qemu/target/sparc/ldst_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for loads and stores
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "tcg.h"
  23#include "exec/helper-proto.h"
  24#include "exec/exec-all.h"
  25#include "exec/cpu_ldst.h"
  26#include "asi.h"
  27
  28//#define DEBUG_MMU
  29//#define DEBUG_MXCC
  30//#define DEBUG_UNALIGNED
  31//#define DEBUG_UNASSIGNED
  32//#define DEBUG_ASI
  33//#define DEBUG_CACHE_CONTROL
  34
  35#ifdef DEBUG_MMU
  36#define DPRINTF_MMU(fmt, ...)                                   \
  37    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
  38#else
  39#define DPRINTF_MMU(fmt, ...) do {} while (0)
  40#endif
  41
  42#ifdef DEBUG_MXCC
  43#define DPRINTF_MXCC(fmt, ...)                                  \
  44    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
  45#else
  46#define DPRINTF_MXCC(fmt, ...) do {} while (0)
  47#endif
  48
  49#ifdef DEBUG_ASI
  50#define DPRINTF_ASI(fmt, ...)                                   \
  51    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
  52#endif
  53
  54#ifdef DEBUG_CACHE_CONTROL
  55#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
  56    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
  57#else
  58#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
  59#endif
  60
  61#ifdef TARGET_SPARC64
  62#ifndef TARGET_ABI32
  63#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
  64#else
  65#define AM_CHECK(env1) (1)
  66#endif
  67#endif
  68
  69#define QT0 (env->qt0)
  70#define QT1 (env->qt1)
  71
  72#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
  73/* Calculates TSB pointer value for fault page size
  74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
  75 * UA2005 holds the page size configuration in mmu_ctx registers */
  76static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
  77                                       const SparcV9MMU *mmu, const int idx)
  78{
  79    uint64_t tsb_register;
  80    int page_size;
  81    if (cpu_has_hypervisor(env)) {
  82        int tsb_index = 0;
  83        int ctx = mmu->tag_access & 0x1fffULL;
  84        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
  85        tsb_index = idx;
  86        tsb_index |= ctx ? 2 : 0;
  87        page_size = idx ? ctx_register >> 8 : ctx_register;
  88        page_size &= 7;
  89        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
  90    } else {
  91        page_size = idx;
  92        tsb_register = mmu->tsb;
  93    }
  94    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
  95    int tsb_size  = tsb_register & 0xf;
  96
  97    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
  98
  99    /* move va bits to correct position,
 100     * the context bits will be masked out later */
 101    uint64_t va = mmu->tag_access >> (3 * page_size + 9);
 102
 103    /* calculate tsb_base mask and adjust va if split is in use */
 104    if (tsb_split) {
 105        if (idx == 0) {
 106            va &= ~(1ULL << (13 + tsb_size));
 107        } else {
 108            va |= (1ULL << (13 + tsb_size));
 109        }
 110        tsb_base_mask <<= 1;
 111    }
 112
 113    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
 114}
 115
 116/* Calculates tag target register value by reordering bits
 117   in tag access register */
 118static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
 119{
 120    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
 121}
 122
 123static void replace_tlb_entry(SparcTLBEntry *tlb,
 124                              uint64_t tlb_tag, uint64_t tlb_tte,
 125                              CPUSPARCState *env1)
 126{
 127    target_ulong mask, size, va, offset;
 128
 129    /* flush page range if translation is valid */
 130    if (TTE_IS_VALID(tlb->tte)) {
 131        CPUState *cs = CPU(sparc_env_get_cpu(env1));
 132
 133        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
 134        mask = 1ULL + ~size;
 135
 136        va = tlb->tag & mask;
 137
 138        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
 139            tlb_flush_page(cs, va + offset);
 140        }
 141    }
 142
 143    tlb->tag = tlb_tag;
 144    tlb->tte = tlb_tte;
 145}
 146
 147static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
 148                      const char *strmmu, CPUSPARCState *env1)
 149{
 150    unsigned int i;
 151    target_ulong mask;
 152    uint64_t context;
 153
 154    int is_demap_context = (demap_addr >> 6) & 1;
 155
 156    /* demap context */
 157    switch ((demap_addr >> 4) & 3) {
 158    case 0: /* primary */
 159        context = env1->dmmu.mmu_primary_context;
 160        break;
 161    case 1: /* secondary */
 162        context = env1->dmmu.mmu_secondary_context;
 163        break;
 164    case 2: /* nucleus */
 165        context = 0;
 166        break;
 167    case 3: /* reserved */
 168    default:
 169        return;
 170    }
 171
 172    for (i = 0; i < 64; i++) {
 173        if (TTE_IS_VALID(tlb[i].tte)) {
 174
 175            if (is_demap_context) {
 176                /* will remove non-global entries matching context value */
 177                if (TTE_IS_GLOBAL(tlb[i].tte) ||
 178                    !tlb_compare_context(&tlb[i], context)) {
 179                    continue;
 180                }
 181            } else {
 182                /* demap page
 183                   will remove any entry matching VA */
 184                mask = 0xffffffffffffe000ULL;
 185                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
 186
 187                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
 188                    continue;
 189                }
 190
 191                /* entry should be global or matching context value */
 192                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
 193                    !tlb_compare_context(&tlb[i], context)) {
 194                    continue;
 195                }
 196            }
 197
 198            replace_tlb_entry(&tlb[i], 0, 0, env1);
 199#ifdef DEBUG_MMU
 200            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
 201            dump_mmu(stdout, fprintf, env1);
 202#endif
 203        }
 204    }
 205}
 206
 207static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
 208                                   uint64_t sun4v_tte)
 209{
 210    uint64_t sun4u_tte;
 211    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
 212        /* is already in the sun4u format */
 213        return sun4v_tte;
 214    }
 215    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
 216    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
 217    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
 218    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
 219    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
 220    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
 221                             TTE_SIDEEFFECT_BIT);
 222    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
 223    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
 224    return sun4u_tte;
 225}
 226
 227static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
 228                                 uint64_t tlb_tag, uint64_t tlb_tte,
 229                                 const char *strmmu, CPUSPARCState *env1,
 230                                 uint64_t addr)
 231{
 232    unsigned int i, replace_used;
 233
 234    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
 235    if (cpu_has_hypervisor(env1)) {
 236        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
 237        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
 238        uint32_t new_ctx = tlb_tag & 0x1fffU;
 239        for (i = 0; i < 64; i++) {
 240            uint32_t ctx = tlb[i].tag & 0x1fffU;
 241            /* check if new mapping overlaps an existing one */
 242            if (new_ctx == ctx) {
 243                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
 244                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
 245                if (new_vaddr == vaddr
 246                    || (new_vaddr < vaddr + size
 247                        && vaddr < new_vaddr + new_size)) {
 248                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
 249                                new_vaddr);
 250                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 251                    return;
 252                }
 253            }
 254
 255        }
 256    }
 257    /* Try replacing invalid entry */
 258    for (i = 0; i < 64; i++) {
 259        if (!TTE_IS_VALID(tlb[i].tte)) {
 260            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 261#ifdef DEBUG_MMU
 262            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
 263            dump_mmu(stdout, fprintf, env1);
 264#endif
 265            return;
 266        }
 267    }
 268
 269    /* All entries are valid, try replacing unlocked entry */
 270
 271    for (replace_used = 0; replace_used < 2; ++replace_used) {
 272
 273        /* Used entries are not replaced on first pass */
 274
 275        for (i = 0; i < 64; i++) {
 276            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
 277
 278                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 279#ifdef DEBUG_MMU
 280                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
 281                            strmmu, (replace_used ? "used" : "unused"), i);
 282                dump_mmu(stdout, fprintf, env1);
 283#endif
 284                return;
 285            }
 286        }
 287
 288        /* Now reset used bit and search for unused entries again */
 289
 290        for (i = 0; i < 64; i++) {
 291            TTE_SET_UNUSED(tlb[i].tte);
 292        }
 293    }
 294
 295#ifdef DEBUG_MMU
 296    DPRINTF_MMU("%s lru replacement: no free entries available, "
 297                "replacing the last one\n", strmmu);
 298#endif
 299    /* corner case: the last entry is replaced anyway */
 300    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
 301}
 302
 303#endif
 304
 305#ifdef TARGET_SPARC64
 306/* returns true if access using this ASI is to have address translated by MMU
 307   otherwise access is to raw physical address */
 308/* TODO: check sparc32 bits */
 309static inline int is_translating_asi(int asi)
 310{
 311    /* Ultrasparc IIi translating asi
 312       - note this list is defined by cpu implementation
 313    */
 314    switch (asi) {
 315    case 0x04 ... 0x11:
 316    case 0x16 ... 0x19:
 317    case 0x1E ... 0x1F:
 318    case 0x24 ... 0x2C:
 319    case 0x70 ... 0x73:
 320    case 0x78 ... 0x79:
 321    case 0x80 ... 0xFF:
 322        return 1;
 323
 324    default:
 325        return 0;
 326    }
 327}
 328
 329static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
 330{
 331    if (AM_CHECK(env1)) {
 332        addr &= 0xffffffffULL;
 333    }
 334    return addr;
 335}
 336
 337static inline target_ulong asi_address_mask(CPUSPARCState *env,
 338                                            int asi, target_ulong addr)
 339{
 340    if (is_translating_asi(asi)) {
 341        addr = address_mask(env, addr);
 342    }
 343    return addr;
 344}
 345
 346#ifndef CONFIG_USER_ONLY
 347static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
 348{
 349    /* ASIs >= 0x80 are user mode.
