qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/kvm.h"
  21#include "kvm_arm.h"
  22#include "cpu.h"
  23#include "internals.h"
  24#include "hw/arm/arm.h"
  25#include "exec/memattrs.h"
  26#include "exec/address-spaces.h"
  27#include "hw/boards.h"
  28#include "qemu/log.h"
  29
  30const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  31    KVM_CAP_LAST_INFO
  32};
  33
  34static bool cap_has_mp_state;
  35
  36static ARMHostCPUFeatures arm_host_cpu_features;
  37
  38int kvm_arm_vcpu_init(CPUState *cs)
  39{
  40    ARMCPU *cpu = ARM_CPU(cs);
  41    struct kvm_vcpu_init init;
  42
  43    init.target = cpu->kvm_target;
  44    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  45
  46    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  47}
  48
  49bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  50                                      int *fdarray,
  51                                      struct kvm_vcpu_init *init)
  52{
  53    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
  54
  55    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  56    if (kvmfd < 0) {
  57        goto err;
  58    }
  59    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  60    if (vmfd < 0) {
  61        goto err;
  62    }
  63    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  64    if (cpufd < 0) {
  65        goto err;
  66    }
  67
  68    if (!init) {
  69        /* Caller doesn't want the VCPU to be initialized, so skip it */
  70        goto finish;
  71    }
  72
  73    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
  74    if (ret >= 0) {
  75        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  76        if (ret < 0) {
  77            goto err;
  78        }
  79    } else if (cpus_to_try) {
  80        /* Old kernel which doesn't know about the
  81         * PREFERRED_TARGET ioctl: we know it will only support
  82         * creating one kind of guest CPU which is its preferred
  83         * CPU type.
  84         */
  85        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
  86            init->target = *cpus_to_try++;
  87            memset(init->features, 0, sizeof(init->features));
  88            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  89            if (ret >= 0) {
  90                break;
  91            }
  92        }
  93        if (ret < 0) {
  94            goto err;
  95        }
  96    } else {
  97        /* Treat a NULL cpus_to_try argument the same as an empty
  98         * list, which means we will fail the call since this must
  99         * be an old kernel which doesn't support PREFERRED_TARGET.
 100         */
 101        goto err;
 102    }
 103
 104finish:
 105    fdarray[0] = kvmfd;
 106    fdarray[1] = vmfd;
 107    fdarray[2] = cpufd;
 108
 109    return true;
 110
 111err:
 112    if (cpufd >= 0) {
 113        close(cpufd);
 114    }
 115    if (vmfd >= 0) {
 116        close(vmfd);
 117    }
 118    if (kvmfd >= 0) {
 119        close(kvmfd);
 120    }
 121
 122    return false;
 123}
 124
 125void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 126{
 127    int i;
 128
 129    for (i = 2; i >= 0; i--) {
 130        close(fdarray[i]);
 131    }
 132}
 133
 134void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 135{
 136    CPUARMState *env = &cpu->env;
 137
 138    if (!arm_host_cpu_features.dtb_compatible) {
 139        if (!kvm_enabled() ||
 140            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 141            /* We can't report this error yet, so flag that we need to
 142             * in arm_cpu_realizefn().
 143             */
 144            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 145            cpu->host_cpu_probe_failed = true;
 146            return;
 147        }
 148    }
 149
 150    cpu->kvm_target = arm_host_cpu_features.target;
 151    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 152    env->features = arm_host_cpu_features.features;
 153}
 154
 155int kvm_arch_init(MachineState *ms, KVMState *s)
 156{
 157    /* For ARM interrupt delivery is always asynchronous,
 158     * whether we are using an in-kernel VGIC or not.
 159     */
 160    kvm_async_interrupts_allowed = true;
 161
 162    /*
 163     * PSCI wakes up secondary cores, so we always need to
 164     * have vCPUs waiting in kernel space
 165     */
 166    kvm_halt_in_kernel_allowed = true;
 167
 168    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 169
 170    return 0;
 171}
 172
 173unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 174{
 175    return cpu->cpu_index;
 176}
 177
 178/* We track all the KVM devices which need their memory addresses
 179 * passing to the kernel in a list of these structures.
 180 * When board init is complete we run through the list and
 181 * tell the kernel the base addresses of the memory regions.
 182 * We use a MemoryListener to track mapping and unmapping of
 183 * the regions during board creation, so the board models don't
 184 * need to do anything special for the KVM case.
