qemu/target/arm/helper-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 specific helpers
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/gdbstub.h"
  23#include "exec/helper-proto.h"
  24#include "qemu/host-utils.h"
  25#include "qemu/log.h"
  26#include "sysemu/sysemu.h"
  27#include "qemu/bitops.h"
  28#include "internals.h"
  29#include "qemu/crc32c.h"
  30#include "exec/exec-all.h"
  31#include "exec/cpu_ldst.h"
  32#include "qemu/int128.h"
  33#include "tcg.h"
  34#include "fpu/softfloat.h"
  35#include <zlib.h> /* For crc32 */
  36
  37/* C2.4.7 Multiply and divide */
  38/* special cases for 0 and LLONG_MIN are mandated by the standard */
  39uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
  40{
  41    if (den == 0) {
  42        return 0;
  43    }
  44    return num / den;
  45}
  46
  47int64_t HELPER(sdiv64)(int64_t num, int64_t den)
  48{
  49    if (den == 0) {
  50        return 0;
  51    }
  52    if (num == LLONG_MIN && den == -1) {
  53        return LLONG_MIN;
  54    }
  55    return num / den;
  56}
  57
  58uint64_t HELPER(rbit64)(uint64_t x)
  59{
  60    return revbit64(x);
  61}
  62
  63/* Convert a softfloat float_relation_ (as returned by
  64 * the float*_compare functions) to the correct ARM
  65 * NZCV flag state.
  66 */
  67static inline uint32_t float_rel_to_flags(int res)
  68{
  69    uint64_t flags;
  70    switch (res) {
  71    case float_relation_equal:
  72        flags = PSTATE_Z | PSTATE_C;
  73        break;
  74    case float_relation_less:
  75        flags = PSTATE_N;
  76        break;
  77    case float_relation_greater:
  78        flags = PSTATE_C;
  79        break;
  80    case float_relation_unordered:
  81    default:
  82        flags = PSTATE_C | PSTATE_V;
  83        break;
  84    }
  85    return flags;
  86}
  87
  88uint64_t HELPER(vfp_cmph_a64)(float16 x, float16 y, void *fp_status)
  89{
  90    return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
  91}
  92
  93uint64_t HELPER(vfp_cmpeh_a64)(float16 x, float16 y, void *fp_status)
  94{
  95    return float_rel_to_flags(float16_compare(x, y, fp_status));
  96}
  97
  98uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
  99{
 100    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 101}
 102
 103uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 104{
 105    return float_rel_to_flags(float32_compare(x, y, fp_status));
 106}
 107
 108uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 109{
 110    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 111}
 112
 113uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 114{
 115    return float_rel_to_flags(float64_compare(x, y, fp_status));
 116}
 117
 118float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 119{
 120    float_status *fpst = fpstp;
 121
 122    a = float32_squash_input_denormal(a, fpst);
 123    b = float32_squash_input_denormal(b, fpst);
 124
 125    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 126        (float32_is_infinity(a) && float32_is_zero(b))) {
 127        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 128        return make_float32((1U << 30) |
 129                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 130    }
 131    return float32_mul(a, b, fpst);
 132}
 133
 134float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 135{
 136    float_status *fpst = fpstp;
 137
 138    a = float64_squash_input_denormal(a, fpst);
 139    b = float64_squash_input_denormal(b, fpst);
 140
 141    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 142        (float64_is_infinity(a) && float64_is_zero(b))) {
 143        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 144        return make_float64((1ULL << 62) |
 145                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 146    }
 147    return float64_mul(a, b, fpst);
 148}
 149
 150uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 151                          uint32_t rn, uint32_t numregs)
 152{
 153    /* Helper function for SIMD TBL and TBX. We have to do the table
 154     * lookup part for the 64 bits worth of indices we're passed in.
 155     * result is the initial results vector (either zeroes for TBL
 156     * or some guest values for TBX), rn the register number where
 157     * the table starts, and numregs the number of registers in the table.
 158     * We return the results of the lookups.
 159     */
 160    int shift;
 161
 162    for (shift = 0; shift < 64; shift += 8) {
 163        int index = extract64(indices, shift, 8);
 164        if (index < 16 * numregs) {
 165            /* Convert index (a byte offset into the virtual table
 166             * which is a series of 128-bit vectors concatenated)
 167             * into the correct register element plus a bit offset
 168             * into that element, bearing in mind that the table
 169             * can wrap around from V31 to V0.