 350     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
 351     * ASIs <= 0x2f are super mode.
 352     */
 353    if (asi < 0x80
 354        && !cpu_hypervisor_mode(env)
 355        && (!cpu_supervisor_mode(env)
 356            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
 357        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
 358    }
 359}
 360#endif /* !CONFIG_USER_ONLY */
 361#endif
 362
 363static void do_check_align(CPUSPARCState *env, target_ulong addr,
 364                           uint32_t align, uintptr_t ra)
 365{
 366    if (addr & align) {
 367#ifdef DEBUG_UNALIGNED
 368        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
 369               "\n", addr, env->pc);
 370#endif
 371        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
 372    }
 373}
 374
 375void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
 376{
 377    do_check_align(env, addr, align, GETPC());
 378}
 379
 380#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
 381    defined(DEBUG_MXCC)
 382static void dump_mxcc(CPUSPARCState *env)
 383{
 384    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 385           "\n",
 386           env->mxccdata[0], env->mxccdata[1],
 387           env->mxccdata[2], env->mxccdata[3]);
 388    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 389           "\n"
 390           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 391           "\n",
 392           env->mxccregs[0], env->mxccregs[1],
 393           env->mxccregs[2], env->mxccregs[3],
 394           env->mxccregs[4], env->mxccregs[5],
 395           env->mxccregs[6], env->mxccregs[7]);
 396}
 397#endif
 398
 399#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
 400    && defined(DEBUG_ASI)
 401static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 402                     uint64_t r1)
 403{
 404    switch (size) {
 405    case 1:
 406        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 407                    addr, asi, r1 & 0xff);
 408        break;
 409    case 2:
 410        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 411                    addr, asi, r1 & 0xffff);
 412        break;
 413    case 4:
 414        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 415                    addr, asi, r1 & 0xffffffff);
 416        break;
 417    case 8:
 418        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 419                    addr, asi, r1);
 420        break;
 421    }
 422}
 423#endif
 424
 425#ifndef TARGET_SPARC64
 426#ifndef CONFIG_USER_ONLY
 427
 428
 429/* Leon3 cache control */
 430
 431static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
 432                                   uint64_t val, int size)
 433{
 434    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
 435                          addr, val, size);
 436
 437    if (size != 4) {
 438        DPRINTF_CACHE_CONTROL("32bits only\n");
 439        return;
 440    }
 441
 442    switch (addr) {
 443    case 0x00:              /* Cache control */
 444
 445        /* These values must always be read as zeros */
 446        val &= ~CACHE_CTRL_FD;
 447        val &= ~CACHE_CTRL_FI;
 448        val &= ~CACHE_CTRL_IB;
 449        val &= ~CACHE_CTRL_IP;
 450        val &= ~CACHE_CTRL_DP;
 451
 452        env->cache_control = val;
 453        break;
 454    case 0x04:              /* Instruction cache configuration */
 455    case 0x08:              /* Data cache configuration */
 456        /* Read Only */
 457        break;
 458    default:
 459        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
 460        break;
 461    };
 462}
 463
 464static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
 465                                       int size)
 466{
 467    uint64_t ret = 0;
 468
 469    if (size != 4) {
 470        DPRINTF_CACHE_CONTROL("32bits only\n");
 471        return 0;
 472    }
 473
 474    switch (addr) {
 475    case 0x00:              /* Cache control */
 476        ret = env->cache_control;
 477        break;
 478
 479        /* Configuration registers are read and only always keep those
 480           predefined values */
 481
 482    case 0x04:              /* Instruction cache configuration */
 483        ret = 0x10220000;
 484        break;
 485    case 0x08:              /* Data cache configuration */
 486        ret = 0x18220000;
 487        break;
 488    default:
 489        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
 490        break;
 491    };
 492    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
 493                          addr, ret, size);
 494    return ret;
 495}
 496
 497uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
 498                       int asi, uint32_t memop)
 499{
 500    int size = 1 << (memop & MO_SIZE);
 501    int sign = memop & MO_SIGN;
 502    CPUState *cs = CPU(sparc_env_get_cpu(env));
 503    uint64_t ret = 0;
 504#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 505    uint32_t last_addr = addr;
 506#endif
 507
 508    do_check_align(env, addr, size - 1, GETPC());
 509    switch (asi) {
 510    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 511    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 512        switch (addr) {
 513        case 0x00:          /* Leon3 Cache Control */
 514        case 0x08:          /* Leon3 Instruction Cache config */
 515        case 0x0C:          /* Leon3 Date Cache config */
 516            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 517                ret = leon3_cache_control_ld(env, addr, size);
 518            }
 519            break;
 520        case 0x01c00a00: /* MXCC control register */
 521            if (size == 8) {
 522                ret = env->mxccregs[3];
 523            } else {
 524                qemu_log_mask(LOG_UNIMP,
 525                              "%08x: unimplemented access size: %d\n", addr,
 526                              size);
 527            }
 528            break;
 529        case 0x01c00a04: /* MXCC control register */
 530            if (size == 4) {
 531                ret = env->mxccregs[3];
 532            } else {
 533                qemu_log_mask(LOG_UNIMP,
 534                              "%08x: unimplemented access size: %d\n", addr,
 535                              size);
 536            }
 537            break;
 538        case 0x01c00c00: /* Module reset register */
 539            if (size == 8) {
 540                ret = env->mxccregs[5];
 541                /* should we do something here? */
 542            } else {
 543                qemu_log_mask(LOG_UNIMP,
 544                              "%08x: unimplemented access size: %d\n", addr,
 545                              size);
 546            }
 547            break;
 548        case 0x01c00f00: /* MBus port address register */
 549            if (size == 8) {
 550                ret = env->mxccregs[7];
 551            } else {
 552                qemu_log_mask(LOG_UNIMP,
 553                              "%08x: unimplemented access size: %d\n", addr,
 554                              size);
 555            }
 556            break;
 557        default:
 558            qemu_log_mask(LOG_UNIMP,
 559                          "%08x: unimplemented address, size: %d\n", addr,
 560                          size);
 561            break;
 562        }
 563        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
 564                     "addr = %08x -> ret = %" PRIx64 ","
 565                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 566#ifdef DEBUG_MXCC
 567        dump_mxcc(env);
 568#endif
 569        break;
 570    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
 571    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
 572        {
 573            int mmulev;
 574
 575            mmulev = (addr >> 8) & 15;
 576            if (mmulev > 4) {
 577                ret = 0;
 578            } else {
 579                ret = mmu_probe(env, addr, mmulev);
 580            }
 581            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 582                        addr, mmulev, ret);
 583        }
 584        break;
 585    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
 586    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
 587        {
 588            int reg = (addr >> 8) & 0x1f;
 589
 590            ret = env->mmuregs[reg];
 591            if (reg == 3) { /* Fault status cleared on read */
 592                env->mmuregs[3] = 0;
 593            } else if (reg == 0x13) { /* Fault status read */
 594                ret = env->mmuregs[3];
 595            } else if (reg == 0x14) { /* Fault address read */