 185 */
 186typedef struct KVMDevice {
 187    struct kvm_arm_device_addr kda;
 188    struct kvm_device_attr kdattr;
 189    MemoryRegion *mr;
 190    QSLIST_ENTRY(KVMDevice) entries;
 191    int dev_fd;
 192} KVMDevice;
 193
 194static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
 195
 196static void kvm_arm_devlistener_add(MemoryListener *listener,
 197                                    MemoryRegionSection *section)
 198{
 199    KVMDevice *kd;
 200
 201    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 202        if (section->mr == kd->mr) {
 203            kd->kda.addr = section->offset_within_address_space;
 204        }
 205    }
 206}
 207
 208static void kvm_arm_devlistener_del(MemoryListener *listener,
 209                                    MemoryRegionSection *section)
 210{
 211    KVMDevice *kd;
 212
 213    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 214        if (section->mr == kd->mr) {
 215            kd->kda.addr = -1;
 216        }
 217    }
 218}
 219
 220static MemoryListener devlistener = {
 221    .region_add = kvm_arm_devlistener_add,
 222    .region_del = kvm_arm_devlistener_del,
 223};
 224
 225static void kvm_arm_set_device_addr(KVMDevice *kd)
 226{
 227    struct kvm_device_attr *attr = &kd->kdattr;
 228    int ret;
 229
 230    /* If the device control API is available and we have a device fd on the
 231     * KVMDevice struct, let's use the newer API
 232     */
 233    if (kd->dev_fd >= 0) {
 234        uint64_t addr = kd->kda.addr;
 235        attr->addr = (uintptr_t)&addr;
 236        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 237    } else {
 238        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 239    }
 240
 241    if (ret < 0) {
 242        fprintf(stderr, "Failed to set device address: %s\n",
 243                strerror(-ret));
 244        abort();
 245    }
 246}
 247
 248static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 249{
 250    KVMDevice *kd, *tkd;
 251
 252    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 253        if (kd->kda.addr != -1) {
 254            kvm_arm_set_device_addr(kd);
 255        }
 256        memory_region_unref(kd->mr);
 257        g_free(kd);
 258    }
 259    memory_listener_unregister(&devlistener);
 260}
 261
 262static Notifier notify = {
 263    .notify = kvm_arm_machine_init_done,
 264};
 265
 266void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 267                             uint64_t attr, int dev_fd)
 268{
 269    KVMDevice *kd;
 270
 271    if (!kvm_irqchip_in_kernel()) {
 272        return;
 273    }
 274
 275    if (QSLIST_EMPTY(&kvm_devices_head)) {
 276        memory_listener_register(&devlistener, &address_space_memory);
 277        qemu_add_machine_init_done_notifier(&notify);
 278    }
 279    kd = g_new0(KVMDevice, 1);
 280    kd->mr = mr;
 281    kd->kda.id = devid;
 282    kd->kda.addr = -1;
 283    kd->kdattr.flags = 0;
 284    kd->kdattr.group = group;
 285    kd->kdattr.attr = attr;
 286    kd->dev_fd = dev_fd;
 287    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 288    memory_region_ref(kd->mr);
 289}
 290
 291static int compare_u64(const void *a, const void *b)
 292{
 293    if (*(uint64_t *)a > *(uint64_t *)b) {
 294        return 1;
 295    }
 296    if (*(uint64_t *)a < *(uint64_t *)b) {
 297        return -1;
 298    }
 299    return 0;
 300}
 301
 302/* Initialize the CPUState's cpreg list according to the kernel's
 303 * definition of what CPU registers it knows about (and throw away
 304 * the previous TCG-created cpreg list).
 305 */
 306int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 307{
 308    struct kvm_reg_list rl;
 309    struct kvm_reg_list *rlp;
 310    int i, ret, arraylen;
 311    CPUState *cs = CPU(cpu);
 312
 313    rl.n = 0;
 314    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 315    if (ret != -E2BIG) {
 316        return ret;
 317    }
 318    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 319    rlp->n = rl.n;
 320    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 321    if (ret) {
 322        goto out;
 323    }
 324    /* Sort the list we get back from the kernel, since cpreg_tuples
 325     * must be in strictly ascending order.