 170             */
 171            int elt = (rn * 2 + (index >> 3)) % 64;
 172            int bitidx = (index & 7) * 8;
 173            uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
 174            uint64_t val = extract64(q[elt & 1], bitidx, 8);
 175
 176            result = deposit64(result, shift, 8, val);
 177        }
 178    }
 179    return result;
 180}
 181
 182/* 64bit/double versions of the neon float compare functions */
 183uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 184{
 185    float_status *fpst = fpstp;
 186    return -float64_eq_quiet(a, b, fpst);
 187}
 188
 189uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 190{
 191    float_status *fpst = fpstp;
 192    return -float64_le(b, a, fpst);
 193}
 194
 195uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 196{
 197    float_status *fpst = fpstp;
 198    return -float64_lt(b, a, fpst);
 199}
 200
 201/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 202 * versions, these do a fully fused multiply-add or
 203 * multiply-add-and-halve.
 204 */
 205#define float16_two make_float16(0x4000)
 206#define float16_three make_float16(0x4200)
 207#define float16_one_point_five make_float16(0x3e00)
 208
 209#define float32_two make_float32(0x40000000)
 210#define float32_three make_float32(0x40400000)
 211#define float32_one_point_five make_float32(0x3fc00000)
 212
 213#define float64_two make_float64(0x4000000000000000ULL)
 214#define float64_three make_float64(0x4008000000000000ULL)
 215#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 216
 217float16 HELPER(recpsf_f16)(float16 a, float16 b, void *fpstp)
 218{
 219    float_status *fpst = fpstp;
 220
 221    a = float16_squash_input_denormal(a, fpst);
 222    b = float16_squash_input_denormal(b, fpst);
 223
 224    a = float16_chs(a);
 225    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 226        (float16_is_infinity(b) && float16_is_zero(a))) {
 227        return float16_two;
 228    }
 229    return float16_muladd(a, b, float16_two, 0, fpst);
 230}
 231
 232float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 233{
 234    float_status *fpst = fpstp;
 235
 236    a = float32_squash_input_denormal(a, fpst);
 237    b = float32_squash_input_denormal(b, fpst);
 238
 239    a = float32_chs(a);
 240    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 241        (float32_is_infinity(b) && float32_is_zero(a))) {
 242        return float32_two;
 243    }
 244    return float32_muladd(a, b, float32_two, 0, fpst);
 245}
 246
 247float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 248{
 249    float_status *fpst = fpstp;
 250
 251    a = float64_squash_input_denormal(a, fpst);
 252    b = float64_squash_input_denormal(b, fpst);
 253
 254    a = float64_chs(a);
 255    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 256        (float64_is_infinity(b) && float64_is_zero(a))) {
 257        return float64_two;
 258    }
 259    return float64_muladd(a, b, float64_two, 0, fpst);
 260}
 261
 262float16 HELPER(rsqrtsf_f16)(float16 a, float16 b, void *fpstp)
 263{
 264    float_status *fpst = fpstp;
 265
 266    a = float16_squash_input_denormal(a, fpst);
 267    b = float16_squash_input_denormal(b, fpst);
 268
 269    a = float16_chs(a);
 270    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 271        (float16_is_infinity(b) && float16_is_zero(a))) {
 272        return float16_one_point_five;
 273    }
 274    return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
 275}
 276
 277float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 278{
 279    float_status *fpst = fpstp;
 280
 281    a = float32_squash_input_denormal(a, fpst);
 282    b = float32_squash_input_denormal(b, fpst);
 283
 284    a = float32_chs(a);
 285    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 286        (float32_is_infinity(b) && float32_is_zero(a))) {
 287        return float32_one_point_five;
 288    }
 289    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 290}
 291
 292float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 293{
 294    float_status *fpst = fpstp;
 295
 296    a = float64_squash_input_denormal(a, fpst);
 297    b = float64_squash_input_denormal(b, fpst);
 298
 299    a = float64_chs(a);
 300    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 301        (float64_is_infinity(b) && float64_is_zero(a))) {
 302        return float64_one_point_five;
 303    }
 304    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 305}
 306
 307/* Pairwise long add: add pairs of adjacent elements into
 308 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 309 */
 310uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 311{
 312    uint64_t nsignmask = 0x0080008000800080ULL;
 313    uint64_t wsignmask = 0x8000800080008000ULL;
 314    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 315    uint64_t tmp1, tmp2;
 316    uint64_t res, signres;
 317
 318    /* Extract odd elements, sign extend each to a 16 bit field */
 319    tmp1 = a & elementmask;
 320    tmp1 ^= nsignmask;
 321    tmp1 |= wsignmask;
 322    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 323    /* Ditto for the even elements */
 324    tmp2 = (a >> 8) & elementmask;
 325    tmp2 ^= nsignmask;
 326    tmp2 |= wsignmask;
 327    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 328
 329    /* calculate the result by summing bits 0..14, 16..22, etc,
 330     * and then adjusting the sign bits 15, 23, etc manually.