 596                ret = env->mmuregs[4];
 597            }
 598            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 599        }
 600        break;
 601    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 602    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 603    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 604        break;
 605    case ASI_KERNELTXT: /* Supervisor code access */
 606        switch (size) {
 607        case 1:
 608            ret = cpu_ldub_code(env, addr);
 609            break;
 610        case 2:
 611            ret = cpu_lduw_code(env, addr);
 612            break;
 613        default:
 614        case 4:
 615            ret = cpu_ldl_code(env, addr);
 616            break;
 617        case 8:
 618            ret = cpu_ldq_code(env, addr);
 619            break;
 620        }
 621        break;
 622    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
 623    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
 624    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
 625    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
 626        break;
 627    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 628        switch (size) {
 629        case 1:
 630            ret = ldub_phys(cs->as, (hwaddr)addr
 631                            | ((hwaddr)(asi & 0xf) << 32));
 632            break;
 633        case 2:
 634            ret = lduw_phys(cs->as, (hwaddr)addr
 635                            | ((hwaddr)(asi & 0xf) << 32));
 636            break;
 637        default:
 638        case 4:
 639            ret = ldl_phys(cs->as, (hwaddr)addr
 640                           | ((hwaddr)(asi & 0xf) << 32));
 641            break;
 642        case 8:
 643            ret = ldq_phys(cs->as, (hwaddr)addr
 644                           | ((hwaddr)(asi & 0xf) << 32));
 645            break;
 646        }
 647        break;
 648    case 0x30: /* Turbosparc secondary cache diagnostic */
 649    case 0x31: /* Turbosparc RAM snoop */
 650    case 0x32: /* Turbosparc page table descriptor diagnostic */
 651    case 0x39: /* data cache diagnostic register */
 652        ret = 0;
 653        break;
 654    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
 655        {
 656            int reg = (addr >> 8) & 3;
 657
 658            switch (reg) {
 659            case 0: /* Breakpoint Value (Addr) */
 660                ret = env->mmubpregs[reg];
 661                break;
 662            case 1: /* Breakpoint Mask */
 663                ret = env->mmubpregs[reg];
 664                break;
 665            case 2: /* Breakpoint Control */
 666                ret = env->mmubpregs[reg];
 667                break;
 668            case 3: /* Breakpoint Status */
 669                ret = env->mmubpregs[reg];
 670                env->mmubpregs[reg] = 0ULL;
 671                break;
 672            }
 673            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
 674                        ret);
 675        }
 676        break;
 677    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
 678        ret = env->mmubpctrv;
 679        break;
 680    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
 681        ret = env->mmubpctrc;
 682        break;
 683    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
 684        ret = env->mmubpctrs;
 685        break;
 686    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
 687        ret = env->mmubpaction;
 688        break;
 689    case ASI_USERTXT: /* User code access, XXX */
 690    default:
 691        cpu_unassigned_access(cs, addr, false, false, asi, size);
 692        ret = 0;
 693        break;
 694
 695    case ASI_USERDATA: /* User data access */
 696    case ASI_KERNELDATA: /* Supervisor data access */
 697    case ASI_P: /* Implicit primary context data access (v9 only?) */
 698    case ASI_M_BYPASS:    /* MMU passthrough */
 699    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
 700        /* These are always handled inline.  */
 701        g_assert_not_reached();
 702    }
 703    if (sign) {
 704        switch (size) {
 705        case 1:
 706            ret = (int8_t) ret;
 707            break;
 708        case 2:
 709            ret = (int16_t) ret;
 710            break;
 711        case 4:
 712            ret = (int32_t) ret;
 713            break;
 714        default:
 715            break;
 716        }
 717    }
 718#ifdef DEBUG_ASI
 719    dump_asi("read ", last_addr, asi, size, ret);
 720#endif
 721    return ret;
 722}
 723
 724void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
 725                   int asi, uint32_t memop)
 726{
 727    int size = 1 << (memop & MO_SIZE);
 728    SPARCCPU *cpu = sparc_env_get_cpu(env);
 729    CPUState *cs = CPU(cpu);
 730
 731    do_check_align(env, addr, size - 1, GETPC());
 732    switch (asi) {
 733    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 734    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 735        switch (addr) {
 736        case 0x00:          /* Leon3 Cache Control */
 737        case 0x08:          /* Leon3 Instruction Cache config */
 738        case 0x0C:          /* Leon3 Date Cache config */
 739            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 740                leon3_cache_control_st(env, addr, val, size);
 741            }
 742            break;
 743
 744        case 0x01c00000: /* MXCC stream data register 0 */
 745            if (size == 8) {
 746                env->mxccdata[0] = val;
 747            } else {
 748                qemu_log_mask(LOG_UNIMP,
 749                              "%08x: unimplemented access size: %d\n", addr,
 750                              size);
 751            }
 752            break;
 753        case 0x01c00008: /* MXCC stream data register 1 */
 754            if (size == 8) {
 755                env->mxccdata[1] = val;
 756            } else {
 757                qemu_log_mask(LOG_UNIMP,
 758                              "%08x: unimplemented access size: %d\n", addr,
 759                              size);
 760            }
 761            break;
 762        case 0x01c00010: /* MXCC stream data register 2 */
 763            if (size == 8) {
 764                env->mxccdata[2] = val;
 765            } else {
 766                qemu_log_mask(LOG_UNIMP,
 767                              "%08x: unimplemented access size: %d\n", addr,
 768                              size);
 769            }
 770            break;
 771        case 0x01c00018: /* MXCC stream data register 3 */
 772            if (size == 8) {
 773                env->mxccdata[3] = val;
 774            } else {
 775                qemu_log_mask(LOG_UNIMP,
 776                              "%08x: unimplemented access size: %d\n", addr,
 777                              size);
 778            }
 779            break;
 780        case 0x01c00100: /* MXCC stream source */
 781            if (size == 8) {
 782                env->mxccregs[0] = val;
 783            } else {
 784                qemu_log_mask(LOG_UNIMP,
 785                              "%08x: unimplemented access size: %d\n", addr,
 786                              size);
 787            }
 788            env->mxccdata[0] = ldq_phys(cs->as,
 789                                        (env->mxccregs[0] & 0xffffffffULL) +
 790                                        0);
 791            env->mxccdata[1] = ldq_phys(cs->as,
 792                                        (env->mxccregs[0] & 0xffffffffULL) +
 793                                        8);
 794            env->mxccdata[2] = ldq_phys(cs->as,
 795                                        (env->mxccregs[0] & 0xffffffffULL) +
 796                                        16);
 797            env->mxccdata[3] = ldq_phys(cs->as,
 798                                        (env->mxccregs[0] & 0xffffffffULL) +
 799                                        24);
 800            break;
 801        case 0x01c00200: /* MXCC stream destination */
 802            if (size == 8) {
 803                env->mxccregs[1] = val;
 804            } else {
 805                qemu_log_mask(LOG_UNIMP,
 806                              "%08x: unimplemented access size: %d\n", addr,
 807                              size);
 808            }
 809            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
 810                     env->mxccdata[0]);
 811            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
 812                     env->mxccdata[1]);
 813            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
 814                     env->mxccdata[2]);
 815            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