 326     */
 327    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 328
 329    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 330        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 331            continue;
 332        }
 333        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 334        case KVM_REG_SIZE_U32:
 335        case KVM_REG_SIZE_U64:
 336            break;
 337        default:
 338            fprintf(stderr, "Can't handle size of register in kernel list\n");
 339            ret = -EINVAL;
 340            goto out;
 341        }
 342
 343        arraylen++;
 344    }
 345
 346    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 347    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 348    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 349                                         arraylen);
 350    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 351                                        arraylen);
 352    cpu->cpreg_array_len = arraylen;
 353    cpu->cpreg_vmstate_array_len = arraylen;
 354
 355    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 356        uint64_t regidx = rlp->reg[i];
 357        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 358            continue;
 359        }
 360        cpu->cpreg_indexes[arraylen] = regidx;
 361        arraylen++;
 362    }
 363    assert(cpu->cpreg_array_len == arraylen);
 364
 365    if (!write_kvmstate_to_list(cpu)) {
 366        /* Shouldn't happen unless kernel is inconsistent about
 367         * what registers exist.
 368         */
 369        fprintf(stderr, "Initial read of kernel register state failed\n");
 370        ret = -EINVAL;
 371        goto out;
 372    }
 373
 374out:
 375    g_free(rlp);
 376    return ret;
 377}
 378
 379bool write_kvmstate_to_list(ARMCPU *cpu)
 380{
 381    CPUState *cs = CPU(cpu);
 382    int i;
 383    bool ok = true;
 384
 385    for (i = 0; i < cpu->cpreg_array_len; i++) {
 386        struct kvm_one_reg r;
 387        uint64_t regidx = cpu->cpreg_indexes[i];
 388        uint32_t v32;
 389        int ret;
 390
 391        r.id = regidx;
 392
 393        switch (regidx & KVM_REG_SIZE_MASK) {
 394        case KVM_REG_SIZE_U32:
 395            r.addr = (uintptr_t)&v32;
 396            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 397            if (!ret) {
 398                cpu->cpreg_values[i] = v32;
 399            }
 400            break;
 401        case KVM_REG_SIZE_U64:
 402            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 403            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 404            break;
 405        default:
 406            abort();
 407        }
 408        if (ret) {
 409            ok = false;
 410        }
 411    }
 412    return ok;
 413}
 414
 415bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 416{
 417    CPUState *cs = CPU(cpu);
 418    int i;
 419    bool ok = true;
 420
 421    for (i = 0; i < cpu->cpreg_array_len; i++) {
 422        struct kvm_one_reg r;
 423        uint64_t regidx = cpu->cpreg_indexes[i];
 424        uint32_t v32;
 425        int ret;
 426
 427        if (kvm_arm_cpreg_level(regidx) > level) {
 428            continue;
 429        }
 430
 431        r.id = regidx;
 432        switch (regidx & KVM_REG_SIZE_MASK) {
 433        case KVM_REG_SIZE_U32:
 434            v32 = cpu->cpreg_values[i];
 435            r.addr = (uintptr_t)&v32;
 436            break;
 437        case KVM_REG_SIZE_U64:
 438            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 439            break;
 440        default:
 441            abort();
 442        }
 443        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 444        if (ret) {
 445            /* We might fail for "unknown register" and also for
 446             * "you tried to set a register which is constant with
 447             * a different value from what it actually contains".
 448             */
 449            ok = false;
 450        }
 451    }
 452    return ok;
 453}
 454
 455void kvm_arm_reset_vcpu(ARMCPU *cpu)
 456{
 457    int ret;
 458
 459    /* Re-init VCPU so that all registers are set to
 460     * their respective reset values.
 461     */
 462    ret = kvm_arm_vcpu_init(CPU(cpu));
 463    if (ret < 0) {
 464        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 465        abort();
 466    }
 467    if (!write_kvmstate_to_list(cpu)) {
 468        fprintf(stderr, "write_kvmstate_to_list failed\n");
 469        abort();
 470    }
 471}
 472
 473/*
 474 * Update KVM's MP_STATE based on what QEMU thinks it is
 475 */
 476int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 477{
 478    if (cap_has_mp_state) {
 479        struct kvm_mp_state mp_state = {
 480            .mp_state = (cpu->power_state == PSCI_OFF) ?