 331     * This ensures the addition can't overflow the 16 bit field.
 332     */
 333    signres = (tmp1 ^ tmp2) & wsignmask;
 334    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 335    res ^= signres;
 336
 337    return res;
 338}
 339
 340uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 341{
 342    uint64_t tmp;
 343
 344    tmp = a & 0x00ff00ff00ff00ffULL;
 345    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 346    return tmp;
 347}
 348
 349uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 350{
 351    int32_t reslo, reshi;
 352
 353    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 354    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 355
 356    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 357}
 358
 359uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 360{
 361    uint64_t tmp;
 362
 363    tmp = a & 0x0000ffff0000ffffULL;
 364    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 365    return tmp;
 366}
 367
 368/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 369float16 HELPER(frecpx_f16)(float16 a, void *fpstp)
 370{
 371    float_status *fpst = fpstp;
 372    uint16_t val16, sbit;
 373    int16_t exp;
 374
 375    if (float16_is_any_nan(a)) {
 376        float16 nan = a;
 377        if (float16_is_signaling_nan(a, fpst)) {
 378            float_raise(float_flag_invalid, fpst);
 379            nan = float16_maybe_silence_nan(a, fpst);
 380        }
 381        if (fpst->default_nan_mode) {
 382            nan = float16_default_nan(fpst);
 383        }
 384        return nan;
 385    }
 386
 387    val16 = float16_val(a);
 388    sbit = 0x8000 & val16;
 389    exp = extract32(val16, 10, 5);
 390
 391    if (exp == 0) {
 392        return make_float16(deposit32(sbit, 10, 5, 0x1e));
 393    } else {
 394        return make_float16(deposit32(sbit, 10, 5, ~exp));
 395    }
 396}
 397
 398float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 399{
 400    float_status *fpst = fpstp;
 401    uint32_t val32, sbit;
 402    int32_t exp;
 403
 404    if (float32_is_any_nan(a)) {
 405        float32 nan = a;
 406        if (float32_is_signaling_nan(a, fpst)) {
 407            float_raise(float_flag_invalid, fpst);
 408            nan = float32_maybe_silence_nan(a, fpst);
 409        }
 410        if (fpst->default_nan_mode) {
 411            nan = float32_default_nan(fpst);
 412        }
 413        return nan;
 414    }
 415
 416    val32 = float32_val(a);
 417    sbit = 0x80000000ULL & val32;
 418    exp = extract32(val32, 23, 8);
 419
 420    if (exp == 0) {
 421        return make_float32(sbit | (0xfe << 23));
 422    } else {
 423        return make_float32(sbit | (~exp & 0xff) << 23);
 424    }
 425}
 426
 427float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 428{
 429    float_status *fpst = fpstp;
 430    uint64_t val64, sbit;
 431    int64_t exp;
 432
 433    if (float64_is_any_nan(a)) {
 434        float64 nan = a;
 435        if (float64_is_signaling_nan(a, fpst)) {
 436            float_raise(float_flag_invalid, fpst);
 437            nan = float64_maybe_silence_nan(a, fpst);
 438        }
 439        if (fpst->default_nan_mode) {
 440            nan = float64_default_nan(fpst);
 441        }
 442        return nan;
 443    }
 444
 445    val64 = float64_val(a);
 446    sbit = 0x8000000000000000ULL & val64;
 447    exp = extract64(float64_val(a), 52, 11);
 448
 449    if (exp == 0) {
 450        return make_float64(sbit | (0x7feULL << 52));
 451    } else {
 452        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 453    }
 454}
 455
 456float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 457{
 458    /* Von Neumann rounding is implemented by using round-to-zero
 459     * and then setting the LSB of the result if Inexact was raised.