 816                     env->mxccdata[3]);
 817            break;
 818        case 0x01c00a00: /* MXCC control register */
 819            if (size == 8) {
 820                env->mxccregs[3] = val;
 821            } else {
 822                qemu_log_mask(LOG_UNIMP,
 823                              "%08x: unimplemented access size: %d\n", addr,
 824                              size);
 825            }
 826            break;
 827        case 0x01c00a04: /* MXCC control register */
 828            if (size == 4) {
 829                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
 830                    | val;
 831            } else {
 832                qemu_log_mask(LOG_UNIMP,
 833                              "%08x: unimplemented access size: %d\n", addr,
 834                              size);
 835            }
 836            break;
 837        case 0x01c00e00: /* MXCC error register  */
 838            /* writing a 1 bit clears the error */
 839            if (size == 8) {
 840                env->mxccregs[6] &= ~val;
 841            } else {
 842                qemu_log_mask(LOG_UNIMP,
 843                              "%08x: unimplemented access size: %d\n", addr,
 844                              size);
 845            }
 846            break;
 847        case 0x01c00f00: /* MBus port address register */
 848            if (size == 8) {
 849                env->mxccregs[7] = val;
 850            } else {
 851                qemu_log_mask(LOG_UNIMP,
 852                              "%08x: unimplemented access size: %d\n", addr,
 853                              size);
 854            }
 855            break;
 856        default:
 857            qemu_log_mask(LOG_UNIMP,
 858                          "%08x: unimplemented address, size: %d\n", addr,
 859                          size);
 860            break;
 861        }
 862        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
 863                     asi, size, addr, val);
 864#ifdef DEBUG_MXCC
 865        dump_mxcc(env);
 866#endif
 867        break;
 868    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
 869    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
 870        {
 871            int mmulev;
 872
 873            mmulev = (addr >> 8) & 15;
 874            DPRINTF_MMU("mmu flush level %d\n", mmulev);
 875            switch (mmulev) {
 876            case 0: /* flush page */
 877                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
 878                break;
 879            case 1: /* flush segment (256k) */
 880            case 2: /* flush region (16M) */
 881            case 3: /* flush context (4G) */
 882            case 4: /* flush entire */
 883                tlb_flush(CPU(cpu));
 884                break;
 885            default:
 886                break;
 887            }
 888#ifdef DEBUG_MMU
 889            dump_mmu(stdout, fprintf, env);
 890#endif
 891        }
 892        break;
 893    case ASI_M_MMUREGS: /* write MMU regs */
 894    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
 895        {
 896            int reg = (addr >> 8) & 0x1f;
 897            uint32_t oldreg;
 898
 899            oldreg = env->mmuregs[reg];
 900            switch (reg) {
 901            case 0: /* Control Register */
 902                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
 903                    (val & 0x00ffffff);
 904                /* Mappings generated during no-fault mode
 905                   are invalid in normal mode.  */
 906                if ((oldreg ^ env->mmuregs[reg])
 907                    & (MMU_NF | env->def.mmu_bm)) {
 908                    tlb_flush(CPU(cpu));
 909                }
 910                break;
 911            case 1: /* Context Table Pointer Register */
 912                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
 913                break;
 914            case 2: /* Context Register */
 915                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
 916                if (oldreg != env->mmuregs[reg]) {
 917                    /* we flush when the MMU context changes because
 918                       QEMU has no MMU context support */
 919                    tlb_flush(CPU(cpu));
 920                }
 921                break;
 922            case 3: /* Synchronous Fault Status Register with Clear */
 923            case 4: /* Synchronous Fault Address Register */
 924                break;
 925            case 0x10: /* TLB Replacement Control Register */
 926                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
 927                break;
 928            case 0x13: /* Synchronous Fault Status Register with Read
 929                          and Clear */
 930                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
 931                break;
 932            case 0x14: /* Synchronous Fault Address Register */
 933                env->mmuregs[4] = val;
 934                break;
 935            default:
 936                env->mmuregs[reg] = val;
 937                break;
 938            }
 939            if (oldreg != env->mmuregs[reg]) {
 940                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
 941                            reg, oldreg, env->mmuregs[reg]);
 942            }
 943#ifdef DEBUG_MMU
 944            dump_mmu(stdout, fprintf, env);
 945#endif
 946        }
 947        break;
 948    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 949    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 950    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 951        break;
 952    case ASI_M_TXTC_TAG:   /* I-cache tag */
 953    case ASI_M_TXTC_DATA:  /* I-cache data */
 954    case ASI_M_DATAC_TAG:  /* D-cache tag */
 955    case ASI_M_DATAC_DATA: /* D-cache data */
 956    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
 957    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
 958    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
 959    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
 960    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
 961        break;
 962    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 963        {
 964            switch (size) {
 965            case 1:
 966                stb_phys(cs->as, (hwaddr)addr
 967                         | ((hwaddr)(asi & 0xf) << 32), val);
 968                break;
 969            case 2:
 970                stw_phys(cs->as, (hwaddr)addr
 971                         | ((hwaddr)(asi & 0xf) << 32), val);
 972                break;
 973            case 4:
 974            default:
 975                stl_phys(cs->as, (hwaddr)addr
 976                         | ((hwaddr)(asi & 0xf) << 32), val);
 977                break;
 978            case 8:
 979                stq_phys(cs->as, (hwaddr)addr
 980                         | ((hwaddr)(asi & 0xf) << 32), val);
 981                break;
 982            }
 983        }
 984        break;
 985    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
 986    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
 987                  Turbosparc snoop RAM */
 988    case 0x32: /* store buffer control or Turbosparc page table
 989                  descriptor diagnostic */
 990    case 0x36: /* I-cache flash clear */
 991    case 0x37: /* D-cache flash clear */
 992        break;
 993    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
 994        {
 995            int reg = (addr >> 8) & 3;
 996
 997            switch (reg) {
 998            case 0: /* Breakpoint Value (Addr) */
 999                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1000                break;
1001            case 1: /* Breakpoint Mask */
1002                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1003                break;
1004            case 2: /* Breakpoint Control */
1005                env->mmubpregs[reg] = (val & 0x7fULL);
1006                break;
1007            case 3: /* Breakpoint Status */
1008                env->mmubpregs[reg] = (val & 0xfULL);
1009                break;
1010            }
1011            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1012                        env->mmuregs[reg]);
1013        }
1014        break;
1015    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1016        env->mmubpctrv = val & 0xffffffff;
1017        break;
1018    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1019        env->mmubpctrc = val & 0x3;
1020        break;
1021    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1022        env->mmubpctrs = val & 0x3;
1023        break;
