935 * Return a pointer to the Qn register within env in 64-bit mode.
2936 */
2937static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2938{
2939    return &env->vfp.zregs[regno].d[0];
2940}
2941
2942#endif
2943