 460     */
 461    float32 r;
 462    float_status *fpst = &env->vfp.fp_status;
 463    float_status tstat = *fpst;
 464    int exflags;
 465
 466    set_float_rounding_mode(float_round_to_zero, &tstat);
 467    set_float_exception_flags(0, &tstat);
 468    r = float64_to_float32(a, &tstat);
 469    r = float32_maybe_silence_nan(r, &tstat);
 470    exflags = get_float_exception_flags(&tstat);
 471    if (exflags & float_flag_inexact) {
 472        r = make_float32(float32_val(r) | 1);
 473    }
 474    exflags |= get_float_exception_flags(fpst);
 475    set_float_exception_flags(exflags, fpst);
 476    return r;
 477}
 478
 479/* 64-bit versions of the CRC helpers. Note that although the operation
 480 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 481 * 32 bits of the accumulator and result are used, we pass and return
 482 * uint64_t for convenience of the generated code. Unlike the 32-bit
 483 * instruction set versions, val may genuinely have 64 bits of data in it.
 484 * The upper bytes of val (above the number specified by 'bytes') must have
 485 * been zeroed out by the caller.
 486 */
 487uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 488{
 489    uint8_t buf[8];
 490
 491    stq_le_p(buf, val);
 492
 493    /* zlib crc32 converts the accumulator and output to one's complement.  */
 494    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 495}
 496
 497uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 498{
 499    uint8_t buf[8];
 500
 501    stq_le_p(buf, val);
 502
 503    /* Linux crc32c converts the output to one's complement.  */
 504    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 505}
 506
 507/* Returns 0 on success; 1 otherwise.  */
 508static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr,
 509                                       uint64_t new_lo, uint64_t new_hi,
 510                                       bool parallel, uintptr_t ra)
 511{
 512    Int128 oldv, cmpv, newv;
 513    bool success;
 514
 515    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
 516    newv = int128_make128(new_lo, new_hi);
 517
 518    if (parallel) {
 519#ifndef CONFIG_ATOMIC128
 520        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 521#else
 522        int mem_idx = cpu_mmu_index(env, false);
 523        TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 524        oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
 525        success = int128_eq(oldv, cmpv);
 526#endif
 527    } else {
 528        uint64_t o0, o1;
 529
 530#ifdef CONFIG_USER_ONLY
 531        /* ??? Enforce alignment.  */
 532        uint64_t *haddr = g2h(addr);
 533
 534        helper_retaddr = ra;
 535        o0 = ldq_le_p(haddr + 0);
 536        o1 = ldq_le_p(haddr + 1);
 537        oldv = int128_make128(o0, o1);
 538
 539        success = int128_eq(oldv, cmpv);
 540        if (success) {
 541            stq_le_p(haddr + 0, int128_getlo(newv));
 542            stq_le_p(haddr + 1, int128_gethi(newv));
 543        }
 544        helper_retaddr = 0;
 545#else
 546        int mem_idx = cpu_mmu_index(env, false);
 547        TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 548        TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
 549
 550        o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
 551        o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
 552        oldv = int128_make128(o0, o1);
 553
 554        success = int128_eq(oldv, cmpv);
 555        if (success) {
 556            helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
 557            helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
 558        }
 559#endif
 560    }
 561
 562    return !success;
 563}
 564
 565uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
 566                                              uint64_t new_lo, uint64_t new_hi)
 567{
 568    return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false, GETPC());
 569}
 570
 571uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
 572                                              uint64_t new_lo, uint64_t new_hi)
 573{
 574    return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true, GETPC());
 575}
 576
 577static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr,
 578                                       uint64_t new_lo, uint64_t new_hi,
 579                                       bool parallel, uintptr_t ra)
 580{
 581    Int128 oldv, cmpv, newv;
 582    bool success;
 583
 584    /* high and low need to be switched here because this is not actually a
 585     * 128bit store but two doublewords stored consecutively
 586     */
 587    cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
 588    newv = int128_make128(new_hi, new_lo);
 589
 590    if (parallel) {
 591#ifndef CONFIG_ATOMIC128
 592        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
 593#else
 594        int mem_idx = cpu_mmu_index(env, false);
 595        TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 596        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