1024    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1025        env->mmubpaction = val & 0x1fff;
1026        break;
1027    case ASI_USERTXT: /* User code access, XXX */
1028    case ASI_KERNELTXT: /* Supervisor code access, XXX */
1029    default:
1030        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1031                              addr, true, false, asi, size);
1032        break;
1033
1034    case ASI_USERDATA: /* User data access */
1035    case ASI_KERNELDATA: /* Supervisor data access */
1036    case ASI_P:
1037    case ASI_M_BYPASS:    /* MMU passthrough */
1038    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1039    case ASI_M_BCOPY: /* Block copy, sta access */
1040    case ASI_M_BFILL: /* Block fill, stda access */
1041        /* These are always handled inline.  */
1042        g_assert_not_reached();
1043    }
1044#ifdef DEBUG_ASI
1045    dump_asi("write", addr, asi, size, val);
1046#endif
1047}
1048
1049#endif /* CONFIG_USER_ONLY */
1050#else /* TARGET_SPARC64 */
1051
1052#ifdef CONFIG_USER_ONLY
1053uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1054                       int asi, uint32_t memop)
1055{
1056    int size = 1 << (memop & MO_SIZE);
1057    int sign = memop & MO_SIGN;
1058    uint64_t ret = 0;
1059
1060    if (asi < 0x80) {
1061        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1062    }
1063    do_check_align(env, addr, size - 1, GETPC());
1064    addr = asi_address_mask(env, asi, addr);
1065
1066    switch (asi) {
1067    case ASI_PNF:  /* Primary no-fault */
1068    case ASI_PNFL: /* Primary no-fault LE */
1069    case ASI_SNF:  /* Secondary no-fault */
1070    case ASI_SNFL: /* Secondary no-fault LE */
1071        if (page_check_range(addr, size, PAGE_READ) == -1) {
1072            ret = 0;
1073            break;
1074        }
1075        switch (size) {
1076        case 1:
1077            ret = cpu_ldub_data(env, addr);
1078            break;
1079        case 2:
1080            ret = cpu_lduw_data(env, addr);
1081            break;
1082        case 4:
1083            ret = cpu_ldl_data(env, addr);
1084            break;
1085        case 8:
1086            ret = cpu_ldq_data(env, addr);
1087            break;
1088        default:
1089            g_assert_not_reached();
1090        }
1091        break;
1092        break;
1093
1094    case ASI_P: /* Primary */
1095    case ASI_PL: /* Primary LE */
1096    case ASI_S:  /* Secondary */
1097    case ASI_SL: /* Secondary LE */
1098        /* These are always handled inline.  */
1099        g_assert_not_reached();
1100
1101    default:
1102        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1103    }
1104
1105    /* Convert from little endian */
1106    switch (asi) {
1107    case ASI_PNFL: /* Primary no-fault LE */
1108    case ASI_SNFL: /* Secondary no-fault LE */
1109        switch (size) {
1110        case 2:
1111            ret = bswap16(ret);
1112            break;
1113        case 4:
1114            ret = bswap32(ret);
1115            break;
1116        case 8:
1117            ret = bswap64(ret);
1118            break;
1119        }
1120    }
1121
1122    /* Convert to signed number */
1123    if (sign) {
1124        switch (size) {
1125        case 1:
1126            ret = (int8_t) ret;
1127            break;
1128        case 2:
1129            ret = (int16_t) ret;
1130            break;
1131        case 4:
1132            ret = (int32_t) ret;
1133            break;
1134        }
1135    }
1136#ifdef DEBUG_ASI
1137    dump_asi("read", addr, asi, size, ret);
1138#endif
1139    return ret;
1140}
1141
1142void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1143                   int asi, uint32_t memop)
1144{
1145    int size = 1 << (memop & MO_SIZE);
1146#ifdef DEBUG_ASI
1147    dump_asi("write", addr, asi, size, val);
1148#endif
1149    if (asi < 0x80) {
1150        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1151    }
1152    do_check_align(env, addr, size - 1, GETPC());
1153
1154    switch (asi) {
1155    case ASI_P:  /* Primary */
1156    case ASI_PL: /* Primary LE */
1157    case ASI_S:  /* Secondary */
1158    case ASI_SL: /* Secondary LE */
1159        /* These are always handled inline.  */
1160        g_assert_not_reached();
1161
1162    case ASI_PNF:  /* Primary no-fault, RO */
1163    case ASI_SNF:  /* Secondary no-fault, RO */
1164    case ASI_PNFL: /* Primary no-fault LE, RO */
1165    case ASI_SNFL: /* Secondary no-fault LE, RO */
1166    default:
1167        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1168    }
1169}
1170
1171#else /* CONFIG_USER_ONLY */
1172
1173uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1174                       int asi, uint32_t memop)
1175{
1176    int size = 1 << (memop & MO_SIZE);
1177    int sign = memop & MO_SIGN;
1178    CPUState *cs = CPU(sparc_env_get_cpu(env));
1179    uint64_t ret = 0;
1180#if defined(DEBUG_ASI)
1181    target_ulong last_addr = addr;
1182#endif
1183
1184    asi &= 0xff;
1185
1186    do_check_asi(env, asi, GETPC());
1187    do_check_align(env, addr, size - 1, GETPC());
1188    addr = asi_address_mask(env, asi, addr);
1189
1190    switch (asi) {
1191    case ASI_PNF:
1192    case ASI_PNFL:
1193    case ASI_SNF:
1194    case ASI_SNFL:
1195        {
1196            TCGMemOpIdx oi;
1197            int idx = (env->pstate & PS_PRIV
1198                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1199                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1200
1201            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1202#ifdef DEBUG_ASI
1203                dump_asi("read ", last_addr, asi, size, ret);
1204#endif
1205                /* exception_index is set in get_physical_address_data. */
1206                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1207            }
1208            oi = make_memop_idx(memop, idx);
1209            switch (size) {
1210            case 1:
1211                ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1212                break;
1213            case 2:
1214                if (asi & 8) {
1215                    ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1216                } else {
1217                    ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1218                }
1219                break;
1220            case 4:
1221                if (asi & 8) {
1222                    ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1223                } else {
1224                    ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1225                }
1226                break;
1227            case 8:
1228                if (asi & 8) {
1229                    ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1230                } else {
1231                    ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1232                }
1233                break;
1234            default:
1235                g_assert_not_reached();
1236            }
1237        }
1238        break;
1239
1240    case ASI_AIUP:  /* As if user primary */
1241    case ASI_AIUS:  /* As if user secondary */
1242    case ASI_AIUPL: /* As if user primary LE */
1243    case ASI_AIUSL: /* As if user secondary LE */
1244    case ASI_P:  /* Primary */
1245    case ASI_S:  /* Secondary */
1246    case ASI_PL: /* Primary LE */
1247    case ASI_SL: /* Secondary LE */
1248    case ASI_REAL:      /* Bypass */
1249    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1250    case ASI_REAL_L:    /* Bypass LE */
1251    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1252    case ASI_N:  /* Nucleus */
1253    case ASI_NL: /* Nucleus Little Endian (LE) */
1254    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1255    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1256    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1257    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1258    case ASI_TWINX_REAL:   /* Real address, twinx */
1259    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1260    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1261    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1262    case ASI_TWINX_N:  /* Nucleus, twinx */
1263    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1264    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1265    case ASI_TWINX_P:  /* Primary, twinx */
1266    case ASI_TWINX_PL: /* Primary, twinx, LE */
1267    case ASI_TWINX_S:  /* Secondary, twinx */
1268    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1269        /* These are always handled inline.  */
1270        g_assert_not_reached();
1271
1272    case ASI_UPA_CONFIG: /* UPA config */
1273        /* XXX */
1274        break;