 481            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 482        };
 483        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 484        if (ret) {
 485            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 486                    __func__, ret, strerror(-ret));
 487            return -1;
 488        }
 489    }
 490
 491    return 0;
 492}
 493
 494/*
 495 * Sync the KVM MP_STATE into QEMU
 496 */
 497int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 498{
 499    if (cap_has_mp_state) {
 500        struct kvm_mp_state mp_state;
 501        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 502        if (ret) {
 503            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 504                    __func__, ret, strerror(-ret));
 505            abort();
 506        }
 507        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 508            PSCI_OFF : PSCI_ON;
 509    }
 510
 511    return 0;
 512}
 513
 514void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 515{
 516}
 517
 518MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 519{
 520    ARMCPU *cpu;
 521    uint32_t switched_level;
 522
 523    if (kvm_irqchip_in_kernel()) {
 524        /*
 525         * We only need to sync timer states with user-space interrupt
 526         * controllers, so return early and save cycles if we don't.
 527         */
 528        return MEMTXATTRS_UNSPECIFIED;
 529    }
 530
 531    cpu = ARM_CPU(cs);
 532
 533    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 534    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 535        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 536
 537        qemu_mutex_lock_iothread();
 538
 539        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 540            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 541                         !!(run->s.regs.device_irq_level &
 542                            KVM_ARM_DEV_EL1_VTIMER));
 543            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 544        }
 545
 546        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 547            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 548                         !!(run->s.regs.device_irq_level &
 549                            KVM_ARM_DEV_EL1_PTIMER));
 550            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 551        }
 552
 553        if (switched_level & KVM_ARM_DEV_PMU) {
 554            qemu_set_irq(cpu->pmu_interrupt,
 555                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 556            switched_level &= ~KVM_ARM_DEV_PMU;
 557        }
 558
 559        if (switched_level) {
 560            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 561                          __func__, switched_level);
 562        }
 563
 564        /* We also mark unknown levels as processed to not waste cycles */
 565        cpu->device_irq_level = run->s.regs.device_irq_level;
 566        qemu_mutex_unlock_iothread();
 567    }
 568
 569    return MEMTXATTRS_UNSPECIFIED;
 570}
 571
 572
 573int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 574{
 575    int ret = 0;
 576
 577    switch (run->exit_reason) {
 578    case KVM_EXIT_DEBUG:
 579        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 580            ret = EXCP_DEBUG;
 581        } /* otherwise return to guest */
 582        break;
 583    default:
 584        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 585                      __func__, run->exit_reason);
 586        break;
 587    }
 588    return ret;
 589}
 590
 591bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 592{
 593    return true;
 594}
 595
 596int kvm_arch_process_async_events(CPUState *cs)
 597{
 598    return 0;
 599}
 600
 601/* The #ifdef protections are until 32bit headers are imported and can
 602 * be removed once both 32 and 64 bit reach feature parity.
 603 */
 604void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 605{
 606#ifdef KVM_GUESTDBG_USE_SW_BP
 607    if (kvm_sw_breakpoints_active(cs)) {
 608        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 609    }
 610#endif
 611#ifdef KVM_GUESTDBG_USE_HW
 612    if (kvm_arm_hw_debug_active(cs)) {
 613        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 614        kvm_arm_copy_hw_debug_data(&dbg->arch);
 615    }
 616#endif
 617}
 618
 619void kvm_arch_init_irq_routing(KVMState *s)
 620{
 621}
 622
 623int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 624{
 625     if (machine_kernel_irqchip_split(ms)) {
 626         perror("-machine kernel_irqchip=split is not supported on ARM.");
 627         exit(1);
 628    }
 629
 630    /* If we can create the VGIC using the newer device control API, we
 631     * let the device do this when it initializes itself, otherwise we
 632     * fall back to the old API */
 633    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 634}
 635
 636int kvm_arm_vgic_probe(void)
 637{
 638    if (kvm_create_device(kvm_state,
 639                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 640        return 3;
 641    } else if (kvm_create_device(kvm_state,
 642                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 643        return 2;
 644    } else {
 645        return 0;
 646    }
 647}
 648
 649int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 650                             uint64_t address, uint32_t data, PCIDevice *dev)
 651{
 652    return 0;
 653}
 654
 655int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
 656                                int vector, PCIDevice *dev)
 657{
 658    return 0;
 659}
 660
 661int kvm_arch_release_virq_post(int virq)
 662{
 663    return 0;
 664}
 665
 666int kvm_arch_msi_data_to_gsi(uint32_t data)
 667{
 668    return (data - 32) & 0xffff;
 669}
 670