 597        success = int128_eq(oldv, cmpv);
 598#endif
 599    } else {
 600        uint64_t o0, o1;
 601
 602#ifdef CONFIG_USER_ONLY
 603        /* ??? Enforce alignment.  */
 604        uint64_t *haddr = g2h(addr);
 605
 606        helper_retaddr = ra;
 607        o1 = ldq_be_p(haddr + 0);
 608        o0 = ldq_be_p(haddr + 1);
 609        oldv = int128_make128(o0, o1);
 610
 611        success = int128_eq(oldv, cmpv);
 612        if (success) {
 613            stq_be_p(haddr + 0, int128_gethi(newv));
 614            stq_be_p(haddr + 1, int128_getlo(newv));
 615        }
 616        helper_retaddr = 0;
 617#else
 618        int mem_idx = cpu_mmu_index(env, false);
 619        TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 620        TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
 621
 622        o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
 623        o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
 624        oldv = int128_make128(o0, o1);
 625
 626        success = int128_eq(oldv, cmpv);
 627        if (success) {
 628            helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
 629            helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
 630        }
 631#endif
 632    }
 633
 634    return !success;
 635}
 636
 637uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
 638                                     uint64_t new_lo, uint64_t new_hi)
 639{
 640    return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false, GETPC());
 641}
 642
 643uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
 644                                     uint64_t new_lo, uint64_t new_hi)
 645{
 646    return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true, GETPC());
 647}
 648
 649/*
 650 * AdvSIMD half-precision
 651 */
 652
 653#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
 654
 655#define ADVSIMD_HALFOP(name) \
 656float16 ADVSIMD_HELPER(name, h)(float16 a, float16 b, void *fpstp) \
 657{ \
 658    float_status *fpst = fpstp; \
 659    return float16_ ## name(a, b, fpst);    \
 660}
 661
 662ADVSIMD_HALFOP(add)
 663ADVSIMD_HALFOP(sub)
 664ADVSIMD_HALFOP(mul)
 665ADVSIMD_HALFOP(div)
 666ADVSIMD_HALFOP(min)
 667ADVSIMD_HALFOP(max)
 668ADVSIMD_HALFOP(minnum)
 669ADVSIMD_HALFOP(maxnum)
 670
 671#define ADVSIMD_TWOHALFOP(name)                                         \
 672uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
 673{ \
 674    float16  a1, a2, b1, b2;                        \
 675    uint32_t r1, r2;                                \
 676    float_status *fpst = fpstp;                     \
 677    a1 = extract32(two_a, 0, 16);                   \
 678    a2 = extract32(two_a, 16, 16);                  \
 679    b1 = extract32(two_b, 0, 16);                   \
 680    b2 = extract32(two_b, 16, 16);                  \
 681    r1 = float16_ ## name(a1, b1, fpst);            \
 682    r2 = float16_ ## name(a2, b2, fpst);            \
 683    return deposit32(r1, 16, 16, r2);               \
 684}
 685
 686ADVSIMD_TWOHALFOP(add)
 687ADVSIMD_TWOHALFOP(sub)
 688ADVSIMD_TWOHALFOP(mul)
 689ADVSIMD_TWOHALFOP(div)
 690ADVSIMD_TWOHALFOP(min)
 691ADVSIMD_TWOHALFOP(max)
 692ADVSIMD_TWOHALFOP(minnum)
 693ADVSIMD_TWOHALFOP(maxnum)
 694
 695/* Data processing - scalar floating-point and advanced SIMD */
 696static float16 float16_mulx(float16 a, float16 b, void *fpstp)
 697{
 698    float_status *fpst = fpstp;
 699
 700    a = float16_squash_input_denormal(a, fpst);
 701    b = float16_squash_input_denormal(b, fpst);
 702
 703    if ((float16_is_zero(a) && float16_is_infinity(b)) ||
 704        (float16_is_infinity(a) && float16_is_zero(b))) {
 705        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 706        return make_float16((1U << 14) |
 707                            ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
 708    }
 709    return float16_mul(a, b, fpst);
 710}
 711
 712ADVSIMD_HALFOP(mulx)
 713ADVSIMD_TWOHALFOP(mulx)
 714
 715/* fused multiply-accumulate */
 716float16 HELPER(advsimd_muladdh)(float16 a, float16 b, float16 c, void *fpstp)
 717{
 718    float_status *fpst = fpstp;
 719    return float16_muladd(a, b, c, 0, fpst);
 720}
 721
 722uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
 723                                  uint32_t two_c, void *fpstp)
 724{
 725    float_status *fpst = fpstp;
 726    float16  a1, a2, b1, b2, c1, c2;
 727    uint32_t r1, r2;
 728    a1 = extract32(two_a, 0, 16);
 729    a2 = extract32(two_a, 16, 16);
 730    b1 = extract32(two_b, 0, 16);
 731    b2 = extract32(two_b, 16, 16);
 732    c1 = extract32(two_c, 0, 16);
 733    c2 = extract32(two_c, 16, 16);
 734    r1 = float16_muladd(a1, b1, c1, 0, fpst);
 735    r2 = float16_muladd(a2, b2, c2, 0, fpst);
 736    return deposit32(r1, 16, 16, r2);
 737}
 738
 739/*
 740 * Floating point comparisons produce an integer result. Softfloat
 741 * routines return float_relation types which we convert to the 0/-1
 742 * Neon requires.