1275    case ASI_LSU_CONTROL: /* LSU */
1276        ret = env->lsu;
1277        break;
1278    case ASI_IMMU: /* I-MMU regs */
1279        {
1280            int reg = (addr >> 3) & 0xf;
1281            switch (reg) {
1282            case 0:
1283                /* 0x00 I-TSB Tag Target register */
1284                ret = ultrasparc_tag_target(env->immu.tag_access);
1285                break;
1286            case 3: /* SFSR */
1287                ret = env->immu.sfsr;
1288                break;
1289            case 5: /* TSB access */
1290                ret = env->immu.tsb;
1291                break;
1292            case 6:
1293                /* 0x30 I-TSB Tag Access register */
1294                ret = env->immu.tag_access;
1295                break;
1296            default:
1297                cpu_unassigned_access(cs, addr, false, false, 1, size);
1298                ret = 0;
1299            }
1300            break;
1301        }
1302    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1303        {
1304            /* env->immuregs[5] holds I-MMU TSB register value
1305               env->immuregs[6] holds I-MMU Tag Access register value */
1306            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1307            break;
1308        }
1309    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1310        {
1311            /* env->immuregs[5] holds I-MMU TSB register value
1312               env->immuregs[6] holds I-MMU Tag Access register value */
1313            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1314            break;
1315        }
1316    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1317        {
1318            int reg = (addr >> 3) & 0x3f;
1319
1320            ret = env->itlb[reg].tte;
1321            break;
1322        }
1323    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1324        {
1325            int reg = (addr >> 3) & 0x3f;
1326
1327            ret = env->itlb[reg].tag;
1328            break;
1329        }
1330    case ASI_DMMU: /* D-MMU regs */
1331        {
1332            int reg = (addr >> 3) & 0xf;
1333            switch (reg) {
1334            case 0:
1335                /* 0x00 D-TSB Tag Target register */
1336                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1337                break;
1338            case 1: /* 0x08 Primary Context */
1339                ret = env->dmmu.mmu_primary_context;
1340                break;
1341            case 2: /* 0x10 Secondary Context */
1342                ret = env->dmmu.mmu_secondary_context;
1343                break;
1344            case 3: /* SFSR */
1345                ret = env->dmmu.sfsr;
1346                break;
1347            case 4: /* 0x20 SFAR */
1348                ret = env->dmmu.sfar;
1349                break;
1350            case 5: /* 0x28 TSB access */
1351                ret = env->dmmu.tsb;
1352                break;
1353            case 6: /* 0x30 D-TSB Tag Access register */
1354                ret = env->dmmu.tag_access;
1355                break;
1356            case 7:
1357                ret = env->dmmu.virtual_watchpoint;
1358                break;
1359            case 8:
1360                ret = env->dmmu.physical_watchpoint;
1361                break;
1362            default:
1363                cpu_unassigned_access(cs, addr, false, false, 1, size);
1364                ret = 0;
1365            }
1366            break;
1367        }
1368    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1369        {
1370            /* env->dmmuregs[5] holds D-MMU TSB register value
1371               env->dmmuregs[6] holds D-MMU Tag Access register value */
1372            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1373            break;
1374        }
1375    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1376        {
1377            /* env->dmmuregs[5] holds D-MMU TSB register value
1378               env->dmmuregs[6] holds D-MMU Tag Access register value */
1379            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1380            break;
1381        }
1382    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1383        {
1384            int reg = (addr >> 3) & 0x3f;
1385
1386            ret = env->dtlb[reg].tte;
1387            break;
1388        }
1389    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1390        {
1391            int reg = (addr >> 3) & 0x3f;
1392
1393            ret = env->dtlb[reg].tag;
1394            break;
1395        }
1396    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1397        break;
1398    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1399        ret = env->ivec_status;
1400        break;
1401    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1402        {
1403            int reg = (addr >> 4) & 0x3;
1404            if (reg < 3) {
1405                ret = env->ivec_data[reg];
1406            }
1407            break;
1408        }
1409    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1410        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1411            /* Hyperprivileged access only */
1412            cpu_unassigned_access(cs, addr, false, false, 1, size);
1413        }
1414        /* fall through */
1415    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1416        {
1417            unsigned int i = (addr >> 3) & 0x7;
1418            ret = env->scratch[i];
1419            break;
1420        }
1421    case ASI_MMU: /* UA2005 Context ID registers */
1422        switch ((addr >> 3) & 0x3) {
1423        case 1:
1424            ret = env->dmmu.mmu_primary_context;
1425            break;
1426        case 2:
1427            ret = env->dmmu.mmu_secondary_context;
1428            break;
1429        default:
1430          cpu_unassigned_access(cs, addr, true, false, 1, size);
1431        }
1432        break;
1433    case ASI_DCACHE_DATA:     /* D-cache data */
1434    case ASI_DCACHE_TAG:      /* D-cache tag access */
1435    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1436    case ASI_AFSR:            /* E-cache asynchronous fault status */
1437    case ASI_AFAR:            /* E-cache asynchronous fault address */
1438    case ASI_EC_TAG_DATA:     /* E-cache tag data */
1439    case ASI_IC_INSTR:        /* I-cache instruction access */
1440    case ASI_IC_TAG:          /* I-cache tag access */
1441    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1442    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1443    case ASI_EC_W:            /* E-cache tag */
1444    case ASI_EC_R:            /* E-cache tag */
1445        break;
1446    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1447    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1448    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1449    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1450    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1451    case ASI_INTR_W:              /* Interrupt vector, WO */
1452    default:
1453        cpu_unassigned_access(cs, addr, false, false, 1, size);
1454        ret = 0;
1455        break;
1456    }
1457
1458    /* Convert to signed number */
1459    if (sign) {
1460        switch (size) {
1461        case 1:
1462            ret = (int8_t) ret;
1463            break;
1464        case 2:
1465            ret = (int16_t) ret;
1466            break;
1467        case 4:
1468            ret = (int32_t) ret;
1469            break;
1470        default:
1471            break;
1472        }
1473    }
1474#ifdef DEBUG_ASI
1475    dump_asi("read ", last_addr, asi, size, ret);
1476#endif
1477    return ret;
1478}
1479
1480void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1481                   int asi, uint32_t memop)
1482{
1483    int size = 1 << (memop & MO_SIZE);
1484    SPARCCPU *cpu = sparc_env_get_cpu(env);
1485    CPUState *cs = CPU(cpu);
1486
1487#ifdef DEBUG_ASI
1488    dump_asi("write", addr, asi, size, val);
1489#endif
1490
1491    asi &= 0xff;
1492
1493    do_check_asi(env, asi, GETPC());
1494    do_check_align(env, addr, size - 1, GETPC());
1495    addr = asi_address_mask(env, asi, addr);
1496
1497    switch (asi) {
1498    case ASI_AIUP:  /* As if user primary */
1499    case ASI_AIUS:  /* As if user secondary */
1500    case ASI_AIUPL: /* As if user primary LE */
1501    case ASI_AIUSL: /* As if user secondary LE */
1502    case ASI_P:  /* Primary */
1503    case ASI_S:  /* Secondary */
1504    case ASI_PL: /* Primary LE */
1505    case ASI_SL: /* Secondary LE */
1506    case ASI_REAL:      /* Bypass */
1507    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1508    case ASI_REAL_L:    /* Bypass LE */
1509    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1510    case ASI_N:  /* Nucleus */
1511    case ASI_NL: /* Nucleus Little Endian (LE) */
1512    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1513    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1514    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1515    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1516    case ASI_TWINX_REAL:   /* Real address, twinx */
1517    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1518    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1519    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1520    case ASI_TWINX_N:  /* Nucleus, twinx */
1521    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1522    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1523    case ASI_TWINX_P:  /* Primary, twinx */
1524    case ASI_TWINX_PL: /* Primary, twinx, LE */
1525    case ASI_TWINX_S:  /* Secondary, twinx */
1526    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1527        /* These are always handled inline.  */
1528        g_assert_not_reached();
1529    /* these ASIs have different functions on UltraSPARC-IIIi
1530     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1531     */
1532    case 0x31:
1533    case 0x32:
1534    case 0x39:
1535    case 0x3a:
1536        if (cpu_has_hypervisor(env)) {
1537            /* UA2005
1538             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1539             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1540             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1541             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1542             */
1543            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1544            env->dmmu.sun4v_tsb_pointers[idx] = val;
1545        } else {
1546            helper_raise_exception(env, TT_ILL_INSN);
1547        }
1548        break;
1549    case 0x33:
1550    case 0x3b:
1551        if (cpu_has_hypervisor(env)) {
1552            /* UA2005
1553             * ASI_DMMU_CTX_ZERO_CONFIG
1554             * ASI_DMMU_CTX_NONZERO_CONFIG
1555             */
1556            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1557        } else {
1558            helper_raise_exception(env, TT_ILL_INSN);
1559        }
1560        break;
1561    case 0x35:
1562    case 0x36:
1563    case 0x3d:
1564    case 0x3e:
1565        if (cpu_has_hypervisor(env)) {
1566            /* UA2005
1567             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1568             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1569             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1570             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1571             */
1572            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1573            env->immu.sun4v_tsb_pointers[idx] = val;
1574        } else {
1575            helper_raise_exception(env, TT_ILL_INSN);
1576        }
1577      break;
1578    case 0x37:
1579    case 0x3f:
1580        if (cpu_has_hypervisor(env)) {
1581            /* UA2005
1582             * ASI_IMMU_CTX_ZERO_CONFIG
1583             * ASI_IMMU_CTX_NONZERO_CONFIG
1584             */
1585            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1586        } else {
1587          helper_raise_exception(env, TT_ILL_INSN);
1588        }
1589        break;
1590    case ASI_UPA_CONFIG: /* UPA config */
1591        /* XXX */
1592        return;
1593    case ASI_LSU_CONTROL: /* LSU */
1594        env->lsu = val & (DMMU_E | IMMU_E);
1595        return;
1596    case ASI_IMMU: /* I-MMU regs */
1597        {
1598            int reg = (addr >> 3) & 0xf;
1599            uint64_t oldreg;
1600
1601            oldreg = env->immu.mmuregs[reg];
1602            switch (reg) {
1603            case 0: /* RO */
1604                return;
1605            case 1: /* Not in I-MMU */
1606            case 2:
1607                return;
1608            case 3: /* SFSR */
1609                if ((val & 1) == 0) {
1610                    val = 0; /* Clear SFSR */
1611                }
1612                env->immu.sfsr = val;
1613                break;
1614            case 4: /* RO */
1615                return;
1616            case 5: /* TSB access */
1617                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1618                            PRIx64 "\n", env->immu.tsb, val);
1619                env->immu.tsb = val;
1620                break;
1621            case 6: /* Tag access */
1622                env->immu.tag_access = val;
1623                break;
1624            case 7:
1625            case 8:
1626                return;
1627            default:
1628                cpu_unassigned_access(cs, addr, true, false, 1, size);
1629                break;
1630            }
1631
1632            if (oldreg != env->immu.mmuregs[reg]) {
1633                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1634                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1635            }
1636#ifdef DEBUG_MMU
1637            dump_mmu(stdout, fprintf, env);
1638#endif
1639            return;
1640        }
1641    case ASI_ITLB_DATA_IN: /* I-MMU data in */
1642        /* ignore real translation entries */
1643        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1644            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1645                                 val, "immu", env, addr);
1646        }
1647        return;
1648    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1649        {
1650            /* TODO: auto demap */
1651
1652            unsigned int i = (addr >> 3) & 0x3f;
1653
1654            /* ignore real translation entries */
1655            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1656                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1657                                  sun4v_tte_to_sun4u(env, addr, val), env);
1658            }
1659#ifdef DEBUG_MMU
1660            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1661            dump_mmu(stdout, fprintf, env);
1662#endif
1663            return;
1664        }
1665    case ASI_IMMU_DEMAP: /* I-MMU demap */
1666        demap_tlb(env->itlb, addr, "immu", env);
1667        return;
1668    case ASI_DMMU: /* D-MMU regs */
1669        {
1670            int reg = (addr >> 3) & 0xf;
1671            uint64_t oldreg;
1672
1673            oldreg = env->dmmu.mmuregs[reg];
1674            switch (reg) {
1675            case 0: /* RO */
1676            case 4:
1677                return;
1678            case 3: /* SFSR */
1679                if ((val & 1) == 0) {
1680                    val = 0; /* Clear SFSR, Fault address */
1681                    env->dmmu.sfar = 0;
1682                }
1683                env->dmmu.sfsr = val;
1684                break;
1685            case 1: /* Primary context */
1686                env->dmmu.mmu_primary_context = val;
1687                /* can be optimized to only flush MMU_USER_IDX
1688                   and MMU_KERNEL_IDX entries */
1689                tlb_flush(CPU(cpu));
1690                break;
1691            case 2: /* Secondary context */
1692                env->dmmu.mmu_secondary_context = val;
1693                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1694                   and MMU_KERNEL_SECONDARY_IDX entries */
1695                tlb_flush(CPU(cpu));
1696                break;
1697            case 5: /* TSB access */
1698                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1699                            PRIx64 "\n", env->dmmu.tsb, val);
1700                env->dmmu.tsb = val;
1701                break;
1702            case 6: /* Tag access */
1703                env->dmmu.tag_access = val;
1704                break;
1705            case 7: /* Virtual Watchpoint */
1706                env->dmmu.virtual_watchpoint = val;
1707                break;
1708            case 8: /* Physical Watchpoint */
1709                env->dmmu.physical_watchpoint = val;
1710                break;
1711            default:
1712                cpu_unassigned_access(cs, addr, true, false, 1, size);
1713                break;
1714            }
1715
1716            if (oldreg != env->dmmu.mmuregs[reg]) {
1717                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1718                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1719            }
1720#ifdef DEBUG_MMU
1721            dump_mmu(stdout, fprintf, env);
1722#endif
1723            return;
1724        }
1725    case ASI_DTLB_DATA_IN: /* D-MMU data in */
1726      /* ignore real translation entries */