 743 */
 744
 745#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
 746
 747uint32_t HELPER(advsimd_ceq_f16)(float16 a, float16 b, void *fpstp)
 748{
 749    float_status *fpst = fpstp;
 750    int compare = float16_compare_quiet(a, b, fpst);
 751    return ADVSIMD_CMPRES(compare == float_relation_equal);
 752}
 753
 754uint32_t HELPER(advsimd_cge_f16)(float16 a, float16 b, void *fpstp)
 755{
 756    float_status *fpst = fpstp;
 757    int compare = float16_compare(a, b, fpst);
 758    return ADVSIMD_CMPRES(compare == float_relation_greater ||
 759                          compare == float_relation_equal);
 760}
 761
 762uint32_t HELPER(advsimd_cgt_f16)(float16 a, float16 b, void *fpstp)
 763{
 764    float_status *fpst = fpstp;
 765    int compare = float16_compare(a, b, fpst);
 766    return ADVSIMD_CMPRES(compare == float_relation_greater);
 767}
 768
 769uint32_t HELPER(advsimd_acge_f16)(float16 a, float16 b, void *fpstp)
 770{
 771    float_status *fpst = fpstp;
 772    float16 f0 = float16_abs(a);
 773    float16 f1 = float16_abs(b);
 774    int compare = float16_compare(f0, f1, fpst);
 775    return ADVSIMD_CMPRES(compare == float_relation_greater ||
 776                          compare == float_relation_equal);
 777}
 778
 779uint32_t HELPER(advsimd_acgt_f16)(float16 a, float16 b, void *fpstp)
 780{
 781    float_status *fpst = fpstp;
 782    float16 f0 = float16_abs(a);
 783    float16 f1 = float16_abs(b);
 784    int compare = float16_compare(f0, f1, fpst);
 785    return ADVSIMD_CMPRES(compare == float_relation_greater);
 786}
 787
 788/* round to integral */
 789float16 HELPER(advsimd_rinth_exact)(float16 x, void *fp_status)
 790{
 791    return float16_round_to_int(x, fp_status);
 792}
 793
 794float16 HELPER(advsimd_rinth)(float16 x, void *fp_status)
 795{
 796    int old_flags = get_float_exception_flags(fp_status), new_flags;
 797    float16 ret;
 798
 799    ret = float16_round_to_int(x, fp_status);
 800
 801    /* Suppress any inexact exceptions the conversion produced */
 802    if (!(old_flags & float_flag_inexact)) {
 803        new_flags = get_float_exception_flags(fp_status);
 804        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 805    }
 806
 807    return ret;
 808}
 809
 810/*
 811 * Half-precision floating point conversion functions
 812 *
 813 * There are a multitude of conversion functions with various
 814 * different rounding modes. This is dealt with by the calling code
 815 * setting the mode appropriately before calling the helper.
 816 */
 817
 818uint32_t HELPER(advsimd_f16tosinth)(float16 a, void *fpstp)
 819{
 820    float_status *fpst = fpstp;
 821
 822    /* Invalid if we are passed a NaN */
 823    if (float16_is_any_nan(a)) {
 824        float_raise(float_flag_invalid, fpst);
 825        return 0;
 826    }
 827    return float16_to_int16(a, fpst);
 828}
 829
 830uint32_t HELPER(advsimd_f16touinth)(float16 a, void *fpstp)
 831{
 832    float_status *fpst = fpstp;
 833
 834    /* Invalid if we are passed a NaN */
 835    if (float16_is_any_nan(a)) {
 836        float_raise(float_flag_invalid, fpst);
 837        return 0;
 838    }
 839    return float16_to_uint16(a, fpst);
 840}
 841
 842/*
 843 * Square Root and Reciprocal square root
 844 */
 845
 846float16 HELPER(sqrt_f16)(float16 a, void *fpstp)
 847{
 848    float_status *s = fpstp;
 849
 850    return float16_sqrt(a, s);
 851}
 852
 853
 854