1727      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1728          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1729                               val, "dmmu", env, addr);
1730      }
1731      return;
1732    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1733        {
1734            unsigned int i = (addr >> 3) & 0x3f;
1735
1736            /* ignore real translation entries */
1737            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1738                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1739                                  sun4v_tte_to_sun4u(env, addr, val), env);
1740            }
1741#ifdef DEBUG_MMU
1742            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1743            dump_mmu(stdout, fprintf, env);
1744#endif
1745            return;
1746        }
1747    case ASI_DMMU_DEMAP: /* D-MMU demap */
1748        demap_tlb(env->dtlb, addr, "dmmu", env);
1749        return;
1750    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1751        env->ivec_status = val & 0x20;
1752        return;
1753    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1754        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1755            /* Hyperprivileged access only */
1756            cpu_unassigned_access(cs, addr, true, false, 1, size);
1757        }
1758        /* fall through */
1759    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1760        {
1761            unsigned int i = (addr >> 3) & 0x7;
1762            env->scratch[i] = val;
1763            return;
1764        }
1765    case ASI_MMU: /* UA2005 Context ID registers */
1766        {
1767          switch ((addr >> 3) & 0x3) {
1768          case 1:
1769              env->dmmu.mmu_primary_context = val;
1770              env->immu.mmu_primary_context = val;
1771              tlb_flush_by_mmuidx(CPU(cpu),
1772                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1773              break;
1774          case 2:
1775              env->dmmu.mmu_secondary_context = val;
1776              env->immu.mmu_secondary_context = val;
1777              tlb_flush_by_mmuidx(CPU(cpu),
1778                                  (1 << MMU_USER_SECONDARY_IDX) |
1779                                  (1 << MMU_KERNEL_SECONDARY_IDX));
1780              break;
1781          default:
1782              cpu_unassigned_access(cs, addr, true, false, 1, size);
1783          }
1784        }
1785        return;
1786    case ASI_QUEUE: /* UA2005 CPU mondo queue */
1787    case ASI_DCACHE_DATA: /* D-cache data */
1788    case ASI_DCACHE_TAG: /* D-cache tag access */
1789    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1790    case ASI_AFSR: /* E-cache asynchronous fault status */
1791    case ASI_AFAR: /* E-cache asynchronous fault address */
1792    case ASI_EC_TAG_DATA: /* E-cache tag data */
1793    case ASI_IC_INSTR: /* I-cache instruction access */
1794    case ASI_IC_TAG: /* I-cache tag access */
1795    case ASI_IC_PRE_DECODE: /* I-cache predecode */
1796    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1797    case ASI_EC_W: /* E-cache tag */
1798    case ASI_EC_R: /* E-cache tag */
1799        return;
1800    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1801    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1802    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1803    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1804    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1805    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1806    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1807    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1808    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1809    case ASI_PNF: /* Primary no-fault, RO */
1810    case ASI_SNF: /* Secondary no-fault, RO */
1811    case ASI_PNFL: /* Primary no-fault LE, RO */
1812    case ASI_SNFL: /* Secondary no-fault LE, RO */
1813    default:
1814        cpu_unassigned_access(cs, addr, true, false, 1, size);
1815        return;
1816    }
1817}
1818#endif /* CONFIG_USER_ONLY */
1819#endif /* TARGET_SPARC64 */
1820
1821#if !defined(CONFIG_USER_ONLY)
1822#ifndef TARGET_SPARC64
1823void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1824                                 bool is_write, bool is_exec, int is_asi,
1825                                 unsigned size)
1826{
1827    SPARCCPU *cpu = SPARC_CPU(cs);
1828    CPUSPARCState *env = &cpu->env;
1829    int fault_type;
1830
1831#ifdef DEBUG_UNASSIGNED
1832    if (is_asi) {
1833        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1834               " asi 0x%02x from " TARGET_FMT_lx "\n",
1835               is_exec ? "exec" : is_write ? "write" : "read", size,
1836               size == 1 ? "" : "s", addr, is_asi, env->pc);
1837    } else {
1838        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1839               " from " TARGET_FMT_lx "\n",
1840               is_exec ? "exec" : is_write ? "write" : "read", size,
1841               size == 1 ? "" : "s", addr, env->pc);
1842    }
1843#endif
1844    /* Don't overwrite translation and access faults */
1845    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
1846    if ((fault_type > 4) || (fault_type == 0)) {
1847        env->mmuregs[3] = 0; /* Fault status register */
1848        if (is_asi) {
1849            env->mmuregs[3] |= 1 << 16;
1850        }
1851        if (env->psrs) {
1852            env->mmuregs[3] |= 1 << 5;
1853        }
1854        if (is_exec) {
1855            env->mmuregs[3] |= 1 << 6;
1856        }
1857        if (is_write) {
1858            env->mmuregs[3] |= 1 << 7;
1859        }
1860        env->mmuregs[3] |= (5 << 2) | 2;
1861        /* SuperSPARC will never place instruction fault addresses in the FAR */
1862        if (!is_exec) {
1863            env->mmuregs[4] = addr; /* Fault address register */
1864        }
1865    }
1866    /* overflow (same type fault was not read before another fault) */
1867    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
1868        env->mmuregs[3] |= 1;
1869    }
1870
1871    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1872        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1873        cpu_raise_exception_ra(env, tt, GETPC());
1874    }
1875
1876    /* flush neverland mappings created during no-fault mode,
1877       so the sequential MMU faults report proper fault types */
1878    if (env->mmuregs[0] & MMU_NF) {
1879        tlb_flush(cs);
1880    }
1881}
1882#else
1883void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1884                                 bool is_write, bool is_exec, int is_asi,
1885                                 unsigned size)
1886{
1887    SPARCCPU *cpu = SPARC_CPU(cs);
1888    CPUSPARCState *env = &cpu->env;
1889
1890#ifdef DEBUG_UNASSIGNED
1891    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1892           "\n", addr, env->pc);
1893#endif
1894
1895    if (is_exec) { /* XXX has_hypervisor */
1896        if (env->lsu & (IMMU_E)) {
1897            cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
1898        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1899            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
1900        }
1901    } else {
1902        if (env->lsu & (DMMU_E)) {
1903            cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1904        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1905            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
1906        }
1907    }
1908}
1909#endif
1910#endif
1911
1912#if !defined(CONFIG_USER_ONLY)
1913void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1914                                                 MMUAccessType access_type,
1915                                                 int mmu_idx,
1916                                                 uintptr_t retaddr)
1917{
1918    SPARCCPU *cpu = SPARC_CPU(cs);
1919    CPUSPARCState *env = &cpu->env;
1920
1921#ifdef DEBUG_UNALIGNED
1922    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1923           "\n", addr, env->pc);
1924#endif
1925    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1926}
1927
1928/* try to fill the TLB and return an exception if error. If retaddr is
1929   NULL, it means that the function was called in C code (i.e. not
1930   from generated code or from helper.c) */
1931/* XXX: fix it to restore all registers */
1932void tlb_fill(CPUState *cs, target_ulong addr, int size,
1933              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1934{
1935    int ret;
1936
1937    ret = sparc_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
1938    if (ret) {
1939        cpu_loop_exit_restore(cs, retaddr);
1940    }
1941}
1942#endif
1943